| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2023 Red Hat Inc, Daniel Bristot de Oliveira <bristot@kernel.org> |
| */ |
| |
| #include <stdlib.h> |
| #include <errno.h> |
| #include "utils.h" |
| #include "osnoise.h" |
| #include "timerlat.h" |
| #include <unistd.h> |
| |
| enum timelat_state { |
| TIMERLAT_INIT = 0, |
| TIMERLAT_WAITING_IRQ, |
| TIMERLAT_WAITING_THREAD, |
| }; |
| |
| #define MAX_COMM 24 |
| |
| /* |
| * Per-cpu data statistics and data. |
| */ |
| struct timerlat_aa_data { |
| /* Current CPU state */ |
| int curr_state; |
| |
| /* timerlat IRQ latency */ |
| unsigned long long tlat_irq_seqnum; |
| unsigned long long tlat_irq_latency; |
| unsigned long long tlat_irq_timstamp; |
| |
| /* timerlat Thread latency */ |
| unsigned long long tlat_thread_seqnum; |
| unsigned long long tlat_thread_latency; |
| unsigned long long tlat_thread_timstamp; |
| |
| /* |
| * Information about the thread running when the IRQ |
| * arrived. |
| * |
| * This can be blocking or interference, depending on the |
| * priority of the thread. Assuming timerlat is the highest |
| * prio, it is blocking. If timerlat has a lower prio, it is |
| * interference. |
| * note: "unsigned long long" because they are fetch using tep_get_field_val(); |
| */ |
| unsigned long long run_thread_pid; |
| char run_thread_comm[MAX_COMM]; |
| unsigned long long thread_blocking_duration; |
| unsigned long long max_exit_idle_latency; |
| |
| /* Information about the timerlat timer irq */ |
| unsigned long long timer_irq_start_time; |
| unsigned long long timer_irq_start_delay; |
| unsigned long long timer_irq_duration; |
| unsigned long long timer_exit_from_idle; |
| |
| /* |
| * Information about the last IRQ before the timerlat irq |
| * arrived. |
| * |
| * If now - timestamp is <= latency, it might have influenced |
| * in the timerlat irq latency. Otherwise, ignore it. |
| */ |
| unsigned long long prev_irq_duration; |
| unsigned long long prev_irq_timstamp; |
| |
| /* |
| * Interference sum. |
| */ |
| unsigned long long thread_nmi_sum; |
| unsigned long long thread_irq_sum; |
| unsigned long long thread_softirq_sum; |
| unsigned long long thread_thread_sum; |
| |
| /* |
| * Interference task information. |
| */ |
| struct trace_seq *prev_irqs_seq; |
| struct trace_seq *nmi_seq; |
| struct trace_seq *irqs_seq; |
| struct trace_seq *softirqs_seq; |
| struct trace_seq *threads_seq; |
| struct trace_seq *stack_seq; |
| |
| /* |
| * Current thread. |
| */ |
| char current_comm[MAX_COMM]; |
| unsigned long long current_pid; |
| |
| /* |
| * Is the system running a kworker? |
| */ |
| unsigned long long kworker; |
| unsigned long long kworker_func; |
| }; |
| |
| /* |
| * The analysis context and system wide view |
| */ |
| struct timerlat_aa_context { |
| int nr_cpus; |
| int dump_tasks; |
| |
| /* per CPU data */ |
| struct timerlat_aa_data *taa_data; |
| |
| /* |
| * required to translate function names and register |
| * events. |
| */ |
| struct osnoise_tool *tool; |
| }; |
| |
| /* |
| * The data is stored as a local variable, but accessed via a helper function. |
| * |
| * It could be stored inside the trace context. But every access would |
| * require container_of() + a series of pointers. Do we need it? Not sure. |
| * |
| * For now keep it simple. If needed, store it in the tool, add the *context |
| * as a parameter in timerlat_aa_get_ctx() and do the magic there. |
| */ |
| static struct timerlat_aa_context *__timerlat_aa_ctx; |
| |
| static struct timerlat_aa_context *timerlat_aa_get_ctx(void) |
| { |
| return __timerlat_aa_ctx; |
| } |
| |
| /* |
| * timerlat_aa_get_data - Get the per-cpu data from the timerlat context |
| */ |
| static struct timerlat_aa_data |
| *timerlat_aa_get_data(struct timerlat_aa_context *taa_ctx, int cpu) |
| { |
| return &taa_ctx->taa_data[cpu]; |
| } |
| |
| /* |
| * timerlat_aa_irq_latency - Handles timerlat IRQ event |
| */ |
| static int timerlat_aa_irq_latency(struct timerlat_aa_data *taa_data, |
