| /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| /* |
| * A generic kernel FIFO implementation |
| * |
| * Copyright (C) 2013 Stefani Seibold <stefani@seibold.net> |
| */ |
| |
| #ifndef _LINUX_KFIFO_H |
| #define _LINUX_KFIFO_H |
| |
| /* |
| * How to porting drivers to the new generic FIFO API: |
| * |
| * - Modify the declaration of the "struct kfifo *" object into a |
| * in-place "struct kfifo" object |
| * - Init the in-place object with kfifo_alloc() or kfifo_init() |
| * Note: The address of the in-place "struct kfifo" object must be |
| * passed as the first argument to this functions |
| * - Replace the use of __kfifo_put into kfifo_in and __kfifo_get |
| * into kfifo_out |
| * - Replace the use of kfifo_put into kfifo_in_spinlocked and kfifo_get |
| * into kfifo_out_spinlocked |
| * Note: the spinlock pointer formerly passed to kfifo_init/kfifo_alloc |
| * must be passed now to the kfifo_in_spinlocked and kfifo_out_spinlocked |
| * as the last parameter |
| * - The formerly __kfifo_* functions are renamed into kfifo_* |
| */ |
| |
| /* |
| * Note about locking: There is no locking required until only one reader |
| * and one writer is using the fifo and no kfifo_reset() will be called. |
| * kfifo_reset_out() can be safely used, until it will be only called |
| * in the reader thread. |
| * For multiple writer and one reader there is only a need to lock the writer. |
| * And vice versa for only one writer and multiple reader there is only a need |
| * to lock the reader. |
| */ |
| |
| #include <linux/array_size.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/spinlock.h> |
| #include <linux/stddef.h> |
| #include <linux/types.h> |
| |
| #include <asm/barrier.h> |
| #include <asm/errno.h> |
| |
| struct scatterlist; |
| |
| struct __kfifo { |
| unsigned int in; |
| unsigned int out; |
| unsigned int mask; |
| unsigned int esize; |
| void *data; |
| }; |
| |
| #define __STRUCT_KFIFO_COMMON(datatype, recsize, ptrtype) \ |
| union { \ |
| struct __kfifo kfifo; \ |
| datatype *type; \ |
| const datatype *const_type; \ |
| char (*rectype)[recsize]; \ |
| ptrtype *ptr; \ |
| ptrtype const *ptr_const; \ |
| } |
| |
| #define __STRUCT_KFIFO(type, size, recsize, ptrtype) \ |
| { \ |
| __STRUCT_KFIFO_COMMON(type, recsize, ptrtype); \ |
| type buf[((size < 2) || (size & (size - 1))) ? -1 : size]; \ |
| } |
| |
| #define STRUCT_KFIFO(type, size) \ |
| struct __STRUCT_KFIFO(type, size, 0, type) |
| |
| #define __STRUCT_KFIFO_PTR(type, recsize, ptrtype) \ |
| { \ |
| __STRUCT_KFIFO_COMMON(type, recsize, ptrtype); \ |
| type buf[0]; \ |
| } |
| |
| #define STRUCT_KFIFO_PTR(type) \ |
| struct __STRUCT_KFIFO_PTR(type, 0, type) |
| |
| /* |
| * define compatibility "struct kfifo" for dynamic allocated fifos |
| */ |
| struct kfifo __STRUCT_KFIFO_PTR(unsigned char, 0, void); |
| |
| #define STRUCT_KFIFO_REC_1(size) \ |
| struct __STRUCT_KFIFO(unsigned char, size, 1, void) |
| |
| #define STRUCT_KFIFO_REC_2(size) \ |
| struct __STRUCT_KFIFO(unsigned char, size, 2, void) |
| |
| /* |
| * define kfifo_rec types |
| */ |
| struct kfifo_rec_ptr_1 __STRUCT_KFIFO_PTR(unsigned char, 1, void); |
| struct kfifo_rec_ptr_2 __STRUCT_KFIFO_PTR(unsigned char, 2, void); |
| |
| /* |
| * helper macro to distinguish between real in place fifo where the fifo |
| * array is a part of the structure and the fifo type where the array is |
| * outside of the fifo structure. |
| */ |
| #define __is_kfifo_ptr(fifo) \ |
| (sizeof(*fifo) == sizeof(STRUCT_KFIFO_PTR(typeof(*(fifo)->type)))) |
| |
| /** |
| * DECLARE_KFIFO_PTR - macro to declare a fifo pointer object |
| * @fifo: name of the declared fifo |
| * @type: type of the fifo elements |
| */ |
| #define DECLARE_KFIFO_PTR(fifo, type) STRUCT_KFIFO_PTR(type) fifo |
| |
| /** |
| * DECLARE_KFIFO - macro to declare a fifo object |
| * @fifo: name of the declared fifo |
| * @type: type of the fifo elements |
| * @size: the number of elements in the fifo, this must be a power of 2 |
| */ |
| #define DECLARE_KFIFO(fifo, type, size) STRUCT_KFIFO(type, size) fifo |
