| /* |
| * This file is part of the Chelsio T4 Ethernet driver for Linux. |
| * |
| * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/bitmap.h> |
| #include <linux/crc32.h> |
| #include <linux/ctype.h> |
| #include <linux/debugfs.h> |
| #include <linux/err.h> |
| #include <linux/etherdevice.h> |
| #include <linux/firmware.h> |
| #include <linux/if.h> |
| #include <linux/if_vlan.h> |
| #include <linux/init.h> |
| #include <linux/log2.h> |
| #include <linux/mdio.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/mutex.h> |
| #include <linux/netdevice.h> |
| #include <linux/pci.h> |
| #include <linux/aer.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/sched.h> |
| #include <linux/seq_file.h> |
| #include <linux/sockios.h> |
| #include <linux/vmalloc.h> |
| #include <linux/workqueue.h> |
| #include <net/neighbour.h> |
| #include <net/netevent.h> |
| #include <net/addrconf.h> |
| #include <net/bonding.h> |
| #include <linux/uaccess.h> |
| #include <linux/crash_dump.h> |
| #include <net/udp_tunnel.h> |
| #include <net/xfrm.h> |
| #if defined(CONFIG_CHELSIO_TLS_DEVICE) |
| #include <net/tls.h> |
| #endif |
| |
| #include "cxgb4.h" |
| #include "cxgb4_filter.h" |
| #include "t4_regs.h" |
| #include "t4_values.h" |
| #include "t4_msg.h" |
| #include "t4fw_api.h" |
| #include "t4fw_version.h" |
| #include "cxgb4_dcb.h" |
| #include "srq.h" |
| #include "cxgb4_debugfs.h" |
| #include "clip_tbl.h" |
| #include "l2t.h" |
| #include "smt.h" |
| #include "sched.h" |
| #include "cxgb4_tc_u32.h" |
| #include "cxgb4_tc_flower.h" |
| #include "cxgb4_tc_mqprio.h" |
| #include "cxgb4_tc_matchall.h" |
| #include "cxgb4_ptp.h" |
| #include "cxgb4_cudbg.h" |
| |
| char cxgb4_driver_name[] = KBUILD_MODNAME; |
| |
| #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" |
| |
| #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ |
| NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ |
| NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) |
| |
| /* Macros needed to support the PCI Device ID Table ... |
| */ |
| #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ |
| static const struct pci_device_id cxgb4_pci_tbl[] = { |
| #define CXGB4_UNIFIED_PF 0x4 |
| |
| #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF |
| |
| /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is |
| * called for both. |
| */ |
| #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 |
| |
| #define CH_PCI_ID_TABLE_ENTRY(devid) \ |
| {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} |
| |
| #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ |
| { 0, } \ |
| } |
| |
| #include "t4_pci_id_tbl.h" |
| |
| #define FW4_FNAME "cxgb4/t4fw.bin" |
| #define FW5_FNAME "cxgb4/t5fw.bin" |
| #define FW6_FNAME "cxgb4/t6fw.bin" |
| #define FW4_CFNAME "cxgb4/t4-config.txt" |
| #define FW5_CFNAME "cxgb4/t5-config.txt" |
| #define FW6_CFNAME "cxgb4/t6-config.txt" |
| #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" |
| #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" |
| #define PHY_AQ1202_DEVICEID 0x4409 |
| #define PHY_BCM84834_DEVICEID 0x4486 |
| |
| MODULE_DESCRIPTION(DRV_DESC); |
| MODULE_AUTHOR("Chelsio Communications"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); |
| MODULE_FIRMWARE(FW4_FNAME); |
| MODULE_FIRMWARE(FW5_FNAME); |
| MODULE_FIRMWARE(FW6_FNAME); |
| |
| /* |
| * The driver uses the best interrupt scheme available on a platform in the |
| * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which |
| * of these schemes the driver may consider as follows: |
| * |
| * msi = 2: choose from among all three options |
| * msi = 1: only consider MSI and INTx interrupts |
| * msi = 0: force INTx interrupts |
| */ |
| static int msi = 2; |
| |
| module_param(msi, int, 0644); |
| MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); |
| |
| /* |
| * Normally we tell the chip to deliver Ingress Packets into our DMA buffers |
| * offset by 2 bytes in order to have the IP headers line up on 4-byte |
| * boundaries. This is a requirement for many architectures which will throw |
| * a machine check fault if an attempt is made to access one of the 4-byte IP |
| * header fields on a non-4-byte boundary. And it's a major performance issue |
| * even on some architectures which allow it like some implementations of the |
| * x86 ISA. However, some architectures don't mind this and for some very |
| * edge-case performance sensitive applications (like forwarding large volumes |
| * of small packets), setting this DMA offset to 0 will decrease the number of |
| * PCI-E Bus transfers enough to measurably affect performance. |
| */ |
| static int rx_dma_offset = 2; |
| |
| /* TX Queue select used to determine what algorithm to use for selecting TX |
| * queue. Select between the kernel provided function (select_queue=0) or user |
| * cxgb_select_queue function (select_queue=1) |
| * |
| * Default: select_queue=0 |
| */ |
| static int select_queue; |
| module_param(select_queue, int, 0644); |
| MODULE_PARM_DESC(select_queue, |
| "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); |
| |
| static struct dentry *cxgb4_debugfs_root; |
| |
| LIST_HEAD(adapter_list); |
| DEFINE_MUTEX(uld_mutex); |
| LIST_HEAD(uld_list); |
| |
| static int cfg_queues(struct adapter *adap); |
| |
| static void link_report(struct net_device *dev) |
| { |
| if (!netif_carrier_ok(dev)) |
| netdev_info(dev, "link down\n"); |
| else { |
| static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; |
| |
| const char *s; |
| const struct port_info *p = netdev_priv(dev); |
| |
| switch (p->link_cfg.speed) { |
| case 100: |
| s = "100Mbps"; |
| break; |
| case 1000: |
| s = "1Gbps"; |
| break; |
| case 10000: |
| s = "10Gbps"; |
| break; |
| case 25000: |
| s = "25Gbps"; |
| break; |
| case 40000: |
| s = "40Gbps"; |
| break; |
| case 50000: |
| s = "50Gbps"; |
| break; |
| case 100000: |
| s = "100Gbps"; |
| break; |
| default: |
| pr_info("%s: unsupported speed: %d\n", |
| dev->name, p->link_cfg.speed); |
| return; |
| } |
| |
| netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, |
| fc[p->link_cfg.fc]); |
| } |
| } |
| |
| #ifdef CONFIG_CHELSIO_T4_DCB |
| /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ |
| static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| struct adapter *adap = pi->adapter; |
| struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; |
| int i; |
| |
| /* We use a simple mapping of Port TX Queue Index to DCB |
| * Priority when we're enabling DCB. |
| */ |
| for (i = 0; i < pi->nqsets; i++, txq++) { |
| u32 name, value; |
| int err; |
| |
| name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | |
| FW_PARAMS_PARAM_X_V( |
| FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | |
| FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); |
| value = enable ? i : 0xffffffff; |
| |
| /* Since we can be called while atomic (from "interrupt |
| * level") we need to issue the Set Parameters Commannd |
| * without sleeping (timeout < 0). |
| */ |
| err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, |
| &name, &value, |
| -FW_CMD_MAX_TIMEOUT); |
| |
| if (err) |
| dev_err(adap->pdev_dev, |
| "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", |
| enable ? "set" : "unset", pi->port_id, i, -err); |
| else |
| txq->dcb_prio = enable ? value : 0; |
| } |
| } |
| |
| int cxgb4_dcb_enabled(const struct net_device *dev) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| |
| if (!pi->dcb.enabled) |
| return 0; |
| |
| return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || |
| (pi->dcb.state == CXGB4_DCB_STATE_HOST)); |
| } |
| #endif /* CONFIG_CHELSIO_T4_DCB */ |
| |
| void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) |
| { |
| struct net_device *dev = adapter->port[port_id]; |
| |
| /* Skip changes from disabled ports. */ |
| if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { |
| if (link_stat) |
| netif_carrier_on(dev); |
| else { |
| #ifdef CONFIG_CHELSIO_T4_DCB |
| if (cxgb4_dcb_enabled(dev)) { |
| cxgb4_dcb_reset(dev); |
| dcb_tx_queue_prio_enable(dev, false); |
| } |
| #endif /* CONFIG_CHELSIO_T4_DCB */ |
| netif_carrier_off(dev); |
| } |
| |
| link_report(dev); |
| } |
| } |
| |
| void t4_os_portmod_changed(struct adapter *adap, int port_id) |
| { |
| static const char *mod_str[] = { |
| NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" |
| }; |
| |
| struct net_device *dev = adap->port[port_id]; |
| struct port_info *pi = netdev_priv(dev); |
| |
| if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) |
| netdev_info(dev, "port module unplugged\n"); |
| else if (pi->mod_type < ARRAY_SIZE(mod_str)) |
| netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); |
| else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) |
| netdev_info(dev, "%s: unsupported port module inserted\n", |
| dev->name); |
| else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) |
| netdev_info(dev, "%s: unknown port module inserted\n", |
| dev->name); |
| else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) |
| netdev_info(dev, "%s: transceiver module error\n", dev->name); |
| else |
| netdev_info(dev, "%s: unknown module type %d inserted\n", |
| dev->name, pi->mod_type); |
| |
| /* If the interface is running, then we'll need any "sticky" Link |
| * Parameters redone with a new Transceiver Module. |
| */ |
| pi->link_cfg.redo_l1cfg = netif_running(dev); |
| } |
| |
| int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ |
| module_param(dbfifo_int_thresh, int, 0644); |
| MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); |
| |
| /* |
| * usecs to sleep while draining the dbfifo |
| */ |
| static int dbfifo_drain_delay = 1000; |
| module_param(dbfifo_drain_delay, int, 0644); |
| MODULE_PARM_DESC(dbfifo_drain_delay, |
| "usecs to sleep while draining the dbfifo"); |
| |
| static inline int cxgb4_set_addr_hash(struct port_info *pi) |
| { |
| struct adapter *adap = pi->adapter; |
| u64 vec = 0; |
| bool ucast = false; |
| struct hash_mac_addr *entry; |
| |
| /* Calculate the hash vector for the updated list and program it */ |
| list_for_each_entry(entry, &adap->mac_hlist, list) { |
| ucast |= is_unicast_ether_addr(entry->addr); |
| vec |= (1ULL << hash_mac_addr(entry->addr)); |
| } |
| return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, |
| vec, false); |
| } |
| |
| static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) |
| { |
| struct port_info *pi = netdev_priv(netdev); |
| struct adapter *adap = pi->adapter; |
| int ret; |
| u64 mhash = 0; |
| u64 uhash = 0; |
| /* idx stores the index of allocated filters, |
| * its size should be modified based on the number of |
| * MAC addresses that we allocate filters for |
| */ |
| |
| u16 idx[1] = {}; |
| bool free = false; |
| bool ucast = is_unicast_ether_addr(mac_addr); |
| const u8 *maclist[1] = {mac_addr}; |
| struct hash_mac_addr *new_entry; |
| |
| ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist, |
| idx, ucast ? &uhash : &mhash, false); |
| if (ret < 0) |
| goto out; |
| /* if hash != 0, then add the addr to hash addr list |
| * so on the end we will calculate the hash for the |
| * list and program it |
| */ |
| if (uhash || mhash) { |
| new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); |
| if (!new_entry) |
| return -ENOMEM; |
| ether_addr_copy(new_entry->addr, mac_addr); |
| list_add_tail(&new_entry->list, &adap->mac_hlist); |
| ret = cxgb4_set_addr_hash(pi); |
| } |
| out: |
| return ret < 0 ? ret : 0; |
| } |
| |
| static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) |
| { |
| struct port_info *pi = netdev_priv(netdev); |
| struct adapter *adap = pi->adapter; |
| int ret; |
| const u8 *maclist[1] = {mac_addr}; |
| struct hash_mac_addr *entry, *tmp; |
| |
| /* If the MAC address to be removed is in the hash addr |
| * list, delete it from the list and update hash vector |
| */ |
| list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { |
| if (ether_addr_equal(entry->addr, mac_addr)) { |
| list_del(&entry->list); |
| kfree(entry); |
| return cxgb4_set_addr_hash(pi); |
| } |
| } |
| |
| ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false); |
| return ret < 0 ? -EINVAL : 0; |
| } |
| |
| /* |
| * Set Rx properties of a port, such as promiscruity, address filters, and MTU. |
| * If @mtu is -1 it is left unchanged. |
| */ |
| static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| struct adapter *adapter = pi->adapter; |
| |
| __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); |
| __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); |
| |
| return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, |
| (dev->flags & IFF_PROMISC) ? 1 : 0, |
| (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, |
| sleep_ok); |
| } |
| |
| /** |
| * cxgb4_change_mac - Update match filter for a MAC address. |
| * @pi: the port_info |
| * @viid: the VI id |
| * @tcam_idx: TCAM index of existing filter for old value of MAC address, |
| * or -1 |
| * @addr: the new MAC address value |
| * @persist: whether a new MAC allocation should be persistent |
| * @smt_idx: the destination to store the new SMT index. |
| * |
| * Modifies an MPS filter and sets it to the new MAC address if |
| * @tcam_idx >= 0, or adds the MAC address to a new filter if |
| * @tcam_idx < 0. In the latter case the address is added persistently |
| * if @persist is %true. |
| * Addresses are programmed to hash region, if tcam runs out of entries. |
| * |
| */ |
| int cxgb4_change_mac(struct port_info *pi, unsigned int viid, |
| int *tcam_idx, const u8 *addr, bool persist, |
| u8 *smt_idx) |
| { |
| struct adapter *adapter = pi->adapter; |
| struct hash_mac_addr *entry, *new_entry; |
| int ret; |
| |
| ret = t4_change_mac(adapter, adapter->mbox, viid, |
| *tcam_idx, addr, persist, smt_idx); |
| /* We ran out of TCAM entries. try programming hash region. */ |
| if (ret == -ENOMEM) { |
| /* If the MAC address to be updated is in the hash addr |
| * list, update it from the list |
| */ |
| list_for_each_entry(entry, &adapter->mac_hlist, list) { |
| if (entry->iface_mac) { |
| ether_addr_copy(entry->addr, addr); |
| goto set_hash; |
| } |
| } |
| new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); |
| if (!new_entry) |
| return -ENOMEM; |
| ether_addr_copy(new_entry->addr, addr); |
| new_entry->iface_mac = true; |
| list_add_tail(&new_entry->list, &adapter->mac_hlist); |
| set_hash: |
| ret = cxgb4_set_addr_hash(pi); |
| } else if (ret >= 0) { |
| *tcam_idx = ret; |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * link_start - enable a port |
| * @dev: the port to enable |
| * |
| * Performs the MAC and PHY actions needed to enable a port. |
| */ |
| static int link_start(struct net_device *dev) |
| { |
| int ret; |
| struct port_info *pi = netdev_priv(dev); |
| unsigned int mb = pi->adapter->pf; |
| |
| /* |
| * We do not set address filters and promiscuity here, the stack does |
| * that step explicitly. |
| */ |
| ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, |
| !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); |
| if (ret == 0) |
| ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, |
| dev->dev_addr, true, &pi->smt_idx); |
| if (ret == 0) |
| ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, |
| &pi->link_cfg); |
| if (ret == 0) { |
| local_bh_disable(); |
| ret = t4_enable_pi_params(pi->adapter, mb, pi, true, |
| true, CXGB4_DCB_ENABLED); |
| local_bh_enable(); |
| } |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_CHELSIO_T4_DCB |
| /* Handle a Data Center Bridging update message from the firmware. */ |
| static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) |
| { |
| int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); |
| struct net_device *dev = adap->port[adap->chan_map[port]]; |
| int old_dcb_enabled = cxgb4_dcb_enabled(dev); |
| int new_dcb_enabled; |
| |
| cxgb4_dcb_handle_fw_update(adap, pcmd); |
| new_dcb_enabled = cxgb4_dcb_enabled(dev); |
| |
| /* If the DCB has become enabled or disabled on the port then we're |
| * going to need to set up/tear down DCB Priority parameters for the |
| * TX Queues associated with the port. |
| */ |
| if (new_dcb_enabled != old_dcb_enabled) |
| dcb_tx_queue_prio_enable(dev, new_dcb_enabled); |
| } |
| #endif /* CONFIG_CHELSIO_T4_DCB */ |
| |
| /* Response queue handler for the FW event queue. |
| */ |
| static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, |
| const struct pkt_gl *gl) |
| { |
| u8 opcode = ((const struct rss_header *)rsp)->opcode; |
| |
| rsp++; /* skip RSS header */ |
| |
| /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. |
| */ |
| if (unlikely(opcode == CPL_FW4_MSG && |
| ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { |
| rsp++; |
| opcode = ((const struct rss_header *)rsp)->opcode; |
| rsp++; |
| if (opcode != CPL_SGE_EGR_UPDATE) { |
| dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" |
| , opcode); |
| goto out; |
| } |
| } |
| |
| if (likely(opcode == CPL_SGE_EGR_UPDATE)) { |
| const struct cpl_sge_egr_update *p = (void *)rsp; |
| unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); |
| struct sge_txq *txq; |
| |
| txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; |
| txq->restarts++; |
| if (txq->q_type == CXGB4_TXQ_ETH) { |
| struct sge_eth_txq *eq; |
| |
| eq = container_of(txq, struct sge_eth_txq, q); |
| t4_sge_eth_txq_egress_update(q->adap, eq, -1); |
| } else { |
| struct sge_uld_txq *oq; |
| |
| oq = container_of(txq, struct sge_uld_txq, q); |
| tasklet_schedule(&oq->qresume_tsk); |
| } |
| } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { |
| const struct cpl_fw6_msg *p = (void *)rsp; |
| |
| #ifdef CONFIG_CHELSIO_T4_DCB |
| const struct fw_port_cmd *pcmd = (const void *)p->data; |
| unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); |
| unsigned int action = |
| FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); |
| |
| if (cmd == FW_PORT_CMD && |
| (action == FW_PORT_ACTION_GET_PORT_INFO || |
| action == FW_PORT_ACTION_GET_PORT_INFO32)) { |
| int port = FW_PORT_CMD_PORTID_G( |
| be32_to_cpu(pcmd->op_to_portid)); |
| struct net_device *dev; |
| int dcbxdis, state_input; |
| |
| dev = q->adap->port[q->adap->chan_map[port]]; |
| dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO |
| ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) |
| : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) |
| & FW_PORT_CMD_DCBXDIS32_F)); |
| state_input = (dcbxdis |
| ? CXGB4_DCB_INPUT_FW_DISABLED |
| : CXGB4_DCB_INPUT_FW_ENABLED); |
| |
| cxgb4_dcb_state_fsm(dev, state_input); |
| } |
| |
| if (cmd == FW_PORT_CMD && |
| action == FW_PORT_ACTION_L2_DCB_CFG) |
| dcb_rpl(q->adap, pcmd); |
| else |
| #endif |
| if (p->type == 0) |
| t4_handle_fw_rpl(q->adap, p->data); |
| } else if (opcode == CPL_L2T_WRITE_RPL) { |
| const struct cpl_l2t_write_rpl *p = (void *)rsp; |
| |
| do_l2t_write_rpl(q->adap, p); |
| } else if (opcode == CPL_SMT_WRITE_RPL) { |
| const struct cpl_smt_write_rpl *p = (void *)rsp; |
| |
| do_smt_write_rpl(q->adap, p); |
| } else if (opcode == CPL_SET_TCB_RPL) { |
| const struct cpl_set_tcb_rpl *p = (void *)rsp; |
| |
| filter_rpl(q->adap, p); |
| } else if (opcode == CPL_ACT_OPEN_RPL) { |
| const struct cpl_act_open_rpl *p = (void *)rsp; |
| |
| hash_filter_rpl(q->adap, p); |
| } else if (opcode == CPL_ABORT_RPL_RSS) { |
| const struct cpl_abort_rpl_rss *p = (void *)rsp; |
| |
| hash_del_filter_rpl(q->adap, p); |
| } else if (opcode == CPL_SRQ_TABLE_RPL) { |
| const struct cpl_srq_table_rpl *p = (void *)rsp; |
| |
| do_srq_table_rpl(q->adap, p); |
| } else |
| dev_err(q->adap->pdev_dev, |
| "unexpected CPL %#x on FW event queue\n", opcode); |
| out: |
| return 0; |
| } |
| |
| static void disable_msi(struct adapter *adapter) |
| { |
| if (adapter->flags & CXGB4_USING_MSIX) { |
| pci_disable_msix(adapter->pdev); |
| adapter->flags &= ~CXGB4_USING_MSIX; |
| } else if (adapter->flags & CXGB4_USING_MSI) { |
| pci_disable_msi(adapter->pdev); |
| adapter->flags &= ~CXGB4_USING_MSI; |
| } |
| } |
| |
| /* |
| * Interrupt handler for non-data events used with MSI-X. |
| */ |
| static irqreturn_t t4_nondata_intr(int irq, void *cookie) |
| { |
| struct adapter *adap = cookie; |
| u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); |
| |
| if (v & PFSW_F) { |
| adap->swintr = 1; |
| t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); |
| } |
| if (adap->flags & CXGB4_MASTER_PF) |
| t4_slow_intr_handler(adap); |
| return IRQ_HANDLED; |
| } |
| |
| int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec, |
| cpumask_var_t *aff_mask, int idx) |
| { |
| int rv; |
| |
| if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) { |
| dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n"); |
| return -ENOMEM; |
| } |
| |
| cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)), |
| *aff_mask); |
| |
| rv = irq_set_affinity_hint(vec, *aff_mask); |
| if (rv) |
| dev_warn(adap->pdev_dev, |
| "irq_set_affinity_hint %u failed %d\n", |
| vec, rv); |
| |
| return 0; |
| } |
| |
| void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask) |
| { |
| irq_set_affinity_hint(vec, NULL); |
| free_cpumask_var(aff_mask); |
| } |
| |
| static int request_msix_queue_irqs(struct adapter *adap) |
| { |
| struct sge *s = &adap->sge; |
| struct msix_info *minfo; |
| int err, ethqidx; |
| |
| if (s->fwevtq_msix_idx < 0) |
| return -ENOMEM; |
| |
| err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec, |
| t4_sge_intr_msix, 0, |
| adap->msix_info[s->fwevtq_msix_idx].desc, |
| &s->fw_evtq); |
| if (err) |
| return err; |
| |
| for_each_ethrxq(s, ethqidx) { |
| minfo = s->ethrxq[ethqidx].msix; |
| err = request_irq(minfo->vec, |
| t4_sge_intr_msix, 0, |
| minfo->desc, |
| &s->ethrxq[ethqidx].rspq); |
| if (err) |
| goto unwind; |
| |
| cxgb4_set_msix_aff(adap, minfo->vec, |
| &minfo->aff_mask, ethqidx); |
| } |
| return 0; |
| |
| unwind: |
| while (--ethqidx >= 0) { |
| minfo = s->ethrxq[ethqidx].msix; |
| cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); |
| free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq); |
| } |
| free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); |
| return err; |
| } |
| |
| static void free_msix_queue_irqs(struct adapter *adap) |
| { |
| struct sge *s = &adap->sge; |
| struct msix_info *minfo; |
| int i; |
| |
| free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); |
| for_each_ethrxq(s, i) { |
| minfo = s->ethrxq[i].msix; |
| cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); |
| free_irq(minfo->vec, &s->ethrxq[i].rspq); |
| } |
| } |
| |
| static int setup_ppod_edram(struct adapter *adap) |
| { |
| unsigned int param, val; |
| int ret; |
| |
| /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check |
| * if firmware supports ppod edram feature or not. If firmware |
| * returns 1, then driver can enable this feature by sending |
| * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to |
| * enable ppod edram feature. |
| */ |
| param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM)); |
| |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); |
| if (ret < 0) { |
| dev_warn(adap->pdev_dev, |
| "querying PPOD_EDRAM support failed: %d\n", |
| ret); |
| return -1; |
| } |
| |
| if (val != 1) |
| return -1; |
| |
| ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); |
| if (ret < 0) { |
| dev_err(adap->pdev_dev, |
| "setting PPOD_EDRAM failed: %d\n", ret); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static void adap_config_hpfilter(struct adapter *adapter) |
| { |
| u32 param, val = 0; |
| int ret; |
| |
| /* Enable HP filter region. Older fw will fail this request and |
| * it is fine. |
| */ |
| param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); |
| ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, |
| 1, ¶m, &val); |
| |
| /* An error means FW doesn't know about HP filter support, |
| * it's not a problem, don't return an error. |
| */ |
| if (ret < 0) |
| dev_err(adapter->pdev_dev, |
| "HP filter region isn't supported by FW\n"); |
| } |
| |
| /** |
| * cxgb4_write_rss - write the RSS table for a given port |
| * @pi: the port |
| * @queues: array of queue indices for RSS |
| * |
| * Sets up the portion of the HW RSS table for the port's VI to distribute |
| * packets to the Rx queues in @queues. |
| * Should never be called before setting up sge eth rx queues |
| */ |
| int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) |
| { |
| u16 *rss; |
| int i, err; |
| struct adapter *adapter = pi->adapter; |
| const struct sge_eth_rxq *rxq; |
| |
| rxq = &adapter->sge.ethrxq[pi->first_qset]; |
| rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); |
| if (!rss) |
| return -ENOMEM; |
| |
| /* map the queue indices to queue ids */ |
| for (i = 0; i < pi->rss_size; i++, queues++) |
| rss[i] = rxq[*queues].rspq.abs_id; |
| |
| err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, |
| pi->rss_size, rss, pi->rss_size); |
| /* If Tunnel All Lookup isn't specified in the global RSS |
| * Configuration, then we need to specify a default Ingress |
| * Queue for any ingress packets which aren't hashed. We'll |
| * use our first ingress queue ... |
| */ |
| if (!err) |
| err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, |
| FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | |
| FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | |
| FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | |
| FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | |
| FW_RSS_VI_CONFIG_CMD_UDPEN_F, |
| rss[0]); |
| kfree(rss); |
| return err; |
| } |
| |
| /** |
| * setup_rss - configure RSS |
| * @adap: the adapter |
| * |
| * Sets up RSS for each port. |
| */ |
| static int setup_rss(struct adapter *adap) |
| { |
| int i, j, err; |
| |
| for_each_port(adap, i) { |
| const struct port_info *pi = adap2pinfo(adap, i); |
| |
| /* Fill default values with equal distribution */ |
| for (j = 0; j < pi->rss_size; j++) |
| pi->rss[j] = j % pi->nqsets; |
| |
| err = cxgb4_write_rss(pi, pi->rss); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| |
| /* |
| * Return the channel of the ingress queue with the given qid. |
| */ |
| static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) |
| { |
| qid -= p->ingr_start; |
| return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; |
| } |
| |
| void cxgb4_quiesce_rx(struct sge_rspq *q) |
| { |
| if (q->handler) |
| napi_disable(&q->napi); |
| } |
| |
| /* |
| * Wait until all NAPI handlers are descheduled. |
| */ |
| static void quiesce_rx(struct adapter *adap) |
| { |
| int i; |
| |
| for (i = 0; i < adap->sge.ingr_sz; i++) { |
| struct sge_rspq *q = adap->sge.ingr_map[i]; |
| |
| if (!q) |
| continue; |
| |
| cxgb4_quiesce_rx(q); |
| } |
| } |
| |
| /* Disable interrupt and napi handler */ |
| static void disable_interrupts(struct adapter *adap) |
| { |
| struct sge *s = &adap->sge; |
| |
| if (adap->flags & CXGB4_FULL_INIT_DONE) { |
| t4_intr_disable(adap); |
| if (adap->flags & CXGB4_USING_MSIX) { |
| free_msix_queue_irqs(adap); |
| free_irq(adap->msix_info[s->nd_msix_idx].vec, |
| adap); |
| } else { |
| free_irq(adap->pdev->irq, adap); |
| } |
| quiesce_rx(adap); |
| } |
| } |
| |
| void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q) |
| { |
| if (q->handler) |
| napi_enable(&q->napi); |
| |
| /* 0-increment GTS to start the timer and enable interrupts */ |
| t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), |
| SEINTARM_V(q->intr_params) | |
| INGRESSQID_V(q->cntxt_id)); |
| } |
| |
| /* |
| * Enable NAPI scheduling and interrupt generation for all Rx queues. |
| */ |
| static void enable_rx(struct adapter *adap) |
| { |
| int i; |
| |
| for (i = 0; i < adap->sge.ingr_sz; i++) { |
| struct sge_rspq *q = adap->sge.ingr_map[i]; |
| |
| if (!q) |
| continue; |
| |
| cxgb4_enable_rx(adap, q); |
| } |
| } |
| |
| static int setup_non_data_intr(struct adapter *adap) |
| { |
| int msix; |
| |
| adap->sge.nd_msix_idx = -1; |
| if (!(adap->flags & CXGB4_USING_MSIX)) |
| return 0; |
| |
| /* Request MSI-X vector for non-data interrupt */ |
| msix = cxgb4_get_msix_idx_from_bmap(adap); |
| if (msix < 0) |
| return -ENOMEM; |
| |
| snprintf(adap->msix_info[msix].desc, |
| sizeof(adap->msix_info[msix].desc), |
| "%s", adap->port[0]->name); |
| |
| adap->sge.nd_msix_idx = msix; |
| return 0; |
| } |
| |
| static int setup_fw_sge_queues(struct adapter *adap) |
| { |
| struct sge *s = &adap->sge; |
| int msix, err = 0; |
| |
| bitmap_zero(s->starving_fl, s->egr_sz); |
| bitmap_zero(s->txq_maperr, s->egr_sz); |
| |
| if (adap->flags & CXGB4_USING_MSIX) { |
| s->fwevtq_msix_idx = -1; |
| msix = cxgb4_get_msix_idx_from_bmap(adap); |
| if (msix < 0) |
| return -ENOMEM; |
| |
| snprintf(adap->msix_info[msix].desc, |
| sizeof(adap->msix_info[msix].desc), |
| "%s-FWeventq", adap->port[0]->name); |
| } else { |
| err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, |
| NULL, NULL, NULL, -1); |
| if (err) |
| return err; |
| msix = -((int)s->intrq.abs_id + 1); |
| } |
| |
| err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], |
| msix, NULL, fwevtq_handler, NULL, -1); |
| if (err && msix >= 0) |
| cxgb4_free_msix_idx_in_bmap(adap, msix); |
| |
| s->fwevtq_msix_idx = msix; |
| return err; |
| } |
| |
| /** |
| * setup_sge_queues - configure SGE Tx/Rx/response queues |
| * @adap: the adapter |
| * |
| * Determines how many sets of SGE queues to use and initializes them. |
| * We support multiple queue sets per port if we have MSI-X, otherwise |
| * just one queue set per port. |
| */ |
| static int setup_sge_queues(struct adapter *adap) |
| { |
| struct sge_uld_rxq_info *rxq_info = NULL; |
| struct sge *s = &adap->sge; |
| unsigned int cmplqid = 0; |
| int err, i, j, msix = 0; |
| |
| if (is_uld(adap)) |
| rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; |
| |
| if (!(adap->flags & CXGB4_USING_MSIX)) |
| msix = -((int)s->intrq.abs_id + 1); |
| |
| for_each_port(adap, i) { |
| struct net_device *dev = adap->port[i]; |
| struct port_info *pi = netdev_priv(dev); |
| struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; |
| struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; |
| |
| for (j = 0; j < pi->nqsets; j++, q++) { |
| if (msix >= 0) { |
| msix = cxgb4_get_msix_idx_from_bmap(adap); |
| if (msix < 0) { |
| err = msix; |
| goto freeout; |
| } |
| |
| snprintf(adap->msix_info[msix].desc, |
| sizeof(adap->msix_info[msix].desc), |
| "%s-Rx%d", dev->name, j); |
| q->msix = &adap->msix_info[msix]; |
| } |
| |
| err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, |
| msix, &q->fl, |
| t4_ethrx_handler, |
| NULL, |
| t4_get_tp_ch_map(adap, |
| pi->tx_chan)); |
| if (err) |
| goto freeout; |
| q->rspq.idx = j; |
| memset(&q->stats, 0, sizeof(q->stats)); |
| } |
| |
| q = &s->ethrxq[pi->first_qset]; |
| for (j = 0; j < pi->nqsets; j++, t++, q++) { |
| err = t4_sge_alloc_eth_txq(adap, t, dev, |
| netdev_get_tx_queue(dev, j), |
| q->rspq.cntxt_id, |
| !!(adap->flags & CXGB4_SGE_DBQ_TIMER)); |
| if (err) |
| goto freeout; |
| } |
| } |
| |
| for_each_port(adap, i) { |
| /* Note that cmplqid below is 0 if we don't |
| * have RDMA queues, and that's the right value. |
| */ |
| if (rxq_info) |
| cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; |
| |
| err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], |
| s->fw_evtq.cntxt_id, cmplqid); |
| if (err) |
| goto freeout; |
| } |
| |
| if (!is_t4(adap->params.chip)) { |
| err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], |
| netdev_get_tx_queue(adap->port[0], 0) |
| , s->fw_evtq.cntxt_id, false); |
| if (err) |
| goto freeout; |
| } |
| |
| t4_write_reg(adap, is_t4(adap->params.chip) ? |
| MPS_TRC_RSS_CONTROL_A : |
| MPS_T5_TRC_RSS_CONTROL_A, |
| RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | |
| QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); |
| return 0; |
| freeout: |
| dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); |
| t4_free_sge_resources(adap); |
| return err; |
| } |
| |
| static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, |
| struct net_device *sb_dev) |
| { |
| int txq; |
| |
| #ifdef CONFIG_CHELSIO_T4_DCB |
| /* If a Data Center Bridging has been successfully negotiated on this |
| * link then we'll use the skb's priority to map it to a TX Queue. |
| * The skb's priority is determined via the VLAN Tag Priority Code |
| * Point field. |
| */ |
| if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { |
| u16 vlan_tci; |
| int err; |
| |
| err = vlan_get_tag(skb, &vlan_tci); |
| if (unlikely(err)) { |
| if (net_ratelimit()) |
| netdev_warn(dev, |
| "TX Packet without VLAN Tag on DCB Link\n"); |
| txq = 0; |
| } else { |
| txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; |
| #ifdef CONFIG_CHELSIO_T4_FCOE |
| if (skb->protocol == htons(ETH_P_FCOE)) |
| txq = skb->priority & 0x7; |
| #endif /* CONFIG_CHELSIO_T4_FCOE */ |
| } |
| return txq; |
| } |
| #endif /* CONFIG_CHELSIO_T4_DCB */ |
| |
| if (dev->num_tc) { |
| struct port_info *pi = netdev2pinfo(dev); |
| u8 ver, proto; |
| |
| ver = ip_hdr(skb)->version; |
| proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : |
| ip_hdr(skb)->protocol; |
| |
| /* Send unsupported traffic pattern to normal NIC queues. */ |
| txq = netdev_pick_tx(dev, skb, sb_dev); |
| if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) || |
| skb->encapsulation || |
| (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) |
| txq = txq % pi->nqsets; |
| |
| return txq; |
| } |
| |
| if (select_queue) { |
| txq = (skb_rx_queue_recorded(skb) |
| ? skb_get_rx_queue(skb) |
| : smp_processor_id()); |
| |
| while (unlikely(txq >= dev->real_num_tx_queues)) |
| txq -= dev->real_num_tx_queues; |
| |
| return txq; |
| } |
| |
| return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; |
| } |
| |
| static int closest_timer(const struct sge *s, int time) |
| { |
| int i, delta, match = 0, min_delta = INT_MAX; |
| |
| for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { |
| delta = time - s->timer_val[i]; |
| if (delta < 0) |
| delta = -delta; |
| if (delta < min_delta) { |
| min_delta = delta; |
| match = i; |
| } |
| } |
| return match; |
| } |
| |
| static int closest_thres(const struct sge *s, int thres) |
| { |
| int i, delta, match = 0, min_delta = INT_MAX; |
| |
| for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { |
| delta = thres - s->counter_val[i]; |
| if (delta < 0) |
| delta = -delta; |
| if (delta < min_delta) { |
| min_delta = delta; |
| match = i; |
| } |
| } |
| return match; |
| } |
| |
| /** |
| * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters |
| * @q: the Rx queue |
| * @us: the hold-off time in us, or 0 to disable timer |
| * @cnt: the hold-off packet count, or 0 to disable counter |
| * |
| * Sets an Rx queue's interrupt hold-off time and packet count. At least |
| * one of the two needs to be enabled for the queue to generate interrupts. |
| */ |
| int cxgb4_set_rspq_intr_params(struct sge_rspq *q, |
| unsigned int us, unsigned int cnt) |
| { |
| struct adapter *adap = q->adap; |
| |
| if ((us | cnt) == 0) |
| cnt = 1; |
| |
| if (cnt) { |
| int err; |
| u32 v, new_idx; |
| |
| new_idx = closest_thres(&adap->sge, cnt); |
| if (q->desc && q->pktcnt_idx != new_idx) { |
| /* the queue has already been created, update it */ |
| v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | |
| FW_PARAMS_PARAM_X_V( |
| FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | |
| FW_PARAMS_PARAM_YZ_V(q->cntxt_id); |
| err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, |
| &v, &new_idx); |
| if (err) |
| return err; |
| } |
| q->pktcnt_idx = new_idx; |
| } |
| |
| us = us == 0 ? 6 : closest_timer(&adap->sge, us); |
| q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); |
| return 0; |
| } |
| |
| static int cxgb_set_features(struct net_device *dev, netdev_features_t features) |
| { |
| const struct port_info *pi = netdev_priv(dev); |
| netdev_features_t changed = dev->features ^ features; |
| int err; |
| |
| if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) |
| return 0; |
| |
| err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, |
| -1, -1, -1, |
| !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); |
| if (unlikely(err)) |
| dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; |
| return err; |
| } |
| |
| static int setup_debugfs(struct adapter *adap) |
| { |
| if (IS_ERR_OR_NULL(adap->debugfs_root)) |
| return -1; |
| |
| #ifdef CONFIG_DEBUG_FS |
| t4_setup_debugfs(adap); |
| #endif |
| return 0; |
| } |
| |
| /* |
| * upper-layer driver support |
| */ |
| |
| /* |
| * Allocate an active-open TID and set it to the supplied value. |
| */ |
| int cxgb4_alloc_atid(struct tid_info *t, void *data) |
| { |
| int atid = -1; |
| |
| spin_lock_bh(&t->atid_lock); |
| if (t->afree) { |
| union aopen_entry *p = t->afree; |
| |
| atid = (p - t->atid_tab) + t->atid_base; |
| t->afree = p->next; |
| p->data = data; |
| t->atids_in_use++; |
| } |
| spin_unlock_bh(&t->atid_lock); |
| return atid; |
| } |
| EXPORT_SYMBOL(cxgb4_alloc_atid); |
| |
| /* |
| * Release an active-open TID. |
| */ |
| void cxgb4_free_atid(struct tid_info *t, unsigned int atid) |
| { |
| union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; |
| |
| spin_lock_bh(&t->atid_lock); |
| p->next = t->afree; |
| t->afree = p; |
| t->atids_in_use--; |
| spin_unlock_bh(&t->atid_lock); |
| } |
| EXPORT_SYMBOL(cxgb4_free_atid); |
| |
| /* |
| * Allocate a server TID and set it to the supplied value. |
| */ |
| int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) |
| { |
| int stid; |
| |
| spin_lock_bh(&t->stid_lock); |
| if (family == PF_INET) { |
| stid = find_first_zero_bit(t->stid_bmap, t->nstids); |
| if (stid < t->nstids) |
| __set_bit(stid, t->stid_bmap); |
| else |
| stid = -1; |
| } else { |
| stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); |
| if (stid < 0) |
| stid = -1; |
| } |
| if (stid >= 0) { |
| t->stid_tab[stid].data = data; |
| stid += t->stid_base; |
| /* IPv6 requires max of 520 bits or 16 cells in TCAM |
| * This is equivalent to 4 TIDs. With CLIP enabled it |
| * needs 2 TIDs. |
| */ |
| if (family == PF_INET6) { |
| t->stids_in_use += 2; |
| t->v6_stids_in_use += 2; |
| } else { |
| t->stids_in_use++; |
| } |
| } |
| spin_unlock_bh(&t->stid_lock); |
| return stid; |
| } |
| EXPORT_SYMBOL(cxgb4_alloc_stid); |
| |
| /* Allocate a server filter TID and set it to the supplied value. |
| */ |
| int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) |
| { |
| int stid; |
| |
| spin_lock_bh(&t->stid_lock); |
| if (family == PF_INET) { |
| stid = find_next_zero_bit(t->stid_bmap, |
| t->nstids + t->nsftids, t->nstids); |
| if (stid < (t->nstids + t->nsftids)) |
| __set_bit(stid, t->stid_bmap); |
| else |
| stid = -1; |
| } else { |
| stid = -1; |
| } |
| if (stid >= 0) { |
| t->stid_tab[stid].data = data; |
| stid -= t->nstids; |
| stid += t->sftid_base; |
| t->sftids_in_use++; |
| } |
| spin_unlock_bh(&t->stid_lock); |
| return stid; |
| } |
| EXPORT_SYMBOL(cxgb4_alloc_sftid); |
| |
| /* Release a server TID. |
| */ |
| void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) |
| { |
| /* Is it a server filter TID? */ |
| if (t->nsftids && (stid >= t->sftid_base)) { |
| stid -= t->sftid_base; |
| stid += t->nstids; |
| } else { |
| stid -= t->stid_base; |
| } |
| |
| spin_lock_bh(&t->stid_lock); |
| if (family == PF_INET) |
| __clear_bit(stid, t->stid_bmap); |
| else |
| bitmap_release_region(t->stid_bmap, stid, 1); |
| t->stid_tab[stid].data = NULL; |
| if (stid < t->nstids) { |
| if (family == PF_INET6) { |
| t->stids_in_use -= 2; |
| t->v6_stids_in_use -= 2; |
| } else { |
| t->stids_in_use--; |
| } |
| } else { |
| t->sftids_in_use--; |
| } |
| |
| spin_unlock_bh(&t->stid_lock); |
| } |
| EXPORT_SYMBOL(cxgb4_free_stid); |
| |
| /* |
| * Populate a TID_RELEASE WR. Caller must properly size the skb. |
| */ |
| static void mk_tid_release(struct sk_buff *skb, unsigned int chan, |
| unsigned int tid) |
| { |
| struct cpl_tid_release *req; |
| |
| set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); |
| req = __skb_put(skb, sizeof(*req)); |
| INIT_TP_WR(req, tid); |
| OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); |
| } |
| |
| /* |
| * Queue a TID release request and if necessary schedule a work queue to |
| * process it. |
| */ |
| static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, |
| unsigned int tid) |
| { |
| struct adapter *adap = container_of(t, struct adapter, tids); |
| void **p = &t->tid_tab[tid - t->tid_base]; |
| |
| spin_lock_bh(&adap->tid_release_lock); |
| *p = adap->tid_release_head; |
| /* Low 2 bits encode the Tx channel number */ |
| adap->tid_release_head = (void **)((uintptr_t)p | chan); |
| if (!adap->tid_release_task_busy) { |
| adap->tid_release_task_busy = true; |
| queue_work(adap->workq, &adap->tid_release_task); |
| } |
| spin_unlock_bh(&adap->tid_release_lock); |
| } |
| |
| /* |
| * Process the list of pending TID release requests. |
| */ |
| static void process_tid_release_list(struct work_struct *work) |
| { |
| struct sk_buff *skb; |
| struct adapter *adap; |
| |
| adap = container_of(work, struct adapter, tid_release_task); |
| |
| spin_lock_bh(&adap->tid_release_lock); |
| while (adap->tid_release_head) { |
| void **p = adap->tid_release_head; |
| unsigned int chan = (uintptr_t)p & 3; |
| p = (void *)p - chan; |
| |
| adap->tid_release_head = *p; |
| *p = NULL; |
| spin_unlock_bh(&adap->tid_release_lock); |
| |
| while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), |
| GFP_KERNEL))) |
| schedule_timeout_uninterruptible(1); |
| |
| mk_tid_release(skb, chan, p - adap->tids.tid_tab); |
| t4_ofld_send(adap, skb); |
| spin_lock_bh(&adap->tid_release_lock); |
| } |
| adap->tid_release_task_busy = false; |
| spin_unlock_bh(&adap->tid_release_lock); |
| } |
| |
| /* |
| * Release a TID and inform HW. If we are unable to allocate the release |
| * message we defer to a work queue. |
| */ |
| void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, |
| unsigned short family) |
| { |
| struct adapter *adap = container_of(t, struct adapter, tids); |
| struct sk_buff *skb; |
| |
| WARN_ON(tid_out_of_range(&adap->tids, tid)); |
| |
| if (t->tid_tab[tid - adap->tids.tid_base]) { |
| t->tid_tab[tid - adap->tids.tid_base] = NULL; |
| atomic_dec(&t->conns_in_use); |
| if (t->hash_base && (tid >= t->hash_base)) { |
| if (family == AF_INET6) |
| atomic_sub(2, &t->hash_tids_in_use); |
| else |
| atomic_dec(&t->hash_tids_in_use); |
| } else { |
| if (family == AF_INET6) |
| atomic_sub(2, &t->tids_in_use); |
| else |
| atomic_dec(&t->tids_in_use); |
| } |
| } |
| |
| skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); |
| if (likely(skb)) { |
| mk_tid_release(skb, chan, tid); |
| t4_ofld_send(adap, skb); |
| } else |
| cxgb4_queue_tid_release(t, chan, tid); |
| } |
| EXPORT_SYMBOL(cxgb4_remove_tid); |
| |
| /* |
| * Allocate and initialize the TID tables. Returns 0 on success. |
| */ |
| static int tid_init(struct tid_info *t) |
| { |
| struct adapter *adap = container_of(t, struct adapter, tids); |
| unsigned int max_ftids = t->nftids + t->nsftids; |
| unsigned int natids = t->natids; |
| unsigned int hpftid_bmap_size; |
| unsigned int eotid_bmap_size; |
| unsigned int stid_bmap_size; |
| unsigned int ftid_bmap_size; |
| size_t size; |
| |
| stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); |
| ftid_bmap_size = BITS_TO_LONGS(t->nftids); |
| hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids); |
| eotid_bmap_size = BITS_TO_LONGS(t->neotids); |
| size = t->ntids * sizeof(*t->tid_tab) + |
| natids * sizeof(*t->atid_tab) + |
| t->nstids * sizeof(*t->stid_tab) + |
| t->nsftids * sizeof(*t->stid_tab) + |
| stid_bmap_size * sizeof(long) + |
| t->nhpftids * sizeof(*t->hpftid_tab) + |
| hpftid_bmap_size * sizeof(long) + |
| max_ftids * sizeof(*t->ftid_tab) + |
| ftid_bmap_size * sizeof(long) + |
| t->neotids * sizeof(*t->eotid_tab) + |
| eotid_bmap_size * sizeof(long); |
| |
| t->tid_tab = kvzalloc(size, GFP_KERNEL); |
| if (!t->tid_tab) |
| return -ENOMEM; |
| |
| t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; |
| t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; |
| t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; |
| t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; |
| t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids]; |
| t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size]; |
| t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; |
| t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size]; |
| t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids]; |
| spin_lock_init(&t->stid_lock); |
| spin_lock_init(&t->atid_lock); |
| spin_lock_init(&t->ftid_lock); |
| |
| t->stids_in_use = 0; |
| t->v6_stids_in_use = 0; |
| t->sftids_in_use = 0; |
| t->afree = NULL; |
| t->atids_in_use = 0; |
| atomic_set(&t->tids_in_use, 0); |
| atomic_set(&t->conns_in_use, 0); |
| atomic_set(&t->hash_tids_in_use, 0); |
| atomic_set(&t->eotids_in_use, 0); |
| |
| /* Setup the free list for atid_tab and clear the stid bitmap. */ |
| if (natids) { |
| while (--natids) |
| t->atid_tab[natids - 1].next = &t->atid_tab[natids]; |
| t->afree = t->atid_tab; |
| } |
| |
| if (is_offload(adap)) { |
| bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); |
| /* Reserve stid 0 for T4/T5 adapters */ |
| if (!t->stid_base && |
| CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) |
| __set_bit(0, t->stid_bmap); |
| |
| if (t->neotids) |
| bitmap_zero(t->eotid_bmap, t->neotids); |
| } |
| |
| if (t->nhpftids) |
| bitmap_zero(t->hpftid_bmap, t->nhpftids); |
| bitmap_zero(t->ftid_bmap, t->nftids); |
| return 0; |
| } |
| |
| /** |
| * cxgb4_create_server - create an IP server |
| * @dev: the device |
| * @stid: the server TID |
| * @sip: local IP address to bind server to |
| * @sport: the server's TCP port |
| * @vlan: the VLAN header information |
| * @queue: queue to direct messages from this server to |
| * |
| * Create an IP server for the given port and address. |
| * Returns <0 on error and one of the %NET_XMIT_* values on success. |
| */ |
| int cxgb4_create_server(const struct net_device *dev, unsigned int stid, |
| __be32 sip, __be16 sport, __be16 vlan, |
| unsigned int queue) |
| { |
| unsigned int chan; |
| struct sk_buff *skb; |
| struct adapter *adap; |
| struct cpl_pass_open_req *req; |
| int ret; |
| |
| skb = alloc_skb(sizeof(*req), GFP_KERNEL); |
| if (!skb) |
| return -ENOMEM; |
| |
| adap = netdev2adap(dev); |
| req = __skb_put(skb, sizeof(*req)); |
| INIT_TP_WR(req, 0); |
| OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); |
| req->local_port = sport; |
| req->peer_port = htons(0); |
| req->local_ip = sip; |
| req->peer_ip = htonl(0); |
| chan = rxq_to_chan(&adap->sge, queue); |
| req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); |
| req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | |
| SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); |
| ret = t4_mgmt_tx(adap, skb); |
| return net_xmit_eval(ret); |
| } |
| EXPORT_SYMBOL(cxgb4_create_server); |
| |
| /* cxgb4_create_server6 - create an IPv6 server |
| * @dev: the device |
| * @stid: the server TID |
| * @sip: local IPv6 address to bind server to |
| * @sport: the server's TCP port |
| * @queue: queue to direct messages from this server to |
| * |
| * Create an IPv6 server for the given port and address. |
| * Returns <0 on error and one of the %NET_XMIT_* values on success. |
| */ |
| int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, |
| const struct in6_addr *sip, __be16 sport, |
| unsigned int queue) |
| { |
| unsigned int chan; |
| struct sk_buff *skb; |
| struct adapter *adap; |
| struct cpl_pass_open_req6 *req; |
| int ret; |
| |
| skb = alloc_skb(sizeof(*req), GFP_KERNEL); |
| if (!skb) |
| return -ENOMEM; |
| |
| adap = netdev2adap(dev); |
| req = __skb_put(skb, sizeof(*req)); |
| INIT_TP_WR(req, 0); |
| OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); |
| req->local_port = sport; |
| req->peer_port = htons(0); |
| req->local_ip_hi = *(__be64 *)(sip->s6_addr); |
| req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); |
| req->peer_ip_hi = cpu_to_be64(0); |
| req->peer_ip_lo = cpu_to_be64(0); |
| chan = rxq_to_chan(&adap->sge, queue); |
| req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); |
| req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | |
| SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); |
| ret = t4_mgmt_tx(adap, skb); |
| return net_xmit_eval(ret); |
| } |
| EXPORT_SYMBOL(cxgb4_create_server6); |
| |
| int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, |
| unsigned int queue, bool ipv6) |
| { |
| struct sk_buff *skb; |
| struct adapter *adap; |
| struct cpl_close_listsvr_req *req; |
| int ret; |
| |
| adap = netdev2adap(dev); |
| |
| skb = alloc_skb(sizeof(*req), GFP_KERNEL); |
| if (!skb) |
| return -ENOMEM; |
| |
| req = __skb_put(skb, sizeof(*req)); |
| INIT_TP_WR(req, 0); |
| OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); |
| req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : |
| LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); |
