blob: cb4611fe1b5b2647b827f8a307aefb785c2c71dc [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Generic OPP Interface
*
* Copyright (C) 2009-2010 Texas Instruments Incorporated.
* Nishanth Menon
* Romit Dasgupta
* Kevin Hilman
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/clk.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/device.h>
#include <linux/export.h>
#include <linux/pm_domain.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/xarray.h>
#include "opp.h"
/*
* The root of the list of all opp-tables. All opp_table structures branch off
* from here, with each opp_table containing the list of opps it supports in
* various states of availability.
*/
LIST_HEAD(opp_tables);
/* Lock to allow exclusive modification to the device and opp lists */
DEFINE_MUTEX(opp_table_lock);
/* Flag indicating that opp_tables list is being updated at the moment */
static bool opp_tables_busy;
/* OPP ID allocator */
static DEFINE_XARRAY_ALLOC1(opp_configs);
static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
{
struct opp_device *opp_dev;
bool found = false;
mutex_lock(&opp_table->lock);
list_for_each_entry(opp_dev, &opp_table->dev_list, node)
if (opp_dev->dev == dev) {
found = true;
break;
}
mutex_unlock(&opp_table->lock);
return found;
}
static struct opp_table *_find_opp_table_unlocked(struct device *dev)
{
struct opp_table *opp_table;
list_for_each_entry(opp_table, &opp_tables, node) {
if (_find_opp_dev(dev, opp_table)) {
_get_opp_table_kref(opp_table);
return opp_table;
}
}
return ERR_PTR(-ENODEV);
}
/**
* _find_opp_table() - find opp_table struct using device pointer
* @dev: device pointer used to lookup OPP table
*
* Search OPP table for one containing matching device.
*
* Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
* -EINVAL based on type of error.
*
* The callers must call dev_pm_opp_put_opp_table() after the table is used.
*/
struct opp_table *_find_opp_table(struct device *dev)
{
struct opp_table *opp_table;
if (IS_ERR_OR_NULL(dev)) {
pr_err("%s: Invalid parameters\n", __func__);
return ERR_PTR(-EINVAL);
}
mutex_lock(&opp_table_lock);
opp_table = _find_opp_table_unlocked(dev);
mutex_unlock(&opp_table_lock);
return opp_table;
}
/*
* Returns true if multiple clocks aren't there, else returns false with WARN.
*
* We don't force clk_count == 1 here as there are users who don't have a clock
* representation in the OPP table and manage the clock configuration themselves
* in an platform specific way.
*/
static bool assert_single_clk(struct opp_table *opp_table)
{
return !WARN_ON(opp_table->clk_count > 1);
}
/**
* dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
* @opp: opp for which voltage has to be returned for
*
* Return: voltage in micro volt corresponding to the opp, else
* return 0
*
* This is useful only for devices with single power supply.
*/
unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
{
if (IS_ERR_OR_NULL(opp)) {
pr_err("%s: Invalid parameters\n", __func__);
return 0;
}
return opp->supplies[0].u_volt;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
/**
* dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
* @opp: opp for which voltage has to be returned for
* @supplies: Placeholder for copying the supply information.
*
* Return: negative error number on failure, 0 otherwise on success after
* setting @supplies.
*
* This can be used for devices with any number of power supplies. The caller
* must ensure the @supplies array must contain space for each regulator.
*/
int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
struct dev_pm_opp_supply *supplies)
{
if (IS_ERR_OR_NULL(opp) || !supplies) {
pr_err("%s: Invalid parameters\n", __func__);
return -EINVAL;
}
memcpy(supplies, opp->supplies,
sizeof(*supplies) * opp->opp_table->regulator_count);
return 0;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
/**
* dev_pm_opp_get_power() - Gets the power corresponding to an opp
* @opp: opp for which power has to be returned for
*
* Return: power in micro watt corresponding to the opp, else
* return 0
*
* This is useful only for devices with single power supply.
*/
unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
{
unsigned long opp_power = 0;
int i;
if (IS_ERR_OR_NULL(opp)) {
pr_err("%s: Invalid parameters\n", __func__);
return 0;
}
for (i = 0; i < opp->opp_table->regulator_count; i++)
opp_power += opp->supplies[i].u_watt;
return opp_power;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
/**
* dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
* available opp with specified index
* @opp: opp for which frequency has to be returned for
* @index: index of the frequency within the required opp
*
* Return: frequency in hertz corresponding to the opp with specified index,
* else return 0
*/
unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
{
if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
pr_err("%s: Invalid parameters\n", __func__);
return 0;
}
return opp->rates[index];
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
/**
* dev_pm_opp_get_level() - Gets the level corresponding to an available opp
* @opp: opp for which level value has to be returned for
*
* Return: level read from device tree corresponding to the opp, else
* return U32_MAX.
*/
unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
{
if (IS_ERR_OR_NULL(opp) || !opp->available) {
pr_err("%s: Invalid parameters\n", __func__);
return 0;
}
return opp->level;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
/**
* dev_pm_opp_get_required_pstate() - Gets the required performance state
* corresponding to an available opp
* @opp: opp for which performance state has to be returned for
* @index: index of the required opp
*
* Return: performance state read from device tree corresponding to the
* required opp, else return U32_MAX.
*/
unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
unsigned int index)
{
if (IS_ERR_OR_NULL(opp) || !opp->available ||
index >= opp->opp_table->required_opp_count) {
pr_err("%s: Invalid parameters\n", __func__);
return 0;
}
/* required-opps not fully initialized yet */
if (lazy_linking_pending(opp->opp_table))
return 0;
/* The required OPP table must belong to a genpd */
if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
pr_err("%s: Performance state is only valid for genpds.\n", __func__);
return 0;
}
return opp->required_opps[index]->level;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
/**
* dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
* @opp: opp for which turbo mode is being verified
*
* Turbo OPPs are not for normal use, and can be enabled (under certain
* conditions) for short duration of times to finish high throughput work
* quickly. Running on them for longer times may overheat the chip.
*
* Return: true if opp is turbo opp, else false.
*/
bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
{
if (IS_ERR_OR_NULL(opp) || !opp->available) {
pr_err("%s: Invalid parameters\n", __func__);
return false;
}
return opp->turbo;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
/**
* dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
* @dev: device for which we do this operation
*
* Return: This function returns the max clock latency in nanoseconds.
*/
unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
{
struct opp_table *opp_table;
unsigned long clock_latency_ns;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return 0;
clock_latency_ns = opp_table->clock_latency_ns_max;
dev_pm_opp_put_opp_table(opp_table);
return clock_latency_ns;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
/**
* dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
* @dev: device for which we do this operation
*
* Return: This function returns the max voltage latency in nanoseconds.