| |
| /** |
| * INIT_KFIFO - Initialize a fifo declared by DECLARE_KFIFO |
| * @fifo: name of the declared fifo datatype |
| */ |
| #define INIT_KFIFO(fifo) \ |
| (void)({ \ |
| typeof(&(fifo)) __tmp = &(fifo); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| __kfifo->in = 0; \ |
| __kfifo->out = 0; \ |
| __kfifo->mask = __is_kfifo_ptr(__tmp) ? 0 : ARRAY_SIZE(__tmp->buf) - 1;\ |
| __kfifo->esize = sizeof(*__tmp->buf); \ |
| __kfifo->data = __is_kfifo_ptr(__tmp) ? NULL : __tmp->buf; \ |
| }) |
| |
| /** |
| * DEFINE_KFIFO - macro to define and initialize a fifo |
| * @fifo: name of the declared fifo datatype |
| * @type: type of the fifo elements |
| * @size: the number of elements in the fifo, this must be a power of 2 |
| * |
| * Note: the macro can be used for global and local fifo data type variables. |
| */ |
| #define DEFINE_KFIFO(fifo, type, size) \ |
| DECLARE_KFIFO(fifo, type, size) = \ |
| (typeof(fifo)) { \ |
| { \ |
| { \ |
| .in = 0, \ |
| .out = 0, \ |
| .mask = __is_kfifo_ptr(&(fifo)) ? \ |
| 0 : \ |
| ARRAY_SIZE((fifo).buf) - 1, \ |
| .esize = sizeof(*(fifo).buf), \ |
| .data = __is_kfifo_ptr(&(fifo)) ? \ |
| NULL : \ |
| (fifo).buf, \ |
| } \ |
| } \ |
| } |
| |
| |
| static inline unsigned int __must_check |
| __kfifo_uint_must_check_helper(unsigned int val) |
| { |
| return val; |
| } |
| |
| static inline int __must_check |
| __kfifo_int_must_check_helper(int val) |
| { |
| return val; |
| } |
| |
| /** |
| * kfifo_initialized - Check if the fifo is initialized |
| * @fifo: address of the fifo to check |
| * |
| * Return %true if fifo is initialized, otherwise %false. |
| * Assumes the fifo was 0 before. |
| */ |
| #define kfifo_initialized(fifo) ((fifo)->kfifo.mask) |
| |
| /** |
| * kfifo_esize - returns the size of the element managed by the fifo |
| * @fifo: address of the fifo to be used |
| */ |
| #define kfifo_esize(fifo) ((fifo)->kfifo.esize) |
| |
| /** |
| * kfifo_recsize - returns the size of the record length field |
| * @fifo: address of the fifo to be used |
| */ |
| #define kfifo_recsize(fifo) (sizeof(*(fifo)->rectype)) |
| |
| /** |
| * kfifo_size - returns the size of the fifo in elements |
| * @fifo: address of the fifo to be used |
| */ |
| #define kfifo_size(fifo) ((fifo)->kfifo.mask + 1) |
| |
| /** |
| * kfifo_reset - removes the entire fifo content |
| * @fifo: address of the fifo to be used |
| * |
| * Note: usage of kfifo_reset() is dangerous. It should be only called when the |
| * fifo is exclusived locked or when it is secured that no other thread is |
| * accessing the fifo. |
| */ |
| #define kfifo_reset(fifo) \ |
| (void)({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| __tmp->kfifo.in = __tmp->kfifo.out = 0; \ |
| }) |
| |
| /** |
| * kfifo_reset_out - skip fifo content |
| * @fifo: address of the fifo to be used |
| * |
| * Note: The usage of kfifo_reset_out() is safe until it will be only called |
| * from the reader thread and there is only one concurrent reader. Otherwise |
| * it is dangerous and must be handled in the same way as kfifo_reset(). |
| */ |
| #define kfifo_reset_out(fifo) \ |
| (void)({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| __tmp->kfifo.out = __tmp->kfifo.in; \ |
| }) |
| |
| /** |
| * kfifo_len - returns the number of used elements in the fifo |
| * @fifo: address of the fifo to be used |
| */ |
| #define kfifo_len(fifo) \ |
| ({ \ |
| typeof((fifo) + 1) __tmpl = (fifo); \ |
| __tmpl->kfifo.in - __tmpl->kfifo.out; \ |
| }) |
| |
| /** |
| * kfifo_is_empty - returns true if the fifo is empty |
| * @fifo: address of the fifo to be used |
| */ |
| #define kfifo_is_empty(fifo) \ |
| ({ \ |
| typeof((fifo) + 1) __tmpq = (fifo); \ |
| __tmpq->kfifo.in == __tmpq->kfifo.out; \ |
| }) |
| |
| /** |
| * kfifo_is_empty_spinlocked - returns true if the fifo is empty using |
| * a spinlock for locking |
| * @fifo: address of the fifo to be used |
| * @lock: spinlock to be used for locking |
| */ |
| #define kfifo_is_empty_spinlocked(fifo, lock) \ |
| ({ \ |
| unsigned long __flags; \ |
| bool __ret; \ |
