blob: 32f9796c4ffe77b63b61d32d2ca01cb6c070bb8a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Exception handling code
*
* Copyright (C) 2019 ARM Ltd.
*/
#include <linux/context_tracking.h>
#include <linux/linkage.h>
#include <linux/lockdep.h>
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/thread_info.h>
#include <asm/cpufeature.h>
#include <asm/daifflags.h>
#include <asm/esr.h>
#include <asm/exception.h>
#include <asm/kprobes.h>
#include <asm/mmu.h>
#include <asm/processor.h>
#include <asm/sdei.h>
#include <asm/stacktrace.h>
#include <asm/sysreg.h>
#include <asm/system_misc.h>
/*
* Handle IRQ/context state management when entering from kernel mode.
* Before this function is called it is not safe to call regular kernel code,
* intrumentable code, or any code which may trigger an exception.
*
* This is intended to match the logic in irqentry_enter(), handling the kernel
* mode transitions only.
*/
static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs)
{
regs->exit_rcu = false;
if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) {
lockdep_hardirqs_off(CALLER_ADDR0);
rcu_irq_enter();
trace_hardirqs_off_finish();
regs->exit_rcu = true;
return;
}
lockdep_hardirqs_off(CALLER_ADDR0);
rcu_irq_enter_check_tick();
trace_hardirqs_off_finish();
}
static void noinstr enter_from_kernel_mode(struct pt_regs *regs)
{
__enter_from_kernel_mode(regs);
mte_check_tfsr_entry();
}
/*
* Handle IRQ/context state management when exiting to kernel mode.
* After this function returns it is not safe to call regular kernel code,
* intrumentable code, or any code which may trigger an exception.
*
* This is intended to match the logic in irqentry_exit(), handling the kernel
* mode transitions only, and with preemption handled elsewhere.
*/
static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs)
{
lockdep_assert_irqs_disabled();
if (interrupts_enabled(regs)) {
if (regs->exit_rcu) {
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare(CALLER_ADDR0);
rcu_irq_exit();
lockdep_hardirqs_on(CALLER_ADDR0);
return;
}
trace_hardirqs_on();
} else {
if (regs->exit_rcu)
rcu_irq_exit();
}
}
static void noinstr exit_to_kernel_mode(struct pt_regs *regs)
{
mte_check_tfsr_exit();
__exit_to_kernel_mode(regs);
}
/*
* Handle IRQ/context state management when entering from user mode.
* Before this function is called it is not safe to call regular kernel code,
* intrumentable code, or any code which may trigger an exception.
*/
static __always_inline void __enter_from_user_mode(void)
{
lockdep_hardirqs_off(CALLER_ADDR0);
CT_WARN_ON(ct_state() != CONTEXT_USER);
user_exit_irqoff();
trace_hardirqs_off_finish();
}
static __always_inline void enter_from_user_mode(struct pt_regs *regs)
{
__enter_from_user_mode();
}
/*
* Handle IRQ/context state management when exiting to user mode.
* After this function returns it is not safe to call regular kernel code,
* intrumentable code, or any code which may trigger an exception.
*/
static __always_inline void __exit_to_user_mode(void)
{
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare(CALLER_ADDR0);
user_enter_irqoff();
lockdep_hardirqs_on(CALLER_ADDR0);
}
static __always_inline void prepare_exit_to_user_mode(struct pt_regs *regs)
{
unsigned long flags;
local_daif_mask();
flags = READ_ONCE(current_thread_info()->flags);
if (unlikely(flags & _TIF_WORK_MASK))
do_notify_resume(regs, flags);
}
static __always_inline void exit_to_user_mode(struct pt_regs *regs)
{
prepare_exit_to_user_mode(regs);
mte_check_tfsr_exit();
__exit_to_user_mode();
}
asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs)
{
exit_to_user_mode(regs);
}
/*
* Handle IRQ/context state management when entering an NMI from user/kernel
* mode. Before this function is called it is not safe to call regular kernel
* code, intrumentable code, or any code which may trigger an exception.