*/
unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
{
struct opp_table *opp_table;
struct dev_pm_opp *opp;
struct regulator *reg;
unsigned long latency_ns = 0;
int ret, i, count;
struct {
unsigned long min;
unsigned long max;
} *uV;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return 0;
/* Regulator may not be required for the device */
if (!opp_table->regulators)
goto put_opp_table;
count = opp_table->regulator_count;
uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
if (!uV)
goto put_opp_table;
mutex_lock(&opp_table->lock);
for (i = 0; i < count; i++) {
uV[i].min = ~0;
uV[i].max = 0;
list_for_each_entry(opp, &opp_table->opp_list, node) {
if (!opp->available)
continue;
if (opp->supplies[i].u_volt_min < uV[i].min)
uV[i].min = opp->supplies[i].u_volt_min;
if (opp->supplies[i].u_volt_max > uV[i].max)
uV[i].max = opp->supplies[i].u_volt_max;
}
}
mutex_unlock(&opp_table->lock);
/*
* The caller needs to ensure that opp_table (and hence the regulator)
* isn't freed, while we are executing this routine.
*/
for (i = 0; i < count; i++) {
reg = opp_table->regulators[i];
ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
if (ret > 0)
latency_ns += ret * 1000;
}
kfree(uV);
put_opp_table:
dev_pm_opp_put_opp_table(opp_table);
return latency_ns;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
/**
* dev_pm_opp_get_max_transition_latency() - Get max transition latency in
* nanoseconds
* @dev: device for which we do this operation
*
* Return: This function returns the max transition latency, in nanoseconds, to
* switch from one OPP to other.
*/
unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
{
return dev_pm_opp_get_max_volt_latency(dev) +
dev_pm_opp_get_max_clock_latency(dev);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
/**
* dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
* @dev: device for which we do this operation
*
* Return: This function returns the frequency of the OPP marked as suspend_opp
* if one is available, else returns 0;
*/
unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
{
struct opp_table *opp_table;
unsigned long freq = 0;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return 0;
if (opp_table->suspend_opp && opp_table->suspend_opp->available)
freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
dev_pm_opp_put_opp_table(opp_table);
return freq;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
int _get_opp_count(struct opp_table *opp_table)
{
struct dev_pm_opp *opp;
int count = 0;
mutex_lock(&opp_table->lock);
list_for_each_entry(opp, &opp_table->opp_list, node) {
if (opp->available)
count++;
}
mutex_unlock(&opp_table->lock);
return count;
}
/**
* dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
* @dev: device for which we do this operation
*
* Return: This function returns the number of available opps if there are any,
* else returns 0 if none or the corresponding error value.
*/
int dev_pm_opp_get_opp_count(struct device *dev)
{
struct opp_table *opp_table;
int count;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
count = PTR_ERR(opp_table);
dev_dbg(dev, "%s: OPP table not found (%d)\n",
__func__, count);
return count;
}
count = _get_opp_count(opp_table);
dev_pm_opp_put_opp_table(opp_table);
return count;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
/* Helpers to read keys */
static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
{
return opp->rates[index];
}
static unsigned long _read_level(struct dev_pm_opp *opp, int index)
{
return opp->level;
}
static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
{
return opp->bandwidth[index].peak;
}
/* Generic comparison helpers */
static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
unsigned long opp_key, unsigned long key)
{
if (opp_key == key) {
*opp = temp_opp;
return true;
}
return false;
}
static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
unsigned long opp_key, unsigned long key)
{
if (opp_key >= key) {
*opp = temp_opp;
return true;
}
return false;
}
static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
unsigned long opp_key, unsigned long key)
{
if (opp_key > key)
return true;
*opp = temp_opp;
return false;
}
/* Generic key finding helpers */
static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
unsigned long *key, int index, bool available,
unsigned long (*read)(struct dev_pm_opp *opp, int index),
bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
unsigned long opp_key, unsigned long key),
bool (*assert)(struct opp_table *opp_table))
{
struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
/* Assert that the requirement is met */
if (assert && !assert(opp_table))
return ERR_PTR(-EINVAL);
mutex_lock(&opp_table->lock);
list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
if (temp_opp->available == available) {
if (compare(&opp, temp_opp, read(temp_opp, index), *key))
break;
}
}
/* Increment the reference count of OPP */
if (!IS_ERR(opp)) {
*key = read(opp, index);
dev_pm_opp_get(opp);
}
mutex_unlock(&opp_table->lock);
return opp;
}
static struct dev_pm_opp *
_find_key(struct device *dev, unsigned long *key, int index, bool available,
unsigned long (*read)(struct dev_pm_opp *opp, int index),
bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
unsigned long opp_key, unsigned long key),
bool (*assert)(struct opp_table *opp_table))
{
struct opp_table *opp_table;
struct dev_pm_opp *opp;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
PTR_ERR(opp_table));
return ERR_CAST(opp_table);
}
opp = _opp_table_find_key(opp_table, key, index, available, read,
compare, assert);
dev_pm_opp_put_opp_table(opp_table);
return opp;
}
static struct dev_pm_opp *_find_key_exact(struct device *dev,
unsigned long key, int index, bool available,
unsigned long (*read)(struct dev_pm_opp *opp, int index),
bool (*assert)(struct opp_table *opp_table))
{
/*
* The value of key will be updated here, but will be ignored as the
* caller doesn't need it.
*/
return _find_key(dev, &key, index, available, read, _compare_exact,
assert);
}
static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
unsigned long *key, int index, bool available,
unsigned long (*read)(struct dev_pm_opp *opp, int index),
bool (*assert)(struct opp_table *opp_table))
{
return _opp_table_find_key(opp_table, key, index, available, read,
_compare_ceil, assert);
}
static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
int index, bool available,
unsigned long (*read)(struct dev_pm_opp *opp, int index),
bool (*assert)(struct opp_table *opp_table))
{
return _find_key(dev, key, index, available, read, _compare_ceil,
assert);
}
static struct dev_pm_opp *_find_key_floor(struct device *dev,
unsigned long *key, int index, bool available,
unsigned long (*read)(struct dev_pm_opp *opp, int index),
bool (*assert)(struct opp_table *opp_table))
{
return _find_key(dev, key, index, available, read, _compare_floor,
assert);
}
/**
* dev_pm_opp_find_freq_exact() - search for an exact frequency
* @dev: device for which we do this operation
* @freq: frequency to search for
* @available: true/false - match for available opp
*
* Return: Searches for exact match in the opp table and returns pointer to the
* matching opp if found, else returns ERR_PTR in case of error and should
* be handled using IS_ERR. Error return values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* Note: available is a modifier for the search. if available=true, then the
* match is for exact matching frequency and is available in the stored OPP
* table. if false, the match is for exact frequency which is not available.
*
* This provides a mechanism to enable an opp which is not available currently
* or the opposite as well.
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
unsigned long freq, bool available)
{
return _find_key_exact(dev, freq, 0, available, _read_freq,
assert_single_clk);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
/**
* dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
* clock corresponding to the index
* @dev: Device for which we do this operation
* @freq: frequency to search for
* @index: Clock index
* @available: true/false - match for available opp
*
* Search for the matching exact OPP for the clock corresponding to the
* specified index from a starting freq for a device.
*
* Return: matching *opp , else returns ERR_PTR in case of error and should be
* handled using IS_ERR. Error return values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *
dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
u32 index, bool available)
{
return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
unsigned long *freq)
{
return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
assert_single_clk);
}
/**
* dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
* @dev: device for which we do this operation
* @freq: Start frequency
*
* Search for the matching ceil *available* OPP from a starting freq
* for a device.