| spin_lock_irqsave(lock, __flags); \ |
| __ret = kfifo_is_empty(fifo); \ |
| spin_unlock_irqrestore(lock, __flags); \ |
| __ret; \ |
| }) |
| |
| /** |
| * kfifo_is_empty_spinlocked_noirqsave - returns true if the fifo is empty |
| * using a spinlock for locking, doesn't disable interrupts |
| * @fifo: address of the fifo to be used |
| * @lock: spinlock to be used for locking |
| */ |
| #define kfifo_is_empty_spinlocked_noirqsave(fifo, lock) \ |
| ({ \ |
| bool __ret; \ |
| spin_lock(lock); \ |
| __ret = kfifo_is_empty(fifo); \ |
| spin_unlock(lock); \ |
| __ret; \ |
| }) |
| |
| /** |
| * kfifo_is_full - returns true if the fifo is full |
| * @fifo: address of the fifo to be used |
| */ |
| #define kfifo_is_full(fifo) \ |
| ({ \ |
| typeof((fifo) + 1) __tmpq = (fifo); \ |
| kfifo_len(__tmpq) > __tmpq->kfifo.mask; \ |
| }) |
| |
| /** |
| * kfifo_avail - returns the number of unused elements in the fifo |
| * @fifo: address of the fifo to be used |
| */ |
| #define kfifo_avail(fifo) \ |
| __kfifo_uint_must_check_helper( \ |
| ({ \ |
| typeof((fifo) + 1) __tmpq = (fifo); \ |
| const size_t __recsize = sizeof(*__tmpq->rectype); \ |
| unsigned int __avail = kfifo_size(__tmpq) - kfifo_len(__tmpq); \ |
| (__recsize) ? ((__avail <= __recsize) ? 0 : \ |
| __kfifo_max_r(__avail - __recsize, __recsize)) : \ |
| __avail; \ |
| }) \ |
| ) |
| |
| /** |
| * kfifo_skip_count - skip output data |
| * @fifo: address of the fifo to be used |
| * @count: count of data to skip |
| */ |
| #define kfifo_skip_count(fifo, count) do { \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| const size_t __recsize = sizeof(*__tmp->rectype); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| if (__recsize) \ |
| __kfifo_skip_r(__kfifo, __recsize); \ |
| else \ |
| __kfifo->out += (count); \ |
| } while(0) |
| |
| /** |
| * kfifo_skip - skip output data |
| * @fifo: address of the fifo to be used |
| */ |
| #define kfifo_skip(fifo) kfifo_skip_count(fifo, 1) |
| |
| /** |
| * kfifo_peek_len - gets the size of the next fifo record |
| * @fifo: address of the fifo to be used |
| * |
| * This function returns the size of the next fifo record in number of bytes. |
| */ |
| #define kfifo_peek_len(fifo) \ |
| __kfifo_uint_must_check_helper( \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| const size_t __recsize = sizeof(*__tmp->rectype); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| (!__recsize) ? kfifo_len(__tmp) * sizeof(*__tmp->type) : \ |
| __kfifo_len_r(__kfifo, __recsize); \ |
| }) \ |
| ) |
| |
| /** |
| * kfifo_alloc - dynamically allocates a new fifo buffer |
| * @fifo: pointer to the fifo |
| * @size: the number of elements in the fifo, this must be a power of 2 |
| * @gfp_mask: get_free_pages mask, passed to kmalloc() |
| * |
| * This macro dynamically allocates a new fifo buffer. |
| * |
| * The number of elements will be rounded-up to a power of 2. |
| * The fifo will be release with kfifo_free(). |
| * Return 0 if no error, otherwise an error code. |
| */ |
| #define kfifo_alloc(fifo, size, gfp_mask) \ |
| __kfifo_int_must_check_helper( \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| __is_kfifo_ptr(__tmp) ? \ |
| __kfifo_alloc(__kfifo, size, sizeof(*__tmp->type), gfp_mask) : \ |
| -EINVAL; \ |
| }) \ |
| ) |
| |
| /** |
| * kfifo_free - frees the fifo |
| * @fifo: the fifo to be freed |
| */ |
| #define kfifo_free(fifo) \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| if (__is_kfifo_ptr(__tmp)) \ |
| __kfifo_free(__kfifo); \ |
| }) |
| |
| /** |
| * kfifo_init - initialize a fifo using a preallocated buffer |
| * @fifo: the fifo to assign the buffer |
| * @buffer: the preallocated buffer to be used |
| * @size: the size of the internal buffer, this have to be a power of 2 |
| * |
| * This macro initializes a fifo using a preallocated buffer. |
| * |
| * The number of elements will be rounded-up to a power of 2. |
| * Return 0 if no error, otherwise an error code. |
| */ |
| #define kfifo_init(fifo, buffer, size) \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| __is_kfifo_ptr(__tmp) ? \ |