*/
static void noinstr arm64_enter_nmi(struct pt_regs *regs)
{
regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
__nmi_enter();
lockdep_hardirqs_off(CALLER_ADDR0);
lockdep_hardirq_enter();
rcu_nmi_enter();
trace_hardirqs_off_finish();
ftrace_nmi_enter();
}
/*
* Handle IRQ/context state management when exiting an NMI from user/kernel
* mode. After this function returns it is not safe to call regular kernel
* code, intrumentable code, or any code which may trigger an exception.
*/
static void noinstr arm64_exit_nmi(struct pt_regs *regs)
{
bool restore = regs->lockdep_hardirqs;
ftrace_nmi_exit();
if (restore) {
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare(CALLER_ADDR0);
}
rcu_nmi_exit();
lockdep_hardirq_exit();
if (restore)
lockdep_hardirqs_on(CALLER_ADDR0);
__nmi_exit();
}
/*
* Handle IRQ/context state management when entering a debug exception from
* kernel mode. Before this function is called it is not safe to call regular
* kernel code, intrumentable code, or any code which may trigger an exception.
*/
static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs)
{
regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
lockdep_hardirqs_off(CALLER_ADDR0);
rcu_nmi_enter();
trace_hardirqs_off_finish();
}
/*
* Handle IRQ/context state management when exiting a debug exception from
* kernel mode. After this function returns it is not safe to call regular
* kernel code, intrumentable code, or any code which may trigger an exception.
*/
static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs)
{
bool restore = regs->lockdep_hardirqs;
if (restore) {
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare(CALLER_ADDR0);
}
rcu_nmi_exit();
if (restore)
lockdep_hardirqs_on(CALLER_ADDR0);
}
static void noinstr enter_el1_irq_or_nmi(struct pt_regs *regs)
{
if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
arm64_enter_nmi(regs);
else
enter_from_kernel_mode(regs);
}
static void noinstr exit_el1_irq_or_nmi(struct pt_regs *regs)
{
if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
arm64_exit_nmi(regs);
else
exit_to_kernel_mode(regs);
}
static void __sched arm64_preempt_schedule_irq(void)
{
lockdep_assert_irqs_disabled();
/*
* DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC
* priority masking is used the GIC irqchip driver will clear DAIF.IF
* using gic_arch_enable_irqs() for normal IRQs. If anything is set in
* DAIF we must have handled an NMI, so skip preemption.
*/
if (system_uses_irq_prio_masking() && read_sysreg(daif))
return;
/*
* Preempting a task from an IRQ means we leave copies of PSTATE
* on the stack. cpufeature's enable calls may modify PSTATE, but
* resuming one of these preempted tasks would undo those changes.
*
* Only allow a task to be preempted once cpufeatures have been
* enabled.
*/
if (system_capabilities_finalized())
preempt_schedule_irq();
}
static void do_interrupt_handler(struct pt_regs *regs,
void (*handler)(struct pt_regs *))
{
if (on_thread_stack())
call_on_irq_stack(regs, handler);
else
handler(regs);
}
extern void (*handle_arch_irq)(struct pt_regs *);
extern void (*handle_arch_fiq)(struct pt_regs *);
static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector,
unsigned int esr)
{
arm64_enter_nmi(regs);
console_verbose();
pr_crit("Unhandled %s exception on CPU%d, ESR 0x%08x -- %s\n",
vector, smp_processor_id(), esr,
esr_get_class_string(esr));
__show_regs(regs);
panic("Unhandled exception");
}
#define UNHANDLED(el, regsize, vector) \
asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs) \
{ \
const char *desc = #regsize "-bit " #el " " #vector; \
__panic_unhandled(regs, desc, read_sysreg(esr_el1)); \
}
#ifdef CONFIG_ARM64_ERRATUM_1463225
static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
static void cortex_a76_erratum_1463225_svc_handler(void)
{
u32 reg, val;
if (!unlikely(test_thread_flag(TIF_SINGLESTEP)))
return;
if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225)))
return;
__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1);
reg = read_sysreg(mdscr_el1);
val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE;
write_sysreg(val, mdscr_el1);
asm volatile("msr daifclr, #8");
isb();
/* We will have taken a single-step exception by this point */
write_sysreg(reg, mdscr_el1);
__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0);
}
static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
{
if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
return false;
/*
* We've taken a dummy step exception from the kernel to ensure
* that interrupts are re-enabled on the syscall path. Return back
* to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
* masked so that we can safely restore the mdscr and get on with
* handling the syscall.