| ret = t4_mgmt_tx(adap, skb); |
| return net_xmit_eval(ret); |
| } |
| EXPORT_SYMBOL(cxgb4_remove_server); |
| |
| /** |
| * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU |
| * @mtus: the HW MTU table |
| * @mtu: the target MTU |
| * @idx: index of selected entry in the MTU table |
| * |
| * Returns the index and the value in the HW MTU table that is closest to |
| * but does not exceed @mtu, unless @mtu is smaller than any value in the |
| * table, in which case that smallest available value is selected. |
| */ |
| unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, |
| unsigned int *idx) |
| { |
| unsigned int i = 0; |
| |
| while (i < NMTUS - 1 && mtus[i + 1] <= mtu) |
| ++i; |
| if (idx) |
| *idx = i; |
| return mtus[i]; |
| } |
| EXPORT_SYMBOL(cxgb4_best_mtu); |
| |
| /** |
| * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned |
| * @mtus: the HW MTU table |
| * @header_size: Header Size |
| * @data_size_max: maximum Data Segment Size |
| * @data_size_align: desired Data Segment Size Alignment (2^N) |
| * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) |
| * |
| * Similar to cxgb4_best_mtu() but instead of searching the Hardware |
| * MTU Table based solely on a Maximum MTU parameter, we break that |
| * parameter up into a Header Size and Maximum Data Segment Size, and |
| * provide a desired Data Segment Size Alignment. If we find an MTU in |
| * the Hardware MTU Table which will result in a Data Segment Size with |
| * the requested alignment _and_ that MTU isn't "too far" from the |
| * closest MTU, then we'll return that rather than the closest MTU. |
| */ |
| unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, |
| unsigned short header_size, |
| unsigned short data_size_max, |
| unsigned short data_size_align, |
| unsigned int *mtu_idxp) |
| { |
| unsigned short max_mtu = header_size + data_size_max; |
| unsigned short data_size_align_mask = data_size_align - 1; |
| int mtu_idx, aligned_mtu_idx; |
| |
| /* Scan the MTU Table till we find an MTU which is larger than our |
| * Maximum MTU or we reach the end of the table. Along the way, |
| * record the last MTU found, if any, which will result in a Data |
| * Segment Length matching the requested alignment. |
| */ |
| for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { |
| unsigned short data_size = mtus[mtu_idx] - header_size; |
| |
| /* If this MTU minus the Header Size would result in a |
| * Data Segment Size of the desired alignment, remember it. |
| */ |
| if ((data_size & data_size_align_mask) == 0) |
| aligned_mtu_idx = mtu_idx; |
| |
| /* If we're not at the end of the Hardware MTU Table and the |
| * next element is larger than our Maximum MTU, drop out of |
| * the loop. |
| */ |
| if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) |
| break; |
| } |
| |
| /* If we fell out of the loop because we ran to the end of the table, |
| * then we just have to use the last [largest] entry. |
| */ |
| if (mtu_idx == NMTUS) |
| mtu_idx--; |
| |
| /* If we found an MTU which resulted in the requested Data Segment |
| * Length alignment and that's "not far" from the largest MTU which is |
| * less than or equal to the maximum MTU, then use that. |
| */ |
| if (aligned_mtu_idx >= 0 && |
| mtu_idx - aligned_mtu_idx <= 1) |
| mtu_idx = aligned_mtu_idx; |
| |
| /* If the caller has passed in an MTU Index pointer, pass the |
| * MTU Index back. Return the MTU value. |
| */ |
| if (mtu_idxp) |
| *mtu_idxp = mtu_idx; |
| return mtus[mtu_idx]; |
| } |
| EXPORT_SYMBOL(cxgb4_best_aligned_mtu); |
| |
| /** |
| * cxgb4_port_chan - get the HW channel of a port |
| * @dev: the net device for the port |
| * |
| * Return the HW Tx channel of the given port. |
| */ |
| unsigned int cxgb4_port_chan(const struct net_device *dev) |
| { |
| return netdev2pinfo(dev)->tx_chan; |
| } |
| EXPORT_SYMBOL(cxgb4_port_chan); |
| |
| /** |
| * cxgb4_port_e2cchan - get the HW c-channel of a port |
| * @dev: the net device for the port |
| * |
| * Return the HW RX c-channel of the given port. |
| */ |
| unsigned int cxgb4_port_e2cchan(const struct net_device *dev) |
| { |
| return netdev2pinfo(dev)->rx_cchan; |
| } |
| EXPORT_SYMBOL(cxgb4_port_e2cchan); |
| |
| unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) |
| { |
| struct adapter *adap = netdev2adap(dev); |
| u32 v1, v2, lp_count, hp_count; |
| |
| v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); |
| v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); |
| if (is_t4(adap->params.chip)) { |
| lp_count = LP_COUNT_G(v1); |
| hp_count = HP_COUNT_G(v1); |
| } else { |
| lp_count = LP_COUNT_T5_G(v1); |
| hp_count = HP_COUNT_T5_G(v2); |
| } |
| return lpfifo ? lp_count : hp_count; |
| } |
| EXPORT_SYMBOL(cxgb4_dbfifo_count); |
| |
| /** |
| * cxgb4_port_viid - get the VI id of a port |
| * @dev: the net device for the port |
| * |
| * Return the VI id of the given port. |
| */ |
| unsigned int cxgb4_port_viid(const struct net_device *dev) |
| { |
| return netdev2pinfo(dev)->viid; |
| } |
| EXPORT_SYMBOL(cxgb4_port_viid); |
| |
| /** |
| * cxgb4_port_idx - get the index of a port |
| * @dev: the net device for the port |
| * |
| * Return the index of the given port. |
| */ |
| unsigned int cxgb4_port_idx(const struct net_device *dev) |
| { |
| return netdev2pinfo(dev)->port_id; |
| } |
| EXPORT_SYMBOL(cxgb4_port_idx); |
| |
| void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, |
| struct tp_tcp_stats *v6) |
| { |
| struct adapter *adap = pci_get_drvdata(pdev); |
| |
| spin_lock(&adap->stats_lock); |
| t4_tp_get_tcp_stats(adap, v4, v6, false); |
| spin_unlock(&adap->stats_lock); |
| } |
| EXPORT_SYMBOL(cxgb4_get_tcp_stats); |
| |
| void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, |
| const unsigned int *pgsz_order) |
| { |
| struct adapter *adap = netdev2adap(dev); |
| |
| t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); |
| t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | |
| HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | |
| HPZ3_V(pgsz_order[3])); |
| } |
| EXPORT_SYMBOL(cxgb4_iscsi_init); |
| |
| int cxgb4_flush_eq_cache(struct net_device *dev) |
| { |
| struct adapter *adap = netdev2adap(dev); |
| |
| return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); |
| } |
| EXPORT_SYMBOL(cxgb4_flush_eq_cache); |
| |
| static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) |
| { |
| u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; |
| __be64 indices; |
| int ret; |
| |
| spin_lock(&adap->win0_lock); |
| ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, |
| sizeof(indices), (__be32 *)&indices, |
| T4_MEMORY_READ); |
| spin_unlock(&adap->win0_lock); |
| if (!ret) { |
| *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; |
| *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; |
| } |
| return ret; |
| } |
| |
| int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, |
| u16 size) |
| { |
| struct adapter *adap = netdev2adap(dev); |
| u16 hw_pidx, hw_cidx; |
| int ret; |
| |
| ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); |
| if (ret) |
| goto out; |
| |
| if (pidx != hw_pidx) { |
| u16 delta; |
| u32 val; |
| |
| if (pidx >= hw_pidx) |
| delta = pidx - hw_pidx; |
| else |
| delta = size - hw_pidx + pidx; |
| |
| if (is_t4(adap->params.chip)) |
| val = PIDX_V(delta); |
| else |
| val = PIDX_T5_V(delta); |
| wmb(); |
| t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), |
| QID_V(qid) | val); |
| } |
| out: |
| return ret; |
| } |
| EXPORT_SYMBOL(cxgb4_sync_txq_pidx); |
| |
| int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) |
| { |
| u32 edc0_size, edc1_size, mc0_size, mc1_size, size; |
| u32 edc0_end, edc1_end, mc0_end, mc1_end; |
| u32 offset, memtype, memaddr; |
| struct adapter *adap; |
| u32 hma_size = 0; |
| int ret; |
| |
| adap = netdev2adap(dev); |
| |
| offset = ((stag >> 8) * 32) + adap->vres.stag.start; |
| |
| /* Figure out where the offset lands in the Memory Type/Address scheme. |
| * This code assumes that the memory is laid out starting at offset 0 |
| * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 |
| * and EDC1. Some cards will have neither MC0 nor MC1, most cards have |
| * MC0, and some have both MC0 and MC1. |
| */ |
| size = t4_read_reg(adap, MA_EDRAM0_BAR_A); |
| edc0_size = EDRAM0_SIZE_G(size) << 20; |
| size = t4_read_reg(adap, MA_EDRAM1_BAR_A); |
| edc1_size = EDRAM1_SIZE_G(size) << 20; |
| size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); |
| mc0_size = EXT_MEM0_SIZE_G(size) << 20; |
| |
| if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { |
| size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); |
| hma_size = EXT_MEM1_SIZE_G(size) << 20; |
| } |
| edc0_end = edc0_size; |
| edc1_end = edc0_end + edc1_size; |
| mc0_end = edc1_end + mc0_size; |
| |
| if (offset < edc0_end) { |
| memtype = MEM_EDC0; |
| memaddr = offset; |
| } else if (offset < edc1_end) { |
| memtype = MEM_EDC1; |
| memaddr = offset - edc0_end; |
| } else { |
| if (hma_size && (offset < (edc1_end + hma_size))) { |
| memtype = MEM_HMA; |
| memaddr = offset - edc1_end; |
| } else if (offset < mc0_end) { |
| memtype = MEM_MC0; |
| memaddr = offset - edc1_end; |
| } else if (is_t5(adap->params.chip)) { |
| size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); |
| mc1_size = EXT_MEM1_SIZE_G(size) << 20; |
| mc1_end = mc0_end + mc1_size; |
| if (offset < mc1_end) { |
| memtype = MEM_MC1; |
| memaddr = offset - mc0_end; |
| } else { |
| /* offset beyond the end of any memory */ |
| goto err; |
| } |
| } else { |
| /* T4/T6 only has a single memory channel */ |
| goto err; |
| } |
| } |
| |
| spin_lock(&adap->win0_lock); |
| ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); |
| spin_unlock(&adap->win0_lock); |
| return ret; |
| |
| err: |
| dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", |
| stag, offset); |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL(cxgb4_read_tpte); |
| |
| u64 cxgb4_read_sge_timestamp(struct net_device *dev) |
| { |
| u32 hi, lo; |
| struct adapter *adap; |
| |
| adap = netdev2adap(dev); |
| lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); |
| hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); |
| |
| return ((u64)hi << 32) | (u64)lo; |
| } |
| EXPORT_SYMBOL(cxgb4_read_sge_timestamp); |
| |
| int cxgb4_bar2_sge_qregs(struct net_device *dev, |
| unsigned int qid, |
| enum cxgb4_bar2_qtype qtype, |
| int user, |
| u64 *pbar2_qoffset, |
| unsigned int *pbar2_qid) |
| { |
| return t4_bar2_sge_qregs(netdev2adap(dev), |
| qid, |
| (qtype == CXGB4_BAR2_QTYPE_EGRESS |
| ? T4_BAR2_QTYPE_EGRESS |
| : T4_BAR2_QTYPE_INGRESS), |
| user, |
| pbar2_qoffset, |
| pbar2_qid); |
| } |
| EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); |
| |
| static struct pci_driver cxgb4_driver; |
| |
| static void check_neigh_update(struct neighbour *neigh) |
| { |
| const struct device *parent; |
| const struct net_device *netdev = neigh->dev; |
| |
| if (is_vlan_dev(netdev)) |
| netdev = vlan_dev_real_dev(netdev); |
| parent = netdev->dev.parent; |
| if (parent && parent->driver == &cxgb4_driver.driver) |
| t4_l2t_update(dev_get_drvdata(parent), neigh); |
| } |
| |
| static int netevent_cb(struct notifier_block *nb, unsigned long event, |
| void *data) |
| { |
| switch (event) { |
| case NETEVENT_NEIGH_UPDATE: |
| check_neigh_update(data); |
| break; |
| case NETEVENT_REDIRECT: |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| static bool netevent_registered; |
| static struct notifier_block cxgb4_netevent_nb = { |
| .notifier_call = netevent_cb |
| }; |
| |
| static void drain_db_fifo(struct adapter *adap, int usecs) |
| { |
| u32 v1, v2, lp_count, hp_count; |
| |
| do { |
| v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); |
| v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); |
| if (is_t4(adap->params.chip)) { |
| lp_count = LP_COUNT_G(v1); |
| hp_count = HP_COUNT_G(v1); |
| } else { |
| lp_count = LP_COUNT_T5_G(v1); |
| hp_count = HP_COUNT_T5_G(v2); |
| } |
| |
| if (lp_count == 0 && hp_count == 0) |
| break; |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule_timeout(usecs_to_jiffies(usecs)); |
| } while (1); |
| } |
| |
| static void disable_txq_db(struct sge_txq *q) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&q->db_lock, flags); |
| q->db_disabled = 1; |
| spin_unlock_irqrestore(&q->db_lock, flags); |
| } |
| |
| static void enable_txq_db(struct adapter *adap, struct sge_txq *q) |
| { |
| spin_lock_irq(&q->db_lock); |
| if (q->db_pidx_inc) { |
| /* Make sure that all writes to the TX descriptors |
| * are committed before we tell HW about them. |
| */ |
| wmb(); |
| t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), |
| QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); |
| q->db_pidx_inc = 0; |
| } |
| q->db_disabled = 0; |
| spin_unlock_irq(&q->db_lock); |
| } |
| |
| static void disable_dbs(struct adapter *adap) |
| { |
| int i; |
| |
| for_each_ethrxq(&adap->sge, i) |
| disable_txq_db(&adap->sge.ethtxq[i].q); |
| if (is_offload(adap)) { |
| struct sge_uld_txq_info *txq_info = |
| adap->sge.uld_txq_info[CXGB4_TX_OFLD]; |
| |
| if (txq_info) { |
| for_each_ofldtxq(&adap->sge, i) { |
| struct sge_uld_txq *txq = &txq_info->uldtxq[i]; |
| |
| disable_txq_db(&txq->q); |
| } |
| } |
| } |
| for_each_port(adap, i) |
| disable_txq_db(&adap->sge.ctrlq[i].q); |
| } |
| |
| static void enable_dbs(struct adapter *adap) |
| { |
| int i; |
| |
| for_each_ethrxq(&adap->sge, i) |
| enable_txq_db(adap, &adap->sge.ethtxq[i].q); |
| if (is_offload(adap)) { |
| struct sge_uld_txq_info *txq_info = |
| adap->sge.uld_txq_info[CXGB4_TX_OFLD]; |
| |
| if (txq_info) { |
| for_each_ofldtxq(&adap->sge, i) { |
| struct sge_uld_txq *txq = &txq_info->uldtxq[i]; |
| |
| enable_txq_db(adap, &txq->q); |
| } |
| } |
| } |
| for_each_port(adap, i) |
| enable_txq_db(adap, &adap->sge.ctrlq[i].q); |
| } |
| |
| static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) |
| { |
| enum cxgb4_uld type = CXGB4_ULD_RDMA; |
| |
| if (adap->uld && adap->uld[type].handle) |
| adap->uld[type].control(adap->uld[type].handle, cmd); |
| } |
| |
| static void process_db_full(struct work_struct *work) |
| { |
| struct adapter *adap; |
| |
| adap = container_of(work, struct adapter, db_full_task); |
| |
| drain_db_fifo(adap, dbfifo_drain_delay); |
| enable_dbs(adap); |
| notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); |
| if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) |
| t4_set_reg_field(adap, SGE_INT_ENABLE3_A, |
| DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, |
| DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); |
| else |
| t4_set_reg_field(adap, SGE_INT_ENABLE3_A, |
| DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); |
| } |
| |
| static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) |
| { |
| u16 hw_pidx, hw_cidx; |
| int ret; |
| |
| spin_lock_irq(&q->db_lock); |
| ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); |
| if (ret) |
| goto out; |
| if (q->db_pidx != hw_pidx) { |
| u16 delta; |
| u32 val; |
| |
| if (q->db_pidx >= hw_pidx) |
| delta = q->db_pidx - hw_pidx; |
| else |
| delta = q->size - hw_pidx + q->db_pidx; |
| |
| if (is_t4(adap->params.chip)) |
| val = PIDX_V(delta); |
| else |
| val = PIDX_T5_V(delta); |
| wmb(); |
| t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), |
| QID_V(q->cntxt_id) | val); |
| } |
| out: |
| q->db_disabled = 0; |
| q->db_pidx_inc = 0; |
| spin_unlock_irq(&q->db_lock); |
| if (ret) |
| CH_WARN(adap, "DB drop recovery failed.\n"); |
| } |
| |
| static void recover_all_queues(struct adapter *adap) |
| { |
| int i; |
| |
| for_each_ethrxq(&adap->sge, i) |
| sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); |
| if (is_offload(adap)) { |
| struct sge_uld_txq_info *txq_info = |
| adap->sge.uld_txq_info[CXGB4_TX_OFLD]; |
| if (txq_info) { |
| for_each_ofldtxq(&adap->sge, i) { |
| struct sge_uld_txq *txq = &txq_info->uldtxq[i]; |
| |
| sync_txq_pidx(adap, &txq->q); |
| } |
| } |
| } |
| for_each_port(adap, i) |
| sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); |
| } |
| |
| static void process_db_drop(struct work_struct *work) |
| { |
| struct adapter *adap; |
| |
| adap = container_of(work, struct adapter, db_drop_task); |
| |
| if (is_t4(adap->params.chip)) { |
| drain_db_fifo(adap, dbfifo_drain_delay); |
| notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); |
| drain_db_fifo(adap, dbfifo_drain_delay); |
| recover_all_queues(adap); |
| drain_db_fifo(adap, dbfifo_drain_delay); |
| enable_dbs(adap); |
| notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); |
| } else if (is_t5(adap->params.chip)) { |
| u32 dropped_db = t4_read_reg(adap, 0x010ac); |
| u16 qid = (dropped_db >> 15) & 0x1ffff; |
| u16 pidx_inc = dropped_db & 0x1fff; |
| u64 bar2_qoffset; |
| unsigned int bar2_qid; |
| int ret; |
| |
| ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, |
| 0, &bar2_qoffset, &bar2_qid); |
| if (ret) |
| dev_err(adap->pdev_dev, "doorbell drop recovery: " |
| "qid=%d, pidx_inc=%d\n", qid, pidx_inc); |
| else |
| writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), |
| adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); |
| |
| /* Re-enable BAR2 WC */ |
| t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); |
| } |
| |
| if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) |
| t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); |
| } |
| |
| void t4_db_full(struct adapter *adap) |
| { |
| if (is_t4(adap->params.chip)) { |
| disable_dbs(adap); |
| notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); |
| t4_set_reg_field(adap, SGE_INT_ENABLE3_A, |
| DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); |
| queue_work(adap->workq, &adap->db_full_task); |
| } |
| } |
| |
| void t4_db_dropped(struct adapter *adap) |
| { |
| if (is_t4(adap->params.chip)) { |
| disable_dbs(adap); |
| notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); |
| } |
| queue_work(adap->workq, &adap->db_drop_task); |
| } |
| |
| void t4_register_netevent_notifier(void) |
| { |
| if (!netevent_registered) { |
| register_netevent_notifier(&cxgb4_netevent_nb); |
| netevent_registered = true; |
| } |
| } |
| |
| static void detach_ulds(struct adapter *adap) |
| { |
| unsigned int i; |
| |
| mutex_lock(&uld_mutex); |
| list_del(&adap->list_node); |
| |
| for (i = 0; i < CXGB4_ULD_MAX; i++) |
| if (adap->uld && adap->uld[i].handle) |
| adap->uld[i].state_change(adap->uld[i].handle, |
| CXGB4_STATE_DETACH); |
| |
| if (netevent_registered && list_empty(&adapter_list)) { |
| unregister_netevent_notifier(&cxgb4_netevent_nb); |
| netevent_registered = false; |
| } |
| mutex_unlock(&uld_mutex); |
| } |
| |
| static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) |
| { |
| unsigned int i; |
| |
| mutex_lock(&uld_mutex); |
| for (i = 0; i < CXGB4_ULD_MAX; i++) |
| if (adap->uld && adap->uld[i].handle) |
| adap->uld[i].state_change(adap->uld[i].handle, |
| new_state); |
| mutex_unlock(&uld_mutex); |
| } |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| static int cxgb4_inet6addr_handler(struct notifier_block *this, |
| unsigned long event, void *data) |
| { |
| struct inet6_ifaddr *ifa = data; |
| struct net_device *event_dev = ifa->idev->dev; |
| const struct device *parent = NULL; |
| #if IS_ENABLED(CONFIG_BONDING) |
| struct adapter *adap; |
| #endif |
| if (is_vlan_dev(event_dev)) |
| event_dev = vlan_dev_real_dev(event_dev); |
| #if IS_ENABLED(CONFIG_BONDING) |
| if (event_dev->flags & IFF_MASTER) { |
| list_for_each_entry(adap, &adapter_list, list_node) { |
| switch (event) { |
| case NETDEV_UP: |
| cxgb4_clip_get(adap->port[0], |
| (const u32 *)ifa, 1); |
| break; |
| case NETDEV_DOWN: |
| cxgb4_clip_release(adap->port[0], |
| (const u32 *)ifa, 1); |
| break; |
| default: |
| break; |
| } |
| } |
| return NOTIFY_OK; |
| } |
| #endif |
| |
| if (event_dev) |
| parent = event_dev->dev.parent; |
| |
| if (parent && parent->driver == &cxgb4_driver.driver) { |
| switch (event) { |
| case NETDEV_UP: |
| cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); |
| break; |
| case NETDEV_DOWN: |
| cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); |
| break; |
| default: |
| break; |
| } |
| } |
| return NOTIFY_OK; |
| } |
| |
| static bool inet6addr_registered; |
| static struct notifier_block cxgb4_inet6addr_notifier = { |
| .notifier_call = cxgb4_inet6addr_handler |
| }; |
| |
| static void update_clip(const struct adapter *adap) |
| { |
| int i; |
| struct net_device *dev; |
| int ret; |
| |
| rcu_read_lock(); |
| |
| for (i = 0; i < MAX_NPORTS; i++) { |
| dev = adap->port[i]; |
| ret = 0; |
| |
| if (dev) |
| ret = cxgb4_update_root_dev_clip(dev); |
| |
| if (ret < 0) |
| break; |
| } |
| rcu_read_unlock(); |
| } |
| #endif /* IS_ENABLED(CONFIG_IPV6) */ |
| |
| /** |
| * cxgb_up - enable the adapter |
| * @adap: adapter being enabled |
| * |
| * Called when the first port is enabled, this function performs the |
| * actions necessary to make an adapter operational, such as completing |
| * the initialization of HW modules, and enabling interrupts. |
| * |
| * Must be called with the rtnl lock held. |
| */ |
| static int cxgb_up(struct adapter *adap) |
| { |
| struct sge *s = &adap->sge; |
| int err; |
| |
| mutex_lock(&uld_mutex); |
| err = setup_sge_queues(adap); |
| if (err) |
| goto rel_lock; |
| err = setup_rss(adap); |
| if (err) |
| goto freeq; |
| |
| if (adap->flags & CXGB4_USING_MSIX) { |
| if (s->nd_msix_idx < 0) { |
| err = -ENOMEM; |
| goto irq_err; |
| } |
| |
| err = request_irq(adap->msix_info[s->nd_msix_idx].vec, |
| t4_nondata_intr, 0, |
| adap->msix_info[s->nd_msix_idx].desc, adap); |
| if (err) |
| goto irq_err; |
| |
| err = request_msix_queue_irqs(adap); |
| if (err) |
| goto irq_err_free_nd_msix; |
| } else { |
| err = request_irq(adap->pdev->irq, t4_intr_handler(adap), |
| (adap->flags & CXGB4_USING_MSI) ? 0 |
| : IRQF_SHARED, |
| adap->port[0]->name, adap); |
| if (err) |
| goto irq_err; |
| } |
| |
| enable_rx(adap); |
| t4_sge_start(adap); |
| t4_intr_enable(adap); |
| adap->flags |= CXGB4_FULL_INIT_DONE; |
| mutex_unlock(&uld_mutex); |
| |
| notify_ulds(adap, CXGB4_STATE_UP); |
| #if IS_ENABLED(CONFIG_IPV6) |
| update_clip(adap); |
| #endif |
| return err; |
| |
| irq_err_free_nd_msix: |
| free_irq(adap->msix_info[s->nd_msix_idx].vec, adap); |
| irq_err: |
| dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); |
| freeq: |
| t4_free_sge_resources(adap); |
| rel_lock: |
| mutex_unlock(&uld_mutex); |
| return err; |
| } |
| |
| static void cxgb_down(struct adapter *adapter) |
| { |
| cancel_work_sync(&adapter->tid_release_task); |
| cancel_work_sync(&adapter->db_full_task); |
| cancel_work_sync(&adapter->db_drop_task); |
| adapter->tid_release_task_busy = false; |
| adapter->tid_release_head = NULL; |
| |
| t4_sge_stop(adapter); |
| t4_free_sge_resources(adapter); |
| |
| adapter->flags &= ~CXGB4_FULL_INIT_DONE; |
| } |
| |
| /* |
| * net_device operations |
| */ |
| int cxgb_open(struct net_device *dev) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| struct adapter *adapter = pi->adapter; |
| int err; |
| |
| netif_carrier_off(dev); |
| |
| if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) { |
| err = cxgb_up(adapter); |
| if (err < 0) |
| return err; |
| } |
| |
| /* It's possible that the basic port information could have |
| * changed since we first read it. |
| */ |
| err = t4_update_port_info(pi); |
| if (err < 0) |
| return err; |
| |
| err = link_start(dev); |
| if (!err) |
| netif_tx_start_all_queues(dev); |
| return err; |
| } |
| |
| int cxgb_close(struct net_device *dev) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| struct adapter *adapter = pi->adapter; |
| int ret; |
| |
| netif_tx_stop_all_queues(dev); |
| netif_carrier_off(dev); |
| ret = t4_enable_pi_params(adapter, adapter->pf, pi, |
| false, false, false); |
| #ifdef CONFIG_CHELSIO_T4_DCB |
| cxgb4_dcb_reset(dev); |
| dcb_tx_queue_prio_enable(dev, false); |
| #endif |
| return ret; |
| } |
| |
| int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, |
| __be32 sip, __be16 sport, __be16 vlan, |
| unsigned int queue, unsigned char port, unsigned char mask) |
| { |
| int ret; |
| struct filter_entry *f; |
| struct adapter *adap; |
| int i; |
| u8 *val; |
| |
| adap = netdev2adap(dev); |
| |
| /* Adjust stid to correct filter index */ |
| stid -= adap->tids.sftid_base; |
| stid += adap->tids.nftids; |
| |
| /* Check to make sure the filter requested is writable ... |
| */ |
| f = &adap->tids.ftid_tab[stid]; |
| ret = writable_filter(f); |
| if (ret) |
| return ret; |