| struct trace_seq *s, struct tep_record *record, |
| struct tep_event *event) |
| { |
| /* |
| * For interference, we start now looking for things that can delay |
| * the thread. |
| */ |
| taa_data->curr_state = TIMERLAT_WAITING_THREAD; |
| taa_data->tlat_irq_timstamp = record->ts; |
| |
| /* |
| * Zero values. |
| */ |
| taa_data->thread_nmi_sum = 0; |
| taa_data->thread_irq_sum = 0; |
| taa_data->thread_softirq_sum = 0; |
| taa_data->thread_thread_sum = 0; |
| taa_data->thread_blocking_duration = 0; |
| taa_data->timer_irq_start_time = 0; |
| taa_data->timer_irq_duration = 0; |
| taa_data->timer_exit_from_idle = 0; |
| |
| /* |
| * Zero interference tasks. |
| */ |
| trace_seq_reset(taa_data->nmi_seq); |
| trace_seq_reset(taa_data->irqs_seq); |
| trace_seq_reset(taa_data->softirqs_seq); |
| trace_seq_reset(taa_data->threads_seq); |
| |
| /* IRQ latency values */ |
| tep_get_field_val(s, event, "timer_latency", record, &taa_data->tlat_irq_latency, 1); |
| tep_get_field_val(s, event, "seqnum", record, &taa_data->tlat_irq_seqnum, 1); |
| |
| /* The thread that can cause blocking */ |
| tep_get_common_field_val(s, event, "common_pid", record, &taa_data->run_thread_pid, 1); |
| |
| /* |
| * Get exit from idle case. |
| * |
| * If it is not idle thread: |
| */ |
| if (taa_data->run_thread_pid) |
| return 0; |
| |
| /* |
| * if the latency is shorter than the known exit from idle: |
| */ |
| if (taa_data->tlat_irq_latency < taa_data->max_exit_idle_latency) |
| return 0; |
| |
| /* |
| * To be safe, ignore the cases in which an IRQ/NMI could have |
| * interfered with the timerlat IRQ. |
| */ |
| if (taa_data->tlat_irq_timstamp - taa_data->tlat_irq_latency |
| < taa_data->prev_irq_timstamp + taa_data->prev_irq_duration) |
| return 0; |
| |
| taa_data->max_exit_idle_latency = taa_data->tlat_irq_latency; |
| |
| return 0; |
| } |
| |
| /* |
| * timerlat_aa_thread_latency - Handles timerlat thread event |
| */ |
| static int timerlat_aa_thread_latency(struct timerlat_aa_data *taa_data, |
| struct trace_seq *s, struct tep_record *record, |
| struct tep_event *event) |
| { |
| /* |
| * For interference, we start now looking for things that can delay |
| * the IRQ of the next cycle. |
| */ |
| taa_data->curr_state = TIMERLAT_WAITING_IRQ; |
| taa_data->tlat_thread_timstamp = record->ts; |
| |
| /* Thread latency values */ |
| tep_get_field_val(s, event, "timer_latency", record, &taa_data->tlat_thread_latency, 1); |
| tep_get_field_val(s, event, "seqnum", record, &taa_data->tlat_thread_seqnum, 1); |
| |
| return 0; |
| } |
| |
| /* |
| * timerlat_aa_handler - Handle timerlat events |
| * |
| * This function is called to handle timerlat events recording statistics. |
| * |
| * Returns 0 on success, -1 otherwise. |
| */ |
| static int timerlat_aa_handler(struct trace_seq *s, struct tep_record *record, |
| struct tep_event *event, void *context) |
| { |
| struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); |
| struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); |
| unsigned long long thread; |
| |
| if (!taa_data) |
| return -1; |
| |
| tep_get_field_val(s, event, "context", record, &thread, 1); |
| if (!thread) |
| return timerlat_aa_irq_latency(taa_data, s, record, event); |
| else |
| return timerlat_aa_thread_latency(taa_data, s, record, event); |
| } |
| |
| /* |
| * timerlat_aa_nmi_handler - Handles NMI noise |
| * |
| * It is used to collect information about interferences from NMI. It is |
| * hooked to the osnoise:nmi_noise event. |
| */ |
| static int timerlat_aa_nmi_handler(struct trace_seq *s, struct tep_record *record, |
| struct tep_event *event, void *context) |
| { |
| struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); |
| struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); |
| unsigned long long duration; |
| unsigned long long start; |
| |
| tep_get_field_val(s, event, "duration", record, &duration, 1); |
| tep_get_field_val(s, event, "start", record, &start, 1); |
| |
