blob: dbd42cc1da87f82ef9cd4ccc70cdecbe56035174 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2022 Marek Vasut <marex@denx.de>
*
* This code is based on drivers/gpu/drm/mxsfb/mxsfb*
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/media-bus-format.h>
#include <linux/pm_runtime.h>
#include <linux/spinlock.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_color_mgmt.h>
#include <drm/drm_connector.h>
#include <drm/drm_crtc.h>
#include <drm/drm_encoder.h>
#include <drm/drm_fb_dma_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_plane.h>
#include <drm/drm_vblank.h>
#include "lcdif_drv.h"
#include "lcdif_regs.h"
struct lcdif_crtc_state {
struct drm_crtc_state base; /* always be the first member */
u32 bus_format;
u32 bus_flags;
};
static inline struct lcdif_crtc_state *
to_lcdif_crtc_state(struct drm_crtc_state *s)
{
return container_of(s, struct lcdif_crtc_state, base);
}
/* -----------------------------------------------------------------------------
* CRTC
*/
/*
* For conversion from YCbCr to RGB, the CSC operates as follows:
*
* |R| |A1 A2 A3| |Y + D1|
* |G| = |B1 B2 B3| * |Cb + D2|
* |B| |C1 C2 C3| |Cr + D3|
*
* The A, B and C coefficients are expressed as Q2.8 fixed point values, and
* the D coefficients as Q0.8. Despite the reference manual stating the
* opposite, the D1, D2 and D3 offset values are added to Y, Cb and Cr, not
* subtracted. They must thus be programmed with negative values.
*/
static const u32 lcdif_yuv2rgb_coeffs[3][2][6] = {
[DRM_COLOR_YCBCR_BT601] = {
[DRM_COLOR_YCBCR_LIMITED_RANGE] = {
/*
* BT.601 limited range:
*
* |R| |1.1644 0.0000 1.5960| |Y - 16 |
* |G| = |1.1644 -0.3917 -0.8129| * |Cb - 128|
* |B| |1.1644 2.0172 0.0000| |Cr - 128|
*/
CSC0_COEF0_A1(0x12a) | CSC0_COEF0_A2(0x000),
CSC0_COEF1_A3(0x199) | CSC0_COEF1_B1(0x12a),
CSC0_COEF2_B2(0x79c) | CSC0_COEF2_B3(0x730),
CSC0_COEF3_C1(0x12a) | CSC0_COEF3_C2(0x204),
CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x1f0),
CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
},
[DRM_COLOR_YCBCR_FULL_RANGE] = {
/*
* BT.601 full range:
*
* |R| |1.0000 0.0000 1.4020| |Y - 0 |
* |G| = |1.0000 -0.3441 -0.7141| * |Cb - 128|
* |B| |1.0000 1.7720 0.0000| |Cr - 128|
*/
CSC0_COEF0_A1(0x100) | CSC0_COEF0_A2(0x000),
CSC0_COEF1_A3(0x167) | CSC0_COEF1_B1(0x100),
CSC0_COEF2_B2(0x7a8) | CSC0_COEF2_B3(0x749),
CSC0_COEF3_C1(0x100) | CSC0_COEF3_C2(0x1c6),
CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x000),
CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
},
},
[DRM_COLOR_YCBCR_BT709] = {
[DRM_COLOR_YCBCR_LIMITED_RANGE] = {
/*
* Rec.709 limited range:
*
* |R| |1.1644 0.0000 1.7927| |Y - 16 |
* |G| = |1.1644 -0.2132 -0.5329| * |Cb - 128|
* |B| |1.1644 2.1124 0.0000| |Cr - 128|
*/
CSC0_COEF0_A1(0x12a) | CSC0_COEF0_A2(0x000),
CSC0_COEF1_A3(0x1cb) | CSC0_COEF1_B1(0x12a),
CSC0_COEF2_B2(0x7c9) | CSC0_COEF2_B3(0x778),
CSC0_COEF3_C1(0x12a) | CSC0_COEF3_C2(0x21d),
CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x1f0),
CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
},
[DRM_COLOR_YCBCR_FULL_RANGE] = {
/*
* Rec.709 full range:
*
* |R| |1.0000 0.0000 1.5748| |Y - 0 |
* |G| = |1.0000 -0.1873 -0.4681| * |Cb - 128|
* |B| |1.0000 1.8556 0.0000| |Cr - 128|
*/
CSC0_COEF0_A1(0x100) | CSC0_COEF0_A2(0x000),
CSC0_COEF1_A3(0x193) | CSC0_COEF1_B1(0x100),
CSC0_COEF2_B2(0x7d0) | CSC0_COEF2_B3(0x788),
CSC0_COEF3_C1(0x100) | CSC0_COEF3_C2(0x1db),
CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x000),
CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
},
},
[DRM_COLOR_YCBCR_BT2020] = {
[DRM_COLOR_YCBCR_LIMITED_RANGE] = {
/*
* BT.2020 limited range:
*
* |R| |1.1644 0.0000 1.6787| |Y - 16 |
* |G| = |1.1644 -0.1874 -0.6505| * |Cb - 128|
* |B| |1.1644 2.1418 0.0000| |Cr - 128|
*/
CSC0_COEF0_A1(0x12a) | CSC0_COEF0_A2(0x000),
CSC0_COEF1_A3(0x1ae) | CSC0_COEF1_B1(0x12a),
CSC0_COEF2_B2(0x7d0) | CSC0_COEF2_B3(0x759),
CSC0_COEF3_C1(0x12a) | CSC0_COEF3_C2(0x224),
CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x1f0),
CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
},
[DRM_COLOR_YCBCR_FULL_RANGE] = {
/*
* BT.2020 full range:
*
* |R| |1.0000 0.0000 1.4746| |Y - 0 |
* |G| = |1.0000 -0.1646 -0.5714| * |Cb - 128|
* |B| |1.0000 1.8814 0.0000| |Cr - 128|
*/
CSC0_COEF0_A1(0x100) | CSC0_COEF0_A2(0x000),
CSC0_COEF1_A3(0x179) | CSC0_COEF1_B1(0x100),
CSC0_COEF2_B2(0x7d6) | CSC0_COEF2_B3(0x76e),
CSC0_COEF3_C1(0x100) | CSC0_COEF3_C2(0x1e2),
CSC0_COEF4_C3(0x000) | CSC0_COEF4_D1(0x000),
CSC0_COEF5_D2(0x180) | CSC0_COEF5_D3(0x180),
},
},
};
static void lcdif_set_formats(struct lcdif_drm_private *lcdif,
struct drm_plane_state *plane_state,
const u32 bus_format)
{
struct drm_device *drm = lcdif->drm;
const u32 format = plane_state->fb->format->format;
bool in_yuv = false;
bool out_yuv = false;
switch (bus_format) {
case MEDIA_BUS_FMT_RGB565_1X16:
writel(DISP_PARA_LINE_PATTERN_RGB565,
lcdif->base + LCDC_V8_DISP_PARA);
break;
case MEDIA_BUS_FMT_RGB888_1X24:
writel(DISP_PARA_LINE_PATTERN_RGB888,
lcdif->base + LCDC_V8_DISP_PARA);
break;
case MEDIA_BUS_FMT_UYVY8_1X16:
writel(DISP_PARA_LINE_PATTERN_UYVY_H,
lcdif->base + LCDC_V8_DISP_PARA);
out_yuv = true;
break;
default:
dev_err(drm->dev, "Unknown media bus format 0x%x\n", bus_format);
break;
}
switch (format) {
/* RGB Formats */
case DRM_FORMAT_RGB565:
writel(CTRLDESCL0_5_BPP_16_RGB565,
lcdif->base + LCDC_V8_CTRLDESCL0_5);
break;
case DRM_FORMAT_RGB888:
writel(CTRLDESCL0_5_BPP_24_RGB888,
lcdif->base + LCDC_V8_CTRLDESCL0_5);
break;
case DRM_FORMAT_XRGB1555:
writel(CTRLDESCL0_5_BPP_16_ARGB1555,
lcdif->base + LCDC_V8_CTRLDESCL0_5);
break;
case DRM_FORMAT_XRGB4444:
writel(CTRLDESCL0_5_BPP_16_ARGB4444,
lcdif->base + LCDC_V8_CTRLDESCL0_5);
break;
case DRM_FORMAT_XBGR8888:
writel(CTRLDESCL0_5_BPP_32_ABGR8888,
lcdif->base + LCDC_V8_CTRLDESCL0_5);
break;
case DRM_FORMAT_XRGB8888:
writel(CTRLDESCL0_5_BPP_32_ARGB8888,
lcdif->base + LCDC_V8_CTRLDESCL0_5);
break;
/* YUV Formats */
case DRM_FORMAT_YUYV:
writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_VY2UY1,
lcdif->base + LCDC_V8_CTRLDESCL0_5);
in_yuv = true;
break;
case DRM_FORMAT_YVYU:
writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_UY2VY1,
lcdif->base + LCDC_V8_CTRLDESCL0_5);
in_yuv = true;
break;
case DRM_FORMAT_UYVY:
writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_Y2VY1U,
lcdif->base + LCDC_V8_CTRLDESCL0_5);
in_yuv = true;
break;
case DRM_FORMAT_VYUY:
writel(CTRLDESCL0_5_BPP_YCbCr422 | CTRLDESCL0_5_YUV_FORMAT_Y2UY1V,
lcdif->base + LCDC_V8_CTRLDESCL0_5);
in_yuv = true;
break;
default:
dev_err(drm->dev, "Unknown pixel format 0x%x\n", format);
break;
}
/*
* The CSC differentiates between "YCbCr" and "YUV", but the reference
* manual doesn't detail how they differ. Experiments showed that the
* luminance value is unaffected, only the calculations involving chroma
* values differ. The YCbCr mode behaves as expected, with chroma values
* being offset by 128. The YUV mode isn't fully understood.