| __kfifo_init(__kfifo, buffer, size, sizeof(*__tmp->type)) : \ |
| -EINVAL; \ |
| }) |
| |
| /** |
| * kfifo_put - put data into the fifo |
| * @fifo: address of the fifo to be used |
| * @val: the data to be added |
| * |
| * This macro copies the given value into the fifo. |
| * It returns 0 if the fifo was full. Otherwise it returns the number |
| * processed elements. |
| * |
| * Note that with only one concurrent reader and one concurrent |
| * writer, you don't need extra locking to use these macro. |
| */ |
| #define kfifo_put(fifo, val) \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| typeof(*__tmp->const_type) __val = (val); \ |
| unsigned int __ret; \ |
| size_t __recsize = sizeof(*__tmp->rectype); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| if (__recsize) \ |
| __ret = __kfifo_in_r(__kfifo, &__val, sizeof(__val), \ |
| __recsize); \ |
| else { \ |
| __ret = !kfifo_is_full(__tmp); \ |
| if (__ret) { \ |
| (__is_kfifo_ptr(__tmp) ? \ |
| ((typeof(__tmp->type))__kfifo->data) : \ |
| (__tmp->buf) \ |
| )[__kfifo->in & __tmp->kfifo.mask] = \ |
| *(typeof(__tmp->type))&__val; \ |
| smp_wmb(); \ |
| __kfifo->in++; \ |
| } \ |
| } \ |
| __ret; \ |
| }) |
| |
| /** |
| * kfifo_get - get data from the fifo |
| * @fifo: address of the fifo to be used |
| * @val: address where to store the data |
| * |
| * This macro reads the data from the fifo. |
| * It returns 0 if the fifo was empty. Otherwise it returns the number |
| * processed elements. |
| * |
| * Note that with only one concurrent reader and one concurrent |
| * writer, you don't need extra locking to use these macro. |
| */ |
| #define kfifo_get(fifo, val) \ |
| __kfifo_uint_must_check_helper( \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| typeof(__tmp->ptr) __val = (val); \ |
| unsigned int __ret; \ |
| const size_t __recsize = sizeof(*__tmp->rectype); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| if (__recsize) \ |
| __ret = __kfifo_out_r(__kfifo, __val, sizeof(*__val), \ |
| __recsize); \ |
| else { \ |
| __ret = !kfifo_is_empty(__tmp); \ |
| if (__ret) { \ |
| *(typeof(__tmp->type))__val = \ |
| (__is_kfifo_ptr(__tmp) ? \ |
| ((typeof(__tmp->type))__kfifo->data) : \ |
| (__tmp->buf) \ |
| )[__kfifo->out & __tmp->kfifo.mask]; \ |
| smp_wmb(); \ |
| __kfifo->out++; \ |
| } \ |
| } \ |
| __ret; \ |
| }) \ |
| ) |
| |
| /** |
| * kfifo_peek - get data from the fifo without removing |
| * @fifo: address of the fifo to be used |
| * @val: address where to store the data |
| * |
| * This reads the data from the fifo without removing it from the fifo. |
| * It returns 0 if the fifo was empty. Otherwise it returns the number |
| * processed elements. |
| * |
| * Note that with only one concurrent reader and one concurrent |
| * writer, you don't need extra locking to use these macro. |
| */ |
| #define kfifo_peek(fifo, val) \ |
| __kfifo_uint_must_check_helper( \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| typeof(__tmp->ptr) __val = (val); \ |
| unsigned int __ret; \ |
| const size_t __recsize = sizeof(*__tmp->rectype); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| if (__recsize) \ |
| __ret = __kfifo_out_peek_r(__kfifo, __val, sizeof(*__val), \ |
| __recsize); \ |
| else { \ |
| __ret = !kfifo_is_empty(__tmp); \ |
| if (__ret) { \ |
| *(typeof(__tmp->type))__val = \ |
| (__is_kfifo_ptr(__tmp) ? \ |
| ((typeof(__tmp->type))__kfifo->data) : \ |
| (__tmp->buf) \ |
| )[__kfifo->out & __tmp->kfifo.mask]; \ |
| smp_wmb(); \ |
| } \ |
| } \ |
| __ret; \ |
| }) \ |
| ) |
| |
| /** |
| * kfifo_in - put data into the fifo |
| * @fifo: address of the fifo to be used |
| * @buf: the data to be added |
| * @n: number of elements to be added |
| * |
| * This macro copies the given buffer into the fifo and returns the |
| * number of copied elements. |
| * |
| * Note that with only one concurrent reader and one concurrent |
| * writer, you don't need extra locking to use these macro. |
| */ |
| #define kfifo_in(fifo, buf, n) \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| typeof(__tmp->ptr_const) __buf = (buf); \ |