| if (taa_data->curr_state == TIMERLAT_WAITING_IRQ) { |
| taa_data->prev_irq_duration = duration; |
| taa_data->prev_irq_timstamp = start; |
| |
| trace_seq_reset(taa_data->prev_irqs_seq); |
| trace_seq_printf(taa_data->prev_irqs_seq, "\t%24s \t\t\t%9.2f us\n", |
| "nmi", ns_to_usf(duration)); |
| return 0; |
| } |
| |
| taa_data->thread_nmi_sum += duration; |
| trace_seq_printf(taa_data->nmi_seq, " %24s \t\t\t%9.2f us\n", |
| "nmi", ns_to_usf(duration)); |
| |
| return 0; |
| } |
| |
| /* |
| * timerlat_aa_irq_handler - Handles IRQ noise |
| * |
| * It is used to collect information about interferences from IRQ. It is |
| * hooked to the osnoise:irq_noise event. |
| * |
| * It is a little bit more complex than the other because it measures: |
| * - The IRQs that can delay the timer IRQ before it happened. |
| * - The Timerlat IRQ handler |
| * - The IRQs that happened between the timerlat IRQ and the timerlat thread |
| * (IRQ interference). |
| */ |
| static int timerlat_aa_irq_handler(struct trace_seq *s, struct tep_record *record, |
| struct tep_event *event, void *context) |
| { |
| struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); |
| struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); |
| unsigned long long expected_start; |
| unsigned long long duration; |
| unsigned long long vector; |
| unsigned long long start; |
| char *desc; |
| int val; |
| |
| tep_get_field_val(s, event, "duration", record, &duration, 1); |
| tep_get_field_val(s, event, "start", record, &start, 1); |
| tep_get_field_val(s, event, "vector", record, &vector, 1); |
| desc = tep_get_field_raw(s, event, "desc", record, &val, 1); |
| |
| /* |
| * Before the timerlat IRQ. |
| */ |
| if (taa_data->curr_state == TIMERLAT_WAITING_IRQ) { |
| taa_data->prev_irq_duration = duration; |
| taa_data->prev_irq_timstamp = start; |
| |
| trace_seq_reset(taa_data->prev_irqs_seq); |
| trace_seq_printf(taa_data->prev_irqs_seq, "\t%24s:%-3llu \t\t%9.2f us\n", |
| desc, vector, ns_to_usf(duration)); |
| return 0; |
| } |
| |
| /* |
| * The timerlat IRQ: taa_data->timer_irq_start_time is zeroed at |
| * the timerlat irq handler. |
| */ |
| if (!taa_data->timer_irq_start_time) { |
| expected_start = taa_data->tlat_irq_timstamp - taa_data->tlat_irq_latency; |
| |
| taa_data->timer_irq_start_time = start; |
| taa_data->timer_irq_duration = duration; |
| |
| /* |
| * We are dealing with two different clock sources: the |
| * external clock source that timerlat uses as a reference |
| * and the clock used by the tracer. There are also two |
| * moments: the time reading the clock and the timer in |
| * which the event is placed in the buffer (the trace |
| * event timestamp). If the processor is slow or there |
| * is some hardware noise, the difference between the |
| * timestamp and the external clock read can be longer |
| * than the IRQ handler delay, resulting in a negative |
| * time. If so, set IRQ start delay as 0. In the end, |
| * it is less relevant than the noise. |
| */ |
| if (expected_start < taa_data->timer_irq_start_time) |
| taa_data->timer_irq_start_delay = taa_data->timer_irq_start_time - expected_start; |
| else |
| taa_data->timer_irq_start_delay = 0; |
| |
| /* |
| * not exit from idle. |
| */ |
| if (taa_data->run_thread_pid) |
| return 0; |
| |
| if (expected_start > taa_data->prev_irq_timstamp + taa_data->prev_irq_duration) |
| taa_data->timer_exit_from_idle = taa_data->timer_irq_start_delay; |
| |
| return 0; |
| } |
| |
| /* |
| * IRQ interference. |
| */ |
| taa_data->thread_irq_sum += duration; |
| trace_seq_printf(taa_data->irqs_seq, " %24s:%-3llu \t %9.2f us\n", |
| desc, vector, ns_to_usf(duration)); |
| |
| return 0; |
| } |
| |
| static char *softirq_name[] = { "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", |
| "IRQ_POLL", "TASKLET", "SCHED", "HRTIMER", "RCU" }; |
| |
| |
| /* |
| * timerlat_aa_softirq_handler - Handles Softirq noise |
| * |
| * It is used to collect information about interferences from Softirq. It is |