| |
| /* Clear out any old resources being used by the filter before |
| * we start constructing the new filter. |
| */ |
| if (f->valid) |
| clear_filter(adap, f); |
| |
| /* Clear out filter specifications */ |
| memset(&f->fs, 0, sizeof(struct ch_filter_specification)); |
| f->fs.val.lport = be16_to_cpu(sport); |
| f->fs.mask.lport = ~0; |
| val = (u8 *)&sip; |
| if ((val[0] | val[1] | val[2] | val[3]) != 0) { |
| for (i = 0; i < 4; i++) { |
| f->fs.val.lip[i] = val[i]; |
| f->fs.mask.lip[i] = ~0; |
| } |
| if (adap->params.tp.vlan_pri_map & PORT_F) { |
| f->fs.val.iport = port; |
| f->fs.mask.iport = mask; |
| } |
| } |
| |
| if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { |
| f->fs.val.proto = IPPROTO_TCP; |
| f->fs.mask.proto = ~0; |
| } |
| |
| f->fs.dirsteer = 1; |
| f->fs.iq = queue; |
| /* Mark filter as locked */ |
| f->locked = 1; |
| f->fs.rpttid = 1; |
| |
| /* Save the actual tid. We need this to get the corresponding |
| * filter entry structure in filter_rpl. |
| */ |
| f->tid = stid + adap->tids.ftid_base; |
| ret = set_filter_wr(adap, stid); |
| if (ret) { |
| clear_filter(adap, f); |
| return ret; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(cxgb4_create_server_filter); |
| |
| int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, |
| unsigned int queue, bool ipv6) |
| { |
| struct filter_entry *f; |
| struct adapter *adap; |
| |
| adap = netdev2adap(dev); |
| |
| /* Adjust stid to correct filter index */ |
| stid -= adap->tids.sftid_base; |
| stid += adap->tids.nftids; |
| |
| f = &adap->tids.ftid_tab[stid]; |
| /* Unlock the filter */ |
| f->locked = 0; |
| |
| return delete_filter(adap, stid); |
| } |
| EXPORT_SYMBOL(cxgb4_remove_server_filter); |
| |
| static void cxgb_get_stats(struct net_device *dev, |
| struct rtnl_link_stats64 *ns) |
| { |
| struct port_stats stats; |
| struct port_info *p = netdev_priv(dev); |
| struct adapter *adapter = p->adapter; |
| |
| /* Block retrieving statistics during EEH error |
| * recovery. Otherwise, the recovery might fail |
| * and the PCI device will be removed permanently |
| */ |
| spin_lock(&adapter->stats_lock); |
| if (!netif_device_present(dev)) { |
| spin_unlock(&adapter->stats_lock); |
| return; |
| } |
| t4_get_port_stats_offset(adapter, p->tx_chan, &stats, |
| &p->stats_base); |
| spin_unlock(&adapter->stats_lock); |
| |
| ns->tx_bytes = stats.tx_octets; |
| ns->tx_packets = stats.tx_frames; |
| ns->rx_bytes = stats.rx_octets; |
| ns->rx_packets = stats.rx_frames; |
| ns->multicast = stats.rx_mcast_frames; |
| |
| /* detailed rx_errors */ |
| ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + |
| stats.rx_runt; |
| ns->rx_over_errors = 0; |
| ns->rx_crc_errors = stats.rx_fcs_err; |
| ns->rx_frame_errors = stats.rx_symbol_err; |
| ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + |
| stats.rx_ovflow2 + stats.rx_ovflow3 + |
| stats.rx_trunc0 + stats.rx_trunc1 + |
| stats.rx_trunc2 + stats.rx_trunc3; |
| ns->rx_missed_errors = 0; |
| |
| /* detailed tx_errors */ |
| ns->tx_aborted_errors = 0; |
| ns->tx_carrier_errors = 0; |
| ns->tx_fifo_errors = 0; |
| ns->tx_heartbeat_errors = 0; |
| ns->tx_window_errors = 0; |
| |
| ns->tx_errors = stats.tx_error_frames; |
| ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + |
| ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; |
| } |
| |
| static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) |
| { |
| unsigned int mbox; |
| int ret = 0, prtad, devad; |
| struct port_info *pi = netdev_priv(dev); |
| struct adapter *adapter = pi->adapter; |
| struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; |
| |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| if (pi->mdio_addr < 0) |
| return -EOPNOTSUPP; |
| data->phy_id = pi->mdio_addr; |
| break; |
| case SIOCGMIIREG: |
| case SIOCSMIIREG: |
| if (mdio_phy_id_is_c45(data->phy_id)) { |
| prtad = mdio_phy_id_prtad(data->phy_id); |
| devad = mdio_phy_id_devad(data->phy_id); |
| } else if (data->phy_id < 32) { |
| prtad = data->phy_id; |
| devad = 0; |
| data->reg_num &= 0x1f; |
| } else |
| return -EINVAL; |
| |
| mbox = pi->adapter->pf; |
| if (cmd == SIOCGMIIREG) |
| ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, |
| data->reg_num, &data->val_out); |
| else |
| ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, |
| data->reg_num, data->val_in); |
| break; |
| case SIOCGHWTSTAMP: |
| return copy_to_user(req->ifr_data, &pi->tstamp_config, |
| sizeof(pi->tstamp_config)) ? |
| -EFAULT : 0; |
| case SIOCSHWTSTAMP: |
| if (copy_from_user(&pi->tstamp_config, req->ifr_data, |
| sizeof(pi->tstamp_config))) |
| return -EFAULT; |
| |
| if (!is_t4(adapter->params.chip)) { |
| switch (pi->tstamp_config.tx_type) { |
| case HWTSTAMP_TX_OFF: |
| case HWTSTAMP_TX_ON: |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| switch (pi->tstamp_config.rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| pi->rxtstamp = false; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| cxgb4_ptprx_timestamping(pi, pi->port_id, |
| PTP_TS_L4); |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| cxgb4_ptprx_timestamping(pi, pi->port_id, |
| PTP_TS_L2_L4); |
| break; |
| case HWTSTAMP_FILTER_ALL: |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| pi->rxtstamp = true; |
| break; |
| default: |
| pi->tstamp_config.rx_filter = |
| HWTSTAMP_FILTER_NONE; |
| return -ERANGE; |
| } |
| |
| if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && |
| (pi->tstamp_config.rx_filter == |
| HWTSTAMP_FILTER_NONE)) { |
| if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) |
| pi->ptp_enable = false; |
| } |
| |
| if (pi->tstamp_config.rx_filter != |
| HWTSTAMP_FILTER_NONE) { |
| if (cxgb4_ptp_redirect_rx_packet(adapter, |
| pi) >= 0) |
| pi->ptp_enable = true; |
| } |
| } else { |
| /* For T4 Adapters */ |
| switch (pi->tstamp_config.rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| pi->rxtstamp = false; |
| break; |
| case HWTSTAMP_FILTER_ALL: |
| pi->rxtstamp = true; |
| break; |
| default: |
| pi->tstamp_config.rx_filter = |
| HWTSTAMP_FILTER_NONE; |
| return -ERANGE; |
| } |
| } |
| return copy_to_user(req->ifr_data, &pi->tstamp_config, |
| sizeof(pi->tstamp_config)) ? |
| -EFAULT : 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| return ret; |
| } |
| |
| static void cxgb_set_rxmode(struct net_device *dev) |
| { |
| /* unfortunately we can't return errors to the stack */ |
| set_rxmode(dev, -1, false); |
| } |
| |
| static int cxgb_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| int ret; |
| struct port_info *pi = netdev_priv(dev); |
| |
| ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, |
| -1, -1, -1, true); |
| if (!ret) |
| dev->mtu = new_mtu; |
| return ret; |
| } |
| |
| #ifdef CONFIG_PCI_IOV |
| static int cxgb4_mgmt_open(struct net_device *dev) |
| { |
| /* Turn carrier off since we don't have to transmit anything on this |
| * interface. |
| */ |
| netif_carrier_off(dev); |
| return 0; |
| } |
| |
| /* Fill MAC address that will be assigned by the FW */ |
| static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) |
| { |
| u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; |
| unsigned int i, vf, nvfs; |
| u16 a, b; |
| int err; |
| u8 *na; |
| |
| adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, |
| PCI_CAP_ID_VPD); |
| err = t4_get_raw_vpd_params(adap, &adap->params.vpd); |
| if (err) |
| return; |
| |
| na = adap->params.vpd.na; |
| for (i = 0; i < ETH_ALEN; i++) |
| hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + |
| hex2val(na[2 * i + 1])); |
| |
| a = (hw_addr[0] << 8) | hw_addr[1]; |
| b = (hw_addr[1] << 8) | hw_addr[2]; |
| a ^= b; |
| a |= 0x0200; /* locally assigned Ethernet MAC address */ |
| a &= ~0x0100; /* not a multicast Ethernet MAC address */ |
| macaddr[0] = a >> 8; |
| macaddr[1] = a & 0xff; |
| |
| for (i = 2; i < 5; i++) |
| macaddr[i] = hw_addr[i + 1]; |
| |
| for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); |
| vf < nvfs; vf++) { |
| macaddr[5] = adap->pf * nvfs + vf; |
| ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); |
| } |
| } |
| |
| static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| struct adapter *adap = pi->adapter; |
| int ret; |
| |
| /* verify MAC addr is valid */ |
| if (!is_valid_ether_addr(mac)) { |
| dev_err(pi->adapter->pdev_dev, |
| "Invalid Ethernet address %pM for VF %d\n", |
| mac, vf); |
| return -EINVAL; |
| } |
| |
| dev_info(pi->adapter->pdev_dev, |
| "Setting MAC %pM on VF %d\n", mac, vf); |
| ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); |
| if (!ret) |
| ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); |
| return ret; |
| } |
| |
| static int cxgb4_mgmt_get_vf_config(struct net_device *dev, |
| int vf, struct ifla_vf_info *ivi) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| struct adapter *adap = pi->adapter; |
| struct vf_info *vfinfo; |
| |
| if (vf >= adap->num_vfs) |
| return -EINVAL; |
| vfinfo = &adap->vfinfo[vf]; |
| |
| ivi->vf = vf; |
| ivi->max_tx_rate = vfinfo->tx_rate; |
| ivi->min_tx_rate = 0; |
| ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); |
| ivi->vlan = vfinfo->vlan; |
| ivi->linkstate = vfinfo->link_state; |
| return 0; |
| } |
| |
| static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, |
| struct netdev_phys_item_id *ppid) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| unsigned int phy_port_id; |
| |
| phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; |
| ppid->id_len = sizeof(phy_port_id); |
| memcpy(ppid->id, &phy_port_id, ppid->id_len); |
| return 0; |
| } |
| |
| static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, |
| int min_tx_rate, int max_tx_rate) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| struct adapter *adap = pi->adapter; |
| unsigned int link_ok, speed, mtu; |
| u32 fw_pfvf, fw_class; |
| int class_id = vf; |
| int ret; |
| u16 pktsize; |
| |
| if (vf >= adap->num_vfs) |
| return -EINVAL; |
| |
| if (min_tx_rate) { |
| dev_err(adap->pdev_dev, |
| "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", |
| min_tx_rate, vf); |
| return -EINVAL; |
| } |
| |
| if (max_tx_rate == 0) { |
| /* unbind VF to to any Traffic Class */ |
| fw_pfvf = |
| (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); |
| fw_class = 0xffffffff; |
| ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, |
| &fw_pfvf, &fw_class); |
| if (ret) { |
| dev_err(adap->pdev_dev, |
| "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", |
| ret, adap->pf, vf); |
| return -EINVAL; |
| } |
| dev_info(adap->pdev_dev, |
| "PF %d VF %d is unbound from TX Rate Limiting\n", |
| adap->pf, vf); |
| adap->vfinfo[vf].tx_rate = 0; |
| return 0; |
| } |
| |
| ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); |
| if (ret != FW_SUCCESS) { |
| dev_err(adap->pdev_dev, |
| "Failed to get link information for VF %d\n", vf); |
| return -EINVAL; |
| } |
| |
| if (!link_ok) { |
| dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); |
| return -EINVAL; |
| } |
| |
| if (max_tx_rate > speed) { |
| dev_err(adap->pdev_dev, |
| "Max tx rate %d for VF %d can't be > link-speed %u", |
| max_tx_rate, vf, speed); |
| return -EINVAL; |
| } |
| |
| pktsize = mtu; |
| /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ |
| pktsize = pktsize - sizeof(struct ethhdr) - 4; |
| /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ |
| pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); |
| /* configure Traffic Class for rate-limiting */ |
| ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, |
| SCHED_CLASS_LEVEL_CL_RL, |
| SCHED_CLASS_MODE_CLASS, |
| SCHED_CLASS_RATEUNIT_BITS, |
| SCHED_CLASS_RATEMODE_ABS, |
| pi->tx_chan, class_id, 0, |
| max_tx_rate * 1000, 0, pktsize, 0); |
| if (ret) { |
| dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", |
| ret); |
| return -EINVAL; |
| } |
| dev_info(adap->pdev_dev, |
| "Class %d with MSS %u configured with rate %u\n", |
| class_id, pktsize, max_tx_rate); |
| |
| /* bind VF to configured Traffic Class */ |
| fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); |
| fw_class = class_id; |
| ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, |
| &fw_class); |
| if (ret) { |
| dev_err(adap->pdev_dev, |
| "Err %d in binding PF %d VF %d to Traffic Class %d\n", |
| ret, adap->pf, vf, class_id); |
| return -EINVAL; |
| } |
| dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", |
| adap->pf, vf, class_id); |
| adap->vfinfo[vf].tx_rate = max_tx_rate; |
| return 0; |
| } |
| |
| static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, |
| u16 vlan, u8 qos, __be16 vlan_proto) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| struct adapter *adap = pi->adapter; |
| int ret; |
| |
| if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) |
| return -EINVAL; |
| |
| if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) |
| return -EPROTONOSUPPORT; |
| |
| ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); |
| if (!ret) { |
| adap->vfinfo[vf].vlan = vlan; |
| return 0; |
| } |
| |
| dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", |
| ret, (vlan ? "setting" : "clearing"), adap->pf, vf); |
| return ret; |
| } |
| |
| static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf, |
| int link) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| struct adapter *adap = pi->adapter; |
| u32 param, val; |
| int ret = 0; |
| |
| if (vf >= adap->num_vfs) |
| return -EINVAL; |
| |
| switch (link) { |
| case IFLA_VF_LINK_STATE_AUTO: |
| val = FW_VF_LINK_STATE_AUTO; |
| break; |
| |
| case IFLA_VF_LINK_STATE_ENABLE: |
| val = FW_VF_LINK_STATE_ENABLE; |
| break; |
| |
| case IFLA_VF_LINK_STATE_DISABLE: |
| val = FW_VF_LINK_STATE_DISABLE; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE)); |
| ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, |
| ¶m, &val); |
| if (ret) { |
| dev_err(adap->pdev_dev, |
| "Error %d in setting PF %d VF %d link state\n", |
| ret, adap->pf, vf); |
| return -EINVAL; |
| } |
| |
| adap->vfinfo[vf].link_state = link; |
| return ret; |
| } |
| #endif /* CONFIG_PCI_IOV */ |
| |
| static int cxgb_set_mac_addr(struct net_device *dev, void *p) |
| { |
| int ret; |
| struct sockaddr *addr = p; |
| struct port_info *pi = netdev_priv(dev); |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, |
| addr->sa_data, true, &pi->smt_idx); |
| if (ret < 0) |
| return ret; |
| |
| memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| return 0; |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void cxgb_netpoll(struct net_device *dev) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| struct adapter *adap = pi->adapter; |
| |
| if (adap->flags & CXGB4_USING_MSIX) { |
| int i; |
| struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; |
| |
| for (i = pi->nqsets; i; i--, rx++) |
| t4_sge_intr_msix(0, &rx->rspq); |
| } else |
| t4_intr_handler(adap)(0, adap); |
| } |
| #endif |
| |
| static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| struct adapter *adap = pi->adapter; |
| struct ch_sched_queue qe = { 0 }; |
| struct ch_sched_params p = { 0 }; |
| struct sched_class *e; |
| u32 req_rate; |
| int err = 0; |
| |
| if (!can_sched(dev)) |
| return -ENOTSUPP; |
| |
| if (index < 0 || index > pi->nqsets - 1) |
| return -EINVAL; |
| |
| if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { |
| dev_err(adap->pdev_dev, |
| "Failed to rate limit on queue %d. Link Down?\n", |
| index); |
| return -EINVAL; |
| } |
| |
| qe.queue = index; |
| e = cxgb4_sched_queue_lookup(dev, &qe); |
| if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) { |
| dev_err(adap->pdev_dev, |
| "Queue %u already bound to class %u of type: %u\n", |
| index, e->idx, e->info.u.params.level); |
| return -EBUSY; |
| } |
| |
| /* Convert from Mbps to Kbps */ |
| req_rate = rate * 1000; |
| |
| /* Max rate is 100 Gbps */ |
| if (req_rate > SCHED_MAX_RATE_KBPS) { |
| dev_err(adap->pdev_dev, |
| "Invalid rate %u Mbps, Max rate is %u Mbps\n", |
| rate, SCHED_MAX_RATE_KBPS / 1000); |
| return -ERANGE; |
| } |
| |
| /* First unbind the queue from any existing class */ |
| memset(&qe, 0, sizeof(qe)); |
| qe.queue = index; |
| qe.class = SCHED_CLS_NONE; |
| |
| err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); |
| if (err) { |
| dev_err(adap->pdev_dev, |
| "Unbinding Queue %d on port %d fail. Err: %d\n", |
| index, pi->port_id, err); |
| return err; |
| } |
| |
| /* Queue already unbound */ |
| if (!req_rate) |
| return 0; |
| |
| /* Fetch any available unused or matching scheduling class */ |
| p.type = SCHED_CLASS_TYPE_PACKET; |
| p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; |
| p.u.params.mode = SCHED_CLASS_MODE_CLASS; |
| p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; |
| p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; |
| p.u.params.channel = pi->tx_chan; |
| p.u.params.class = SCHED_CLS_NONE; |
| p.u.params.minrate = 0; |
| p.u.params.maxrate = req_rate; |
| p.u.params.weight = 0; |
| p.u.params.pktsize = dev->mtu; |
| |
| e = cxgb4_sched_class_alloc(dev, &p); |
| if (!e) |
| return -ENOMEM; |
| |
| /* Bind the queue to a scheduling class */ |
| memset(&qe, 0, sizeof(qe)); |
| qe.queue = index; |
| qe.class = e->idx; |
| |
| err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); |
| if (err) |
| dev_err(adap->pdev_dev, |
| "Queue rate limiting failed. Err: %d\n", err); |
| return err; |
| } |
| |
| static int cxgb_setup_tc_flower(struct net_device *dev, |
| struct flow_cls_offload *cls_flower) |
| { |
| switch (cls_flower->command) { |
| case FLOW_CLS_REPLACE: |
| return cxgb4_tc_flower_replace(dev, cls_flower); |
| case FLOW_CLS_DESTROY: |
| return cxgb4_tc_flower_destroy(dev, cls_flower); |
| case FLOW_CLS_STATS: |
| return cxgb4_tc_flower_stats(dev, cls_flower); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int cxgb_setup_tc_cls_u32(struct net_device *dev, |
| struct tc_cls_u32_offload *cls_u32) |
| { |
| switch (cls_u32->command) { |
| case TC_CLSU32_NEW_KNODE: |
| case TC_CLSU32_REPLACE_KNODE: |
| return cxgb4_config_knode(dev, cls_u32); |
| case TC_CLSU32_DELETE_KNODE: |
| return cxgb4_delete_knode(dev, cls_u32); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int cxgb_setup_tc_matchall(struct net_device *dev, |
| struct tc_cls_matchall_offload *cls_matchall, |
| bool ingress) |
| { |
| struct adapter *adap = netdev2adap(dev); |
| |
| if (!adap->tc_matchall) |
| return -ENOMEM; |
| |
| switch (cls_matchall->command) { |
| case TC_CLSMATCHALL_REPLACE: |
| return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress); |
| case TC_CLSMATCHALL_DESTROY: |
| return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress); |
| case TC_CLSMATCHALL_STATS: |
| if (ingress) |
| return cxgb4_tc_matchall_stats(dev, cls_matchall); |
| break; |
| default: |
| break; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type, |
| void *type_data, void *cb_priv) |
| { |
| struct net_device *dev = cb_priv; |
| struct port_info *pi = netdev2pinfo(dev); |
| struct adapter *adap = netdev2adap(dev); |
| |
| if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { |
| dev_err(adap->pdev_dev, |
| "Failed to setup tc on port %d. Link Down?\n", |
| pi->port_id); |
| return -EINVAL; |
| } |
| |
| if (!tc_cls_can_offload_and_chain0(dev, type_data)) |
| return -EOPNOTSUPP; |
| |
| switch (type) { |
| case TC_SETUP_CLSU32: |
| return cxgb_setup_tc_cls_u32(dev, type_data); |
| case TC_SETUP_CLSFLOWER: |
| return cxgb_setup_tc_flower(dev, type_data); |
| case TC_SETUP_CLSMATCHALL: |
| return cxgb_setup_tc_matchall(dev, type_data, true); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type, |
| void *type_data, void *cb_priv) |
| { |
| struct net_device *dev = cb_priv; |
| struct port_info *pi = netdev2pinfo(dev); |
| struct adapter *adap = netdev2adap(dev); |
| |
| if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { |
| dev_err(adap->pdev_dev, |
| "Failed to setup tc on port %d. Link Down?\n", |
| pi->port_id); |
| return -EINVAL; |
| } |
| |
| if (!tc_cls_can_offload_and_chain0(dev, type_data)) |
| return -EOPNOTSUPP; |
| |
| switch (type) { |
| case TC_SETUP_CLSMATCHALL: |
| return cxgb_setup_tc_matchall(dev, type_data, false); |
| default: |
| break; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int cxgb_setup_tc_mqprio(struct net_device *dev, |
| struct tc_mqprio_qopt_offload *mqprio) |
| { |
| struct adapter *adap = netdev2adap(dev); |
| |
| if (!is_ethofld(adap) || !adap->tc_mqprio) |
| return -ENOMEM; |
| |
| return cxgb4_setup_tc_mqprio(dev, mqprio); |
| } |
| |
| static LIST_HEAD(cxgb_block_cb_list); |
| |
| static int cxgb_setup_tc_block(struct net_device *dev, |
| struct flow_block_offload *f) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| flow_setup_cb_t *cb; |
| bool ingress_only; |
| |
| pi->tc_block_shared = f->block_shared; |
| if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) { |
| cb = cxgb_setup_tc_block_egress_cb; |
| ingress_only = false; |
| } else { |
| cb = cxgb_setup_tc_block_ingress_cb; |
| ingress_only = true; |
| } |
| |
| return flow_block_cb_setup_simple(f, &cxgb_block_cb_list, |
| cb, pi, dev, ingress_only); |
| } |
| |
| static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, |
| void *type_data) |
| { |
| switch (type) { |
| case TC_SETUP_QDISC_MQPRIO: |
| return cxgb_setup_tc_mqprio(dev, type_data); |
| case TC_SETUP_BLOCK: |
| return cxgb_setup_tc_block(dev, type_data); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static void cxgb_del_udp_tunnel(struct net_device *netdev, |
| struct udp_tunnel_info *ti) |
| { |
| struct port_info *pi = netdev_priv(netdev); |
| struct adapter *adapter = pi->adapter; |
| unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); |
| u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; |
| int ret = 0, i; |
| |
| if (chip_ver < CHELSIO_T6) |
| return; |
| |
| switch (ti->type) { |
| case UDP_TUNNEL_TYPE_VXLAN: |
| if (!adapter->vxlan_port_cnt || |
| adapter->vxlan_port != ti->port) |
| return; /* Invalid VxLAN destination port */ |
| |
| adapter->vxlan_port_cnt--; |
| if (adapter->vxlan_port_cnt) |
| return; |
| |
| adapter->vxlan_port = 0; |
| t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); |
| break; |
| case UDP_TUNNEL_TYPE_GENEVE: |
| if (!adapter->geneve_port_cnt || |
| adapter->geneve_port != ti->port) |
| return; /* Invalid GENEVE destination port */ |
| |
| adapter->geneve_port_cnt--; |
| if (adapter->geneve_port_cnt) |
| return; |
| |
| adapter->geneve_port = 0; |
| t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); |
| break; |
| default: |
| return; |
| } |
| |
| /* Matchall mac entries can be deleted only after all tunnel ports |
| * are brought down or removed. |
| */ |
| if (!adapter->rawf_cnt) |
| return; |
| for_each_port(adapter, i) { |
| pi = adap2pinfo(adapter, i); |
| ret = t4_free_raw_mac_filt(adapter, pi->viid, |
| match_all_mac, match_all_mac, |
| adapter->rawf_start + |
| pi->port_id, |
| 1, pi->port_id, false); |
| if (ret < 0) { |
| netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", |
| i); |
| return; |
| } |
| } |
| } |
| |
| static void cxgb_add_udp_tunnel(struct net_device *netdev, |
| struct udp_tunnel_info *ti) |
| { |
| struct port_info *pi = netdev_priv(netdev); |
| struct adapter *adapter = pi->adapter; |
| unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); |
| u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; |
| int i, ret; |
| |
| if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) |
| return; |
| |
| switch (ti->type) { |
| case UDP_TUNNEL_TYPE_VXLAN: |
| /* Callback for adding vxlan port can be called with the same |
| * port for both IPv4 and IPv6. We should not disable the |
| * offloading when the same port for both protocols is added |
| * and later one of them is removed. |
| */ |
| if (adapter->vxlan_port_cnt && |
| adapter->vxlan_port == ti->port) { |
| adapter->vxlan_port_cnt++; |
| return; |
| } |
| |
| /* We will support only one VxLAN port */ |
| if (adapter->vxlan_port_cnt) { |
| netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", |
| be16_to_cpu(adapter->vxlan_port), |
| be16_to_cpu(ti->port)); |
| return; |
| } |
| |
| adapter->vxlan_port = ti->port; |
| adapter->vxlan_port_cnt = 1; |
| |
| t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, |
| VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); |
| break; |
| case UDP_TUNNEL_TYPE_GENEVE: |
| if (adapter->geneve_port_cnt && |
| adapter->geneve_port == ti->port) { |
| adapter->geneve_port_cnt++; |
| return; |
| } |
| |
| /* We will support only one GENEVE port */ |
| if (adapter->geneve_port_cnt) { |
| netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", |