| unsigned long __n = (n); \ |
| const size_t __recsize = sizeof(*__tmp->rectype); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| (__recsize) ?\ |
| __kfifo_in_r(__kfifo, __buf, __n, __recsize) : \ |
| __kfifo_in(__kfifo, __buf, __n); \ |
| }) |
| |
| /** |
| * kfifo_in_spinlocked - put data into the fifo using a spinlock for locking |
| * @fifo: address of the fifo to be used |
| * @buf: the data to be added |
| * @n: number of elements to be added |
| * @lock: pointer to the spinlock to use for locking |
| * |
| * This macro copies the given values buffer into the fifo and returns the |
| * number of copied elements. |
| */ |
| #define kfifo_in_spinlocked(fifo, buf, n, lock) \ |
| ({ \ |
| unsigned long __flags; \ |
| unsigned int __ret; \ |
| spin_lock_irqsave(lock, __flags); \ |
| __ret = kfifo_in(fifo, buf, n); \ |
| spin_unlock_irqrestore(lock, __flags); \ |
| __ret; \ |
| }) |
| |
| /** |
| * kfifo_in_spinlocked_noirqsave - put data into fifo using a spinlock for |
| * locking, don't disable interrupts |
| * @fifo: address of the fifo to be used |
| * @buf: the data to be added |
| * @n: number of elements to be added |
| * @lock: pointer to the spinlock to use for locking |
| * |
| * This is a variant of kfifo_in_spinlocked() but uses spin_lock/unlock() |
| * for locking and doesn't disable interrupts. |
| */ |
| #define kfifo_in_spinlocked_noirqsave(fifo, buf, n, lock) \ |
| ({ \ |
| unsigned int __ret; \ |
| spin_lock(lock); \ |
| __ret = kfifo_in(fifo, buf, n); \ |
| spin_unlock(lock); \ |
| __ret; \ |
| }) |
| |
| /* alias for kfifo_in_spinlocked, will be removed in a future release */ |
| #define kfifo_in_locked(fifo, buf, n, lock) \ |
| kfifo_in_spinlocked(fifo, buf, n, lock) |
| |
| /** |
| * kfifo_out - get data from the fifo |
| * @fifo: address of the fifo to be used |
| * @buf: pointer to the storage buffer |
| * @n: max. number of elements to get |
| * |
| * This macro gets some data from the fifo and returns the numbers of elements |
| * copied. |
| * |
| * Note that with only one concurrent reader and one concurrent |
| * writer, you don't need extra locking to use these macro. |
| */ |
| #define kfifo_out(fifo, buf, n) \ |
| __kfifo_uint_must_check_helper( \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| typeof(__tmp->ptr) __buf = (buf); \ |
| unsigned long __n = (n); \ |
| const size_t __recsize = sizeof(*__tmp->rectype); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| (__recsize) ?\ |
| __kfifo_out_r(__kfifo, __buf, __n, __recsize) : \ |
| __kfifo_out(__kfifo, __buf, __n); \ |
| }) \ |
| ) |
| |
| /** |
| * kfifo_out_spinlocked - get data from the fifo using a spinlock for locking |
| * @fifo: address of the fifo to be used |
| * @buf: pointer to the storage buffer |
| * @n: max. number of elements to get |
| * @lock: pointer to the spinlock to use for locking |
| * |
| * This macro gets the data from the fifo and returns the numbers of elements |
| * copied. |
| */ |
| #define kfifo_out_spinlocked(fifo, buf, n, lock) \ |
| __kfifo_uint_must_check_helper( \ |
| ({ \ |
| unsigned long __flags; \ |
| unsigned int __ret; \ |
| spin_lock_irqsave(lock, __flags); \ |
| __ret = kfifo_out(fifo, buf, n); \ |
| spin_unlock_irqrestore(lock, __flags); \ |
| __ret; \ |
| }) \ |
| ) |
| |
| /** |
| * kfifo_out_spinlocked_noirqsave - get data from the fifo using a spinlock |
| * for locking, don't disable interrupts |
| * @fifo: address of the fifo to be used |
| * @buf: pointer to the storage buffer |
| * @n: max. number of elements to get |
| * @lock: pointer to the spinlock to use for locking |
| * |
| * This is a variant of kfifo_out_spinlocked() which uses spin_lock/unlock() |
| * for locking and doesn't disable interrupts. |
| */ |
| #define kfifo_out_spinlocked_noirqsave(fifo, buf, n, lock) \ |
| __kfifo_uint_must_check_helper( \ |
| ({ \ |
| unsigned int __ret; \ |
| spin_lock(lock); \ |
| __ret = kfifo_out(fifo, buf, n); \ |
| spin_unlock(lock); \ |
| __ret; \ |
| }) \ |
| ) |
| |