*/
regs->pstate |= PSR_D_BIT;
return true;
}
#else /* CONFIG_ARM64_ERRATUM_1463225 */
static void cortex_a76_erratum_1463225_svc_handler(void) { }
static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
{
return false;
}
#endif /* CONFIG_ARM64_ERRATUM_1463225 */
UNHANDLED(el1t, 64, sync)
UNHANDLED(el1t, 64, irq)
UNHANDLED(el1t, 64, fiq)
UNHANDLED(el1t, 64, error)
static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
enter_from_kernel_mode(regs);
local_daif_inherit(regs);
do_mem_abort(far, esr, regs);
local_daif_mask();
exit_to_kernel_mode(regs);
}
static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
enter_from_kernel_mode(regs);
local_daif_inherit(regs);
do_sp_pc_abort(far, esr, regs);
local_daif_mask();
exit_to_kernel_mode(regs);
}
static void noinstr el1_undef(struct pt_regs *regs)
{
enter_from_kernel_mode(regs);
local_daif_inherit(regs);
do_undefinstr(regs);
local_daif_mask();
exit_to_kernel_mode(regs);
}
static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
arm64_enter_el1_dbg(regs);
if (!cortex_a76_erratum_1463225_debug_handler(regs))
do_debug_exception(far, esr, regs);
arm64_exit_el1_dbg(regs);
}
static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr)
{
enter_from_kernel_mode(regs);
local_daif_inherit(regs);
do_ptrauth_fault(regs, esr);
local_daif_mask();
exit_to_kernel_mode(regs);
}
asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_DABT_CUR:
case ESR_ELx_EC_IABT_CUR:
el1_abort(regs, esr);
break;
/*
* We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
* recursive exception when trying to push the initial pt_regs.
*/
case ESR_ELx_EC_PC_ALIGN:
el1_pc(regs, esr);
break;
case ESR_ELx_EC_SYS64:
case ESR_ELx_EC_UNKNOWN:
el1_undef(regs);
break;
case ESR_ELx_EC_BREAKPT_CUR:
case ESR_ELx_EC_SOFTSTP_CUR:
case ESR_ELx_EC_WATCHPT_CUR:
case ESR_ELx_EC_BRK64:
el1_dbg(regs, esr);
break;
case ESR_ELx_EC_FPAC:
el1_fpac(regs, esr);
break;
default:
__panic_unhandled(regs, "64-bit el1h sync", esr);
}
}
static void noinstr el1_interrupt(struct pt_regs *regs,
void (*handler)(struct pt_regs *))
{
write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
enter_el1_irq_or_nmi(regs);
do_interrupt_handler(regs, handler);
/*
* Note: thread_info::preempt_count includes both thread_info::count
* and thread_info::need_resched, and is not equivalent to
* preempt_count().