*
* Return: matching *opp and refreshes *freq accordingly, else returns
* ERR_PTR in case of error and should be handled using IS_ERR. Error return
* values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
unsigned long *freq)
{
return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
/**
* dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
* clock corresponding to the index
* @dev: Device for which we do this operation
* @freq: Start frequency
* @index: Clock index
*
* Search for the matching ceil *available* OPP for the clock corresponding to
* the specified index from a starting freq for a device.
*
* Return: matching *opp and refreshes *freq accordingly, else returns
* ERR_PTR in case of error and should be handled using IS_ERR. Error return
* values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *
dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
u32 index)
{
return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
/**
* dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
* @dev: device for which we do this operation
* @freq: Start frequency
*
* Search for the matching floor *available* OPP from a starting freq
* for a device.
*
* Return: matching *opp and refreshes *freq accordingly, else returns
* ERR_PTR in case of error and should be handled using IS_ERR. Error return
* values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
unsigned long *freq)
{
return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
/**
* dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
* clock corresponding to the index
* @dev: Device for which we do this operation
* @freq: Start frequency
* @index: Clock index
*
* Search for the matching floor *available* OPP for the clock corresponding to
* the specified index from a starting freq for a device.
*
* Return: matching *opp and refreshes *freq accordingly, else returns
* ERR_PTR in case of error and should be handled using IS_ERR. Error return
* values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *
dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
u32 index)
{
return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
/**
* dev_pm_opp_find_level_exact() - search for an exact level
* @dev: device for which we do this operation
* @level: level to search for
*
* Return: Searches for exact match in the opp table and returns pointer to the
* matching opp if found, else returns ERR_PTR in case of error and should
* be handled using IS_ERR. Error return values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
unsigned int level)
{
return _find_key_exact(dev, level, 0, true, _read_level, NULL);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
/**
* dev_pm_opp_find_level_ceil() - search for an rounded up level
* @dev: device for which we do this operation
* @level: level to search for
*
* Return: Searches for rounded up match in the opp table and returns pointer
* to the matching opp if found, else returns ERR_PTR in case of error and
* should be handled using IS_ERR. Error return values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
unsigned int *level)
{
unsigned long temp = *level;
struct dev_pm_opp *opp;
opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
if (IS_ERR(opp))
return opp;
/* False match */
if (temp == OPP_LEVEL_UNSET) {
dev_err(dev, "%s: OPP levels aren't available\n", __func__);
dev_pm_opp_put(opp);
return ERR_PTR(-ENODEV);
}
*level = temp;
return opp;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
/**
* dev_pm_opp_find_level_floor() - Search for a rounded floor level
* @dev: device for which we do this operation
* @level: Start level
*
* Search for the matching floor *available* OPP from a starting level
* for a device.
*
* Return: matching *opp and refreshes *level accordingly, else returns
* ERR_PTR in case of error and should be handled using IS_ERR. Error return
* values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
unsigned int *level)
{
unsigned long temp = *level;
struct dev_pm_opp *opp;
opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
*level = temp;
return opp;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
/**
* dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
* @dev: device for which we do this operation
* @bw: start bandwidth
* @index: which bandwidth to compare, in case of OPPs with several values
*
* Search for the matching floor *available* OPP from a starting bandwidth
* for a device.
*
* Return: matching *opp and refreshes *bw accordingly, else returns
* ERR_PTR in case of error and should be handled using IS_ERR. Error return
* values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
int index)
{
unsigned long temp = *bw;
struct dev_pm_opp *opp;
opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
*bw = temp;
return opp;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
/**
* dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
* @dev: device for which we do this operation
* @bw: start bandwidth
* @index: which bandwidth to compare, in case of OPPs with several values
*
* Search for the matching floor *available* OPP from a starting bandwidth
* for a device.
*
* Return: matching *opp and refreshes *bw accordingly, else returns
* ERR_PTR in case of error and should be handled using IS_ERR. Error return
* values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
unsigned int *bw, int index)
{
unsigned long temp = *bw;
struct dev_pm_opp *opp;
opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
*bw = temp;
return opp;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
static int _set_opp_voltage(struct device *dev, struct regulator *reg,
struct dev_pm_opp_supply *supply)
{
int ret;
/* Regulator not available for device */
if (IS_ERR(reg)) {
dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
PTR_ERR(reg));
return 0;
}
dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
supply->u_volt_min, supply->u_volt, supply->u_volt_max);
ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
supply->u_volt, supply->u_volt_max);
if (ret)
dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
__func__, supply->u_volt_min, supply->u_volt,
supply->u_volt_max, ret);
return ret;
}
static int
_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
struct dev_pm_opp *opp, void *data, bool scaling_down)
{
unsigned long *target = data;
unsigned long freq;
int ret;
/* One of target and opp must be available */
if (target) {
freq = *target;
} else if (opp) {
freq = opp->rates[0];
} else {
WARN_ON(1);
return -EINVAL;
}
ret = clk_set_rate(opp_table->clk, freq);
if (ret) {
dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
ret);
} else {
opp_table->current_rate_single_clk = freq;
}
return ret;
}
/*
* Simple implementation for configuring multiple clocks. Configure clocks in
* the order in which they are present in the array while scaling up.
*/
int dev_pm_opp_config_clks_simple(struct device *dev,
struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
bool scaling_down)
{
int ret, i;
if (scaling_down) {
for (i = opp_table->clk_count - 1; i >= 0; i--) {
ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
if (ret) {
dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
ret);
return ret;
}
}
} else {
for (i = 0; i < opp_table->clk_count; i++) {
ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
if (ret) {
dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
ret);
return ret;
}
}
}
return 0;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
static int _opp_config_regulator_single(struct device *dev,
struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
struct regulator **regulators, unsigned int count)
{
struct regulator *reg = regulators[0];
int ret;
/* This function only supports single regulator per device */
if (WARN_ON(count > 1)) {
dev_err(dev, "multiple regulators are not supported\n");
return -EINVAL;
}
ret = _set_opp_voltage(dev, reg, new_opp->supplies);
if (ret)
return ret;
/*
* Enable the regulator after setting its voltages, otherwise it breaks
* some boot-enabled regulators.