*/
if (!in_yuv && out_yuv) {
/* RGB -> YCbCr */
writel(CSC0_CTRL_CSC_MODE_RGB2YCbCr,
lcdif->base + LCDC_V8_CSC0_CTRL);
/*
* CSC: BT.601 Limited Range RGB to YCbCr coefficients.
*
* |Y | | 0.2568 0.5041 0.0979| |R| |16 |
* |Cb| = |-0.1482 -0.2910 0.4392| * |G| + |128|
* |Cr| | 0.4392 0.4392 -0.3678| |B| |128|
*/
writel(CSC0_COEF0_A2(0x081) | CSC0_COEF0_A1(0x041),
lcdif->base + LCDC_V8_CSC0_COEF0);
writel(CSC0_COEF1_B1(0x7db) | CSC0_COEF1_A3(0x019),
lcdif->base + LCDC_V8_CSC0_COEF1);
writel(CSC0_COEF2_B3(0x070) | CSC0_COEF2_B2(0x7b6),
lcdif->base + LCDC_V8_CSC0_COEF2);
writel(CSC0_COEF3_C2(0x7a2) | CSC0_COEF3_C1(0x070),
lcdif->base + LCDC_V8_CSC0_COEF3);
writel(CSC0_COEF4_D1(0x010) | CSC0_COEF4_C3(0x7ee),
lcdif->base + LCDC_V8_CSC0_COEF4);
writel(CSC0_COEF5_D3(0x080) | CSC0_COEF5_D2(0x080),
lcdif->base + LCDC_V8_CSC0_COEF5);
} else if (in_yuv && !out_yuv) {
/* YCbCr -> RGB */
const u32 *coeffs =
lcdif_yuv2rgb_coeffs[plane_state->color_encoding]
[plane_state->color_range];
writel(CSC0_CTRL_CSC_MODE_YCbCr2RGB,
lcdif->base + LCDC_V8_CSC0_CTRL);
writel(coeffs[0], lcdif->base + LCDC_V8_CSC0_COEF0);
writel(coeffs[1], lcdif->base + LCDC_V8_CSC0_COEF1);
writel(coeffs[2], lcdif->base + LCDC_V8_CSC0_COEF2);
writel(coeffs[3], lcdif->base + LCDC_V8_CSC0_COEF3);
writel(coeffs[4], lcdif->base + LCDC_V8_CSC0_COEF4);
writel(coeffs[5], lcdif->base + LCDC_V8_CSC0_COEF5);
} else {
/* RGB -> RGB, YCbCr -> YCbCr: bypass colorspace converter. */
writel(CSC0_CTRL_BYPASS, lcdif->base + LCDC_V8_CSC0_CTRL);
}
}
static void lcdif_set_mode(struct lcdif_drm_private *lcdif, u32 bus_flags)
{
struct drm_display_mode *m = &lcdif->crtc.state->adjusted_mode;
u32 ctrl = 0;
if (m->flags & DRM_MODE_FLAG_NHSYNC)
ctrl |= CTRL_INV_HS;
if (m->flags & DRM_MODE_FLAG_NVSYNC)
ctrl |= CTRL_INV_VS;
if (bus_flags & DRM_BUS_FLAG_DE_LOW)
ctrl |= CTRL_INV_DE;
if (bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE)
ctrl |= CTRL_INV_PXCK;
writel(ctrl, lcdif->base + LCDC_V8_CTRL);
writel(DISP_SIZE_DELTA_Y(m->vdisplay) |
DISP_SIZE_DELTA_X(m->hdisplay),
lcdif->base + LCDC_V8_DISP_SIZE);
writel(HSYN_PARA_BP_H(m->htotal - m->hsync_end) |
HSYN_PARA_FP_H(m->hsync_start - m->hdisplay),
lcdif->base + LCDC_V8_HSYN_PARA);
writel(VSYN_PARA_BP_V(m->vtotal - m->vsync_end) |
VSYN_PARA_FP_V(m->vsync_start - m->vdisplay),
lcdif->base + LCDC_V8_VSYN_PARA);
writel(VSYN_HSYN_WIDTH_PW_V(m->vsync_end - m->vsync_start) |
VSYN_HSYN_WIDTH_PW_H(m->hsync_end - m->hsync_start),
lcdif->base + LCDC_V8_VSYN_HSYN_WIDTH);
writel(CTRLDESCL0_1_HEIGHT(m->vdisplay) |
CTRLDESCL0_1_WIDTH(m->hdisplay),
lcdif->base + LCDC_V8_CTRLDESCL0_1);
/*
* Undocumented P_SIZE and T_SIZE register but those written in the
* downstream kernel those registers control the AXI burst size. As of
* now there are two known values:
* 1 - 128Byte
* 2 - 256Byte
* Downstream set it to 256B burst size to improve the memory
* efficiency so set it here too.
*/
ctrl = CTRLDESCL0_3_P_SIZE(2) | CTRLDESCL0_3_T_SIZE(2) |