| * hooked to the osnoise:softirq_noise event. |
| * |
| * It is only printed in the non-rt kernel, as softirqs become thread on RT. |
| */ |
| static int timerlat_aa_softirq_handler(struct trace_seq *s, struct tep_record *record, |
| struct tep_event *event, void *context) |
| { |
| struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); |
| struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); |
| unsigned long long duration; |
| unsigned long long vector; |
| unsigned long long start; |
| |
| if (taa_data->curr_state == TIMERLAT_WAITING_IRQ) |
| return 0; |
| |
| tep_get_field_val(s, event, "duration", record, &duration, 1); |
| tep_get_field_val(s, event, "start", record, &start, 1); |
| tep_get_field_val(s, event, "vector", record, &vector, 1); |
| |
| taa_data->thread_softirq_sum += duration; |
| |
| trace_seq_printf(taa_data->softirqs_seq, "\t%24s:%-3llu \t %9.2f us\n", |
| softirq_name[vector], vector, ns_to_usf(duration)); |
| return 0; |
| } |
| |
| /* |
| * timerlat_aa_softirq_handler - Handles thread noise |
| * |
| * It is used to collect information about interferences from threads. It is |
| * hooked to the osnoise:thread_noise event. |
| * |
| * Note: if you see thread noise, your timerlat thread was not the highest prio one. |
| */ |
| static int timerlat_aa_thread_handler(struct trace_seq *s, struct tep_record *record, |
| struct tep_event *event, void *context) |
| { |
| struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); |
| struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); |
| unsigned long long duration; |
| unsigned long long start; |
| unsigned long long pid; |
| const char *comm; |
| int val; |
| |
| if (taa_data->curr_state == TIMERLAT_WAITING_IRQ) |
| return 0; |
| |
| tep_get_field_val(s, event, "duration", record, &duration, 1); |
| tep_get_field_val(s, event, "start", record, &start, 1); |
| |
| tep_get_common_field_val(s, event, "common_pid", record, &pid, 1); |
| comm = tep_get_field_raw(s, event, "comm", record, &val, 1); |
| |
| if (pid == taa_data->run_thread_pid && !taa_data->thread_blocking_duration) { |
| taa_data->thread_blocking_duration = duration; |
| |
| if (comm) |
| strncpy(taa_data->run_thread_comm, comm, MAX_COMM); |
| else |
| sprintf(taa_data->run_thread_comm, "<...>"); |
| |
| } else { |
| taa_data->thread_thread_sum += duration; |
| |
| trace_seq_printf(taa_data->threads_seq, "\t%24s:%-3llu \t\t%9.2f us\n", |
| comm, pid, ns_to_usf(duration)); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * timerlat_aa_stack_handler - Handles timerlat IRQ stack trace |
| * |
| * Saves and parse the stack trace generated by the timerlat IRQ. |
| */ |
| static int timerlat_aa_stack_handler(struct trace_seq *s, struct tep_record *record, |
| struct tep_event *event, void *context) |
| { |
| struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); |
| struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); |
| unsigned long *caller; |
| const char *function; |
| int val, i; |
| |
| trace_seq_reset(taa_data->stack_seq); |
| |
| trace_seq_printf(taa_data->stack_seq, " Blocking thread stack trace\n"); |
| caller = tep_get_field_raw(s, event, "caller", record, &val, 1); |
| if (caller) { |
| for (i = 0; ; i++) { |
| function = tep_find_function(taa_ctx->tool->trace.tep, caller[i]); |
| if (!function) |
| break; |
| trace_seq_printf(taa_data->stack_seq, "\t\t-> %s\n", function); |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * timerlat_aa_sched_switch_handler - Tracks the current thread running on the CPU |
| * |
| * Handles the sched:sched_switch event to trace the current thread running on the |
| * CPU. It is used to display the threads running on the other CPUs when the trace |
| * stops. |
| */ |
| static int timerlat_aa_sched_switch_handler(struct trace_seq *s, struct tep_record *record, |
| struct tep_event *event, void *context) |
| { |
| struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); |
| struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); |