*/
if (IS_ENABLED(CONFIG_PREEMPTION) &&
READ_ONCE(current_thread_info()->preempt_count) == 0)
arm64_preempt_schedule_irq();
exit_el1_irq_or_nmi(regs);
}
asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs)
{
el1_interrupt(regs, handle_arch_irq);
}
asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs)
{
el1_interrupt(regs, handle_arch_fiq);
}
asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
local_daif_restore(DAIF_ERRCTX);
arm64_enter_nmi(regs);
do_serror(regs, esr);
arm64_exit_nmi(regs);
}
static void noinstr el0_da(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_mem_abort(far, esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
/*
* We've taken an instruction abort from userspace and not yet
* re-enabled IRQs. If the address is a kernel address, apply
* BP hardening prior to enabling IRQs and pre-emption.
*/
if (!is_ttbr0_addr(far))
arm64_apply_bp_hardening();
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_mem_abort(far, esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_fpsimd_acc(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_sve_acc(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_fpsimd_exc(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_sysinstr(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
if (!is_ttbr0_addr(instruction_pointer(regs)))
arm64_apply_bp_hardening();
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_sp_pc_abort(far, esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_sp_pc_abort(regs->sp, esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_undef(struct pt_regs *regs)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_undefinstr(regs);
exit_to_user_mode(regs);
}
static void noinstr el0_bti(struct pt_regs *regs)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_bti(regs);
exit_to_user_mode(regs);
}
static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
bad_el0_sync(regs, 0, esr);
exit_to_user_mode(regs);
}
static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr)
{
/* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */
unsigned long far = read_sysreg(far_el1);
enter_from_user_mode(regs);
do_debug_exception(far, esr, regs);
local_daif_restore(DAIF_PROCCTX);
exit_to_user_mode(regs);
}
static void noinstr el0_svc(struct pt_regs *regs)
{
enter_from_user_mode(regs);
cortex_a76_erratum_1463225_svc_handler();
do_el0_svc(regs);
exit_to_user_mode(regs);
}
static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_ptrauth_fault(regs, esr);
exit_to_user_mode(regs);
}
asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_SVC64:
el0_svc(regs);
break;
case ESR_ELx_EC_DABT_LOW:
el0_da(regs, esr);
break;
case ESR_ELx_EC_IABT_LOW:
el0_ia(regs, esr);
break;
case ESR_ELx_EC_FP_ASIMD:
el0_fpsimd_acc(regs, esr);
break;
case ESR_ELx_EC_SVE:
el0_sve_acc(regs, esr);
break;
case ESR_ELx_EC_FP_EXC64:
el0_fpsimd_exc(regs, esr);
break;
case ESR_ELx_EC_SYS64:
case ESR_ELx_EC_WFx:
el0_sys(regs, esr);
break;
case ESR_ELx_EC_SP_ALIGN:
el0_sp(regs, esr);
break;
case ESR_ELx_EC_PC_ALIGN:
el0_pc(regs, esr);
break;
case ESR_ELx_EC_UNKNOWN:
el0_undef(regs);
break;
case ESR_ELx_EC_BTI:
el0_bti(regs);
break;
case ESR_ELx_EC_BREAKPT_LOW:
case ESR_ELx_EC_SOFTSTP_LOW:
case ESR_ELx_EC_WATCHPT_LOW:
case ESR_ELx_EC_BRK64:
el0_dbg(regs, esr);
break;
case ESR_ELx_EC_FPAC:
el0_fpac(regs, esr);
break;
default:
el0_inv(regs, esr);
}
}
static void noinstr el0_interrupt(struct pt_regs *regs,
void (*handler)(struct pt_regs *))
{
enter_from_user_mode(regs);
write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
if (regs->pc & BIT(55))
arm64_apply_bp_hardening();
do_interrupt_handler(regs, handler);