CTRLDESCL0_3_PITCH(lcdif->crtc.primary->state->fb->pitches[0]);
writel(ctrl, lcdif->base + LCDC_V8_CTRLDESCL0_3);
}
static void lcdif_enable_controller(struct lcdif_drm_private *lcdif)
{
u32 reg;
/* Set FIFO Panic watermarks, low 1/3, high 2/3 . */
writel(FIELD_PREP(PANIC0_THRES_LOW_MASK, 1 * PANIC0_THRES_MAX / 3) |
FIELD_PREP(PANIC0_THRES_HIGH_MASK, 2 * PANIC0_THRES_MAX / 3),
lcdif->base + LCDC_V8_PANIC0_THRES);
/*
* Enable FIFO Panic, this does not generate interrupt, but
* boosts NoC priority based on FIFO Panic watermarks.
*/
writel(INT_ENABLE_D1_PLANE_PANIC_EN,
lcdif->base + LCDC_V8_INT_ENABLE_D1);
reg = readl(lcdif->base + LCDC_V8_DISP_PARA);
reg |= DISP_PARA_DISP_ON;
writel(reg, lcdif->base + LCDC_V8_DISP_PARA);
reg = readl(lcdif->base + LCDC_V8_CTRLDESCL0_5);
reg |= CTRLDESCL0_5_EN;
writel(reg, lcdif->base + LCDC_V8_CTRLDESCL0_5);
}
static void lcdif_disable_controller(struct lcdif_drm_private *lcdif)
{
u32 reg;
int ret;
reg = readl(lcdif->base + LCDC_V8_CTRLDESCL0_5);
reg &= ~CTRLDESCL0_5_EN;
writel(reg, lcdif->base + LCDC_V8_CTRLDESCL0_5);
ret = readl_poll_timeout(lcdif->base + LCDC_V8_CTRLDESCL0_5,
reg, !(reg & CTRLDESCL0_5_EN),
0, 36000); /* Wait ~2 frame times max */
if (ret)
drm_err(lcdif->drm, "Failed to disable controller!\n");
reg = readl(lcdif->base + LCDC_V8_DISP_PARA);
reg &= ~DISP_PARA_DISP_ON;
writel(reg, lcdif->base + LCDC_V8_DISP_PARA);
/* Disable FIFO Panic NoC priority booster. */
writel(0, lcdif->base + LCDC_V8_INT_ENABLE_D1);
}
static void lcdif_reset_block(struct lcdif_drm_private *lcdif)
{
writel(CTRL_SW_RESET, lcdif->base + LCDC_V8_CTRL + REG_SET);
readl(lcdif->base + LCDC_V8_CTRL);
writel(CTRL_SW_RESET, lcdif->base + LCDC_V8_CTRL + REG_CLR);
readl(lcdif->base + LCDC_V8_CTRL);
}
static void lcdif_crtc_mode_set_nofb(struct drm_crtc_state *crtc_state,
struct drm_plane_state *plane_state)
{
struct lcdif_crtc_state *lcdif_crtc_state = to_lcdif_crtc_state(crtc_state);
struct drm_device *drm = crtc_state->crtc->dev;
struct lcdif_drm_private *lcdif = to_lcdif_drm_private(drm);
struct drm_display_mode *m = &crtc_state->adjusted_mode;
DRM_DEV_DEBUG_DRIVER(drm->dev, "Pixel clock: %dkHz (actual: %dkHz)\n",
m->clock, (int)(clk_get_rate(lcdif->clk) / 1000));
DRM_DEV_DEBUG_DRIVER(drm->dev, "Bridge bus_flags: 0x%08X\n",
lcdif_crtc_state->bus_flags);
DRM_DEV_DEBUG_DRIVER(drm->dev, "Mode flags: 0x%08X\n", m->flags);
/* Mandatory eLCDIF reset as per the Reference Manual */
lcdif_reset_block(lcdif);
lcdif_set_formats(lcdif, plane_state, lcdif_crtc_state->bus_format);
lcdif_set_mode(lcdif, lcdif_crtc_state->bus_flags);
}
static int lcdif_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_device *drm = crtc->dev;
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct lcdif_crtc_state *lcdif_crtc_state = to_lcdif_crtc_state(crtc_state);
bool has_primary = crtc_state->plane_mask &
drm_plane_mask(crtc->primary);
struct drm_connector_state *connector_state;