*/
if (unlikely(!new_opp->opp_table->enabled)) {
ret = regulator_enable(reg);
if (ret < 0)
dev_warn(dev, "Failed to enable regulator: %d", ret);
}
return 0;
}
static int _set_opp_bw(const struct opp_table *opp_table,
struct dev_pm_opp *opp, struct device *dev)
{
u32 avg, peak;
int i, ret;
if (!opp_table->paths)
return 0;
for (i = 0; i < opp_table->path_count; i++) {
if (!opp) {
avg = 0;
peak = 0;
} else {
avg = opp->bandwidth[i].avg;
peak = opp->bandwidth[i].peak;
}
ret = icc_set_bw(opp_table->paths[i], avg, peak);
if (ret) {
dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
opp ? "set" : "remove", i, ret);
return ret;
}
}
return 0;
}
/* This is only called for PM domain for now */
static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
struct dev_pm_opp *opp, bool up)
{
struct device **devs = opp_table->required_devs;
struct dev_pm_opp *required_opp;
int index, target, delta, ret;
if (!devs)
return 0;
/* required-opps not fully initialized yet */
if (lazy_linking_pending(opp_table))
return -EBUSY;
/* Scaling up? Set required OPPs in normal order, else reverse */
if (up) {
index = 0;
target = opp_table->required_opp_count;
delta = 1;
} else {
index = opp_table->required_opp_count - 1;
target = -1;
delta = -1;
}
while (index != target) {
if (devs[index]) {
required_opp = opp ? opp->required_opps[index] : NULL;
ret = dev_pm_opp_set_opp(devs[index], required_opp);
if (ret)
return ret;
}
index += delta;
}
return 0;
}
static int _set_opp_level(struct device *dev, struct opp_table *opp_table,
struct dev_pm_opp *opp)
{
unsigned int level = 0;
int ret = 0;
if (opp) {
if (opp->level == OPP_LEVEL_UNSET)
return 0;
level = opp->level;
}
/* Request a new performance state through the device's PM domain. */
ret = dev_pm_domain_set_performance_state(dev, level);
if (ret)
dev_err(dev, "Failed to set performance state %u (%d)\n", level,
ret);
return ret;
}
static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
{
struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
unsigned long freq;
if (!IS_ERR(opp_table->clk)) {
freq = clk_get_rate(opp_table->clk);
opp = _find_freq_ceil(opp_table, &freq);
}
/*
* Unable to find the current OPP ? Pick the first from the list since
* it is in ascending order, otherwise rest of the code will need to
* make special checks to validate current_opp.
*/
if (IS_ERR(opp)) {
mutex_lock(&opp_table->lock);
opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
dev_pm_opp_get(opp);
mutex_unlock(&opp_table->lock);
}
opp_table->current_opp = opp;
}
static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
{
int ret;
if (!opp_table->enabled)
return 0;
/*
* Some drivers need to support cases where some platforms may
* have OPP table for the device, while others don't and
* opp_set_rate() just needs to behave like clk_set_rate().
*/
if (!_get_opp_count(opp_table))
return 0;
ret = _set_opp_bw(opp_table, NULL, dev);
if (ret)
return ret;
if (opp_table->regulators)
regulator_disable(opp_table->regulators[0]);
ret = _set_opp_level(dev, opp_table, NULL);
if (ret)
goto out;
ret = _set_required_opps(dev, opp_table, NULL, false);
out:
opp_table->enabled = false;
return ret;
}
static int _set_opp(struct device *dev, struct opp_table *opp_table,
struct dev_pm_opp *opp, void *clk_data, bool forced)
{
struct dev_pm_opp *old_opp;
int scaling_down, ret;
if (unlikely(!opp))
return _disable_opp_table(dev, opp_table);
/* Find the currently set OPP if we don't know already */
if (unlikely(!opp_table->current_opp))
_find_current_opp(dev, opp_table);
old_opp = opp_table->current_opp;
/* Return early if nothing to do */
if (!forced && old_opp == opp && opp_table->enabled) {
dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
return 0;
}
dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
opp->bandwidth ? opp->bandwidth[0].peak : 0);
scaling_down = _opp_compare_key(opp_table, old_opp, opp);
if (scaling_down == -1)
scaling_down = 0;
/* Scaling up? Configure required OPPs before frequency */
if (!scaling_down) {
ret = _set_required_opps(dev, opp_table, opp, true);
if (ret) {
dev_err(dev, "Failed to set required opps: %d\n", ret);
return ret;
}
ret = _set_opp_level(dev, opp_table, opp);
if (ret)
return ret;
ret = _set_opp_bw(opp_table, opp, dev);
if (ret) {
dev_err(dev, "Failed to set bw: %d\n", ret);
return ret;
}
if (opp_table->config_regulators) {
ret = opp_table->config_regulators(dev, old_opp, opp,
opp_table->regulators,
opp_table->regulator_count);
if (ret) {
dev_err(dev, "Failed to set regulator voltages: %d\n",
ret);
return ret;
}
}
}
if (opp_table->config_clks) {
ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
if (ret)
return ret;
}
/* Scaling down? Configure required OPPs after frequency */
if (scaling_down) {
if (opp_table->config_regulators) {
ret = opp_table->config_regulators(dev, old_opp, opp,
opp_table->regulators,
opp_table->regulator_count);
if (ret) {
dev_err(dev, "Failed to set regulator voltages: %d\n",
ret);
return ret;
}
}
ret = _set_opp_bw(opp_table, opp, dev);
if (ret) {
dev_err(dev, "Failed to set bw: %d\n", ret);
return ret;
}
ret = _set_opp_level(dev, opp_table, opp);
if (ret)
return ret;
ret = _set_required_opps(dev, opp_table, opp, false);
if (ret) {
dev_err(dev, "Failed to set required opps: %d\n", ret);
return ret;
}
}
opp_table->enabled = true;
dev_pm_opp_put(old_opp);
/* Make sure current_opp doesn't get freed */
dev_pm_opp_get(opp);
opp_table->current_opp = opp;
return ret;
}
/**
* dev_pm_opp_set_rate() - Configure new OPP based on frequency
* @dev: device for which we do this operation
* @target_freq: frequency to achieve
*
* This configures the power-supplies to the levels specified by the OPP
* corresponding to the target_freq, and programs the clock to a value <=
* target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
* provided by the opp, should have already rounded to the target OPP's
* frequency.
*/
int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
{
struct opp_table *opp_table;
unsigned long freq = 0, temp_freq;
struct dev_pm_opp *opp = NULL;
bool forced = false;
int ret;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
return PTR_ERR(opp_table);
}
if (target_freq) {
/*
* For IO devices which require an OPP on some platforms/SoCs
* while just needing to scale the clock on some others
* we look for empty OPP tables with just a clock handle and
* scale only the clk. This makes dev_pm_opp_set_rate()
* equivalent to a clk_set_rate()
*/
if (!_get_opp_count(opp_table)) {
ret = opp_table->config_clks(dev, opp_table, NULL,
&target_freq, false);
goto put_opp_table;
}
freq = clk_round_rate(opp_table->clk, target_freq);
if ((long)freq <= 0)
freq = target_freq;
/*
* The clock driver may support finer resolution of the
* frequencies than the OPP table, don't update the frequency we
* pass to clk_set_rate() here.
*/
temp_freq = freq;
opp = _find_freq_ceil(opp_table, &temp_freq);
if (IS_ERR(opp)) {
ret = PTR_ERR(opp);
dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
__func__, freq, ret);
goto put_opp_table;
}
/*
* An OPP entry specifies the highest frequency at which other
* properties of the OPP entry apply. Even if the new OPP is
* same as the old one, we may still reach here for a different
* value of the frequency. In such a case, do not abort but
* configure the hardware to the desired frequency forcefully.