exit_to_user_mode(regs);
}
static void noinstr __el0_irq_handler_common(struct pt_regs *regs)
{
el0_interrupt(regs, handle_arch_irq);
}
asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs)
{
__el0_irq_handler_common(regs);
}
static void noinstr __el0_fiq_handler_common(struct pt_regs *regs)
{
el0_interrupt(regs, handle_arch_fiq);
}
asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs)
{
__el0_fiq_handler_common(regs);
}
static void noinstr __el0_error_handler_common(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
enter_from_user_mode(regs);
local_daif_restore(DAIF_ERRCTX);
arm64_enter_nmi(regs);
do_serror(regs, esr);
arm64_exit_nmi(regs);
local_daif_restore(DAIF_PROCCTX);
exit_to_user_mode(regs);
}
asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs)
{
__el0_error_handler_common(regs);
}
#ifdef CONFIG_COMPAT
static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_cp15instr(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_svc_compat(struct pt_regs *regs)
{
enter_from_user_mode(regs);
cortex_a76_erratum_1463225_svc_handler();
do_el0_svc_compat(regs);
exit_to_user_mode(regs);
}
asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_SVC32:
el0_svc_compat(regs);
break;
case ESR_ELx_EC_DABT_LOW:
el0_da(regs, esr);
break;
case ESR_ELx_EC_IABT_LOW:
el0_ia(regs, esr);
break;
case ESR_ELx_EC_FP_ASIMD:
el0_fpsimd_acc(regs, esr);
break;
case ESR_ELx_EC_FP_EXC32:
el0_fpsimd_exc(regs, esr);
break;
case ESR_ELx_EC_PC_ALIGN:
el0_pc(regs, esr);
break;
case ESR_ELx_EC_UNKNOWN:
case ESR_ELx_EC_CP14_MR:
case ESR_ELx_EC_CP14_LS:
case ESR_ELx_EC_CP14_64:
el0_undef(regs);
break;
case ESR_ELx_EC_CP15_32:
case ESR_ELx_EC_CP15_64:
el0_cp15(regs, esr);
break;
case ESR_ELx_EC_BREAKPT_LOW:
case ESR_ELx_EC_SOFTSTP_LOW:
case ESR_ELx_EC_WATCHPT_LOW:
case ESR_ELx_EC_BKPT32:
el0_dbg(regs, esr);
break;
default:
el0_inv(regs, esr);
}
}
asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs)
{
__el0_irq_handler_common(regs);
}
asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs)
{
__el0_fiq_handler_common(regs);
}
asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs)
{
__el0_error_handler_common(regs);
}
#else /* CONFIG_COMPAT */
UNHANDLED(el0t, 32, sync)
UNHANDLED(el0t, 32, irq)
UNHANDLED(el0t, 32, fiq)
UNHANDLED(el0t, 32, error)
#endif /* CONFIG_COMPAT */
#ifdef CONFIG_VMAP_STACK
asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs)
{
unsigned int esr = read_sysreg(esr_el1);
unsigned long far = read_sysreg(far_el1);
arm64_enter_nmi(regs);
panic_bad_stack(regs, esr, far);
}
#endif /* CONFIG_VMAP_STACK */
#ifdef CONFIG_ARM_SDE_INTERFACE
asmlinkage noinstr unsigned long
__sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
{
unsigned long ret;
/*
* We didn't take an exception to get here, so the HW hasn't
* set/cleared bits in PSTATE that we may rely on.
*
* The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
* whether PSTATE bits are inherited unchanged or generated from
* scratch, and the TF-A implementation always clears PAN and always
* clears UAO. There are no other known implementations.
*
* Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
* PSTATE is modified upon architectural exceptions, and so PAN is
* either inherited or set per SCTLR_ELx.SPAN, and UAO is always
* cleared.
*
* We must explicitly reset PAN to the expected state, including
* clearing it when the host isn't using it, in case a VM had it set.
*/
if (system_uses_hw_pan())
set_pstate_pan(1);
else if (cpu_has_pan())
set_pstate_pan(0);
arm64_enter_nmi(regs);
ret = do_sdei_event(regs, arg);
arm64_exit_nmi(regs);
return ret;
}
#endif /* CONFIG_ARM_SDE_INTERFACE */