struct drm_connector *connector;
struct drm_encoder *encoder;
struct drm_bridge_state *bridge_state;
struct drm_bridge *bridge;
u32 bus_format, bus_flags;
bool format_set = false, flags_set = false;
int ret, i;
/* The primary plane has to be enabled when the CRTC is active. */
if (crtc_state->active && !has_primary)
return -EINVAL;
ret = drm_atomic_add_affected_planes(state, crtc);
if (ret)
return ret;
/* Try to find consistent bus format and flags across first bridges. */
for_each_new_connector_in_state(state, connector, connector_state, i) {
if (!connector_state->crtc)
continue;
encoder = connector_state->best_encoder;
bridge = drm_bridge_chain_get_first_bridge(encoder);
if (!bridge)
continue;
bridge_state = drm_atomic_get_new_bridge_state(state, bridge);
if (!bridge_state)
bus_format = MEDIA_BUS_FMT_FIXED;
else
bus_format = bridge_state->input_bus_cfg.format;
if (bus_format == MEDIA_BUS_FMT_FIXED) {
dev_warn(drm->dev,
"[ENCODER:%d:%s]'s bridge does not provide bus format, assuming MEDIA_BUS_FMT_RGB888_1X24.\n"
"Please fix bridge driver by handling atomic_get_input_bus_fmts.\n",
encoder->base.id, encoder->name);
bus_format = MEDIA_BUS_FMT_RGB888_1X24;
} else if (!bus_format) {
/* If all else fails, default to RGB888_1X24 */
bus_format = MEDIA_BUS_FMT_RGB888_1X24;
}
if (!format_set) {
lcdif_crtc_state->bus_format = bus_format;
format_set = true;
} else if (lcdif_crtc_state->bus_format != bus_format) {
DRM_DEV_DEBUG_DRIVER(drm->dev, "inconsistent bus format\n");
return -EINVAL;
}
if (bridge->timings)
bus_flags = bridge->timings->input_bus_flags;
else if (bridge_state)
bus_flags = bridge_state->input_bus_cfg.flags;
else
bus_flags = 0;
if (!flags_set) {
lcdif_crtc_state->bus_flags = bus_flags;
flags_set = true;
} else if (lcdif_crtc_state->bus_flags != bus_flags) {
DRM_DEV_DEBUG_DRIVER(drm->dev, "inconsistent bus flags\n");
return -EINVAL;
}
}
return 0;
}
static void lcdif_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev);
struct drm_pending_vblank_event *event;
u32 reg;
reg = readl(lcdif->base + LCDC_V8_CTRLDESCL0_5);
reg |= CTRLDESCL0_5_SHADOW_LOAD_EN;
writel(reg, lcdif->base + LCDC_V8_CTRLDESCL0_5);
event = crtc->state->event;
crtc->state->event = NULL;
if (!event)
return;
spin_lock_irq(&crtc->dev->event_lock);
if (drm_crtc_vblank_get(crtc) == 0)
drm_crtc_arm_vblank_event(crtc, event);
else
drm_crtc_send_vblank_event(crtc, event);
spin_unlock_irq(&crtc->dev->event_lock);
}
static void lcdif_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev);
struct drm_crtc_state *new_cstate = drm_atomic_get_new_crtc_state(state, crtc);
struct drm_plane_state *new_pstate = drm_atomic_get_new_plane_state(state,
crtc->primary);
struct drm_display_mode *m = &lcdif->crtc.state->adjusted_mode;
struct drm_device *drm = lcdif->drm;
dma_addr_t paddr;
clk_set_rate(lcdif->clk, m->clock * 1000);
pm_runtime_get_sync(drm->dev);
lcdif_crtc_mode_set_nofb(new_cstate, new_pstate);