| const char *comm; |
| int val; |
| |
| tep_get_field_val(s, event, "next_pid", record, &taa_data->current_pid, 1); |
| comm = tep_get_field_raw(s, event, "next_comm", record, &val, 1); |
| |
| strncpy(taa_data->current_comm, comm, MAX_COMM); |
| |
| /* |
| * If this was a kworker, clean the last kworkers that ran. |
| */ |
| taa_data->kworker = 0; |
| taa_data->kworker_func = 0; |
| |
| return 0; |
| } |
| |
| /* |
| * timerlat_aa_kworker_start_handler - Tracks a kworker running on the CPU |
| * |
| * Handles workqueue:workqueue_execute_start event, keeping track of |
| * the job that a kworker could be doing in the CPU. |
| * |
| * We already catch problems of hardware related latencies caused by work queues |
| * running driver code that causes hardware stall. For example, with DRM drivers. |
| */ |
| static int timerlat_aa_kworker_start_handler(struct trace_seq *s, struct tep_record *record, |
| struct tep_event *event, void *context) |
| { |
| struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); |
| struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu); |
| |
| tep_get_field_val(s, event, "work", record, &taa_data->kworker, 1); |
| tep_get_field_val(s, event, "function", record, &taa_data->kworker_func, 1); |
| return 0; |
| } |
| |
| /* |
| * timerlat_thread_analysis - Prints the analysis of a CPU that hit a stop tracing |
| * |
| * This is the core of the analysis. |
| */ |
| static void timerlat_thread_analysis(struct timerlat_aa_data *taa_data, int cpu, |
| int irq_thresh, int thread_thresh) |
| { |
| long long exp_irq_ts; |
| int total; |
| int irq; |
| |
| /* |
| * IRQ latency or Thread latency? |
| */ |
| if (taa_data->tlat_irq_seqnum > taa_data->tlat_thread_seqnum) { |
| irq = 1; |
| total = taa_data->tlat_irq_latency; |
| } else { |
| irq = 0; |
| total = taa_data->tlat_thread_latency; |
| } |
| |
| /* |
| * Expected IRQ arrival time using the trace clock as the base. |
| * |
| * TODO: Add a list of previous IRQ, and then run the list backwards. |
| */ |
| exp_irq_ts = taa_data->timer_irq_start_time - taa_data->timer_irq_start_delay; |
| if (exp_irq_ts < taa_data->prev_irq_timstamp + taa_data->prev_irq_duration) { |
| if (taa_data->prev_irq_timstamp < taa_data->timer_irq_start_time) |
| printf(" Previous IRQ interference: \t\t up to %9.2f us\n", |
| ns_to_usf(taa_data->prev_irq_duration)); |
| } |
| |
| /* |
| * The delay that the IRQ suffered before starting. |
| */ |
| printf(" IRQ handler delay: %16s %9.2f us (%.2f %%)\n", |
| (ns_to_usf(taa_data->timer_exit_from_idle) > 10) ? "(exit from idle)" : "", |
| ns_to_usf(taa_data->timer_irq_start_delay), |
| ns_to_per(total, taa_data->timer_irq_start_delay)); |
| |
| /* |
| * Timerlat IRQ. |
| */ |
| printf(" IRQ latency: \t\t\t\t %9.2f us\n", |
| ns_to_usf(taa_data->tlat_irq_latency)); |
| |
| if (irq) { |
| /* |
| * If the trace stopped due to IRQ, the other events will not happen |
| * because... the trace stopped :-). |
| * |
| * That is all folks, the stack trace was printed before the stop, |
| * so it will be displayed, it is the key. |
| */ |
| printf(" Blocking thread:\n"); |
| printf(" %24s:%-9llu\n", |
| taa_data->run_thread_comm, taa_data->run_thread_pid); |
| } else { |
| /* |
| * The duration of the IRQ handler that handled the timerlat IRQ. |
| */ |
| printf(" Timerlat IRQ duration: \t\t %9.2f us (%.2f %%)\n", |
| ns_to_usf(taa_data->timer_irq_duration), |
| ns_to_per(total, taa_data->timer_irq_duration)); |
| |
| /* |
| * The amount of time that the current thread postponed the scheduler. |
| * |
| * Recalling that it is net from NMI/IRQ/Softirq interference, so there |
| * is no need to compute values here. |
| */ |
| printf(" Blocking thread: \t\t\t %9.2f us (%.2f %%)\n", |
| ns_to_usf(taa_data->thread_blocking_duration), |
| ns_to_per(total, taa_data->thread_blocking_duration)); |
| |
| printf(" %24s:%-9llu %9.2f us\n", |
| taa_data->run_thread_comm, taa_data->run_thread_pid, |
| ns_to_usf(taa_data->thread_blocking_duration)); |