*/
forced = opp_table->current_rate_single_clk != freq;
}
ret = _set_opp(dev, opp_table, opp, &freq, forced);
if (freq)
dev_pm_opp_put(opp);
put_opp_table:
dev_pm_opp_put_opp_table(opp_table);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
/**
* dev_pm_opp_set_opp() - Configure device for OPP
* @dev: device for which we do this operation
* @opp: OPP to set to
*
* This configures the device based on the properties of the OPP passed to this
* routine.
*
* Return: 0 on success, a negative error number otherwise.
*/
int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
{
struct opp_table *opp_table;
int ret;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
dev_err(dev, "%s: device opp doesn't exist\n", __func__);
return PTR_ERR(opp_table);
}
ret = _set_opp(dev, opp_table, opp, NULL, false);
dev_pm_opp_put_opp_table(opp_table);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
/* OPP-dev Helpers */
static void _remove_opp_dev(struct opp_device *opp_dev,
struct opp_table *opp_table)
{
opp_debug_unregister(opp_dev, opp_table);
list_del(&opp_dev->node);
kfree(opp_dev);
}
struct opp_device *_add_opp_dev(const struct device *dev,
struct opp_table *opp_table)
{
struct opp_device *opp_dev;
opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
if (!opp_dev)
return NULL;
/* Initialize opp-dev */
opp_dev->dev = dev;
mutex_lock(&opp_table->lock);
list_add(&opp_dev->node, &opp_table->dev_list);
mutex_unlock(&opp_table->lock);
/* Create debugfs entries for the opp_table */
opp_debug_register(opp_dev, opp_table);
return opp_dev;
}
static struct opp_table *_allocate_opp_table(struct device *dev, int index)
{
struct opp_table *opp_table;
struct opp_device *opp_dev;
int ret;
/*
* Allocate a new OPP table. In the infrequent case where a new
* device is needed to be added, we pay this penalty.
*/
opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
if (!opp_table)
return ERR_PTR(-ENOMEM);
mutex_init(&opp_table->lock);
INIT_LIST_HEAD(&opp_table->dev_list);
INIT_LIST_HEAD(&opp_table->lazy);
opp_table->clk = ERR_PTR(-ENODEV);
/* Mark regulator count uninitialized */
opp_table->regulator_count = -1;
opp_dev = _add_opp_dev(dev, opp_table);
if (!opp_dev) {
ret = -ENOMEM;
goto err;
}
_of_init_opp_table(opp_table, dev, index);
/* Find interconnect path(s) for the device */
ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
if (ret) {
if (ret == -EPROBE_DEFER)
goto remove_opp_dev;
dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
__func__, ret);
}
BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
INIT_LIST_HEAD(&opp_table->opp_list);
kref_init(&opp_table->kref);
return opp_table;
remove_opp_dev:
_of_clear_opp_table(opp_table);
_remove_opp_dev(opp_dev, opp_table);
mutex_destroy(&opp_table->lock);
err:
kfree(opp_table);
return ERR_PTR(ret);
}
void _get_opp_table_kref(struct opp_table *opp_table)
{
kref_get(&opp_table->kref);
}
static struct opp_table *_update_opp_table_clk(struct device *dev,
struct opp_table *opp_table,
bool getclk)
{
int ret;
/*
* Return early if we don't need to get clk or we have already done it
* earlier.
*/
if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
opp_table->clks)
return opp_table;
/* Find clk for the device */
opp_table->clk = clk_get(dev, NULL);
ret = PTR_ERR_OR_ZERO(opp_table->clk);
if (!ret) {
opp_table->config_clks = _opp_config_clk_single;
opp_table->clk_count = 1;
return opp_table;
}
if (ret == -ENOENT) {
/*
* There are few platforms which don't want the OPP core to
* manage device's clock settings. In such cases neither the
* platform provides the clks explicitly to us, nor the DT
* contains a valid clk entry. The OPP nodes in DT may still
* contain "opp-hz" property though, which we need to parse and
* allow the platform to find an OPP based on freq later on.
*
* This is a simple solution to take care of such corner cases,
* i.e. make the clk_count 1, which lets us allocate space for
* frequency in opp->rates and also parse the entries in DT.
*/
opp_table->clk_count = 1;
dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
return opp_table;
}
dev_pm_opp_put_opp_table(opp_table);
dev_err_probe(dev, ret, "Couldn't find clock\n");
return ERR_PTR(ret);
}
/*
* We need to make sure that the OPP table for a device doesn't get added twice,
* if this routine gets called in parallel with the same device pointer.
*
* The simplest way to enforce that is to perform everything (find existing
* table and if not found, create a new one) under the opp_table_lock, so only
* one creator gets access to the same. But that expands the critical section
* under the lock and may end up causing circular dependencies with frameworks
* like debugfs, interconnect or clock framework as they may be direct or
* indirect users of OPP core.
*
* And for that reason we have to go for a bit tricky implementation here, which
* uses the opp_tables_busy flag to indicate if another creator is in the middle
* of adding an OPP table and others should wait for it to finish.
*/
struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
bool getclk)
{
struct opp_table *opp_table;
again:
mutex_lock(&opp_table_lock);
opp_table = _find_opp_table_unlocked(dev);
if (!IS_ERR(opp_table))
goto unlock;
/*
* The opp_tables list or an OPP table's dev_list is getting updated by
* another user, wait for it to finish.
*/
if (unlikely(opp_tables_busy)) {
mutex_unlock(&opp_table_lock);
cpu_relax();
goto again;
}
opp_tables_busy = true;
opp_table = _managed_opp(dev, index);
/* Drop the lock to reduce the size of critical section */
mutex_unlock(&opp_table_lock);
if (opp_table) {
if (!_add_opp_dev(dev, opp_table)) {
dev_pm_opp_put_opp_table(opp_table);
opp_table = ERR_PTR(-ENOMEM);
}
mutex_lock(&opp_table_lock);
} else {
opp_table = _allocate_opp_table(dev, index);
mutex_lock(&opp_table_lock);
if (!IS_ERR(opp_table))
list_add(&opp_table->node, &opp_tables);
}
opp_tables_busy = false;
unlock:
mutex_unlock(&opp_table_lock);
return _update_opp_table_clk(dev, opp_table, getclk);
}
static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
{
return _add_opp_table_indexed(dev, 0, getclk);
}
struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
{
return _find_opp_table(dev);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
static void _opp_table_kref_release(struct kref *kref)
{
struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
struct opp_device *opp_dev, *temp;
int i;
/* Drop the lock as soon as we can */
list_del(&opp_table->node);
mutex_unlock(&opp_table_lock);
if (opp_table->current_opp)
dev_pm_opp_put(opp_table->current_opp);
_of_clear_opp_table(opp_table);
/* Release automatically acquired single clk */
if (!IS_ERR(opp_table->clk))
clk_put(opp_table->clk);
if (opp_table->paths) {
for (i = 0; i < opp_table->path_count; i++)
icc_put(opp_table->paths[i]);
kfree(opp_table->paths);
}
WARN_ON(!list_empty(&opp_table->opp_list));
list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
_remove_opp_dev(opp_dev, opp_table);
mutex_destroy(&opp_table->lock);
kfree(opp_table);
}
void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
{
kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
&opp_table_lock);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
void _opp_free(struct dev_pm_opp *opp)
{
kfree(opp);
}
static void _opp_kref_release(struct kref *kref)
{
struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
struct opp_table *opp_table = opp->opp_table;
list_del(&opp->node);
mutex_unlock(&opp_table->lock);
/*
* Notify the changes in the availability of the operable
* frequency/voltage list.