/* Write cur_buf as well to avoid an initial corrupt frame */
paddr = drm_fb_dma_get_gem_addr(new_pstate->fb, new_pstate, 0);
if (paddr) {
writel(lower_32_bits(paddr),
lcdif->base + LCDC_V8_CTRLDESCL_LOW0_4);
writel(CTRLDESCL_HIGH0_4_ADDR_HIGH(upper_32_bits(paddr)),
lcdif->base + LCDC_V8_CTRLDESCL_HIGH0_4);
}
lcdif_enable_controller(lcdif);
drm_crtc_vblank_on(crtc);
}
static void lcdif_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev);
struct drm_device *drm = lcdif->drm;
struct drm_pending_vblank_event *event;
drm_crtc_vblank_off(crtc);
lcdif_disable_controller(lcdif);
spin_lock_irq(&drm->event_lock);
event = crtc->state->event;
if (event) {
crtc->state->event = NULL;
drm_crtc_send_vblank_event(crtc, event);
}
spin_unlock_irq(&drm->event_lock);
pm_runtime_put_sync(drm->dev);
}
static void lcdif_crtc_atomic_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
__drm_atomic_helper_crtc_destroy_state(state);
kfree(to_lcdif_crtc_state(state));
}
static void lcdif_crtc_reset(struct drm_crtc *crtc)
{
struct lcdif_crtc_state *state;
if (crtc->state)
lcdif_crtc_atomic_destroy_state(crtc, crtc->state);
crtc->state = NULL;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (state)
__drm_atomic_helper_crtc_reset(crtc, &state->base);
}
static struct drm_crtc_state *
lcdif_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
struct lcdif_crtc_state *old = to_lcdif_crtc_state(crtc->state);
struct lcdif_crtc_state *new;
if (WARN_ON(!crtc->state))
return NULL;
new = kzalloc(sizeof(*new), GFP_KERNEL);
if (!new)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &new->base);
new->bus_format = old->bus_format;
new->bus_flags = old->bus_flags;
return &new->base;
}
static int lcdif_crtc_enable_vblank(struct drm_crtc *crtc)
{
struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev);
/* Clear and enable VBLANK IRQ */
writel(INT_STATUS_D0_VS_BLANK, lcdif->base + LCDC_V8_INT_STATUS_D0);
writel(INT_ENABLE_D0_VS_BLANK_EN, lcdif->base + LCDC_V8_INT_ENABLE_D0);
return 0;
}
static void lcdif_crtc_disable_vblank(struct drm_crtc *crtc)
{
struct lcdif_drm_private *lcdif = to_lcdif_drm_private(crtc->dev);
/* Disable and clear VBLANK IRQ */
writel(0, lcdif->base + LCDC_V8_INT_ENABLE_D0);
writel(INT_STATUS_D0_VS_BLANK, lcdif->base + LCDC_V8_INT_STATUS_D0);
}
static const struct drm_crtc_helper_funcs lcdif_crtc_helper_funcs = {
.atomic_check = lcdif_crtc_atomic_check,
.atomic_flush = lcdif_crtc_atomic_flush,
.atomic_enable = lcdif_crtc_atomic_enable,
.atomic_disable = lcdif_crtc_atomic_disable,
};
static const struct drm_crtc_funcs lcdif_crtc_funcs = {
.reset = lcdif_crtc_reset,
.destroy = drm_crtc_cleanup,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.atomic_duplicate_state = lcdif_crtc_atomic_duplicate_state,
.atomic_destroy_state = lcdif_crtc_atomic_destroy_state,
.enable_vblank = lcdif_crtc_enable_vblank,
.disable_vblank = lcdif_crtc_disable_vblank,
};
/* -----------------------------------------------------------------------------