| } |
| |
| /* |
| * Print the stack trace! |
| */ |
| trace_seq_do_printf(taa_data->stack_seq); |
| |
| /* |
| * NMIs can happen during the IRQ, so they are always possible. |
| */ |
| if (taa_data->thread_nmi_sum) |
| printf(" NMI interference \t\t\t %9.2f us (%.2f %%)\n", |
| ns_to_usf(taa_data->thread_nmi_sum), |
| ns_to_per(total, taa_data->thread_nmi_sum)); |
| |
| /* |
| * If it is an IRQ latency, the other factors can be skipped. |
| */ |
| if (irq) |
| goto print_total; |
| |
| /* |
| * Prints the interference caused by IRQs to the thread latency. |
| */ |
| if (taa_data->thread_irq_sum) { |
| printf(" IRQ interference \t\t\t %9.2f us (%.2f %%)\n", |
| ns_to_usf(taa_data->thread_irq_sum), |
| ns_to_per(total, taa_data->thread_irq_sum)); |
| |
| trace_seq_do_printf(taa_data->irqs_seq); |
| } |
| |
| /* |
| * Prints the interference caused by Softirqs to the thread latency. |
| */ |
| if (taa_data->thread_softirq_sum) { |
| printf(" Softirq interference \t\t\t %9.2f us (%.2f %%)\n", |
| ns_to_usf(taa_data->thread_softirq_sum), |
| ns_to_per(total, taa_data->thread_softirq_sum)); |
| |
| trace_seq_do_printf(taa_data->softirqs_seq); |
| } |
| |
| /* |
| * Prints the interference caused by other threads to the thread latency. |
| * |
| * If this happens, your timerlat is not the highest prio. OK, migration |
| * thread can happen. But otherwise, you are not measuring the "scheduling |
| * latency" only, and here is the difference from scheduling latency and |
| * timer handling latency. |
| */ |
| if (taa_data->thread_thread_sum) { |
| printf(" Thread interference \t\t\t %9.2f us (%.2f %%)\n", |
| ns_to_usf(taa_data->thread_thread_sum), |
| ns_to_per(total, taa_data->thread_thread_sum)); |
| |
| trace_seq_do_printf(taa_data->threads_seq); |
| } |
| |
| /* |
| * Done. |
| */ |
| print_total: |
| printf("------------------------------------------------------------------------\n"); |
| printf(" %s latency: \t\t\t %9.2f us (100%%)\n", irq ? "IRQ" : "Thread", |
| ns_to_usf(total)); |
| } |
| |
| static int timerlat_auto_analysis_collect_trace(struct timerlat_aa_context *taa_ctx) |
| { |
| struct trace_instance *trace = &taa_ctx->tool->trace; |
| int retval; |
| |
| retval = tracefs_iterate_raw_events(trace->tep, |
| trace->inst, |
| NULL, |
| 0, |
| collect_registered_events, |
| trace); |
| if (retval < 0) { |
| err_msg("Error iterating on events\n"); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /** |
| * timerlat_auto_analysis - Analyze the collected data |
| */ |
| void timerlat_auto_analysis(int irq_thresh, int thread_thresh) |
| { |
| struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); |
| unsigned long long max_exit_from_idle = 0; |
| struct timerlat_aa_data *taa_data; |
| int max_exit_from_idle_cpu; |
| struct tep_handle *tep; |
| int cpu; |
| |
| timerlat_auto_analysis_collect_trace(taa_ctx); |
| |
| /* bring stop tracing to the ns scale */ |
| irq_thresh = irq_thresh * 1000; |
| thread_thresh = thread_thresh * 1000; |
| |
| for (cpu = 0; cpu < taa_ctx->nr_cpus; cpu++) { |
| taa_data = timerlat_aa_get_data(taa_ctx, cpu); |
| |
| if (irq_thresh && taa_data->tlat_irq_latency >= irq_thresh) { |
| printf("## CPU %d hit stop tracing, analyzing it ##\n", cpu); |
| timerlat_thread_analysis(taa_data, cpu, irq_thresh, thread_thresh); |
| } else if (thread_thresh && (taa_data->tlat_thread_latency) >= thread_thresh) { |
| printf("## CPU %d hit stop tracing, analyzing it ##\n", cpu); |
| timerlat_thread_analysis(taa_data, cpu, irq_thresh, thread_thresh); |
| } |
| |
| if (taa_data->max_exit_idle_latency > max_exit_from_idle) { |
| max_exit_from_idle = taa_data->max_exit_idle_latency; |
| max_exit_from_idle_cpu = cpu; |
| } |
| |
| } |
| |
| if (max_exit_from_idle) { |
| printf("\n"); |
| printf("Max timerlat IRQ latency from idle: %.2f us in cpu %d\n", |
| ns_to_usf(max_exit_from_idle), max_exit_from_idle_cpu); |
| } |
| if (!taa_ctx->dump_tasks) |
| return; |
| |
| printf("\n"); |
| printf("Printing CPU tasks:\n"); |