*/
blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
_of_clear_opp(opp_table, opp);
opp_debug_remove_one(opp);
kfree(opp);
}
void dev_pm_opp_get(struct dev_pm_opp *opp)
{
kref_get(&opp->kref);
}
void dev_pm_opp_put(struct dev_pm_opp *opp)
{
kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_put);
/**
* dev_pm_opp_remove() - Remove an OPP from OPP table
* @dev: device for which we do this operation
* @freq: OPP to remove with matching 'freq'
*
* This function removes an opp from the opp table.
*/
void dev_pm_opp_remove(struct device *dev, unsigned long freq)
{
struct dev_pm_opp *opp = NULL, *iter;
struct opp_table *opp_table;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return;
if (!assert_single_clk(opp_table))
goto put_table;
mutex_lock(&opp_table->lock);
list_for_each_entry(iter, &opp_table->opp_list, node) {
if (iter->rates[0] == freq) {
opp = iter;
break;
}
}
mutex_unlock(&opp_table->lock);
if (opp) {
dev_pm_opp_put(opp);
/* Drop the reference taken by dev_pm_opp_add() */
dev_pm_opp_put_opp_table(opp_table);
} else {
dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
__func__, freq);
}
put_table:
/* Drop the reference taken by _find_opp_table() */
dev_pm_opp_put_opp_table(opp_table);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
bool dynamic)
{
struct dev_pm_opp *opp = NULL, *temp;
mutex_lock(&opp_table->lock);
list_for_each_entry(temp, &opp_table->opp_list, node) {
/*
* Refcount must be dropped only once for each OPP by OPP core,
* do that with help of "removed" flag.
*/
if (!temp->removed && dynamic == temp->dynamic) {
opp = temp;
break;
}
}
mutex_unlock(&opp_table->lock);
return opp;
}
/*
* Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
* happen lock less to avoid circular dependency issues. This routine must be
* called without the opp_table->lock held.
*/
static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
{
struct dev_pm_opp *opp;
while ((opp = _opp_get_next(opp_table, dynamic))) {
opp->removed = true;
dev_pm_opp_put(opp);
/* Drop the references taken by dev_pm_opp_add() */
if (dynamic)
dev_pm_opp_put_opp_table(opp_table);
}
}
bool _opp_remove_all_static(struct opp_table *opp_table)
{
mutex_lock(&opp_table->lock);
if (!opp_table->parsed_static_opps) {
mutex_unlock(&opp_table->lock);
return false;
}
if (--opp_table->parsed_static_opps) {
mutex_unlock(&opp_table->lock);
return true;
}
mutex_unlock(&opp_table->lock);
_opp_remove_all(opp_table, false);
return true;
}
/**
* dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
* @dev: device for which we do this operation
*
* This function removes all dynamically created OPPs from the opp table.
*/
void dev_pm_opp_remove_all_dynamic(struct device *dev)
{
struct opp_table *opp_table;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return;
_opp_remove_all(opp_table, true);
/* Drop the reference taken by _find_opp_table() */
dev_pm_opp_put_opp_table(opp_table);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
{
struct dev_pm_opp *opp;
int supply_count, supply_size, icc_size, clk_size;
/* Allocate space for at least one supply */
supply_count = opp_table->regulator_count > 0 ?
opp_table->regulator_count : 1;
supply_size = sizeof(*opp->supplies) * supply_count;
clk_size = sizeof(*opp->rates) * opp_table->clk_count;
icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
/* allocate new OPP node and supplies structures */
opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
if (!opp)
return NULL;
/* Put the supplies, bw and clock at the end of the OPP structure */
opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
opp->rates = (unsigned long *)(opp->supplies + supply_count);
if (icc_size)
opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
INIT_LIST_HEAD(&opp->node);
opp->level = OPP_LEVEL_UNSET;
return opp;
}
static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
struct opp_table *opp_table)
{
struct regulator *reg;
int i;
if (!opp_table->regulators)
return true;
for (i = 0; i < opp_table->regulator_count; i++) {
reg = opp_table->regulators[i];
if (!regulator_is_supported_voltage(reg,
opp->supplies[i].u_volt_min,
opp->supplies[i].u_volt_max)) {
pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
__func__, opp->supplies[i].u_volt_min,
opp->supplies[i].u_volt_max);
return false;
}
}
return true;
}
static int _opp_compare_rate(struct opp_table *opp_table,
struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
{
int i;
for (i = 0; i < opp_table->clk_count; i++) {
if (opp1->rates[i] != opp2->rates[i])
return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
}
/* Same rates for both OPPs */
return 0;
}
static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
struct dev_pm_opp *opp2)
{
int i;
for (i = 0; i < opp_table->path_count; i++) {
if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
}
/* Same bw for both OPPs */
return 0;
}
/*
* Returns
* 0: opp1 == opp2
* 1: opp1 > opp2
* -1: opp1 < opp2
*/
int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
struct dev_pm_opp *opp2)
{
int ret;
ret = _opp_compare_rate(opp_table, opp1, opp2);
if (ret)
return ret;
ret = _opp_compare_bw(opp_table, opp1, opp2);
if (ret)
return ret;
if (opp1->level != opp2->level)
return opp1->level < opp2->level ? -1 : 1;
/* Duplicate OPPs */
return 0;
}
static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
struct opp_table *opp_table,
struct list_head **head)
{
struct dev_pm_opp *opp;
int opp_cmp;
/*
* Insert new OPP in order of increasing frequency and discard if
* already present.
*
* Need to use &opp_table->opp_list in the condition part of the 'for'
* loop, don't replace it with head otherwise it will become an infinite
* loop.
*/
list_for_each_entry(opp, &opp_table->opp_list, node) {
opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
if (opp_cmp > 0) {
*head = &opp->node;
continue;
}
if (opp_cmp < 0)
return 0;
/* Duplicate OPPs */
dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
__func__, opp->rates[0], opp->supplies[0].u_volt,
opp->available, new_opp->rates[0],
new_opp->supplies[0].u_volt, new_opp->available);
/* Should we compare voltages for all regulators here ? */
return opp->available &&
new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
}
return 0;
}
void _required_opps_available(struct dev_pm_opp *opp, int count)
{
int i;
for (i = 0; i < count; i++) {
if (opp->required_opps[i]->available)
continue;
opp->available = false;
pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
__func__, opp->required_opps[i]->np, opp->rates[0]);
return;
}
}
/*
* Returns:
* 0: On success. And appropriate error message for duplicate OPPs.