| /* alias for kfifo_out_spinlocked, will be removed in a future release */ |
| #define kfifo_out_locked(fifo, buf, n, lock) \ |
| kfifo_out_spinlocked(fifo, buf, n, lock) |
| |
| /** |
| * kfifo_from_user - puts some data from user space into the fifo |
| * @fifo: address of the fifo to be used |
| * @from: pointer to the data to be added |
| * @len: the length of the data to be added |
| * @copied: pointer to output variable to store the number of copied bytes |
| * |
| * This macro copies at most @len bytes from the @from into the |
| * fifo, depending of the available space and returns -EFAULT/0. |
| * |
| * Note that with only one concurrent reader and one concurrent |
| * writer, you don't need extra locking to use these macro. |
| */ |
| #define kfifo_from_user(fifo, from, len, copied) \ |
| __kfifo_uint_must_check_helper( \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| const void __user *__from = (from); \ |
| unsigned int __len = (len); \ |
| unsigned int *__copied = (copied); \ |
| const size_t __recsize = sizeof(*__tmp->rectype); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| (__recsize) ? \ |
| __kfifo_from_user_r(__kfifo, __from, __len, __copied, __recsize) : \ |
| __kfifo_from_user(__kfifo, __from, __len, __copied); \ |
| }) \ |
| ) |
| |
| /** |
| * kfifo_to_user - copies data from the fifo into user space |
| * @fifo: address of the fifo to be used |
| * @to: where the data must be copied |
| * @len: the size of the destination buffer |
| * @copied: pointer to output variable to store the number of copied bytes |
| * |
| * This macro copies at most @len bytes from the fifo into the |
| * @to buffer and returns -EFAULT/0. |
| * |
| * Note that with only one concurrent reader and one concurrent |
| * writer, you don't need extra locking to use these macro. |
| */ |
| #define kfifo_to_user(fifo, to, len, copied) \ |
| __kfifo_int_must_check_helper( \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| void __user *__to = (to); \ |
| unsigned int __len = (len); \ |
| unsigned int *__copied = (copied); \ |
| const size_t __recsize = sizeof(*__tmp->rectype); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| (__recsize) ? \ |
| __kfifo_to_user_r(__kfifo, __to, __len, __copied, __recsize) : \ |
| __kfifo_to_user(__kfifo, __to, __len, __copied); \ |
| }) \ |
| ) |
| |
| /** |
| * kfifo_dma_in_prepare_mapped - setup a scatterlist for DMA input |
| * @fifo: address of the fifo to be used |
| * @sgl: pointer to the scatterlist array |
| * @nents: number of entries in the scatterlist array |
| * @len: number of elements to transfer |
| * @dma: mapped dma address to fill into @sgl |
| * |
| * This macro fills a scatterlist for DMA input. |
| * It returns the number entries in the scatterlist array. |
| * |
| * Note that with only one concurrent reader and one concurrent |
| * writer, you don't need extra locking to use these macros. |
| */ |
| #define kfifo_dma_in_prepare_mapped(fifo, sgl, nents, len, dma) \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| struct scatterlist *__sgl = (sgl); \ |
| int __nents = (nents); \ |
| unsigned int __len = (len); \ |
| const size_t __recsize = sizeof(*__tmp->rectype); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| (__recsize) ? \ |
| __kfifo_dma_in_prepare_r(__kfifo, __sgl, __nents, __len, __recsize, \ |
| dma) : \ |
| __kfifo_dma_in_prepare(__kfifo, __sgl, __nents, __len, dma); \ |
| }) |
| |
| #define kfifo_dma_in_prepare(fifo, sgl, nents, len) \ |
| kfifo_dma_in_prepare_mapped(fifo, sgl, nents, len, DMA_MAPPING_ERROR) |
| |
| /** |
| * kfifo_dma_in_finish - finish a DMA IN operation |
| * @fifo: address of the fifo to be used |
| * @len: number of bytes to received |
| * |
| * This macro finishes a DMA IN operation. The in counter will be updated by |
| * the len parameter. No error checking will be done. |
| * |
| * Note that with only one concurrent reader and one concurrent |
| * writer, you don't need extra locking to use these macros. |
| */ |
| #define kfifo_dma_in_finish(fifo, len) \ |
| (void)({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| unsigned int __len = (len); \ |