| for (cpu = 0; cpu < taa_ctx->nr_cpus; cpu++) { |
| taa_data = timerlat_aa_get_data(taa_ctx, cpu); |
| tep = taa_ctx->tool->trace.tep; |
| |
| printf(" [%.3d] %24s:%llu", cpu, taa_data->current_comm, taa_data->current_pid); |
| |
| if (taa_data->kworker_func) |
| printf(" kworker:%s:%s", |
| tep_find_function(tep, taa_data->kworker) ? : "<...>", |
| tep_find_function(tep, taa_data->kworker_func)); |
| printf("\n"); |
| } |
| |
| } |
| |
| /* |
| * timerlat_aa_destroy_seqs - Destroy seq files used to store parsed data |
| */ |
| static void timerlat_aa_destroy_seqs(struct timerlat_aa_context *taa_ctx) |
| { |
| struct timerlat_aa_data *taa_data; |
| int i; |
| |
| if (!taa_ctx->taa_data) |
| return; |
| |
| for (i = 0; i < taa_ctx->nr_cpus; i++) { |
| taa_data = timerlat_aa_get_data(taa_ctx, i); |
| |
| if (taa_data->prev_irqs_seq) { |
| trace_seq_destroy(taa_data->prev_irqs_seq); |
| free(taa_data->prev_irqs_seq); |
| } |
| |
| if (taa_data->nmi_seq) { |
| trace_seq_destroy(taa_data->nmi_seq); |
| free(taa_data->nmi_seq); |
| } |
| |
| if (taa_data->irqs_seq) { |
| trace_seq_destroy(taa_data->irqs_seq); |
| free(taa_data->irqs_seq); |
| } |
| |
| if (taa_data->softirqs_seq) { |
| trace_seq_destroy(taa_data->softirqs_seq); |
| free(taa_data->softirqs_seq); |
| } |
| |
| if (taa_data->threads_seq) { |
| trace_seq_destroy(taa_data->threads_seq); |
| free(taa_data->threads_seq); |
| } |
| |
| if (taa_data->stack_seq) { |
| trace_seq_destroy(taa_data->stack_seq); |
| free(taa_data->stack_seq); |
| } |
| } |
| } |
| |
| /* |
| * timerlat_aa_init_seqs - Init seq files used to store parsed information |
| * |
| * Instead of keeping data structures to store raw data, use seq files to |
| * store parsed data. |
| * |
| * Allocates and initialize seq files. |
| * |
| * Returns 0 on success, -1 otherwise. |
| */ |
| static int timerlat_aa_init_seqs(struct timerlat_aa_context *taa_ctx) |
| { |
| struct timerlat_aa_data *taa_data; |
| int i; |
| |
| for (i = 0; i < taa_ctx->nr_cpus; i++) { |
| |
| taa_data = timerlat_aa_get_data(taa_ctx, i); |
| |
| taa_data->prev_irqs_seq = calloc(1, sizeof(*taa_data->prev_irqs_seq)); |
| if (!taa_data->prev_irqs_seq) |
| goto out_err; |
| |
| trace_seq_init(taa_data->prev_irqs_seq); |
| |
| taa_data->nmi_seq = calloc(1, sizeof(*taa_data->nmi_seq)); |
| if (!taa_data->nmi_seq) |
| goto out_err; |
| |
| trace_seq_init(taa_data->nmi_seq); |
| |
| taa_data->irqs_seq = calloc(1, sizeof(*taa_data->irqs_seq)); |
| if (!taa_data->irqs_seq) |
| goto out_err; |
| |
| trace_seq_init(taa_data->irqs_seq); |
| |
| taa_data->softirqs_seq = calloc(1, sizeof(*taa_data->softirqs_seq)); |
| if (!taa_data->softirqs_seq) |
| goto out_err; |
| |
| trace_seq_init(taa_data->softirqs_seq); |
| |
| taa_data->threads_seq = calloc(1, sizeof(*taa_data->threads_seq)); |
| if (!taa_data->threads_seq) |
| goto out_err; |
| |
| trace_seq_init(taa_data->threads_seq); |
| |
| taa_data->stack_seq = calloc(1, sizeof(*taa_data->stack_seq)); |
| if (!taa_data->stack_seq) |
| goto out_err; |
| |
| trace_seq_init(taa_data->stack_seq); |
| } |
| |
| return 0; |
| |
| out_err: |
| timerlat_aa_destroy_seqs(taa_ctx); |
| return -1; |
| } |
| |
| /* |
| * timerlat_aa_unregister_events - Unregister events used in the auto-analysis |
| */ |
| static void timerlat_aa_unregister_events(struct osnoise_tool *tool, int dump_tasks) |
| { |
| |
| tep_unregister_event_handler(tool->trace.tep, -1, "ftrace", "timerlat", |
| timerlat_aa_handler, tool); |
| |
| tracefs_event_disable(tool->trace.inst, "osnoise", NULL); |
| |
| tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "nmi_noise", |
| timerlat_aa_nmi_handler, tool); |
| |
| tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "irq_noise", |
| timerlat_aa_irq_handler, tool); |
| |
| tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "softirq_noise", |
| timerlat_aa_softirq_handler, tool); |
| |
| tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "thread_noise", |
| timerlat_aa_thread_handler, tool); |