* -EBUSY: For OPP with same freq/volt and is available. The callers of
* _opp_add() must return 0 if they receive -EBUSY from it. This is to make
* sure we don't print error messages unnecessarily if different parts of
* kernel try to initialize the OPP table.
* -EEXIST: For OPP with same freq but different volt or is unavailable. This
* should be considered an error by the callers of _opp_add().
*/
int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
struct opp_table *opp_table)
{
struct list_head *head;
int ret;
mutex_lock(&opp_table->lock);
head = &opp_table->opp_list;
ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
if (ret) {
mutex_unlock(&opp_table->lock);
return ret;
}
list_add(&new_opp->node, head);
mutex_unlock(&opp_table->lock);
new_opp->opp_table = opp_table;
kref_init(&new_opp->kref);
opp_debug_create_one(new_opp, opp_table);
if (!_opp_supported_by_regulators(new_opp, opp_table)) {
new_opp->available = false;
dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
__func__, new_opp->rates[0]);
}
/* required-opps not fully initialized yet */
if (lazy_linking_pending(opp_table))
return 0;
_required_opps_available(new_opp, opp_table->required_opp_count);
return 0;
}
/**
* _opp_add_v1() - Allocate a OPP based on v1 bindings.
* @opp_table: OPP table
* @dev: device for which we do this operation
* @data: The OPP data for the OPP to add
* @dynamic: Dynamically added OPPs.
*
* This function adds an opp definition to the opp table and returns status.
* The opp is made available by default and it can be controlled using
* dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
*
* NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
* and freed by dev_pm_opp_of_remove_table.
*
* Return:
* 0 On success OR
* Duplicate OPPs (both freq and volt are same) and opp->available
* -EEXIST Freq are same and volt are different OR
* Duplicate OPPs (both freq and volt are same) and !opp->available
* -ENOMEM Memory allocation failure
*/
int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
struct dev_pm_opp_data *data, bool dynamic)
{
struct dev_pm_opp *new_opp;
unsigned long tol, u_volt = data->u_volt;
int ret;
if (!assert_single_clk(opp_table))
return -EINVAL;
new_opp = _opp_allocate(opp_table);
if (!new_opp)
return -ENOMEM;
/* populate the opp table */
new_opp->rates[0] = data->freq;
new_opp->level = data->level;
new_opp->turbo = data->turbo;
tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
new_opp->supplies[0].u_volt = u_volt;
new_opp->supplies[0].u_volt_min = u_volt - tol;
new_opp->supplies[0].u_volt_max = u_volt + tol;
new_opp->available = true;
new_opp->dynamic = dynamic;
ret = _opp_add(dev, new_opp, opp_table);
if (ret) {
/* Don't return error for duplicate OPPs */
if (ret == -EBUSY)
ret = 0;
goto free_opp;
}
/*
* Notify the changes in the availability of the operable
* frequency/voltage list.
*/
blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
return 0;
free_opp:
_opp_free(new_opp);
return ret;
}
/*
* This is required only for the V2 bindings, and it enables a platform to
* specify the hierarchy of versions it supports. OPP layer will then enable
* OPPs, which are available for those versions, based on its 'opp-supported-hw'
* property.
*/
static int _opp_set_supported_hw(struct opp_table *opp_table,
const u32 *versions, unsigned int count)
{
/* Another CPU that shares the OPP table has set the property ? */
if (opp_table->supported_hw)
return 0;
opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
GFP_KERNEL);
if (!opp_table->supported_hw)
return -ENOMEM;
opp_table->supported_hw_count = count;
return 0;
}
static void _opp_put_supported_hw(struct opp_table *opp_table)
{
if (opp_table->supported_hw) {
kfree(opp_table->supported_hw);
opp_table->supported_hw = NULL;
opp_table->supported_hw_count = 0;
}
}
/*
* This is required only for the V2 bindings, and it enables a platform to
* specify the extn to be used for certain property names. The properties to
* which the extension will apply are opp-microvolt and opp-microamp. OPP core
* should postfix the property name with -<name> while looking for them.
*/
static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
{
/* Another CPU that shares the OPP table has set the property ? */
if (!opp_table->prop_name) {
opp_table->prop_name = kstrdup(name, GFP_KERNEL);
if (!opp_table->prop_name)
return -ENOMEM;
}
return 0;
}
static void _opp_put_prop_name(struct opp_table *opp_table)
{
if (opp_table->prop_name) {
kfree(opp_table->prop_name);
opp_table->prop_name = NULL;
}
}
/*
* In order to support OPP switching, OPP layer needs to know the name of the
* device's regulators, as the core would be required to switch voltages as
* well.
*
* This must be called before any OPPs are initialized for the device.
*/
static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
const char * const names[])
{
const char * const *temp = names;
struct regulator *reg;
int count = 0, ret, i;
/* Count number of regulators */
while (*temp++)
count++;
if (!count)
return -EINVAL;
/* Another CPU that shares the OPP table has set the regulators ? */
if (opp_table->regulators)
return 0;
opp_table->regulators = kmalloc_array(count,
sizeof(*opp_table->regulators),
GFP_KERNEL);
if (!opp_table->regulators)
return -ENOMEM;
for (i = 0; i < count; i++) {
reg = regulator_get_optional(dev, names[i]);
if (IS_ERR(reg)) {
ret = dev_err_probe(dev, PTR_ERR(reg),
"%s: no regulator (%s) found\n",
__func__, names[i]);
goto free_regulators;
}
opp_table->regulators[i] = reg;
}
opp_table->regulator_count = count;
/* Set generic config_regulators() for single regulators here */
if (count == 1)
opp_table->config_regulators = _opp_config_regulator_single;
return 0;
free_regulators:
while (i != 0)
regulator_put(opp_table->regulators[--i]);
kfree(opp_table->regulators);
opp_table->regulators = NULL;
opp_table->regulator_count = -1;
return ret;
}
static void _opp_put_regulators(struct opp_table *opp_table)
{
int i;
if (!opp_table->regulators)
return;
if (opp_table->enabled) {
for (i = opp_table->regulator_count - 1; i >= 0; i--)
regulator_disable(opp_table->regulators[i]);
}
for (i = opp_table->regulator_count - 1; i >= 0; i--)
regulator_put(opp_table->regulators[i]);
kfree(opp_table->regulators);
opp_table->regulators = NULL;
opp_table->regulator_count = -1;
}
static void _put_clks(struct opp_table *opp_table, int count)
{
int i;
for (i = count - 1; i >= 0; i--)
clk_put(opp_table->clks[i]);
kfree(opp_table->clks);
opp_table->clks = NULL;
}
/*
* In order to support OPP switching, OPP layer needs to get pointers to the
* clocks for the device. Simple cases work fine without using this routine
* (i.e. by passing connection-id as NULL), but for a device with multiple
* clocks available, the OPP core needs to know the exact names of the clks to
* use.
*
* This must be called before any OPPs are initialized for the device.
*/
static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
const char * const names[],
config_clks_t config_clks)
{
const char * const *temp = names;
int count = 0, ret, i;
struct clk *clk;
/* Count number of clks */
while (*temp++)
count++;
/*
* This is a special case where we have a single clock, whose connection
* id name is NULL, i.e. first two entries are NULL in the array.