| const size_t __recsize = sizeof(*__tmp->rectype); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| if (__recsize) \ |
| __kfifo_dma_in_finish_r(__kfifo, __len, __recsize); \ |
| else \ |
| __kfifo->in += __len / sizeof(*__tmp->type); \ |
| }) |
| |
| /** |
| * kfifo_dma_out_prepare_mapped - setup a scatterlist for DMA output |
| * @fifo: address of the fifo to be used |
| * @sgl: pointer to the scatterlist array |
| * @nents: number of entries in the scatterlist array |
| * @len: number of elements to transfer |
| * @dma: mapped dma address to fill into @sgl |
| * |
| * This macro fills a scatterlist for DMA output which at most @len bytes |
| * to transfer. |
| * It returns the number entries in the scatterlist array. |
| * A zero means there is no space available and the scatterlist is not filled. |
| * |
| * Note that with only one concurrent reader and one concurrent |
| * writer, you don't need extra locking to use these macros. |
| */ |
| #define kfifo_dma_out_prepare_mapped(fifo, sgl, nents, len, dma) \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| struct scatterlist *__sgl = (sgl); \ |
| int __nents = (nents); \ |
| unsigned int __len = (len); \ |
| const size_t __recsize = sizeof(*__tmp->rectype); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| (__recsize) ? \ |
| __kfifo_dma_out_prepare_r(__kfifo, __sgl, __nents, __len, __recsize, \ |
| dma) : \ |
| __kfifo_dma_out_prepare(__kfifo, __sgl, __nents, __len, dma); \ |
| }) |
| |
| #define kfifo_dma_out_prepare(fifo, sgl, nents, len) \ |
| kfifo_dma_out_prepare_mapped(fifo, sgl, nents, len, DMA_MAPPING_ERROR) |
| |
| /** |
| * kfifo_dma_out_finish - finish a DMA OUT operation |
| * @fifo: address of the fifo to be used |
| * @len: number of bytes transferred |
| * |
| * This macro finishes a DMA OUT operation. The out counter will be updated by |
| * the len parameter. No error checking will be done. |
| * |
| * Note that with only one concurrent reader and one concurrent |
| * writer, you don't need extra locking to use these macros. |
| */ |
| #define kfifo_dma_out_finish(fifo, len) do { \ |
| typeof((fifo) + 1) ___tmp = (fifo); \ |
| kfifo_skip_count(___tmp, (len) / sizeof(*___tmp->type)); \ |
| } while (0) |
| |
| /** |
| * kfifo_out_peek - gets some data from the fifo |
| * @fifo: address of the fifo to be used |
| * @buf: pointer to the storage buffer |
| * @n: max. number of elements to get |
| * |
| * This macro gets the data from the fifo and returns the numbers of elements |
| * copied. The data is not removed from the fifo. |
| * |
| * Note that with only one concurrent reader and one concurrent |
| * writer, you don't need extra locking to use these macro. |
| */ |
| #define kfifo_out_peek(fifo, buf, n) \ |
| __kfifo_uint_must_check_helper( \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| typeof(__tmp->ptr) __buf = (buf); \ |
| unsigned long __n = (n); \ |
| const size_t __recsize = sizeof(*__tmp->rectype); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| (__recsize) ? \ |
| __kfifo_out_peek_r(__kfifo, __buf, __n, __recsize) : \ |
| __kfifo_out_peek(__kfifo, __buf, __n); \ |
| }) \ |
| ) |
| |
| /** |
| * kfifo_out_linear - gets a tail of/offset to available data |
| * @fifo: address of the fifo to be used |
| * @tail: pointer to an unsigned int to store the value of tail |
| * @n: max. number of elements to point at |
| * |
| * This macro obtains the offset (tail) to the available data in the fifo |
| * buffer and returns the |
| * numbers of elements available. It returns the available count till the end |
| * of data or till the end of the buffer. So that it can be used for linear |
| * data processing (like memcpy() of (@fifo->data + @tail) with count |
| * returned). |
| * |
| * Note that with only one concurrent reader and one concurrent |
| * writer, you don't need extra locking to use these macro. |
| */ |
| #define kfifo_out_linear(fifo, tail, n) \ |
| __kfifo_uint_must_check_helper( \ |
| ({ \ |
| typeof((fifo) + 1) __tmp = (fifo); \ |
