blob: 8cbe2c4e0172cc4457168c663926d8306bf5fc9c [file] [log] [blame]
/* SPDX-License-Identifier: MIT */
/*
* Copyright © 2021 Intel Corporation
*/
#define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */
/**
* struct drm_i915_context_engines_parallel_submit - Configure engine for
* parallel submission.
*
* Setup a slot in the context engine map to allow multiple BBs to be submitted
* in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU
* in parallel. Multiple hardware contexts are created internally in the i915
* run these BBs. Once a slot is configured for N BBs only N BBs can be
* submitted in each execbuf IOCTL and this is implicit behavior e.g. The user
* doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how
* many BBs there are based on the slot's configuration. The N BBs are the last
* N buffer objects or first N if I915_EXEC_BATCH_FIRST is set.
*
* The default placement behavior is to create implicit bonds between each
* context if each context maps to more than 1 physical engine (e.g. context is
* a virtual engine). Also we only allow contexts of same engine class and these
* contexts must be in logically contiguous order. Examples of the placement
* behavior described below. Lastly, the default is to not allow BBs to
* preempted mid BB rather insert coordinated preemption on all hardware
* contexts between each set of BBs. Flags may be added in the future to change
* both of these default behaviors.
*
* Returns -EINVAL if hardware context placement configuration is invalid or if
* the placement configuration isn't supported on the platform / submission
* interface.
* Returns -ENODEV if extension isn't supported on the platform / submission
* interface.
*
* .. code-block:: none
*
* Example 1 pseudo code:
* CS[X] = generic engine of same class, logical instance X
* INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
* set_engines(INVALID)
* set_parallel(engine_index=0, width=2, num_siblings=1,
* engines=CS[0],CS[1])
*
* Results in the following valid placement:
* CS[0], CS[1]
*
* Example 2 pseudo code:
* CS[X] = generic engine of same class, logical instance X
* INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
* set_engines(INVALID)
* set_parallel(engine_index=0, width=2, num_siblings=2,
* engines=CS[0],CS[2],CS[1],CS[3])
*
* Results in the following valid placements:
* CS[0], CS[1]
* CS[2], CS[3]
*
* This can also be thought of as 2 virtual engines described by 2-D array
* in the engines the field with bonds placed between each index of the
* virtual engines. e.g. CS[0] is bonded to CS[1], CS[2] is bonded to
* CS[3].
* VE[0] = CS[0], CS[2]
* VE[1] = CS[1], CS[3]
*
* Example 3 pseudo code:
* CS[X] = generic engine of same class, logical instance X
* INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
* set_engines(INVALID)
* set_parallel(engine_index=0, width=2, num_siblings=2,
* engines=CS[0],CS[1],CS[1],CS[3])
*
* Results in the following valid and invalid placements:
* CS[0], CS[1]
* CS[1], CS[3] - Not logical contiguous, return -EINVAL
*/
struct drm_i915_context_engines_parallel_submit {
/**
* @base: base user extension.
*/
struct i915_user_extension base;
/**
* @engine_index: slot for parallel engine
*/
__u16 engine_index;
/**
* @width: number of contexts per parallel engine
*/
__u16 width;
/**
* @num_siblings: number of siblings per context
*/
__u16 num_siblings;
/**
* @mbz16: reserved for future use; must be zero
*/
__u16 mbz16;
/**
* @flags: all undefined flags must be zero, currently not defined flags
*/
__u64 flags;
/**
* @mbz64: reserved for future use; must be zero
*/
__u64 mbz64[3];
/**
* @engines: 2-d array of engine instances to configure parallel engine
*
* length = width (i) * num_siblings (j)
* index = j + i * num_siblings
*/
struct i915_engine_class_instance engines[0];
} __packed;