| be16_to_cpu(adapter->geneve_port), |
| be16_to_cpu(ti->port)); |
| return; |
| } |
| |
| adapter->geneve_port = ti->port; |
| adapter->geneve_port_cnt = 1; |
| |
| t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, |
| GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); |
| break; |
| default: |
| return; |
| } |
| |
| /* Create a 'match all' mac filter entry for inner mac, |
| * if raw mac interface is supported. Once the linux kernel provides |
| * driver entry points for adding/deleting the inner mac addresses, |
| * we will remove this 'match all' entry and fallback to adding |
| * exact match filters. |
| */ |
| for_each_port(adapter, i) { |
| pi = adap2pinfo(adapter, i); |
| |
| ret = t4_alloc_raw_mac_filt(adapter, pi->viid, |
| match_all_mac, |
| match_all_mac, |
| adapter->rawf_start + |
| pi->port_id, |
| 1, pi->port_id, false); |
| if (ret < 0) { |
| netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", |
| be16_to_cpu(ti->port)); |
| cxgb_del_udp_tunnel(netdev, ti); |
| return; |
| } |
| } |
| } |
| |
| static netdev_features_t cxgb_features_check(struct sk_buff *skb, |
| struct net_device *dev, |
| netdev_features_t features) |
| { |
| struct port_info *pi = netdev_priv(dev); |
| struct adapter *adapter = pi->adapter; |
| |
| if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) |
| return features; |
| |
| /* Check if hw supports offload for this packet */ |
| if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) |
| return features; |
| |
| /* Offload is not supported for this encapsulated packet */ |
| return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); |
| } |
| |
| static netdev_features_t cxgb_fix_features(struct net_device *dev, |
| netdev_features_t features) |
| { |
| /* Disable GRO, if RX_CSUM is disabled */ |
| if (!(features & NETIF_F_RXCSUM)) |
| features &= ~NETIF_F_GRO; |
| |
| return features; |
| } |
| |
| static const struct net_device_ops cxgb4_netdev_ops = { |
| .ndo_open = cxgb_open, |
| .ndo_stop = cxgb_close, |
| .ndo_start_xmit = t4_start_xmit, |
| .ndo_select_queue = cxgb_select_queue, |
| .ndo_get_stats64 = cxgb_get_stats, |
| .ndo_set_rx_mode = cxgb_set_rxmode, |
| .ndo_set_mac_address = cxgb_set_mac_addr, |
| .ndo_set_features = cxgb_set_features, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_do_ioctl = cxgb_ioctl, |
| .ndo_change_mtu = cxgb_change_mtu, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = cxgb_netpoll, |
| #endif |
| #ifdef CONFIG_CHELSIO_T4_FCOE |
| .ndo_fcoe_enable = cxgb_fcoe_enable, |
| .ndo_fcoe_disable = cxgb_fcoe_disable, |
| #endif /* CONFIG_CHELSIO_T4_FCOE */ |
| .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, |
| .ndo_setup_tc = cxgb_setup_tc, |
| .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, |
| .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, |
| .ndo_features_check = cxgb_features_check, |
| .ndo_fix_features = cxgb_fix_features, |
| }; |
| |
| #ifdef CONFIG_PCI_IOV |
| static const struct net_device_ops cxgb4_mgmt_netdev_ops = { |
| .ndo_open = cxgb4_mgmt_open, |
| .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, |
| .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, |
| .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, |
| .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, |
| .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, |
| .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state, |
| }; |
| #endif |
| |
| static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *info) |
| { |
| struct adapter *adapter = netdev2adap(dev); |
| |
| strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); |
| strlcpy(info->bus_info, pci_name(adapter->pdev), |
| sizeof(info->bus_info)); |
| } |
| |
| static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { |
| .get_drvinfo = cxgb4_mgmt_get_drvinfo, |
| }; |
| |
| static void notify_fatal_err(struct work_struct *work) |
| { |
| struct adapter *adap; |
| |
| adap = container_of(work, struct adapter, fatal_err_notify_task); |
| notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); |
| } |
| |
| void t4_fatal_err(struct adapter *adap) |
| { |
| int port; |
| |
| if (pci_channel_offline(adap->pdev)) |
| return; |
| |
| /* Disable the SGE since ULDs are going to free resources that |
| * could be exposed to the adapter. RDMA MWs for example... |
| */ |
| t4_shutdown_adapter(adap); |
| for_each_port(adap, port) { |
| struct net_device *dev = adap->port[port]; |
| |
| /* If we get here in very early initialization the network |
| * devices may not have been set up yet. |
| */ |
| if (!dev) |
| continue; |
| |
| netif_tx_stop_all_queues(dev); |
| netif_carrier_off(dev); |
| } |
| dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); |
| queue_work(adap->workq, &adap->fatal_err_notify_task); |
| } |
| |
| static void setup_memwin(struct adapter *adap) |
| { |
| u32 nic_win_base = t4_get_util_window(adap); |
| |
| t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); |
| } |
| |
| static void setup_memwin_rdma(struct adapter *adap) |
| { |
| if (adap->vres.ocq.size) { |
| u32 start; |
| unsigned int sz_kb; |
| |
| start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); |
| start &= PCI_BASE_ADDRESS_MEM_MASK; |
| start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); |
| sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; |
| t4_write_reg(adap, |
| PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), |
| start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); |
| t4_write_reg(adap, |
| PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), |
| adap->vres.ocq.start); |
| t4_read_reg(adap, |
| PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); |
| } |
| } |
| |
| /* HMA Definitions */ |
| |
| /* The maximum number of address that can be send in a single FW cmd */ |
| #define HMA_MAX_ADDR_IN_CMD 5 |
| |
| #define HMA_PAGE_SIZE PAGE_SIZE |
| |
| #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ |
| |
| #define HMA_PAGE_ORDER \ |
| ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ |
| ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) |
| |
| /* The minimum and maximum possible HMA sizes that can be specified in the FW |
| * configuration(in units of MB). |
| */ |
| #define HMA_MIN_TOTAL_SIZE 1 |
| #define HMA_MAX_TOTAL_SIZE \ |
| (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ |
| HMA_MAX_NO_FW_ADDRESS) >> 20) |
| |
| static void adap_free_hma_mem(struct adapter *adapter) |
| { |
| struct scatterlist *iter; |
| struct page *page; |
| int i; |
| |
| if (!adapter->hma.sgt) |
| return; |
| |
| if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { |
| dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, |
| adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); |
| adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; |
| } |
| |
| for_each_sg(adapter->hma.sgt->sgl, iter, |
| adapter->hma.sgt->orig_nents, i) { |
| page = sg_page(iter); |
| if (page) |
| __free_pages(page, HMA_PAGE_ORDER); |
| } |
| |
| kfree(adapter->hma.phy_addr); |
| sg_free_table(adapter->hma.sgt); |
| kfree(adapter->hma.sgt); |
| adapter->hma.sgt = NULL; |
| } |
| |
| static int adap_config_hma(struct adapter *adapter) |
| { |
| struct scatterlist *sgl, *iter; |
| struct sg_table *sgt; |
| struct page *newpage; |
| unsigned int i, j, k; |
| u32 param, hma_size; |
| unsigned int ncmds; |
| size_t page_size; |
| u32 page_order; |
| int node, ret; |
| |
| /* HMA is supported only for T6+ cards. |
| * Avoid initializing HMA in kdump kernels. |
| */ |
| if (is_kdump_kernel() || |
| CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) |
| return 0; |
| |
| /* Get the HMA region size required by fw */ |
| param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); |
| ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, |
| 1, ¶m, &hma_size); |
| /* An error means card has its own memory or HMA is not supported by |
| * the firmware. Return without any errors. |
| */ |
| if (ret || !hma_size) |
| return 0; |
| |
| if (hma_size < HMA_MIN_TOTAL_SIZE || |
| hma_size > HMA_MAX_TOTAL_SIZE) { |
| dev_err(adapter->pdev_dev, |
| "HMA size %uMB beyond bounds(%u-%lu)MB\n", |
| hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); |
| return -EINVAL; |
| } |
| |
| page_size = HMA_PAGE_SIZE; |
| page_order = HMA_PAGE_ORDER; |
| adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); |
| if (unlikely(!adapter->hma.sgt)) { |
| dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); |
| return -ENOMEM; |
| } |
| sgt = adapter->hma.sgt; |
| /* FW returned value will be in MB's |
| */ |
| sgt->orig_nents = (hma_size << 20) / (page_size << page_order); |
| if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { |
| dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); |
| kfree(adapter->hma.sgt); |
| adapter->hma.sgt = NULL; |
| return -ENOMEM; |
| } |
| |
| sgl = adapter->hma.sgt->sgl; |
| node = dev_to_node(adapter->pdev_dev); |
| for_each_sg(sgl, iter, sgt->orig_nents, i) { |
| newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | |
| __GFP_ZERO, page_order); |
| if (!newpage) { |
| dev_err(adapter->pdev_dev, |
| "Not enough memory for HMA page allocation\n"); |
| ret = -ENOMEM; |
| goto free_hma; |
| } |
| sg_set_page(iter, newpage, page_size << page_order, 0); |
| } |
| |
| sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, |
| DMA_BIDIRECTIONAL); |
| if (!sgt->nents) { |
| dev_err(adapter->pdev_dev, |
| "Not enough memory for HMA DMA mapping"); |
| ret = -ENOMEM; |
| goto free_hma; |
| } |
| adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; |
| |
| adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), |
| GFP_KERNEL); |
| if (unlikely(!adapter->hma.phy_addr)) |
| goto free_hma; |
| |
| for_each_sg(sgl, iter, sgt->nents, i) { |
| newpage = sg_page(iter); |
| adapter->hma.phy_addr[i] = sg_dma_address(iter); |
| } |
| |
| ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); |
| /* Pass on the addresses to firmware */ |
| for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { |
| struct fw_hma_cmd hma_cmd; |
| u8 naddr = HMA_MAX_ADDR_IN_CMD; |
| u8 soc = 0, eoc = 0; |
| u8 hma_mode = 1; /* Presently we support only Page table mode */ |
| |
| soc = (i == 0) ? 1 : 0; |
| eoc = (i == ncmds - 1) ? 1 : 0; |
| |
| /* For last cmd, set naddr corresponding to remaining |
| * addresses |
| */ |
| if (i == ncmds - 1) { |
| naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; |
| naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; |
| } |
| memset(&hma_cmd, 0, sizeof(hma_cmd)); |
| hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | |
| FW_CMD_REQUEST_F | FW_CMD_WRITE_F); |
| hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); |
| |
| hma_cmd.mode_to_pcie_params = |
| htonl(FW_HMA_CMD_MODE_V(hma_mode) | |
| FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); |
| |
| /* HMA cmd size specified in MB's */ |
| hma_cmd.naddr_size = |
| htonl(FW_HMA_CMD_SIZE_V(hma_size) | |
| FW_HMA_CMD_NADDR_V(naddr)); |
| |
| /* Total Page size specified in units of 4K */ |
| hma_cmd.addr_size_pkd = |
| htonl(FW_HMA_CMD_ADDR_SIZE_V |
| ((page_size << page_order) >> 12)); |
| |
| /* Fill the 5 addresses */ |
| for (j = 0; j < naddr; j++) { |
| hma_cmd.phy_address[j] = |
| cpu_to_be64(adapter->hma.phy_addr[j + k]); |
| } |
| ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, |
| sizeof(hma_cmd), &hma_cmd); |
| if (ret) { |
| dev_err(adapter->pdev_dev, |
| "HMA FW command failed with err %d\n", ret); |
| goto free_hma; |
| } |
| } |
| |
| if (!ret) |
| dev_info(adapter->pdev_dev, |
| "Reserved %uMB host memory for HMA\n", hma_size); |
| return ret; |
| |
| free_hma: |
| adap_free_hma_mem(adapter); |
| return ret; |
| } |
| |
| static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) |
| { |
| u32 v; |
| int ret; |
| |
| /* Now that we've successfully configured and initialized the adapter |
| * can ask the Firmware what resources it has provisioned for us. |
| */ |
| ret = t4_get_pfres(adap); |
| if (ret) { |
| dev_err(adap->pdev_dev, |
| "Unable to retrieve resource provisioning information\n"); |
| return ret; |
| } |
| |
| /* get device capabilities */ |
| memset(c, 0, sizeof(*c)); |
| c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | FW_CMD_READ_F); |
| c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); |
| ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); |
| if (ret < 0) |
| return ret; |
| |
| c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | FW_CMD_WRITE_F); |
| ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); |
| if (ret < 0) |
| return ret; |
| |
| ret = t4_config_glbl_rss(adap, adap->pf, |
| FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, |
| FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | |
| FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); |
| if (ret < 0) |
| return ret; |
| |
| ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, |
| MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, |
| FW_CMD_CAP_PF); |
| if (ret < 0) |
| return ret; |
| |
| t4_sge_init(adap); |
| |
| /* tweak some settings */ |
| t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); |
| t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); |
| t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); |
| v = t4_read_reg(adap, TP_PIO_DATA_A); |
| t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); |
| |
| /* first 4 Tx modulation queues point to consecutive Tx channels */ |
| adap->params.tp.tx_modq_map = 0xE4; |
| t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, |
| TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); |
| |
| /* associate each Tx modulation queue with consecutive Tx channels */ |
| v = 0x84218421; |
| t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, |
| &v, 1, TP_TX_SCHED_HDR_A); |
| t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, |
| &v, 1, TP_TX_SCHED_FIFO_A); |
| t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, |
| &v, 1, TP_TX_SCHED_PCMD_A); |
| |
| #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ |
| if (is_offload(adap)) { |
| t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, |
| TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | |
| TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | |
| TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | |
| TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); |
| t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, |
| TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | |
| TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | |
| TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | |
| TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); |
| } |
| |
| /* get basic stuff going */ |
| return t4_early_init(adap, adap->pf); |
| } |
| |
| /* |
| * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. |
| */ |
| #define MAX_ATIDS 8192U |
| |
| /* |
| * Phase 0 of initialization: contact FW, obtain config, perform basic init. |
| * |
| * If the firmware we're dealing with has Configuration File support, then |
| * we use that to perform all configuration |
| */ |
| |
| /* |
| * Tweak configuration based on module parameters, etc. Most of these have |
| * defaults assigned to them by Firmware Configuration Files (if we're using |
| * them) but need to be explicitly set if we're using hard-coded |
| * initialization. But even in the case of using Firmware Configuration |
| * Files, we'd like to expose the ability to change these via module |
| * parameters so these are essentially common tweaks/settings for |
| * Configuration Files and hard-coded initialization ... |
| */ |
| static int adap_init0_tweaks(struct adapter *adapter) |
| { |
| /* |
| * Fix up various Host-Dependent Parameters like Page Size, Cache |
| * Line Size, etc. The firmware default is for a 4KB Page Size and |
| * 64B Cache Line Size ... |
| */ |
| t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); |
| |
| /* |
| * Process module parameters which affect early initialization. |
| */ |
| if (rx_dma_offset != 2 && rx_dma_offset != 0) { |
| dev_err(&adapter->pdev->dev, |
| "Ignoring illegal rx_dma_offset=%d, using 2\n", |
| rx_dma_offset); |
| rx_dma_offset = 2; |
| } |
| t4_set_reg_field(adapter, SGE_CONTROL_A, |
| PKTSHIFT_V(PKTSHIFT_M), |
| PKTSHIFT_V(rx_dma_offset)); |
| |
| /* |
| * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux |
| * adds the pseudo header itself. |
| */ |
| t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, |
| CSUM_HAS_PSEUDO_HDR_F, 0); |
| |
| return 0; |
| } |
| |
| /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips |
| * unto themselves and they contain their own firmware to perform their |
| * tasks ... |
| */ |
| static int phy_aq1202_version(const u8 *phy_fw_data, |
| size_t phy_fw_size) |
| { |
| int offset; |
| |
| /* At offset 0x8 you're looking for the primary image's |
| * starting offset which is 3 Bytes wide |
| * |
| * At offset 0xa of the primary image, you look for the offset |
| * of the DRAM segment which is 3 Bytes wide. |
| * |
| * The FW version is at offset 0x27e of the DRAM and is 2 Bytes |
| * wide |
| */ |
| #define be16(__p) (((__p)[0] << 8) | (__p)[1]) |
| #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) |
| #define le24(__p) (le16(__p) | ((__p)[2] << 16)) |
| |
| offset = le24(phy_fw_data + 0x8) << 12; |
| offset = le24(phy_fw_data + offset + 0xa); |
| return be16(phy_fw_data + offset + 0x27e); |
| |
| #undef be16 |
| #undef le16 |
| #undef le24 |
| } |
| |
| static struct info_10gbt_phy_fw { |
| unsigned int phy_fw_id; /* PCI Device ID */ |
| char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ |
| int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); |
| int phy_flash; /* Has FLASH for PHY Firmware */ |
| } phy_info_array[] = { |
| { |
| PHY_AQ1202_DEVICEID, |
| PHY_AQ1202_FIRMWARE, |
| phy_aq1202_version, |
| 1, |
| }, |
| { |
| PHY_BCM84834_DEVICEID, |
| PHY_BCM84834_FIRMWARE, |
| NULL, |
| 0, |
| }, |
| { 0, NULL, NULL }, |
| }; |
| |
| static struct info_10gbt_phy_fw *find_phy_info(int devid) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { |
| if (phy_info_array[i].phy_fw_id == devid) |
| return &phy_info_array[i]; |
| } |
| return NULL; |
| } |
| |
| /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to |
| * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error |
| * we return a negative error number. If we transfer new firmware we return 1 |
| * (from t4_load_phy_fw()). If we don't do anything we return 0. |
| */ |
| static int adap_init0_phy(struct adapter *adap) |
| { |
| const struct firmware *phyf; |
| int ret; |
| struct info_10gbt_phy_fw *phy_info; |
| |
| /* Use the device ID to determine which PHY file to flash. |
| */ |
| phy_info = find_phy_info(adap->pdev->device); |
| if (!phy_info) { |
| dev_warn(adap->pdev_dev, |
| "No PHY Firmware file found for this PHY\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then |
| * use that. The adapter firmware provides us with a memory buffer |
| * where we can load a PHY firmware file from the host if we want to |
| * override the PHY firmware File in flash. |
| */ |
| ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, |
| adap->pdev_dev); |
| if (ret < 0) { |
| /* For adapters without FLASH attached to PHY for their |
| * firmware, it's obviously a fatal error if we can't get the |
| * firmware to the adapter. For adapters with PHY firmware |
| * FLASH storage, it's worth a warning if we can't find the |
| * PHY Firmware but we'll neuter the error ... |
| */ |
| dev_err(adap->pdev_dev, "unable to find PHY Firmware image " |
| "/lib/firmware/%s, error %d\n", |
| phy_info->phy_fw_file, -ret); |
| if (phy_info->phy_flash) { |
| int cur_phy_fw_ver = 0; |
| |
| t4_phy_fw_ver(adap, &cur_phy_fw_ver); |
| dev_warn(adap->pdev_dev, "continuing with, on-adapter " |
| "FLASH copy, version %#x\n", cur_phy_fw_ver); |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| /* Load PHY Firmware onto adapter. |
| */ |
| ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, |
| phy_info->phy_fw_version, |
| (u8 *)phyf->data, phyf->size); |
| if (ret < 0) |
| dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", |
| -ret); |
| else if (ret > 0) { |
| int new_phy_fw_ver = 0; |
| |
| if (phy_info->phy_fw_version) |
| new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, |
| phyf->size); |
| dev_info(adap->pdev_dev, "Successfully transferred PHY " |
| "Firmware /lib/firmware/%s, version %#x\n", |
| phy_info->phy_fw_file, new_phy_fw_ver); |
| } |
| |
| release_firmware(phyf); |
| |
| return ret; |
| } |
| |
| /* |
| * Attempt to initialize the adapter via a Firmware Configuration File. |
| */ |
| static int adap_init0_config(struct adapter *adapter, int reset) |
| { |
| char *fw_config_file, fw_config_file_path[256]; |
| u32 finiver, finicsum, cfcsum, param, val; |
| struct fw_caps_config_cmd caps_cmd; |
| unsigned long mtype = 0, maddr = 0; |
| const struct firmware *cf; |
| char *config_name = NULL; |
| int config_issued = 0; |
| int ret; |
| |
| /* |
| * Reset device if necessary. |
| */ |
| if (reset) { |
| ret = t4_fw_reset(adapter, adapter->mbox, |
| PIORSTMODE_F | PIORST_F); |
| if (ret < 0) |
| goto bye; |
| } |
| |
| /* If this is a 10Gb/s-BT adapter make sure the chip-external |
| * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs |
| * to be performed after any global adapter RESET above since some |
| * PHYs only have local RAM copies of the PHY firmware. |
| */ |
| if (is_10gbt_device(adapter->pdev->device)) { |
| ret = adap_init0_phy(adapter); |
| if (ret < 0) |
| goto bye; |
| } |
| /* |
| * If we have a T4 configuration file under /lib/firmware/cxgb4/, |
| * then use that. Otherwise, use the configuration file stored |
| * in the adapter flash ... |
| */ |
| switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { |
| case CHELSIO_T4: |
| fw_config_file = FW4_CFNAME; |
| break; |
| case CHELSIO_T5: |
| fw_config_file = FW5_CFNAME; |
| break; |
| case CHELSIO_T6: |
| fw_config_file = FW6_CFNAME; |
| break; |
| default: |
| dev_err(adapter->pdev_dev, "Device %d is not supported\n", |
| adapter->pdev->device); |
| ret = -EINVAL; |
| goto bye; |
| } |
| |
| ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); |
| if (ret < 0) { |
| config_name = "On FLASH"; |
| mtype = FW_MEMTYPE_CF_FLASH; |
| maddr = t4_flash_cfg_addr(adapter); |
| } else { |
| u32 params[7], val[7]; |
| |
| sprintf(fw_config_file_path, |
| "/lib/firmware/%s", fw_config_file); |
| config_name = fw_config_file_path; |
| |
| if (cf->size >= FLASH_CFG_MAX_SIZE) |
| ret = -ENOMEM; |
| else { |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); |
| ret = t4_query_params(adapter, adapter->mbox, |
| adapter->pf, 0, 1, params, val); |
| if (ret == 0) { |
| /* |
| * For t4_memory_rw() below addresses and |
| * sizes have to be in terms of multiples of 4 |
| * bytes. So, if the Configuration File isn't |
| * a multiple of 4 bytes in length we'll have |
| * to write that out separately since we can't |
| * guarantee that the bytes following the |
| * residual byte in the buffer returned by |
| * request_firmware() are zeroed out ... |
| */ |
| size_t resid = cf->size & 0x3; |
| size_t size = cf->size & ~0x3; |
| __be32 *data = (__be32 *)cf->data; |
| |
| mtype = FW_PARAMS_PARAM_Y_G(val[0]); |
| maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; |
| |
| spin_lock(&adapter->win0_lock); |
| ret = t4_memory_rw(adapter, 0, mtype, maddr, |
| size, data, T4_MEMORY_WRITE); |
| if (ret == 0 && resid != 0) { |
| union { |
| __be32 word; |
| char buf[4]; |
| } last; |
| int i; |
| |
| last.word = data[size >> 2]; |
| for (i = resid; i < 4; i++) |
| last.buf[i] = 0; |
| ret = t4_memory_rw(adapter, 0, mtype, |
| maddr + size, |
| 4, &last.word, |
| T4_MEMORY_WRITE); |
| } |
| spin_unlock(&adapter->win0_lock); |
| } |
| } |
| |
| release_firmware(cf); |
| if (ret) |
| goto bye; |
| } |
| |
| val = 0; |
| |
| /* Ofld + Hash filter is supported. Older fw will fail this request and |
| * it is fine. |
| */ |
| param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD)); |
| ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, |
| 1, ¶m, &val); |
| |
| /* FW doesn't know about Hash filter + ofld support, |
| * it's not a problem, don't return an error. |
| */ |
| if (ret < 0) { |
| dev_warn(adapter->pdev_dev, |
| "Hash filter with ofld is not supported by FW\n"); |
| } |
| |
| /* |
| * Issue a Capability Configuration command to the firmware to get it |
| * to parse the Configuration File. We don't use t4_fw_config_file() |