| unsigned int *__tail = (tail); \ |
| unsigned long __n = (n); \ |
| const size_t __recsize = sizeof(*__tmp->rectype); \ |
| struct __kfifo *__kfifo = &__tmp->kfifo; \ |
| (__recsize) ? \ |
| __kfifo_out_linear_r(__kfifo, __tail, __n, __recsize) : \ |
| __kfifo_out_linear(__kfifo, __tail, __n); \ |
| }) \ |
| ) |
| |
| /** |
| * kfifo_out_linear_ptr - gets a pointer to the available data |
| * @fifo: address of the fifo to be used |
| * @ptr: pointer to data to store the pointer to tail |
| * @n: max. number of elements to point at |
| * |
| * Similarly to kfifo_out_linear(), this macro obtains the pointer to the |
| * available data in the fifo buffer and returns the numbers of elements |
| * available. It returns the available count till the end of available data or |
| * till the end of the buffer. So that it can be used for linear data |
| * processing (like memcpy() of @ptr with count returned). |
| * |
| * Note that with only one concurrent reader and one concurrent |
| * writer, you don't need extra locking to use these macro. |
| */ |
| #define kfifo_out_linear_ptr(fifo, ptr, n) \ |
| __kfifo_uint_must_check_helper( \ |
| ({ \ |
| typeof((fifo) + 1) ___tmp = (fifo); \ |
| unsigned int ___tail; \ |
| unsigned int ___n = kfifo_out_linear(___tmp, &___tail, (n)); \ |
| *(ptr) = ___tmp->kfifo.data + ___tail * kfifo_esize(___tmp); \ |
| ___n; \ |
| }) \ |
| ) |
| |
| |
| extern int __kfifo_alloc(struct __kfifo *fifo, unsigned int size, |
| size_t esize, gfp_t gfp_mask); |
| |
| extern void __kfifo_free(struct __kfifo *fifo); |
| |
| extern int __kfifo_init(struct __kfifo *fifo, void *buffer, |
| unsigned int size, size_t esize); |
| |
| extern unsigned int __kfifo_in(struct __kfifo *fifo, |
| const void *buf, unsigned int len); |
| |
| extern unsigned int __kfifo_out(struct __kfifo *fifo, |
| void *buf, unsigned int len); |
| |
| extern int __kfifo_from_user(struct __kfifo *fifo, |
| const void __user *from, unsigned long len, unsigned int *copied); |
| |
| extern int __kfifo_to_user(struct __kfifo *fifo, |
| void __user *to, unsigned long len, unsigned int *copied); |
| |
| extern unsigned int __kfifo_dma_in_prepare(struct __kfifo *fifo, |
| struct scatterlist *sgl, int nents, unsigned int len, dma_addr_t dma); |
| |
| extern unsigned int __kfifo_dma_out_prepare(struct __kfifo *fifo, |
| struct scatterlist *sgl, int nents, unsigned int len, dma_addr_t dma); |
| |
| extern unsigned int __kfifo_out_peek(struct __kfifo *fifo, |
| void *buf, unsigned int len); |
| |
| extern unsigned int __kfifo_out_linear(struct __kfifo *fifo, |
| unsigned int *tail, unsigned int n); |
| |
| extern unsigned int __kfifo_in_r(struct __kfifo *fifo, |
| const void *buf, unsigned int len, size_t recsize); |
| |
| extern unsigned int __kfifo_out_r(struct __kfifo *fifo, |
| void *buf, unsigned int len, size_t recsize); |
| |
| extern int __kfifo_from_user_r(struct __kfifo *fifo, |
| const void __user *from, unsigned long len, unsigned int *copied, |
| size_t recsize); |
| |
| extern int __kfifo_to_user_r(struct __kfifo *fifo, void __user *to, |
| unsigned long len, unsigned int *copied, size_t recsize); |
| |
| extern unsigned int __kfifo_dma_in_prepare_r(struct __kfifo *fifo, |
| struct scatterlist *sgl, int nents, unsigned int len, size_t recsize, |
| dma_addr_t dma); |
| |
| extern void __kfifo_dma_in_finish_r(struct __kfifo *fifo, |
| unsigned int len, size_t recsize); |
| |
| extern unsigned int __kfifo_dma_out_prepare_r(struct __kfifo *fifo, |
| struct scatterlist *sgl, int nents, unsigned int len, size_t recsize, |
| dma_addr_t dma); |
| |
| extern unsigned int __kfifo_len_r(struct __kfifo *fifo, size_t recsize); |
| |
| extern void __kfifo_skip_r(struct __kfifo *fifo, size_t recsize); |
| |
| extern unsigned int __kfifo_out_peek_r(struct __kfifo *fifo, |
| void *buf, unsigned int len, size_t recsize); |
| |
| extern unsigned int __kfifo_out_linear_r(struct __kfifo *fifo, |
| unsigned int *tail, unsigned int n, size_t recsize); |
| |
| extern unsigned int __kfifo_max_r(unsigned int len, size_t recsize); |
| |
| #endif |