| |
| tep_unregister_event_handler(tool->trace.tep, -1, "ftrace", "kernel_stack", |
| timerlat_aa_stack_handler, tool); |
| if (!dump_tasks) |
| return; |
| |
| tracefs_event_disable(tool->trace.inst, "sched", "sched_switch"); |
| tep_unregister_event_handler(tool->trace.tep, -1, "sched", "sched_switch", |
| timerlat_aa_sched_switch_handler, tool); |
| |
| tracefs_event_disable(tool->trace.inst, "workqueue", "workqueue_execute_start"); |
| tep_unregister_event_handler(tool->trace.tep, -1, "workqueue", "workqueue_execute_start", |
| timerlat_aa_kworker_start_handler, tool); |
| } |
| |
| /* |
| * timerlat_aa_register_events - Register events used in the auto-analysis |
| * |
| * Returns 0 on success, -1 otherwise. |
| */ |
| static int timerlat_aa_register_events(struct osnoise_tool *tool, int dump_tasks) |
| { |
| int retval; |
| |
| tep_register_event_handler(tool->trace.tep, -1, "ftrace", "timerlat", |
| timerlat_aa_handler, tool); |
| |
| |
| /* |
| * register auto-analysis handlers. |
| */ |
| retval = tracefs_event_enable(tool->trace.inst, "osnoise", NULL); |
| if (retval < 0 && !errno) { |
| err_msg("Could not find osnoise events\n"); |
| goto out_err; |
| } |
| |
| tep_register_event_handler(tool->trace.tep, -1, "osnoise", "nmi_noise", |
| timerlat_aa_nmi_handler, tool); |
| |
| tep_register_event_handler(tool->trace.tep, -1, "osnoise", "irq_noise", |
| timerlat_aa_irq_handler, tool); |
| |
| tep_register_event_handler(tool->trace.tep, -1, "osnoise", "softirq_noise", |
| timerlat_aa_softirq_handler, tool); |
| |
| tep_register_event_handler(tool->trace.tep, -1, "osnoise", "thread_noise", |
| timerlat_aa_thread_handler, tool); |
| |
| tep_register_event_handler(tool->trace.tep, -1, "ftrace", "kernel_stack", |
| timerlat_aa_stack_handler, tool); |
| |
| if (!dump_tasks) |
| return 0; |
| |
| /* |
| * Dump task events. |
| */ |
| retval = tracefs_event_enable(tool->trace.inst, "sched", "sched_switch"); |
| if (retval < 0 && !errno) { |
| err_msg("Could not find sched_switch\n"); |
| goto out_err; |
| } |
| |
| tep_register_event_handler(tool->trace.tep, -1, "sched", "sched_switch", |
| timerlat_aa_sched_switch_handler, tool); |
| |
| retval = tracefs_event_enable(tool->trace.inst, "workqueue", "workqueue_execute_start"); |
| if (retval < 0 && !errno) { |
| err_msg("Could not find workqueue_execute_start\n"); |
| goto out_err; |
| } |
| |
| tep_register_event_handler(tool->trace.tep, -1, "workqueue", "workqueue_execute_start", |
| timerlat_aa_kworker_start_handler, tool); |
| |
| return 0; |
| |
| out_err: |
| timerlat_aa_unregister_events(tool, dump_tasks); |
| return -1; |
| } |
| |
| /** |
| * timerlat_aa_destroy - Destroy timerlat auto-analysis |
| */ |
| void timerlat_aa_destroy(void) |
| { |
| struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx(); |
| |
| if (!taa_ctx) |
| return; |
| |
| if (!taa_ctx->taa_data) |
| goto out_ctx; |
| |
| timerlat_aa_unregister_events(taa_ctx->tool, taa_ctx->dump_tasks); |
| timerlat_aa_destroy_seqs(taa_ctx); |
| free(taa_ctx->taa_data); |
| out_ctx: |
| free(taa_ctx); |
| } |
| |
| /** |
| * timerlat_aa_init - Initialize timerlat auto-analysis |
| * |
| * Returns 0 on success, -1 otherwise. |
| */ |
| int timerlat_aa_init(struct osnoise_tool *tool, int dump_tasks) |
| { |
| int nr_cpus = sysconf(_SC_NPROCESSORS_CONF); |
| struct timerlat_aa_context *taa_ctx; |
| int retval; |
| |
| taa_ctx = calloc(1, sizeof(*taa_ctx)); |
| if (!taa_ctx) |
| return -1; |
| |
| __timerlat_aa_ctx = taa_ctx; |
| |
| taa_ctx->nr_cpus = nr_cpus; |
| taa_ctx->tool = tool; |
| taa_ctx->dump_tasks = dump_tasks; |
| |
| taa_ctx->taa_data = calloc(nr_cpus, sizeof(*taa_ctx->taa_data)); |
| if (!taa_ctx->taa_data) |
| goto out_err; |
| |
| retval = timerlat_aa_init_seqs(taa_ctx); |
| if (retval) |
| goto out_err; |
| |
| retval = timerlat_aa_register_events(tool, dump_tasks); |
| if (retval) |
| goto out_err; |
| |
| return 0; |
| |
| out_err: |
| timerlat_aa_destroy(); |
| return -1; |
| } |