| * because we want the ability to modify various features after we've |
| * processed the configuration file ... |
| */ |
| memset(&caps_cmd, 0, sizeof(caps_cmd)); |
| caps_cmd.op_to_write = |
| htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| caps_cmd.cfvalid_to_len16 = |
| htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | |
| FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | |
| FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | |
| FW_LEN16(caps_cmd)); |
| ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), |
| &caps_cmd); |
| |
| /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware |
| * Configuration File in FLASH), our last gasp effort is to use the |
| * Firmware Configuration File which is embedded in the firmware. A |
| * very few early versions of the firmware didn't have one embedded |
| * but we can ignore those. |
| */ |
| if (ret == -ENOENT) { |
| memset(&caps_cmd, 0, sizeof(caps_cmd)); |
| caps_cmd.op_to_write = |
| htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F); |
| caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); |
| ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, |
| sizeof(caps_cmd), &caps_cmd); |
| config_name = "Firmware Default"; |
| } |
| |
| config_issued = 1; |
| if (ret < 0) |
| goto bye; |
| |
| finiver = ntohl(caps_cmd.finiver); |
| finicsum = ntohl(caps_cmd.finicsum); |
| cfcsum = ntohl(caps_cmd.cfcsum); |
| if (finicsum != cfcsum) |
| dev_warn(adapter->pdev_dev, "Configuration File checksum "\ |
| "mismatch: [fini] csum=%#x, computed csum=%#x\n", |
| finicsum, cfcsum); |
| |
| /* |
| * And now tell the firmware to use the configuration we just loaded. |
| */ |
| caps_cmd.op_to_write = |
| htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_WRITE_F); |
| caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); |
| ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), |
| NULL); |
| if (ret < 0) |
| goto bye; |
| |
| /* |
| * Tweak configuration based on system architecture, module |
| * parameters, etc. |
| */ |
| ret = adap_init0_tweaks(adapter); |
| if (ret < 0) |
| goto bye; |
| |
| /* We will proceed even if HMA init fails. */ |
| ret = adap_config_hma(adapter); |
| if (ret) |
| dev_err(adapter->pdev_dev, |
| "HMA configuration failed with error %d\n", ret); |
| |
| if (is_t6(adapter->params.chip)) { |
| adap_config_hpfilter(adapter); |
| ret = setup_ppod_edram(adapter); |
| if (!ret) |
| dev_info(adapter->pdev_dev, "Successfully enabled " |
| "ppod edram feature\n"); |
| } |
| |
| /* |
| * And finally tell the firmware to initialize itself using the |
| * parameters from the Configuration File. |
| */ |
| ret = t4_fw_initialize(adapter, adapter->mbox); |
| if (ret < 0) |
| goto bye; |
| |
| /* Emit Firmware Configuration File information and return |
| * successfully. |
| */ |
| dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ |
| "Configuration File \"%s\", version %#x, computed checksum %#x\n", |
| config_name, finiver, cfcsum); |
| return 0; |
| |
| /* |
| * Something bad happened. Return the error ... (If the "error" |
| * is that there's no Configuration File on the adapter we don't |
| * want to issue a warning since this is fairly common.) |
| */ |
| bye: |
| if (config_issued && ret != -ENOENT) |
| dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", |
| config_name, -ret); |
| return ret; |
| } |
| |
| static struct fw_info fw_info_array[] = { |
| { |
| .chip = CHELSIO_T4, |
| .fs_name = FW4_CFNAME, |
| .fw_mod_name = FW4_FNAME, |
| .fw_hdr = { |
| .chip = FW_HDR_CHIP_T4, |
| .fw_ver = __cpu_to_be32(FW_VERSION(T4)), |
| .intfver_nic = FW_INTFVER(T4, NIC), |
| .intfver_vnic = FW_INTFVER(T4, VNIC), |
| .intfver_ri = FW_INTFVER(T4, RI), |
| .intfver_iscsi = FW_INTFVER(T4, ISCSI), |
| .intfver_fcoe = FW_INTFVER(T4, FCOE), |
| }, |
| }, { |
| .chip = CHELSIO_T5, |
| .fs_name = FW5_CFNAME, |
| .fw_mod_name = FW5_FNAME, |
| .fw_hdr = { |
| .chip = FW_HDR_CHIP_T5, |
| .fw_ver = __cpu_to_be32(FW_VERSION(T5)), |
| .intfver_nic = FW_INTFVER(T5, NIC), |
| .intfver_vnic = FW_INTFVER(T5, VNIC), |
| .intfver_ri = FW_INTFVER(T5, RI), |
| .intfver_iscsi = FW_INTFVER(T5, ISCSI), |
| .intfver_fcoe = FW_INTFVER(T5, FCOE), |
| }, |
| }, { |
| .chip = CHELSIO_T6, |
| .fs_name = FW6_CFNAME, |
| .fw_mod_name = FW6_FNAME, |
| .fw_hdr = { |
| .chip = FW_HDR_CHIP_T6, |
| .fw_ver = __cpu_to_be32(FW_VERSION(T6)), |
| .intfver_nic = FW_INTFVER(T6, NIC), |
| .intfver_vnic = FW_INTFVER(T6, VNIC), |
| .intfver_ofld = FW_INTFVER(T6, OFLD), |
| .intfver_ri = FW_INTFVER(T6, RI), |
| .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), |
| .intfver_iscsi = FW_INTFVER(T6, ISCSI), |
| .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), |
| .intfver_fcoe = FW_INTFVER(T6, FCOE), |
| }, |
| } |
| |
| }; |
| |
| static struct fw_info *find_fw_info(int chip) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { |
| if (fw_info_array[i].chip == chip) |
| return &fw_info_array[i]; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Phase 0 of initialization: contact FW, obtain config, perform basic init. |
| */ |
| static int adap_init0(struct adapter *adap, int vpd_skip) |
| { |
| struct fw_caps_config_cmd caps_cmd; |
| u32 params[7], val[7]; |
| enum dev_state state; |
| u32 v, port_vec; |
| int reset = 1; |
| int ret; |
| |
| /* Grab Firmware Device Log parameters as early as possible so we have |
| * access to it for debugging, etc. |
| */ |
| ret = t4_init_devlog_params(adap); |
| if (ret < 0) |
| return ret; |
| |
| /* Contact FW, advertising Master capability */ |
| ret = t4_fw_hello(adap, adap->mbox, adap->mbox, |
| is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); |
| if (ret < 0) { |
| dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", |
| ret); |
| return ret; |
| } |
| if (ret == adap->mbox) |
| adap->flags |= CXGB4_MASTER_PF; |
| |
| /* |
| * If we're the Master PF Driver and the device is uninitialized, |
| * then let's consider upgrading the firmware ... (We always want |
| * to check the firmware version number in order to A. get it for |
| * later reporting and B. to warn if the currently loaded firmware |
| * is excessively mismatched relative to the driver.) |
| */ |
| |
| t4_get_version_info(adap); |
| ret = t4_check_fw_version(adap); |
| /* If firmware is too old (not supported by driver) force an update. */ |
| if (ret) |
| state = DEV_STATE_UNINIT; |
| if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) { |
| struct fw_info *fw_info; |
| struct fw_hdr *card_fw; |
| const struct firmware *fw; |
| const u8 *fw_data = NULL; |
| unsigned int fw_size = 0; |
| |
| /* This is the firmware whose headers the driver was compiled |
| * against |
| */ |
| fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); |
| if (fw_info == NULL) { |
| dev_err(adap->pdev_dev, |
| "unable to get firmware info for chip %d.\n", |
| CHELSIO_CHIP_VERSION(adap->params.chip)); |
| return -EINVAL; |
| } |
| |
| /* allocate memory to read the header of the firmware on the |
| * card |
| */ |
| card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); |
| if (!card_fw) { |
| ret = -ENOMEM; |
| goto bye; |
| } |
| |
| /* Get FW from from /lib/firmware/ */ |
| ret = request_firmware(&fw, fw_info->fw_mod_name, |
| adap->pdev_dev); |
| if (ret < 0) { |
| dev_err(adap->pdev_dev, |
| "unable to load firmware image %s, error %d\n", |
| fw_info->fw_mod_name, ret); |
| } else { |
| fw_data = fw->data; |
| fw_size = fw->size; |
| } |
| |
| /* upgrade FW logic */ |
| ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, |
| state, &reset); |
| |
| /* Cleaning up */ |
| release_firmware(fw); |
| kvfree(card_fw); |
| |
| if (ret < 0) |
| goto bye; |
| } |
| |
| /* If the firmware is initialized already, emit a simply note to that |
| * effect. Otherwise, it's time to try initializing the adapter. |
| */ |
| if (state == DEV_STATE_INIT) { |
| ret = adap_config_hma(adap); |
| if (ret) |
| dev_err(adap->pdev_dev, |
| "HMA configuration failed with error %d\n", |
| ret); |
| dev_info(adap->pdev_dev, "Coming up as %s: "\ |
| "Adapter already initialized\n", |
| adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE"); |
| } else { |
| dev_info(adap->pdev_dev, "Coming up as MASTER: "\ |
| "Initializing adapter\n"); |
| |
| /* Find out whether we're dealing with a version of the |
| * firmware which has configuration file support. |
| */ |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, |
| params, val); |
| |
| /* If the firmware doesn't support Configuration Files, |
| * return an error. |
| */ |
| if (ret < 0) { |
| dev_err(adap->pdev_dev, "firmware doesn't support " |
| "Firmware Configuration Files\n"); |
| goto bye; |
| } |
| |
| /* The firmware provides us with a memory buffer where we can |
| * load a Configuration File from the host if we want to |
| * override the Configuration File in flash. |
| */ |
| ret = adap_init0_config(adap, reset); |
| if (ret == -ENOENT) { |
| dev_err(adap->pdev_dev, "no Configuration File " |
| "present on adapter.\n"); |
| goto bye; |
| } |
| if (ret < 0) { |
| dev_err(adap->pdev_dev, "could not initialize " |
| "adapter, error %d\n", -ret); |
| goto bye; |
| } |
| } |
| |
| /* Now that we've successfully configured and initialized the adapter |
| * (or found it already initialized), we can ask the Firmware what |
| * resources it has provisioned for us. |
| */ |
| ret = t4_get_pfres(adap); |
| if (ret) { |
| dev_err(adap->pdev_dev, |
| "Unable to retrieve resource provisioning information\n"); |
| goto bye; |
| } |
| |
| /* Grab VPD parameters. This should be done after we establish a |
| * connection to the firmware since some of the VPD parameters |
| * (notably the Core Clock frequency) are retrieved via requests to |
| * the firmware. On the other hand, we need these fairly early on |
| * so we do this right after getting ahold of the firmware. |
| * |
| * We need to do this after initializing the adapter because someone |
| * could have FLASHed a new VPD which won't be read by the firmware |
| * until we do the RESET ... |
| */ |
| if (!vpd_skip) { |
| ret = t4_get_vpd_params(adap, &adap->params.vpd); |
| if (ret < 0) |
| goto bye; |
| } |
| |
| /* Find out what ports are available to us. Note that we need to do |
| * this before calling adap_init0_no_config() since it needs nports |
| * and portvec ... |
| */ |
| v = |
| FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); |
| if (ret < 0) |
| goto bye; |
| |
| adap->params.nports = hweight32(port_vec); |
| adap->params.portvec = port_vec; |
| |
| /* Give the SGE code a chance to pull in anything that it needs ... |
| * Note that this must be called after we retrieve our VPD parameters |
| * in order to know how to convert core ticks to seconds, etc. |
| */ |
| ret = t4_sge_init(adap); |
| if (ret < 0) |
| goto bye; |
| |
| /* Grab the SGE Doorbell Queue Timer values. If successful, that |
| * indicates that the Firmware and Hardware support this. |
| */ |
| params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK)); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, |
| 1, params, val); |
| |
| if (!ret) { |
| adap->sge.dbqtimer_tick = val[0]; |
| ret = t4_read_sge_dbqtimers(adap, |
| ARRAY_SIZE(adap->sge.dbqtimer_val), |
| adap->sge.dbqtimer_val); |
| } |
| |
| if (!ret) |
| adap->flags |= CXGB4_SGE_DBQ_TIMER; |
| |
| if (is_bypass_device(adap->pdev->device)) |
| adap->params.bypass = 1; |
| |
| /* |
| * Grab some of our basic fundamental operating parameters. |
| */ |
| params[0] = FW_PARAM_PFVF(EQ_START); |
| params[1] = FW_PARAM_PFVF(L2T_START); |
| params[2] = FW_PARAM_PFVF(L2T_END); |
| params[3] = FW_PARAM_PFVF(FILTER_START); |
| params[4] = FW_PARAM_PFVF(FILTER_END); |
| params[5] = FW_PARAM_PFVF(IQFLINT_START); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); |
| if (ret < 0) |
| goto bye; |
| adap->sge.egr_start = val[0]; |
| adap->l2t_start = val[1]; |
| adap->l2t_end = val[2]; |
| adap->tids.ftid_base = val[3]; |
| adap->tids.nftids = val[4] - val[3] + 1; |
| adap->sge.ingr_start = val[5]; |
| |
| if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { |
| params[0] = FW_PARAM_PFVF(HPFILTER_START); |
| params[1] = FW_PARAM_PFVF(HPFILTER_END); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, |
| params, val); |
| if (ret < 0) |
| goto bye; |
| |
| adap->tids.hpftid_base = val[0]; |
| adap->tids.nhpftids = val[1] - val[0] + 1; |
| |
| /* Read the raw mps entries. In T6, the last 2 tcam entries |
| * are reserved for raw mac addresses (rawf = 2, one per port). |
| */ |
| params[0] = FW_PARAM_PFVF(RAWF_START); |
| params[1] = FW_PARAM_PFVF(RAWF_END); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, |
| params, val); |
| if (ret == 0) { |
| adap->rawf_start = val[0]; |
| adap->rawf_cnt = val[1] - val[0] + 1; |
| } |
| |
| adap->tids.tid_base = |
| t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A); |
| } |
| |
| /* qids (ingress/egress) returned from firmware can be anywhere |
| * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. |
| * Hence driver needs to allocate memory for this range to |
| * store the queue info. Get the highest IQFLINT/EQ index returned |
| * in FW_EQ_*_CMD.alloc command. |
| */ |
| params[0] = FW_PARAM_PFVF(EQ_END); |
| params[1] = FW_PARAM_PFVF(IQFLINT_END); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); |
| if (ret < 0) |
| goto bye; |
| adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; |
| adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; |
| |
| adap->sge.egr_map = kcalloc(adap->sge.egr_sz, |
| sizeof(*adap->sge.egr_map), GFP_KERNEL); |
| if (!adap->sge.egr_map) { |
| ret = -ENOMEM; |
| goto bye; |
| } |
| |
| adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, |
| sizeof(*adap->sge.ingr_map), GFP_KERNEL); |
| if (!adap->sge.ingr_map) { |
| ret = -ENOMEM; |
| goto bye; |
| } |
| |
| /* Allocate the memory for the vaious egress queue bitmaps |
| * ie starving_fl, txq_maperr and blocked_fl. |
| */ |
| adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), |
| sizeof(long), GFP_KERNEL); |
| if (!adap->sge.starving_fl) { |
| ret = -ENOMEM; |
| goto bye; |
| } |
| |
| adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), |
| sizeof(long), GFP_KERNEL); |
| if (!adap->sge.txq_maperr) { |
| ret = -ENOMEM; |
| goto bye; |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), |
| sizeof(long), GFP_KERNEL); |
| if (!adap->sge.blocked_fl) { |
| ret = -ENOMEM; |
| goto bye; |
| } |
| #endif |
| |
| params[0] = FW_PARAM_PFVF(CLIP_START); |
| params[1] = FW_PARAM_PFVF(CLIP_END); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); |
| if (ret < 0) |
| goto bye; |
| adap->clipt_start = val[0]; |
| adap->clipt_end = val[1]; |
| |
| /* Get the supported number of traffic classes */ |
| params[0] = FW_PARAM_DEV(NUM_TM_CLASS); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val); |
| if (ret < 0) { |
| /* We couldn't retrieve the number of Traffic Classes |
| * supported by the hardware/firmware. So we hard |
| * code it here. |
| */ |
| adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; |
| } else { |
| adap->params.nsched_cls = val[0]; |
| } |
| |
| /* query params related to active filter region */ |
| params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); |
| params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); |
| /* If Active filter size is set we enable establishing |
| * offload connection through firmware work request |
| */ |
| if ((val[0] != val[1]) && (ret >= 0)) { |
| adap->flags |= CXGB4_FW_OFLD_CONN; |
| adap->tids.aftid_base = val[0]; |
| adap->tids.aftid_end = val[1]; |
| } |
| |
| /* If we're running on newer firmware, let it know that we're |
| * prepared to deal with encapsulated CPL messages. Older |
| * firmware won't understand this and we'll just get |
| * unencapsulated messages ... |
| */ |
| params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); |
| val[0] = 1; |
| (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); |
| |
| /* |
| * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL |
| * capability. Earlier versions of the firmware didn't have the |
| * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no |
| * permission to use ULPTX MEMWRITE DSGL. |
| */ |
| if (is_t4(adap->params.chip)) { |
| adap->params.ulptx_memwrite_dsgl = false; |
| } else { |
| params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, |
| 1, params, val); |
| adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); |
| } |
| |
| /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ |
| params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, |
| 1, params, val); |
| adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); |
| |
| /* See if FW supports FW_FILTER2 work request */ |
| if (is_t4(adap->params.chip)) { |
| adap->params.filter2_wr_support = 0; |
| } else { |
| params[0] = FW_PARAM_DEV(FILTER2_WR); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, |
| 1, params, val); |
| adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); |
| } |
| |
| /* Check if FW supports returning vin and smt index. |
| * If this is not supported, driver will interpret |
| * these values from viid. |
| */ |
| params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, |
| 1, params, val); |
| adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0); |
| |
| /* |
| * Get device capabilities so we can determine what resources we need |
| * to manage. |
| */ |
| memset(&caps_cmd, 0, sizeof(caps_cmd)); |
| caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | |
| FW_CMD_REQUEST_F | FW_CMD_READ_F); |
| caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); |
| ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), |
| &caps_cmd); |
| if (ret < 0) |
| goto bye; |
| |
| /* hash filter has some mandatory register settings to be tested and for |
| * that it needs to test whether offload is enabled or not, hence |
| * checking and setting it here. |
| */ |
| if (caps_cmd.ofldcaps) |
| adap->params.offload = 1; |
| |
| if (caps_cmd.ofldcaps || |
| (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) || |
| (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) { |
| /* query offload-related parameters */ |
| params[0] = FW_PARAM_DEV(NTID); |
| params[1] = FW_PARAM_PFVF(SERVER_START); |
| params[2] = FW_PARAM_PFVF(SERVER_END); |
| params[3] = FW_PARAM_PFVF(TDDP_START); |
| params[4] = FW_PARAM_PFVF(TDDP_END); |
| params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, |
| params, val); |
| if (ret < 0) |
| goto bye; |
| adap->tids.ntids = val[0]; |
| adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); |
| adap->tids.stid_base = val[1]; |
| adap->tids.nstids = val[2] - val[1] + 1; |
| /* |
| * Setup server filter region. Divide the available filter |
| * region into two parts. Regular filters get 1/3rd and server |
| * filters get 2/3rd part. This is only enabled if workarond |
| * path is enabled. |
| * 1. For regular filters. |
| * 2. Server filter: This are special filters which are used |
| * to redirect SYN packets to offload queue. |
| */ |
| if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) { |
| adap->tids.sftid_base = adap->tids.ftid_base + |
| DIV_ROUND_UP(adap->tids.nftids, 3); |
| adap->tids.nsftids = adap->tids.nftids - |
| DIV_ROUND_UP(adap->tids.nftids, 3); |
| adap->tids.nftids = adap->tids.sftid_base - |
| adap->tids.ftid_base; |
| } |
| adap->vres.ddp.start = val[3]; |
| adap->vres.ddp.size = val[4] - val[3] + 1; |
| adap->params.ofldq_wr_cred = val[5]; |
| |
| if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { |
| init_hash_filter(adap); |
| } else { |
| adap->num_ofld_uld += 1; |
| } |
| |
| if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) { |
| params[0] = FW_PARAM_PFVF(ETHOFLD_START); |
| params[1] = FW_PARAM_PFVF(ETHOFLD_END); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, |
| params, val); |
| if (!ret) { |
| adap->tids.eotid_base = val[0]; |
| adap->tids.neotids = min_t(u32, MAX_ATIDS, |
| val[1] - val[0] + 1); |
| adap->params.ethofld = 1; |
| } |
| } |
| } |
| if (caps_cmd.rdmacaps) { |
| params[0] = FW_PARAM_PFVF(STAG_START); |
| params[1] = FW_PARAM_PFVF(STAG_END); |
| params[2] = FW_PARAM_PFVF(RQ_START); |
| params[3] = FW_PARAM_PFVF(RQ_END); |
| params[4] = FW_PARAM_PFVF(PBL_START); |
| params[5] = FW_PARAM_PFVF(PBL_END); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, |
| params, val); |
| if (ret < 0) |
| goto bye; |
| adap->vres.stag.start = val[0]; |
| adap->vres.stag.size = val[1] - val[0] + 1; |
| adap->vres.rq.start = val[2]; |
| adap->vres.rq.size = val[3] - val[2] + 1; |
| adap->vres.pbl.start = val[4]; |
| adap->vres.pbl.size = val[5] - val[4] + 1; |
| |
| params[0] = FW_PARAM_PFVF(SRQ_START); |
| params[1] = FW_PARAM_PFVF(SRQ_END); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, |
| params, val); |
| if (!ret) { |
| adap->vres.srq.start = val[0]; |
| adap->vres.srq.size = val[1] - val[0] + 1; |
| } |
| if (adap->vres.srq.size) { |
| adap->srq = t4_init_srq(adap->vres.srq.size); |
| if (!adap->srq) |
| dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); |
| } |
| |
| params[0] = FW_PARAM_PFVF(SQRQ_START); |
| params[1] = FW_PARAM_PFVF(SQRQ_END); |
| params[2] = FW_PARAM_PFVF(CQ_START); |
| params[3] = FW_PARAM_PFVF(CQ_END); |
| params[4] = FW_PARAM_PFVF(OCQ_START); |
| params[5] = FW_PARAM_PFVF(OCQ_END); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, |
| val); |
| if (ret < 0) |
| goto bye; |
| adap->vres.qp.start = val[0]; |
| adap->vres.qp.size = val[1] - val[0] + 1; |
| adap->vres.cq.start = val[2]; |
| adap->vres.cq.size = val[3] - val[2] + 1; |
| adap->vres.ocq.start = val[4]; |
| adap->vres.ocq.size = val[5] - val[4] + 1; |
| |
| params[0] = FW_PARAM_DEV(MAXORDIRD_QP); |
| params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, |
| val); |
| if (ret < 0) { |
| adap->params.max_ordird_qp = 8; |
| adap->params.max_ird_adapter = 32 * adap->tids.ntids; |
| ret = 0; |
| } else { |
| adap->params.max_ordird_qp = val[0]; |
| adap->params.max_ird_adapter = val[1]; |
| } |
| dev_info(adap->pdev_dev, |
| "max_ordird_qp %d max_ird_adapter %d\n", |
| adap->params.max_ordird_qp, |
| adap->params.max_ird_adapter); |
| |
| /* Enable write_with_immediate if FW supports it */ |
| params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, |
| val); |
| adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); |
| |
| /* Enable write_cmpl if FW supports it */ |
| params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, |
| val); |
| adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); |
| adap->num_ofld_uld += 2; |
| } |
| if (caps_cmd.iscsicaps) { |
| params[0] = FW_PARAM_PFVF(ISCSI_START); |
| params[1] = FW_PARAM_PFVF(ISCSI_END); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, |
| params, val); |
| if (ret < 0) |
| goto bye; |
| adap->vres.iscsi.start = val[0]; |
| adap->vres.iscsi.size = val[1] - val[0] + 1; |
| if (is_t6(adap->params.chip)) { |
| params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START); |
| params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, |
| params, val); |
| if (!ret) { |
| adap->vres.ppod_edram.start = val[0]; |
| adap->vres.ppod_edram.size = |
| val[1] - val[0] + 1; |
| |
| dev_info(adap->pdev_dev, |
| "ppod edram start 0x%x end 0x%x size 0x%x\n", |
| val[0], val[1], |
| adap->vres.ppod_edram.size); |
| } |
| } |
| /* LIO target and cxgb4i initiaitor */ |
| adap->num_ofld_uld += 2; |
| } |
| if (caps_cmd.cryptocaps) { |
| if (ntohs(caps_cmd.cryptocaps) & |
| FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { |
| params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, |
| 2, params, val); |
| if (ret < 0) { |
| if (ret != -EINVAL) |
| goto bye; |
| } else { |
| adap->vres.ncrypto_fc = val[0]; |
| } |
| adap->num_ofld_uld += 1; |
| } |
| if (ntohs(caps_cmd.cryptocaps) & |
| FW_CAPS_CONFIG_TLS_INLINE) { |
| params[0] = FW_PARAM_PFVF(TLS_START); |
| params[1] = FW_PARAM_PFVF(TLS_END); |
| ret = t4_query_params(adap, adap->mbox, adap->pf, 0, |
| 2, params, val); |
| if (ret < 0) |
| goto bye; |
| adap->vres.key.start = val[0]; |
| adap->vres.key.size = val[1] - val[0] + 1; |
| adap->num_uld += 1; |
| } |
| adap->params.crypto = ntohs(caps_cmd.cryptocaps); |
| } |
| |
| /* The MTU/MSS Table is initialized by now, so load their values. If |
| * we're initializing the adapter, then we'll make any modifications |
| * we want to the MTU/MSS Table and also initialize the congestion |
| * parameters. |
| */ |
| t4_read_mtu_tbl(adap, adap->params.mtus, NULL); |
| if (state != DEV_STATE_INIT) { |
| int i; |
| |
| /* The default MTU Table contains values 1492 and 1500. |