* Planes
*/
static int lcdif_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state,
plane);
struct lcdif_drm_private *lcdif = to_lcdif_drm_private(plane->dev);
struct drm_crtc_state *crtc_state;
crtc_state = drm_atomic_get_new_crtc_state(state,
&lcdif->crtc);
return drm_atomic_helper_check_plane_state(plane_state, crtc_state,
DRM_PLANE_NO_SCALING,
DRM_PLANE_NO_SCALING,
false, true);
}
static void lcdif_plane_primary_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct lcdif_drm_private *lcdif = to_lcdif_drm_private(plane->dev);
struct drm_plane_state *new_pstate = drm_atomic_get_new_plane_state(state,
plane);
dma_addr_t paddr;
paddr = drm_fb_dma_get_gem_addr(new_pstate->fb, new_pstate, 0);
if (paddr) {
writel(lower_32_bits(paddr),
lcdif->base + LCDC_V8_CTRLDESCL_LOW0_4);
writel(CTRLDESCL_HIGH0_4_ADDR_HIGH(upper_32_bits(paddr)),
lcdif->base + LCDC_V8_CTRLDESCL_HIGH0_4);
}
}
static bool lcdif_format_mod_supported(struct drm_plane *plane,
uint32_t format,
uint64_t modifier)
{
return modifier == DRM_FORMAT_MOD_LINEAR;
}
static const struct drm_plane_helper_funcs lcdif_plane_primary_helper_funcs = {
.atomic_check = lcdif_plane_atomic_check,
.atomic_update = lcdif_plane_primary_atomic_update,
};
static const struct drm_plane_funcs lcdif_plane_funcs = {
.format_mod_supported = lcdif_format_mod_supported,
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = drm_plane_cleanup,
.reset = drm_atomic_helper_plane_reset,
.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
};
static const u32 lcdif_primary_plane_formats[] = {
/* RGB */
DRM_FORMAT_RGB565,
DRM_FORMAT_RGB888,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_XRGB4444,
DRM_FORMAT_XRGB8888,
/* Packed YCbCr */
DRM_FORMAT_YUYV,
DRM_FORMAT_YVYU,
DRM_FORMAT_UYVY,
DRM_FORMAT_VYUY,
};
static const u64 lcdif_modifiers[] = {
DRM_FORMAT_MOD_LINEAR,
DRM_FORMAT_MOD_INVALID
};
/* -----------------------------------------------------------------------------
* Initialization
*/
int lcdif_kms_init(struct lcdif_drm_private *lcdif)
{
const u32 supported_encodings = BIT(DRM_COLOR_YCBCR_BT601) |
BIT(DRM_COLOR_YCBCR_BT709) |
BIT(DRM_COLOR_YCBCR_BT2020);
const u32 supported_ranges = BIT(DRM_COLOR_YCBCR_LIMITED_RANGE) |
BIT(DRM_COLOR_YCBCR_FULL_RANGE);
struct drm_crtc *crtc = &lcdif->crtc;
int ret;
drm_plane_helper_add(&lcdif->planes.primary,
&lcdif_plane_primary_helper_funcs);
ret = drm_universal_plane_init(lcdif->drm, &lcdif->planes.primary, 1,
&lcdif_plane_funcs,
lcdif_primary_plane_formats,
ARRAY_SIZE(lcdif_primary_plane_formats),
lcdif_modifiers, DRM_PLANE_TYPE_PRIMARY,
NULL);
if (ret)
return ret;
ret = drm_plane_create_color_properties(&lcdif->planes.primary,
supported_encodings,
supported_ranges,
DRM_COLOR_YCBCR_BT601,
DRM_COLOR_YCBCR_LIMITED_RANGE);
if (ret)
return ret;
drm_crtc_helper_add(crtc, &lcdif_crtc_helper_funcs);
return drm_crtc_init_with_planes(lcdif->drm, crtc,
&lcdif->planes.primary, NULL,
&lcdif_crtc_funcs, NULL);
}