| * However, for TCP, it's better to have two values which are |
| * a multiple of 8 +/- 4 bytes apart near this popular MTU. |
| * This allows us to have a TCP Data Payload which is a |
| * multiple of 8 regardless of what combination of TCP Options |
| * are in use (always a multiple of 4 bytes) which is |
| * important for performance reasons. For instance, if no |
| * options are in use, then we have a 20-byte IP header and a |
| * 20-byte TCP header. In this case, a 1500-byte MSS would |
| * result in a TCP Data Payload of 1500 - 40 == 1460 bytes |
| * which is not a multiple of 8. So using an MSS of 1488 in |
| * this case results in a TCP Data Payload of 1448 bytes which |
| * is a multiple of 8. On the other hand, if 12-byte TCP Time |
| * Stamps have been negotiated, then an MTU of 1500 bytes |
| * results in a TCP Data Payload of 1448 bytes which, as |
| * above, is a multiple of 8 bytes ... |
| */ |
| for (i = 0; i < NMTUS; i++) |
| if (adap->params.mtus[i] == 1492) { |
| adap->params.mtus[i] = 1488; |
| break; |
| } |
| |
| t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, |
| adap->params.b_wnd); |
| } |
| t4_init_sge_params(adap); |
| adap->flags |= CXGB4_FW_OK; |
| t4_init_tp_params(adap, true); |
| return 0; |
| |
| /* |
| * Something bad happened. If a command timed out or failed with EIO |
| * FW does not operate within its spec or something catastrophic |
| * happened to HW/FW, stop issuing commands. |
| */ |
| bye: |
| adap_free_hma_mem(adap); |
| kfree(adap->sge.egr_map); |
| kfree(adap->sge.ingr_map); |
| kfree(adap->sge.starving_fl); |
| kfree(adap->sge.txq_maperr); |
| #ifdef CONFIG_DEBUG_FS |
| kfree(adap->sge.blocked_fl); |
| #endif |
| if (ret != -ETIMEDOUT && ret != -EIO) |
| t4_fw_bye(adap, adap->mbox); |
| return ret; |
| } |
| |
| /* EEH callbacks */ |
| |
| static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| int i; |
| struct adapter *adap = pci_get_drvdata(pdev); |
| |
| if (!adap) |
| goto out; |
| |
| rtnl_lock(); |
| adap->flags &= ~CXGB4_FW_OK; |
| notify_ulds(adap, CXGB4_STATE_START_RECOVERY); |
| spin_lock(&adap->stats_lock); |
| for_each_port(adap, i) { |
| struct net_device *dev = adap->port[i]; |
| if (dev) { |
| netif_device_detach(dev); |
| netif_carrier_off(dev); |
| } |
| } |
| spin_unlock(&adap->stats_lock); |
| disable_interrupts(adap); |
| if (adap->flags & CXGB4_FULL_INIT_DONE) |
| cxgb_down(adap); |
| rtnl_unlock(); |
| if ((adap->flags & CXGB4_DEV_ENABLED)) { |
| pci_disable_device(pdev); |
| adap->flags &= ~CXGB4_DEV_ENABLED; |
| } |
| out: return state == pci_channel_io_perm_failure ? |
| PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) |
| { |
| int i, ret; |
| struct fw_caps_config_cmd c; |
| struct adapter *adap = pci_get_drvdata(pdev); |
| |
| if (!adap) { |
| pci_restore_state(pdev); |
| pci_save_state(pdev); |
| return PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| if (!(adap->flags & CXGB4_DEV_ENABLED)) { |
| if (pci_enable_device(pdev)) { |
| dev_err(&pdev->dev, "Cannot reenable PCI " |
| "device after reset\n"); |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| adap->flags |= CXGB4_DEV_ENABLED; |
| } |
| |
| pci_set_master(pdev); |
| pci_restore_state(pdev); |
| pci_save_state(pdev); |
| |
| if (t4_wait_dev_ready(adap->regs) < 0) |
| return PCI_ERS_RESULT_DISCONNECT; |
| if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) |
| return PCI_ERS_RESULT_DISCONNECT; |
| adap->flags |= CXGB4_FW_OK; |
| if (adap_init1(adap, &c)) |
| return PCI_ERS_RESULT_DISCONNECT; |
| |
| for_each_port(adap, i) { |
| struct port_info *pi = adap2pinfo(adap, i); |
| u8 vivld = 0, vin = 0; |
| |
| ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1, |
| NULL, NULL, &vivld, &vin); |
| if (ret < 0) |
| return PCI_ERS_RESULT_DISCONNECT; |
| pi->viid = ret; |
| pi->xact_addr_filt = -1; |
| /* If fw supports returning the VIN as part of FW_VI_CMD, |
| * save the returned values. |
| */ |
| if (adap->params.viid_smt_extn_support) { |
| pi->vivld = vivld; |
| pi->vin = vin; |
| } else { |
| /* Retrieve the values from VIID */ |
| pi->vivld = FW_VIID_VIVLD_G(pi->viid); |
| pi->vin = FW_VIID_VIN_G(pi->viid); |
| } |
| } |
| |
| t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, |
| adap->params.b_wnd); |
| setup_memwin(adap); |
| if (cxgb_up(adap)) |
| return PCI_ERS_RESULT_DISCONNECT; |
| return PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| static void eeh_resume(struct pci_dev *pdev) |
| { |
| int i; |
| struct adapter *adap = pci_get_drvdata(pdev); |
| |
| if (!adap) |
| return; |
| |
| rtnl_lock(); |
| for_each_port(adap, i) { |
| struct net_device *dev = adap->port[i]; |
| if (dev) { |
| if (netif_running(dev)) { |
| link_start(dev); |
| cxgb_set_rxmode(dev); |
| } |
| netif_device_attach(dev); |
| } |
| } |
| rtnl_unlock(); |
| } |
| |
| static void eeh_reset_prepare(struct pci_dev *pdev) |
| { |
| struct adapter *adapter = pci_get_drvdata(pdev); |
| int i; |
| |
| if (adapter->pf != 4) |
| return; |
| |
| adapter->flags &= ~CXGB4_FW_OK; |
| |
| notify_ulds(adapter, CXGB4_STATE_DOWN); |
| |
| for_each_port(adapter, i) |
| if (adapter->port[i]->reg_state == NETREG_REGISTERED) |
| cxgb_close(adapter->port[i]); |
| |
| disable_interrupts(adapter); |
| cxgb4_free_mps_ref_entries(adapter); |
| |
| adap_free_hma_mem(adapter); |
| |
| if (adapter->flags & CXGB4_FULL_INIT_DONE) |
| cxgb_down(adapter); |
| } |
| |
| static void eeh_reset_done(struct pci_dev *pdev) |
| { |
| struct adapter *adapter = pci_get_drvdata(pdev); |
| int err, i; |
| |
| if (adapter->pf != 4) |
| return; |
| |
| err = t4_wait_dev_ready(adapter->regs); |
| if (err < 0) { |
| dev_err(adapter->pdev_dev, |
| "Device not ready, err %d", err); |
| return; |
| } |
| |
| setup_memwin(adapter); |
| |
| err = adap_init0(adapter, 1); |
| if (err) { |
| dev_err(adapter->pdev_dev, |
| "Adapter init failed, err %d", err); |
| return; |
| } |
| |
| setup_memwin_rdma(adapter); |
| |
| if (adapter->flags & CXGB4_FW_OK) { |
| err = t4_port_init(adapter, adapter->pf, adapter->pf, 0); |
| if (err) { |
| dev_err(adapter->pdev_dev, |
| "Port init failed, err %d", err); |
| return; |
| } |
| } |
| |
| err = cfg_queues(adapter); |
| if (err) { |
| dev_err(adapter->pdev_dev, |
| "Config queues failed, err %d", err); |
| return; |
| } |
| |
| cxgb4_init_mps_ref_entries(adapter); |
| |
| err = setup_fw_sge_queues(adapter); |
| if (err) { |
| dev_err(adapter->pdev_dev, |
| "FW sge queue allocation failed, err %d", err); |
| return; |
| } |
| |
| for_each_port(adapter, i) |
| if (adapter->port[i]->reg_state == NETREG_REGISTERED) |
| cxgb_open(adapter->port[i]); |
| } |
| |
| static const struct pci_error_handlers cxgb4_eeh = { |
| .error_detected = eeh_err_detected, |
| .slot_reset = eeh_slot_reset, |
| .resume = eeh_resume, |
| .reset_prepare = eeh_reset_prepare, |
| .reset_done = eeh_reset_done, |
| }; |
| |
| /* Return true if the Link Configuration supports "High Speeds" (those greater |
| * than 1Gb/s). |
| */ |
| static inline bool is_x_10g_port(const struct link_config *lc) |
| { |
| unsigned int speeds, high_speeds; |
| |
| speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); |
| high_speeds = speeds & |
| ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); |
| |
| return high_speeds != 0; |
| } |
| |
| /* Perform default configuration of DMA queues depending on the number and type |
| * of ports we found and the number of available CPUs. Most settings can be |
| * modified by the admin prior to actual use. |
| */ |
| static int cfg_queues(struct adapter *adap) |
| { |
| u32 avail_qsets, avail_eth_qsets, avail_uld_qsets; |
| u32 ncpus = num_online_cpus(); |
| u32 niqflint, neq, num_ulds; |
| struct sge *s = &adap->sge; |
| u32 i, n10g = 0, qidx = 0; |
| u32 q10g = 0, q1g; |
| |
| /* Reduce memory usage in kdump environment, disable all offload. */ |
| if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { |
| adap->params.offload = 0; |
| adap->params.crypto = 0; |
| adap->params.ethofld = 0; |
| } |
| |
| /* Calculate the number of Ethernet Queue Sets available based on |
| * resources provisioned for us. We always have an Asynchronous |
| * Firmware Event Ingress Queue. If we're operating in MSI or Legacy |
| * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt |
| * Ingress Queue. Meanwhile, we need two Egress Queues for each |
| * Queue Set: one for the Free List and one for the Ethernet TX Queue. |
| * |
| * Note that we should also take into account all of the various |
| * Offload Queues. But, in any situation where we're operating in |
| * a Resource Constrained Provisioning environment, doing any Offload |
| * at all is problematic ... |
| */ |
| niqflint = adap->params.pfres.niqflint - 1; |
| if (!(adap->flags & CXGB4_USING_MSIX)) |
| niqflint--; |
| neq = adap->params.pfres.neq / 2; |
| avail_qsets = min(niqflint, neq); |
| |
| if (avail_qsets < adap->params.nports) { |
| dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", |
| avail_qsets, adap->params.nports); |
| return -ENOMEM; |
| } |
| |
| /* Count the number of 10Gb/s or better ports */ |
| for_each_port(adap, i) |
| n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); |
| |
| avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS); |
| |
| /* We default to 1 queue per non-10G port and up to # of cores queues |
| * per 10G port. |
| */ |
| if (n10g) |
| q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; |
| |
| #ifdef CONFIG_CHELSIO_T4_DCB |
| /* For Data Center Bridging support we need to be able to support up |
| * to 8 Traffic Priorities; each of which will be assigned to its |
| * own TX Queue in order to prevent Head-Of-Line Blocking. |
| */ |
| q1g = 8; |
| if (adap->params.nports * 8 > avail_eth_qsets) { |
| dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", |
| avail_eth_qsets, adap->params.nports * 8); |
| return -ENOMEM; |
| } |
| |
| if (adap->params.nports * ncpus < avail_eth_qsets) |
| q10g = max(8U, ncpus); |
| else |
| q10g = max(8U, q10g); |
| |
| while ((q10g * n10g) > |
| (avail_eth_qsets - (adap->params.nports - n10g) * q1g)) |
| q10g--; |
| |
| #else /* !CONFIG_CHELSIO_T4_DCB */ |
| q1g = 1; |
| q10g = min(q10g, ncpus); |
| #endif /* !CONFIG_CHELSIO_T4_DCB */ |
| if (is_kdump_kernel()) { |
| q10g = 1; |
| q1g = 1; |
| } |
| |
| for_each_port(adap, i) { |
| struct port_info *pi = adap2pinfo(adap, i); |
| |
| pi->first_qset = qidx; |
| pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g; |
| qidx += pi->nqsets; |
| } |
| |
| s->ethqsets = qidx; |
| s->max_ethqsets = qidx; /* MSI-X may lower it later */ |
| avail_qsets -= qidx; |
| |
| if (is_uld(adap)) { |
| /* For offload we use 1 queue/channel if all ports are up to 1G, |
| * otherwise we divide all available queues amongst the channels |
| * capped by the number of available cores. |
| */ |
| num_ulds = adap->num_uld + adap->num_ofld_uld; |
| i = min_t(u32, MAX_OFLD_QSETS, ncpus); |
| avail_uld_qsets = roundup(i, adap->params.nports); |
| if (avail_qsets < num_ulds * adap->params.nports) { |
| adap->params.offload = 0; |
| adap->params.crypto = 0; |
| s->ofldqsets = 0; |
| } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) { |
| s->ofldqsets = adap->params.nports; |
| } else { |
| s->ofldqsets = avail_uld_qsets; |
| } |
| |
| avail_qsets -= num_ulds * s->ofldqsets; |
| } |
| |
| /* ETHOFLD Queues used for QoS offload should follow same |
| * allocation scheme as normal Ethernet Queues. |
| */ |
| if (is_ethofld(adap)) { |
| if (avail_qsets < s->max_ethqsets) { |
| adap->params.ethofld = 0; |
| s->eoqsets = 0; |
| } else { |
| s->eoqsets = s->max_ethqsets; |
| } |
| avail_qsets -= s->eoqsets; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { |
| struct sge_eth_rxq *r = &s->ethrxq[i]; |
| |
| init_rspq(adap, &r->rspq, 5, 10, 1024, 64); |
| r->fl.size = 72; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) |
| s->ethtxq[i].q.size = 1024; |
| |
| for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) |
| s->ctrlq[i].q.size = 512; |
| |
| if (!is_t4(adap->params.chip)) |
| s->ptptxq.q.size = 8; |
| |
| init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); |
| init_rspq(adap, &s->intrq, 0, 1, 512, 64); |
| |
| return 0; |
| } |
| |
| /* |
| * Reduce the number of Ethernet queues across all ports to at most n. |
| * n provides at least one queue per port. |
| */ |
| static void reduce_ethqs(struct adapter *adap, int n) |
| { |
| int i; |
| struct port_info *pi; |
| |
| while (n < adap->sge.ethqsets) |
| for_each_port(adap, i) { |
| pi = adap2pinfo(adap, i); |
| if (pi->nqsets > 1) { |
| pi->nqsets--; |
| adap->sge.ethqsets--; |
| if (adap->sge.ethqsets <= n) |
| break; |
| } |
| } |
| |
| n = 0; |
| for_each_port(adap, i) { |
| pi = adap2pinfo(adap, i); |
| pi->first_qset = n; |
| n += pi->nqsets; |
| } |
| } |
| |
| static int alloc_msix_info(struct adapter *adap, u32 num_vec) |
| { |
| struct msix_info *msix_info; |
| |
| msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL); |
| if (!msix_info) |
| return -ENOMEM; |
| |
| adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec), |
| sizeof(long), GFP_KERNEL); |
| if (!adap->msix_bmap.msix_bmap) { |
| kfree(msix_info); |
| return -ENOMEM; |
| } |
| |
| spin_lock_init(&adap->msix_bmap.lock); |
| adap->msix_bmap.mapsize = num_vec; |
| |
| adap->msix_info = msix_info; |
| return 0; |
| } |
| |
| static void free_msix_info(struct adapter *adap) |
| { |
| kfree(adap->msix_bmap.msix_bmap); |
| kfree(adap->msix_info); |
| } |
| |
| int cxgb4_get_msix_idx_from_bmap(struct adapter *adap) |
| { |
| struct msix_bmap *bmap = &adap->msix_bmap; |
| unsigned int msix_idx; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&bmap->lock, flags); |
| msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize); |
| if (msix_idx < bmap->mapsize) { |
| __set_bit(msix_idx, bmap->msix_bmap); |
| } else { |
| spin_unlock_irqrestore(&bmap->lock, flags); |
| return -ENOSPC; |
| } |
| |
| spin_unlock_irqrestore(&bmap->lock, flags); |
| return msix_idx; |
| } |
| |
| void cxgb4_free_msix_idx_in_bmap(struct adapter *adap, |
| unsigned int msix_idx) |
| { |
| struct msix_bmap *bmap = &adap->msix_bmap; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&bmap->lock, flags); |
| __clear_bit(msix_idx, bmap->msix_bmap); |
| spin_unlock_irqrestore(&bmap->lock, flags); |
| } |
| |
| /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ |
| #define EXTRA_VECS 2 |
| |
| static int enable_msix(struct adapter *adap) |
| { |
| u32 eth_need, uld_need = 0, ethofld_need = 0; |
| u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0; |
| u8 num_uld = 0, nchan = adap->params.nports; |
| u32 i, want, need, num_vec; |
| struct sge *s = &adap->sge; |
| struct msix_entry *entries; |
| struct port_info *pi; |
| int allocated, ret; |
| |
| want = s->max_ethqsets; |
| #ifdef CONFIG_CHELSIO_T4_DCB |
| /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for |
| * each port. |
| */ |
| need = 8 * nchan; |
| #else |
| need = nchan; |
| #endif |
| eth_need = need; |
| if (is_uld(adap)) { |
| num_uld = adap->num_ofld_uld + adap->num_uld; |
| want += num_uld * s->ofldqsets; |
| uld_need = num_uld * nchan; |
| need += uld_need; |
| } |
| |
| if (is_ethofld(adap)) { |
| want += s->eoqsets; |
| ethofld_need = eth_need; |
| need += ethofld_need; |
| } |
| |
| want += EXTRA_VECS; |
| need += EXTRA_VECS; |
| |
| entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL); |
| if (!entries) |
| return -ENOMEM; |
| |
| for (i = 0; i < want; i++) |
| entries[i].entry = i; |
| |
| allocated = pci_enable_msix_range(adap->pdev, entries, need, want); |
| if (allocated < 0) { |
| /* Disable offload and attempt to get vectors for NIC |
| * only mode. |
| */ |
| want = s->max_ethqsets + EXTRA_VECS; |
| need = eth_need + EXTRA_VECS; |
| allocated = pci_enable_msix_range(adap->pdev, entries, |
| need, want); |
| if (allocated < 0) { |
| dev_info(adap->pdev_dev, |
| "Disabling MSI-X due to insufficient MSI-X vectors\n"); |
| ret = allocated; |
| goto out_free; |
| } |
| |
| dev_info(adap->pdev_dev, |
| "Disabling offload due to insufficient MSI-X vectors\n"); |
| adap->params.offload = 0; |
| adap->params.crypto = 0; |
| adap->params.ethofld = 0; |
| s->ofldqsets = 0; |
| s->eoqsets = 0; |
| uld_need = 0; |
| ethofld_need = 0; |
| } |
| |
| num_vec = allocated; |
| if (num_vec < want) { |
| /* Distribute available vectors to the various queue groups. |
| * Every group gets its minimum requirement and NIC gets top |
| * priority for leftovers. |
| */ |
| ethqsets = eth_need; |
| if (is_uld(adap)) |
| ofldqsets = nchan; |
| if (is_ethofld(adap)) |
| eoqsets = ethofld_need; |
| |
| num_vec -= need; |
| while (num_vec) { |
| if (num_vec < eth_need + ethofld_need || |
| ethqsets > s->max_ethqsets) |
| break; |
| |
| for_each_port(adap, i) { |
| pi = adap2pinfo(adap, i); |
| if (pi->nqsets < 2) |
| continue; |
| |
| ethqsets++; |
| num_vec--; |
| if (ethofld_need) { |
| eoqsets++; |
| num_vec--; |
| } |
| } |
| } |
| |
| if (is_uld(adap)) { |
| while (num_vec) { |
| if (num_vec < uld_need || |
| ofldqsets > s->ofldqsets) |
| break; |
| |
| ofldqsets++; |
| num_vec -= uld_need; |
| } |
| } |
| } else { |
| ethqsets = s->max_ethqsets; |
| if (is_uld(adap)) |
| ofldqsets = s->ofldqsets; |
| if (is_ethofld(adap)) |
| eoqsets = s->eoqsets; |
| } |
| |
| if (ethqsets < s->max_ethqsets) { |
| s->max_ethqsets = ethqsets; |
| reduce_ethqs(adap, ethqsets); |
| } |
| |
| if (is_uld(adap)) { |
| s->ofldqsets = ofldqsets; |
| s->nqs_per_uld = s->ofldqsets; |
| } |
| |
| if (is_ethofld(adap)) |
| s->eoqsets = eoqsets; |
| |
| /* map for msix */ |
| ret = alloc_msix_info(adap, allocated); |
| if (ret) |
| goto out_disable_msix; |
| |
| for (i = 0; i < allocated; i++) { |
| adap->msix_info[i].vec = entries[i].vector; |
| adap->msix_info[i].idx = i; |
| } |
| |
| dev_info(adap->pdev_dev, |
| "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d\n", |
| allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld); |
| |
| kfree(entries); |
| return 0; |
| |
| out_disable_msix: |
| pci_disable_msix(adap->pdev); |
| |
| out_free: |
| kfree(entries); |
| return ret; |
| } |
| |
| #undef EXTRA_VECS |
| |
| static int init_rss(struct adapter *adap) |
| { |
| unsigned int i; |
| int err; |
| |
| err = t4_init_rss_mode(adap, adap->mbox); |
| if (err) |
| return err; |
| |
| for_each_port(adap, i) { |
| struct port_info *pi = adap2pinfo(adap, i); |
| |
| pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); |
| if (!pi->rss) |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| /* Dump basic information about the adapter */ |
| static void print_adapter_info(struct adapter *adapter) |
| { |
| /* Hardware/Firmware/etc. Version/Revision IDs */ |
| t4_dump_version_info(adapter); |
| |
| /* Software/Hardware configuration */ |
| dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", |
| is_offload(adapter) ? "R" : "", |
| ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" : |
| (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""), |
| is_offload(adapter) ? "Offload" : "non-Offload"); |
| } |
| |
| static void print_port_info(const struct net_device *dev) |
| { |
| char buf[80]; |
| char *bufp = buf; |
| const struct port_info *pi = netdev_priv(dev); |
| const struct adapter *adap = pi->adapter; |
| |
| if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) |
| bufp += sprintf(bufp, "100M/"); |
| if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) |
| bufp += sprintf(bufp, "1G/"); |
| if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) |
| bufp += sprintf(bufp, "10G/"); |
| if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) |
| bufp += sprintf(bufp, "25G/"); |
| if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) |
| bufp += sprintf(bufp, "40G/"); |
| if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) |
| bufp += sprintf(bufp, "50G/"); |
| if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) |
| bufp += sprintf(bufp, "100G/"); |
| if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) |
| bufp += sprintf(bufp, "200G/"); |
| if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) |
| bufp += sprintf(bufp, "400G/"); |
| if (bufp != buf) |
| --bufp; |
| sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); |
| |
| netdev_info(dev, "%s: Chelsio %s (%s) %s\n", |
| dev->name, adap->params.vpd.id, adap->name, buf); |
| } |
| |
| /* |
| * Free the following resources: |
| * - memory used for tables |
| * - MSI/MSI-X |
| * - net devices |
| * - resources FW is holding for us |
| */ |
| static void free_some_resources(struct adapter *adapter) |
| { |
| unsigned int i; |
| |
| kvfree(adapter->smt); |
| kvfree(adapter->l2t); |
| kvfree(adapter->srq); |
| t4_cleanup_sched(adapter); |
| kvfree(adapter->tids.tid_tab); |
| cxgb4_cleanup_tc_matchall(adapter); |
| cxgb4_cleanup_tc_mqprio(adapter); |
| cxgb4_cleanup_tc_flower(adapter); |
| cxgb4_cleanup_tc_u32(adapter); |
| kfree(adapter->sge.egr_map); |
| kfree(adapter->sge.ingr_map); |
| kfree(adapter->sge.starving_fl); |
| kfree(adapter->sge.txq_maperr); |
| #ifdef CONFIG_DEBUG_FS |
| kfree(adapter->sge.blocked_fl); |
| #endif |
| disable_msi(adapter); |
| |
| for_each_port(adapter, i) |
| if (adapter->port[i]) { |
| struct port_info *pi = adap2pinfo(adapter, i); |
| |
| if (pi->viid != 0) |
| t4_free_vi(adapter, adapter->mbox, adapter->pf, |
| 0, pi->viid); |
| kfree(adap2pinfo(adapter, i)->rss); |
| free_netdev(adapter->port[i]); |
| } |
| if (adapter->flags & CXGB4_FW_OK) |
| t4_fw_bye(adapter, adapter->pf); |
| } |
| |
| #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \ |
| NETIF_F_GSO_UDP_L4) |
| #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ |
| NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) |
| #define SEGMENT_SIZE 128 |
| |
| static int t4_get_chip_type(struct adapter *adap, int ver) |
| { |
| u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); |
| |
| switch (ver) { |
| case CHELSIO_T4: |
| return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); |
| case CHELSIO_T5: |
| return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); |
| case CHELSIO_T6: |
| return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); |
| default: |
| break; |
| } |
| return -EINVAL; |
| } |
| |
| #ifdef CONFIG_PCI_IOV |
| static void cxgb4_mgmt_setup(struct net_device *dev) |
| { |
| dev->type = ARPHRD_NONE; |
| dev->mtu = 0; |
| dev->hard_header_len = 0; |
| dev->addr_len = 0; |
| dev->tx_queue_len = 0; |
| dev->flags |= IFF_NOARP; |
| dev->priv_flags |= IFF_NO_QUEUE; |
| |
| /* Initialize the device structure. */ |
| dev->netdev_ops = &cxgb4_mgmt_netdev_ops; |
| dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; |
| } |
| |
| static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) |
| { |
| struct adapter *adap = pci_get_drvdata(pdev); |
| int err = 0; |
| int current_vfs = pci_num_vf(pdev); |
| u32 pcie_fw; |
| |
| pcie_fw = readl(adap->regs + PCIE_FW_A); |
| /* Check if fw is initialized */ |
| if (!(pcie_fw & PCIE_FW_INIT_F)) { |
| dev_warn(&pdev->dev, "Device not initialized\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| /* If any of the VF's is already assigned to Guest OS, then |
| * SRIOV for the same cannot be modified |
| */ |
| if (current_vfs && pci_vfs_assigned(pdev)) { |
| dev_err(&pdev->dev, |
| "Cannot modify SR-IOV while VFs are assigned\n"); |
| return current_vfs; |
| } |
| /* Note that the upper-level code ensures that we're never called with |
| * a non-zero "num_vfs" when we already have VFs instantiated. But |
| * it never hurts to code defensively. |
| */ |
| if (num_vfs != 0 && current_vfs != 0) |
| return -EBUSY; |
| |
| /* Nothing to do for no change. */ |
| if (num_vfs == current_vfs) |
| return num_vfs; |
| |
| /* Disable SRIOV when zero is passed. */ |
| if (!num_vfs) { |
| pci_disable_sriov(pdev); |
| /* free VF Management Interface */ |
| unregister_netdev(adap->port[0]); |
| free_netdev(adap->port[0]); |
| adap->port[0] = NULL; |
| |
| /* free VF resources */ |
| adap->num_vfs = 0; |
| kfree(adap->vfinfo); |
| adap->vfinfo = NULL; |
| return 0; |
| } |
| |
| if (!current_vfs) { |
| struct fw_pfvf_cmd port_cmd, port_rpl; |
| struct net_device *netdev; |
| unsigned int pmask, port; |
| struct pci_dev *pbridge; |
| struct port_info *pi; |
| char name[IFNAMSIZ]; |
| u32 devcap2; |
| u16 flags; |
| |
| /* If we want to instantiate Virtual Functions, then our |
| * parent bridge's PCI-E needs to support Alternative Routing |
| * ID (ARI) because our VFs will show up at function offset 8 |
| * and above. |
| */ |
| pbridge = pdev->bus->self; |
| pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags); |
| pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2); |
| |
| if ((flags & PCI_EXP_FLAGS_VERS) < 2 || |
| !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { |
| /* Our parent bridge does not support ARI so issue a |
| * warning and skip instantiating the VFs. They |
| * won't be reachable. |
| */ |
| dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", |
| pbridge->bus->number, PCI_SLOT(pbridge->devfn), |
| PCI_FUNC(pbridge->devfn)); |
| return -ENOTSUPP; |
| } |
| memset(&port_cmd, 0, sizeof(port_cmd)); |
| port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | |
| FW_CMD_REQUEST_F | |
| FW_CMD_READ_F | |
| FW_PFVF_CMD_PFN_V(adap->pf) | |
| FW_PFVF_CMD_VFN_V(0)); |
| port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); |
| err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), |
| &port_rpl); |
| if (err) |
| return err; |
| pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); |
| port = ffs(pmask) - 1; |
| /* Allocate VF Management Interface. */ |
| snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, |
| adap->pf); |
| netdev = alloc_netdev(sizeof(struct port_info), |
| name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); |
| if (!netdev) |
| return -ENOMEM; |
| |
| pi = netdev_priv(netdev); |
| pi->adapter = adap; |
| pi->lport = port; |
| pi->tx_chan = port; |
| SET_NETDEV_DEV(netdev, &pdev->dev); |
| |
| adap->port[0] = netdev; |
| pi->port_id = 0; |
| |
| err = register_netdev(adap->port[0]); |
| if (err) { |
| pr_info("Unable to register VF mgmt netdev %s\n", name); |
| free_netdev(adap->port[0]); |
| adap->port[0] = NULL; |
| return err; |
| } |
| /* Allocate and set up VF Information. */ |
| adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), |
| sizeof(struct vf_info), GFP_KERNEL); |
| if (!adap->vfinfo) { |
| unregister_netdev(adap->port[0]); |
| free_netdev(adap->port[0]); |
| adap->port[0] = NULL; |
| return -ENOMEM; |
| } |
| cxgb4_mgmt_fill_vf_station_mac_addr(adap); |
| } |
| /* Instantiate the requested number of VFs. */ |
| err = pci_enable_sriov(pdev, num_vfs); |
| if (err) { |
| pr_info("Unable to instantiate %d VFs\n", num_vfs); |
| if (!current_vfs) { |
| unregister_netdev(adap->port[0]); |
| free_netdev(adap->port[0]); |
| adap->port[0] = NULL; |
| kfree(adap->vfinfo); |
| adap->vfinfo = NULL; |
| } |
| return err; |
| } |
| |
| adap->num_vfs = num_vfs; |
| return num_vfs; |
| } |
| #endif /* CONFIG_PCI_IOV */ |
| |
| #if defined(CONFIG_CHELSIO_TLS_DEVICE) |
| |
| static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk, |
| enum tls_offload_ctx_dir direction, |
| struct tls_crypto_info *crypto_info, |
| u32 tcp_sn) |
| { |
| struct adapter *adap = netdev2adap(netdev); |
| int ret = 0; |
| |
| mutex_lock(&uld_mutex); |
| if (!adap->uld[CXGB4_ULD_CRYPTO].handle) { |
| dev_err(adap->pdev_dev, "chcr driver is not loaded\n"); |
| ret = -EOPNOTSUPP; |
| goto out_unlock; |
| } |
| |
| if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) { |
| dev_err(adap->pdev_dev, |
| "chcr driver has no registered tlsdev_ops()\n"); |
| ret = -EOPNOTSUPP; |
| goto out_unlock; |
| } |
| |
| ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE); |
| if (ret) |
| goto out_unlock; |
| |
| ret = adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_add(netdev, sk, |
| direction, |
| crypto_info, |
| tcp_sn); |
| /* if there is a failure, clear the refcount */ |
| if (ret) |
| cxgb4_set_ktls_feature(adap, |
| FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE); |
| out_unlock: |
| mutex_unlock(&uld_mutex); |
| return ret; |
| } |
| |
| static void cxgb4_ktls_dev_del(struct net_device *netdev, |
| struct tls_context *tls_ctx, |
| enum tls_offload_ctx_dir direction) |
| { |
| struct adapter *adap = netdev2adap(netdev); |
| |
| mutex_lock(&uld_mutex); |
| if (!adap->uld[CXGB4_ULD_CRYPTO].handle) { |
| dev_err(adap->pdev_dev, "chcr driver is not loaded\n"); |
| goto out_unlock; |
| } |
| |
| if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) { |
| dev_err(adap->pdev_dev, |
| "chcr driver has no registered tlsdev_ops\n"); |
| goto out_unlock; |
| } |
| |
| adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_del(netdev, tls_ctx, |
| direction); |
| cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE); |
| |
| out_unlock: |
| mutex_unlock(&uld_mutex); |
| } |
| |
| static const struct tlsdev_ops cxgb4_ktls_ops = { |
| .tls_dev_add = cxgb4_ktls_dev_add, |
| .tls_dev_del = cxgb4_ktls_dev_del, |
| }; |
| #endif /* CONFIG_CHELSIO_TLS_DEVICE */ |
| |
| static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| struct net_device *netdev; |
| struct adapter *adapter; |
| static int adap_idx = 1; |
| int s_qpp, qpp, num_seg; |
| struct port_info *pi; |
| bool highdma = false; |
| enum chip_type chip; |
| void __iomem *regs; |
| int func, chip_ver; |
| u16 device_id; |
| int i, err; |
| u32 whoami; |
| |
| err = pci_request_regions(pdev, KBUILD_MODNAME); |
| if (err) { |
| /* Just info, some other driver may have claimed the device. */ |
| dev_info(&pdev->dev, "cannot obtain PCI resources\n"); |
| return err; |
| } |
| |
| err = pci_enable_device(pdev); |
| if (err) { |
| dev_err(&pdev->dev, "cannot enable PCI device\n"); |
| goto out_release_regions; |
| } |
| |
| regs = pci_ioremap_bar(pdev, 0); |
| if (!regs) { |
| dev_err(&pdev->dev, "cannot map device registers\n"); |
| err = -ENOMEM; |
| goto out_disable_device; |
| } |
| |
| adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); |
| if (!adapter) { |
| err = -ENOMEM; |
| goto out_unmap_bar0; |
| } |
| |
| adapter->regs = regs; |
| err = t4_wait_dev_ready(regs); |
| if (err < 0) |
| goto out_free_adapter; |
| |
| /* We control everything through one PF */ |
| whoami = t4_read_reg(adapter, PL_WHOAMI_A); |
| pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); |
| chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); |
| if ((int)chip < 0) { |
| dev_err(&pdev->dev, "Device %d is not supported\n", device_id); |
| err = chip; |
| goto out_free_adapter; |
| } |
| chip_ver = CHELSIO_CHIP_VERSION(chip); |
| func = chip_ver <= CHELSIO_T5 ? |
| SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); |
| |
| adapter->pdev = pdev; |
| adapter->pdev_dev = &pdev->dev; |
| adapter->name = pci_name(pdev); |
| adapter->mbox = func; |
| adapter->pf = func; |
| adapter->params.chip = chip; |
| adapter->adap_idx = adap_idx; |
| adapter->msg_enable = DFLT_MSG_ENABLE; |
| adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + |
| (sizeof(struct mbox_cmd) * |
| T4_OS_LOG_MBOX_CMDS), |
| GFP_KERNEL); |
| if (!adapter->mbox_log) { |
| err = -ENOMEM; |
| goto out_free_adapter; |
| } |
| spin_lock_init(&adapter->mbox_lock); |
| INIT_LIST_HEAD(&adapter->mlist.list); |
| adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; |
| pci_set_drvdata(pdev, adapter); |
| |
| if (func != ent->driver_data) { |
| pci_disable_device(pdev); |
| pci_save_state(pdev); /* to restore SR-IOV later */ |
| return 0; |
| } |
| |
| if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { |
| highdma = true; |
| err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); |
| if (err) { |
| dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " |
| "coherent allocations\n"); |
| goto out_free_adapter; |
| } |
| } else { |
| err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (err) { |
| dev_err(&pdev->dev, "no usable DMA configuration\n"); |
| goto out_free_adapter; |
| } |
| } |
| |
| pci_enable_pcie_error_reporting(pdev); |
| pci_set_master(pdev); |
| pci_save_state(pdev); |
| adap_idx++; |
| adapter->workq = create_singlethread_workqueue("cxgb4"); |
| if (!adapter->workq) { |
| err = -ENOMEM; |
| goto out_free_adapter; |
| } |
| |
| /* PCI device has been enabled */ |
| adapter->flags |= CXGB4_DEV_ENABLED; |
| memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); |
| |
| /* If possible, we use PCIe Relaxed Ordering Attribute to deliver |
| * Ingress Packet Data to Free List Buffers in order to allow for |
| * chipset performance optimizations between the Root Complex and |
| * Memory Controllers. (Messages to the associated Ingress Queue |
| * notifying new Packet Placement in the Free Lists Buffers will be |
| * send without the Relaxed Ordering Attribute thus guaranteeing that |
| * all preceding PCIe Transaction Layer Packets will be processed |
| * first.) But some Root Complexes have various issues with Upstream |
| * Transaction Layer Packets with the Relaxed Ordering Attribute set. |
| * The PCIe devices which under the Root Complexes will be cleared the |
| * Relaxed Ordering bit in the configuration space, So we check our |
| * PCIe configuration space to see if it's flagged with advice against |
| * using Relaxed Ordering. |
| */ |
| if (!pcie_relaxed_ordering_enabled(pdev)) |
| adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING; |
| |
| spin_lock_init(&adapter->stats_lock); |
| spin_lock_init(&adapter->tid_release_lock); |
| spin_lock_init(&adapter->win0_lock); |
| |
| INIT_WORK(&adapter->tid_release_task, process_tid_release_list); |
| INIT_WORK(&adapter->db_full_task, process_db_full); |
| INIT_WORK(&adapter->db_drop_task, process_db_drop); |
| INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); |
| |
| err = t4_prep_adapter(adapter); |
| if (err) |
| goto out_free_adapter; |
| |
| if (is_kdump_kernel()) { |
| /* Collect hardware state and append to /proc/vmcore */ |
| err = cxgb4_cudbg_vmcore_add_dump(adapter); |
| if (err) { |
| dev_warn(adapter->pdev_dev, |
| "Fail collecting vmcore device dump, err: %d. Continuing\n", |
| err); |
| err = 0; |
| } |
| } |
| |
| if (!is_t4(adapter->params.chip)) { |
| s_qpp = (QUEUESPERPAGEPF0_S + |
| (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * |
| adapter->pf); |
| qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, |
| SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); |
| num_seg = PAGE_SIZE / SEGMENT_SIZE; |
| |
| /* Each segment size is 128B. Write coalescing is enabled only |
| * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the |
| * queue is less no of segments that can be accommodated in |
| * a page size. |
| */ |
| if (qpp > num_seg) { |
| dev_err(&pdev->dev, |
| "Incorrect number of egress queues per page\n"); |
| err = -EINVAL; |
| goto out_free_adapter; |
| } |
| adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), |
| pci_resource_len(pdev, 2)); |
| if (!adapter->bar2) { |
| dev_err(&pdev->dev, "cannot map device bar2 region\n"); |
| err = -ENOMEM; |
| goto out_free_adapter; |
| } |
| } |
| |
| setup_memwin(adapter); |
| err = adap_init0(adapter, 0); |
| #ifdef CONFIG_DEBUG_FS |
| bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); |
| #endif |
| setup_memwin_rdma(adapter); |
| if (err) |
| goto out_unmap_bar; |
| |
| /* configure SGE_STAT_CFG_A to read WC stats */ |
| if (!is_t4(adapter->params.chip)) |
| t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | |
| (is_t5(adapter->params.chip) ? STATMODE_V(0) : |
| T6_STATMODE_V(0))); |
| |
| /* Initialize hash mac addr list */ |
| INIT_LIST_HEAD(&adapter->mac_hlist); |
| |
| for_each_port(adapter, i) { |
| /* For supporting MQPRIO Offload, need some extra |
| * queues for each ETHOFLD TIDs. Keep it equal to |
| * MAX_ATIDs for now. Once we connect to firmware |
| * later and query the EOTID params, we'll come to |
| * know the actual # of EOTIDs supported. |
| */ |
| netdev = alloc_etherdev_mq(sizeof(struct port_info), |
| MAX_ETH_QSETS + MAX_ATIDS); |
| if (!netdev) { |
| err = -ENOMEM; |
| goto out_free_dev; |
| } |
| |
| SET_NETDEV_DEV(netdev, &pdev->dev); |
| |
| adapter->port[i] = netdev; |
| pi = netdev_priv(netdev); |
| pi->adapter = adapter; |
| pi->xact_addr_filt = -1; |
| pi->port_id = i; |
| netdev->irq = pdev->irq; |
| |
| netdev->hw_features = NETIF_F_SG | TSO_FLAGS | |
| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | |
| NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO | |
| NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | |
| NETIF_F_HW_TC; |
| |
| if (chip_ver > CHELSIO_T5) { |
| netdev->hw_enc_features |= NETIF_F_IP_CSUM | |
| NETIF_F_IPV6_CSUM | |
| NETIF_F_RXCSUM | |
| NETIF_F_GSO_UDP_TUNNEL | |
| NETIF_F_GSO_UDP_TUNNEL_CSUM | |
| NETIF_F_TSO | NETIF_F_TSO6; |
| |
| netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | |
| NETIF_F_GSO_UDP_TUNNEL_CSUM | |
| NETIF_F_HW_TLS_RECORD; |
| } |
| |
| if (highdma) |
| netdev->hw_features |= NETIF_F_HIGHDMA; |
| netdev->features |= netdev->hw_features; |
| netdev->vlan_features = netdev->features & VLAN_FEAT; |
| #if defined(CONFIG_CHELSIO_TLS_DEVICE) |
| if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) { |
| netdev->hw_features |= NETIF_F_HW_TLS_TX; |
| netdev->tlsdev_ops = &cxgb4_ktls_ops; |
| /* initialize the refcount */ |
| refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0); |
| } |
| #endif |
| netdev->priv_flags |= IFF_UNICAST_FLT; |
| |
| /* MTU range: 81 - 9600 */ |
| netdev->min_mtu = 81; /* accommodate SACK */ |
| netdev->max_mtu = MAX_MTU; |
| |
| netdev->netdev_ops = &cxgb4_netdev_ops; |
| #ifdef CONFIG_CHELSIO_T4_DCB |
| netdev->dcbnl_ops = &cxgb4_dcb_ops; |
| cxgb4_dcb_state_init(netdev); |
| cxgb4_dcb_version_init(netdev); |
| #endif |
| cxgb4_set_ethtool_ops(netdev); |
| } |
| |
| cxgb4_init_ethtool_dump(adapter); |
| |
| pci_set_drvdata(pdev, adapter); |
| |
| if (adapter->flags & CXGB4_FW_OK) { |
| err = t4_port_init(adapter, func, func, 0); |
| if (err) |
| goto out_free_dev; |
| } else if (adapter->params.nports == 1) { |
| /* If we don't have a connection to the firmware -- possibly |
| * because of an error -- grab the raw VPD parameters so we |
| * can set the proper MAC Address on the debug network |
| * interface that we've created. |
| */ |
| u8 hw_addr[ETH_ALEN]; |
| u8 *na = adapter->params.vpd.na; |
| |
| err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); |
| if (!err) { |
| for (i = 0; i < ETH_ALEN; i++) |
| hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + |
| hex2val(na[2 * i + 1])); |
| t4_set_hw_addr(adapter, 0, hw_addr); |
| } |
| } |
| |
| if (!(adapter->flags & CXGB4_FW_OK)) |
| goto fw_attach_fail; |
| |
| /* Configure queues and allocate tables now, they can be needed as |
| * soon as the first register_netdev completes. |
| */ |
| err = cfg_queues(adapter); |
| if (err) |
| goto out_free_dev; |
| |
| adapter->smt = t4_init_smt(); |
| if (!adapter->smt) { |
| /* We tolerate a lack of SMT, giving up some functionality */ |
| dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); |
| } |
| |
| adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); |
| if (!adapter->l2t) { |
| /* We tolerate a lack of L2T, giving up some functionality */ |
| dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); |
| adapter->params.offload = 0; |
| } |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| if (chip_ver <= CHELSIO_T5 && |
| (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { |
| /* CLIP functionality is not present in hardware, |
| * hence disable all offload features |
| */ |
| dev_warn(&pdev->dev, |
| "CLIP not enabled in hardware, continuing\n"); |
| adapter->params.offload = 0; |
| } else { |
| adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, |
| adapter->clipt_end); |
| if (!adapter->clipt) { |
| /* We tolerate a lack of clip_table, giving up |
| * some functionality |
| */ |
| dev_warn(&pdev->dev, |
| "could not allocate Clip table, continuing\n"); |
| adapter->params.offload = 0; |
| } |
| } |
| #endif |
| |
| for_each_port(adapter, i) { |
| pi = adap2pinfo(adapter, i); |
| pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); |
| if (!pi->sched_tbl) |
| dev_warn(&pdev->dev, |
| "could not activate scheduling on port %d\n", |
| i); |
| } |
| |
| if (tid_init(&adapter->tids) < 0) { |
| dev_warn(&pdev->dev, "could not allocate TID table, " |
| "continuing\n"); |
| adapter->params.offload = 0; |
| } else { |
| adapter->tc_u32 = cxgb4_init_tc_u32(adapter); |
| if (!adapter->tc_u32) |
| dev_warn(&pdev->dev, |
| "could not offload tc u32, continuing\n"); |
| |
| if (cxgb4_init_tc_flower(adapter)) |
| dev_warn(&pdev->dev, |
| "could not offload tc flower, continuing\n"); |
| |
| if (cxgb4_init_tc_mqprio(adapter)) |
| dev_warn(&pdev->dev, |
| "could not offload tc mqprio, continuing\n"); |
| |
| if (cxgb4_init_tc_matchall(adapter)) |
| dev_warn(&pdev->dev, |
| "could not offload tc matchall, continuing\n"); |
| } |
| |
| if (is_offload(adapter) || is_hashfilter(adapter)) { |
| if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { |
| u32 hash_base, hash_reg; |
| |
| if (chip_ver <= CHELSIO_T5) { |
| hash_reg = LE_DB_TID_HASHBASE_A; |
| hash_base = t4_read_reg(adapter, hash_reg); |
| adapter->tids.hash_base = hash_base / 4; |
| } else { |
| hash_reg = T6_LE_DB_HASH_TID_BASE_A; |
| hash_base = t4_read_reg(adapter, hash_reg); |
| adapter->tids.hash_base = hash_base; |
| } |
| } |
| } |
| |
| /* See what interrupts we'll be using */ |
| if (msi > 1 && enable_msix(adapter) == 0) |
| adapter->flags |= CXGB4_USING_MSIX; |
| else if (msi > 0 && pci_enable_msi(pdev) == 0) { |
| adapter->flags |= CXGB4_USING_MSI; |
| if (msi > 1) |
| free_msix_info(adapter); |
| } |
| |
| /* check for PCI Express bandwidth capabiltites */ |
| pcie_print_link_status(pdev); |
| |
| cxgb4_init_mps_ref_entries(adapter); |
| |
| err = init_rss(adapter); |
| if (err) |
| goto out_free_dev; |
| |
| err = setup_non_data_intr(adapter); |
| if (err) { |
| dev_err(adapter->pdev_dev, |
| "Non Data interrupt allocation failed, err: %d\n", err); |
| goto out_free_dev; |
| } |
| |
| err = setup_fw_sge_queues(adapter); |
| if (err) { |
| dev_err(adapter->pdev_dev, |
| "FW sge queue allocation failed, err %d", err); |
| goto out_free_dev; |
| } |
| |
| fw_attach_fail: |
| /* |
| * The card is now ready to go. If any errors occur during device |
| * registration we do not fail the whole card but rather proceed only |
| * with the ports we manage to register successfully. However we must |
| * register at least one net device. |
| */ |
| for_each_port(adapter, i) { |
| pi = adap2pinfo(adapter, i); |
| adapter->port[i]->dev_port = pi->lport; |
| netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); |
| netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); |
| |
| netif_carrier_off(adapter->port[i]); |
| |
| err = register_netdev(adapter->port[i]); |
| if (err) |
| break; |
| adapter->chan_map[pi->tx_chan] = i; |
| print_port_info(adapter->port[i]); |
| } |
| if (i == 0) { |
| dev_err(&pdev->dev, "could not register any net devices\n"); |
| goto out_free_dev; |
| } |
| if (err) { |
| dev_warn(&pdev->dev, "only %d net devices registered\n", i); |
| err = 0; |
| } |
| |
| if (cxgb4_debugfs_root) { |
| adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), |
| cxgb4_debugfs_root); |
| setup_debugfs(adapter); |
| } |
| |
| /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ |
| pdev->needs_freset = 1; |
| |
| if (is_uld(adapter)) |
| cxgb4_uld_enable(adapter); |
| |
| if (!is_t4(adapter->params.chip)) |
| cxgb4_ptp_init(adapter); |
| |
| if (IS_REACHABLE(CONFIG_THERMAL) && |
| !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK)) |
| cxgb4_thermal_init(adapter); |
| |
| print_adapter_info(adapter); |
| return 0; |
| |
| out_free_dev: |
| t4_free_sge_resources(adapter); |
| free_some_resources(adapter); |
| if (adapter->flags & CXGB4_USING_MSIX) |
| free_msix_info(adapter); |
| if (adapter->num_uld || adapter->num_ofld_uld) |
| t4_uld_mem_free(adapter); |
| out_unmap_bar: |
| if (!is_t4(adapter->params.chip)) |
| iounmap(adapter->bar2); |
| out_free_adapter: |
| if (adapter->workq) |
| destroy_workqueue(adapter->workq); |
| |
| kfree(adapter->mbox_log); |
| kfree(adapter); |
| out_unmap_bar0: |
| iounmap(regs); |
| out_disable_device: |
| pci_disable_pcie_error_reporting(pdev); |
| pci_disable_device(pdev); |
| out_release_regions: |
| pci_release_regions(pdev); |
| return err; |
| } |
| |
| static void remove_one(struct pci_dev *pdev) |
| { |
| struct adapter *adapter = pci_get_drvdata(pdev); |
| struct hash_mac_addr *entry, *tmp; |
| |
| if (!adapter) { |
| pci_release_regions(pdev); |
| return; |
| } |
| |
| /* If we allocated filters, free up state associated with any |
| * valid filters ... |
| */ |
| clear_all_filters(adapter); |
| |
| adapter->flags |= CXGB4_SHUTTING_DOWN; |
| |
| if (adapter->pf == 4) { |
| int i; |
| |
| /* Tear down per-adapter Work Queue first since it can contain |
| * references to our adapter data structure. |
| */ |
| destroy_workqueue(adapter->workq); |
| |
| if (is_uld(adapter)) { |
| detach_ulds(adapter); |
| t4_uld_clean_up(adapter); |
| } |
| |
| adap_free_hma_mem(adapter); |
| |
| disable_interrupts(adapter); |
| |
| cxgb4_free_mps_ref_entries(adapter); |
| |
| for_each_port(adapter, i) |
| if (adapter->port[i]->reg_state == NETREG_REGISTERED) |
| unregister_netdev(adapter->port[i]); |
| |
| debugfs_remove_recursive(adapter->debugfs_root); |
| |
| if (!is_t4(adapter->params.chip)) |
| cxgb4_ptp_stop(adapter); |
| if (IS_REACHABLE(CONFIG_THERMAL)) |
| cxgb4_thermal_remove(adapter); |
| |
| if (adapter->flags & CXGB4_FULL_INIT_DONE) |
| cxgb_down(adapter); |
| |
| if (adapter->flags & CXGB4_USING_MSIX) |
| free_msix_info(adapter); |
| if (adapter->num_uld || adapter->num_ofld_uld) |
| t4_uld_mem_free(adapter); |
| free_some_resources(adapter); |
| list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, |
| list) { |
| list_del(&entry->list); |
| kfree(entry); |
| } |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| t4_cleanup_clip_tbl(adapter); |
| #endif |
| if (!is_t4(adapter->params.chip)) |
| iounmap(adapter->bar2); |
| } |
| #ifdef CONFIG_PCI_IOV |
| else { |
| cxgb4_iov_configure(adapter->pdev, 0); |
| } |
| #endif |
| iounmap(adapter->regs); |
| pci_disable_pcie_error_reporting(pdev); |
| if ((adapter->flags & CXGB4_DEV_ENABLED)) { |
| pci_disable_device(pdev); |
| adapter->flags &= ~CXGB4_DEV_ENABLED; |
| } |
| pci_release_regions(pdev); |
| kfree(adapter->mbox_log); |
| synchronize_rcu(); |
| kfree(adapter); |
| } |
| |
| /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt |
| * delivery. This is essentially a stripped down version of the PCI remove() |
| * function where we do the minimal amount of work necessary to shutdown any |
| * further activity. |
| */ |
| static void shutdown_one(struct pci_dev *pdev) |
| { |
| struct adapter *adapter = pci_get_drvdata(pdev); |
| |
| /* As with remove_one() above (see extended comment), we only want do |
| * do cleanup on PCI Devices which went all the way through init_one() |
| * ... |
| */ |
| if (!adapter) { |
| pci_release_regions(pdev); |
| return; |
| } |
| |
| adapter->flags |= CXGB4_SHUTTING_DOWN; |
| |
| if (adapter->pf == 4) { |
| int i; |
| |
| for_each_port(adapter, i) |
| if (adapter->port[i]->reg_state == NETREG_REGISTERED) |
| cxgb_close(adapter->port[i]); |
| |
| rtnl_lock(); |
| cxgb4_mqprio_stop_offload(adapter); |
| rtnl_unlock(); |
| |
| if (is_uld(adapter)) { |
| detach_ulds(adapter); |
| t4_uld_clean_up(adapter); |
| } |
| |
| disable_interrupts(adapter); |
| disable_msi(adapter); |
| |
| t4_sge_stop(adapter); |
| if (adapter->flags & CXGB4_FW_OK) |
| t4_fw_bye(adapter, adapter->mbox); |
| } |
| } |
| |
| static struct pci_driver cxgb4_driver = { |
| .name = KBUILD_MODNAME, |
| .id_table = cxgb4_pci_tbl, |
| .probe = init_one, |
| .remove = remove_one, |
| .shutdown = shutdown_one, |
| #ifdef CONFIG_PCI_IOV |
| .sriov_configure = cxgb4_iov_configure, |
| #endif |
| .err_handler = &cxgb4_eeh, |
| }; |
| |
| static int __init cxgb4_init_module(void) |
| { |
| int ret; |
| |
| cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); |
| |
| ret = pci_register_driver(&cxgb4_driver); |
| if (ret < 0) |
| goto err_pci; |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| if (!inet6addr_registered) { |
| ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier); |
| if (ret) |
| pci_unregister_driver(&cxgb4_driver); |
| else |
| inet6addr_registered = true; |
| } |
| #endif |
| |
| if (ret == 0) |
| return ret; |
| |
| err_pci: |
| debugfs_remove(cxgb4_debugfs_root); |
| |
| return ret; |
| } |
| |
| static void __exit cxgb4_cleanup_module(void) |
| { |
| #if IS_ENABLED(CONFIG_IPV6) |
| if (inet6addr_registered) { |
| unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); |
| inet6addr_registered = false; |
| } |
| #endif |
| pci_unregister_driver(&cxgb4_driver); |
| debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ |
| } |
| |
| module_init(cxgb4_init_module); |
| module_exit(cxgb4_cleanup_module); |