*/
if (!count && !names[1])
count = 1;
/* Fail early for invalid configurations */
if (!count || (!config_clks && count > 1))
return -EINVAL;
/* Another CPU that shares the OPP table has set the clkname ? */
if (opp_table->clks)
return 0;
opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
GFP_KERNEL);
if (!opp_table->clks)
return -ENOMEM;
/* Find clks for the device */
for (i = 0; i < count; i++) {
clk = clk_get(dev, names[i]);
if (IS_ERR(clk)) {
ret = dev_err_probe(dev, PTR_ERR(clk),
"%s: Couldn't find clock with name: %s\n",
__func__, names[i]);
goto free_clks;
}
opp_table->clks[i] = clk;
}
opp_table->clk_count = count;
opp_table->config_clks = config_clks;
/* Set generic single clk set here */
if (count == 1) {
if (!opp_table->config_clks)
opp_table->config_clks = _opp_config_clk_single;
/*
* We could have just dropped the "clk" field and used "clks"
* everywhere. Instead we kept the "clk" field around for
* following reasons:
*
* - avoiding clks[0] everywhere else.
* - not running single clk helpers for multiple clk usecase by
* mistake.
*
* Since this is single-clk case, just update the clk pointer
* too.
*/
opp_table->clk = opp_table->clks[0];
}
return 0;
free_clks:
_put_clks(opp_table, i);
return ret;
}
static void _opp_put_clknames(struct opp_table *opp_table)
{
if (!opp_table->clks)
return;
opp_table->config_clks = NULL;
opp_table->clk = ERR_PTR(-ENODEV);
_put_clks(opp_table, opp_table->clk_count);
}
/*
* This is useful to support platforms with multiple regulators per device.
*
* This must be called before any OPPs are initialized for the device.
*/
static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
struct device *dev, config_regulators_t config_regulators)
{
/* Another CPU that shares the OPP table has set the helper ? */
if (!opp_table->config_regulators)
opp_table->config_regulators = config_regulators;
return 0;
}
static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
{
if (opp_table->config_regulators)
opp_table->config_regulators = NULL;
}
static void _opp_detach_genpd(struct opp_table *opp_table)
{
int index;
for (index = 0; index < opp_table->required_opp_count; index++) {
if (!opp_table->required_devs[index])
continue;
dev_pm_domain_detach(opp_table->required_devs[index], false);
opp_table->required_devs[index] = NULL;
}
}
/*
* Multiple generic power domains for a device are supported with the help of
* virtual genpd devices, which are created for each consumer device - genpd
* pair. These are the device structures which are attached to the power domain
* and are required by the OPP core to set the performance state of the genpd.
* The same API also works for the case where single genpd is available and so
* we don't need to support that separately.
*
* This helper will normally be called by the consumer driver of the device
* "dev", as only that has details of the genpd names.
*
* This helper needs to be called once with a list of all genpd to attach.
* Otherwise the original device structure will be used instead by the OPP core.
*
* The order of entries in the names array must match the order in which
* "required-opps" are added in DT.
*/
static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
const char * const *names, struct device ***virt_devs)
{
struct device *virt_dev, *gdev;
struct opp_table *genpd_table;
int index = 0, ret = -EINVAL;
const char * const *name = names;
if (!opp_table->required_devs) {
dev_err(dev, "Required OPPs not available, can't attach genpd\n");
return -EINVAL;
}
/* Genpd core takes care of propagation to parent genpd */
if (opp_table->is_genpd) {
dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
return -EOPNOTSUPP;
}
/* Checking only the first one is enough ? */
if (opp_table->required_devs[0])
return 0;
while (*name) {
if (index >= opp_table->required_opp_count) {
dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
*name, opp_table->required_opp_count, index);
goto err;
}
virt_dev = dev_pm_domain_attach_by_name(dev, *name);
if (IS_ERR_OR_NULL(virt_dev)) {
ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
goto err;
}
/*
* The required_opp_tables parsing is not perfect, as the OPP
* core does the parsing solely based on the DT node pointers.
* The core sets the required_opp_tables entry to the first OPP
* table in the "opp_tables" list, that matches with the node
* pointer.
*
* If the target DT OPP table is used by multiple devices and
* they all create separate instances of 'struct opp_table' from
* it, then it is possible that the required_opp_tables entry
* may be set to the incorrect sibling device.
*
* Cross check it again and fix if required.
*/
gdev = dev_to_genpd_dev(virt_dev);
if (IS_ERR(gdev))
return PTR_ERR(gdev);
genpd_table = _find_opp_table(gdev);
if (!IS_ERR(genpd_table)) {
if (genpd_table != opp_table->required_opp_tables[index]) {
dev_pm_opp_put_opp_table(opp_table->required_opp_tables[index]);
opp_table->required_opp_tables[index] = genpd_table;
} else {
dev_pm_opp_put_opp_table(genpd_table);
}
}
/*
* Add the virtual genpd device as a user of the OPP table, so
* we can call dev_pm_opp_set_opp() on it directly.
*
* This will be automatically removed when the OPP table is
* removed, don't need to handle that here.
*/
if (!_add_opp_dev(virt_dev, opp_table->required_opp_tables[index])) {
ret = -ENOMEM;
goto err;
}
opp_table->required_devs[index] = virt_dev;
index++;
name++;
}
if (virt_devs)
*virt_devs = opp_table->required_devs;
return 0;
err:
_opp_detach_genpd(opp_table);
return ret;
}
static int _opp_set_required_devs(struct opp_table *opp_table,
struct device *dev,
struct device **required_devs)
{
int i;
if (!opp_table->required_devs) {
dev_err(dev, "Required OPPs not available, can't set required devs\n");
return -EINVAL;
}
/* Another device that shares the OPP table has set the required devs ? */
if (opp_table->required_devs[0])
return 0;
for (i = 0; i < opp_table->required_opp_count; i++) {
/* Genpd core takes care of propagation to parent genpd */
if (required_devs[i] && opp_table->is_genpd &&
opp_table->required_opp_tables[i]->is_genpd) {
dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
return -EOPNOTSUPP;
}
opp_table->required_devs[i] = required_devs[i];
}
return 0;
}
static void _opp_put_required_devs(struct opp_table *opp_table)
{
int i;
for (i = 0; i < opp_table->required_opp_count; i++)
opp_table->required_devs[i] = NULL;
}
static void _opp_clear_config(struct opp_config_data *data)
{
if (data->flags & OPP_CONFIG_REQUIRED_DEVS)
_opp_put_required_devs(data->opp_table);
else if (data->flags & OPP_CONFIG_GENPD)
_opp_detach_genpd(data->opp_table);
if (data->flags & OPP_CONFIG_REGULATOR)
_opp_put_regulators(data->opp_table);
if (data->flags & OPP_CONFIG_SUPPORTED_HW)
_opp_put_supported_hw(data->opp_table);
if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
_opp_put_config_regulators_helper(data->opp_table);
if (data->flags & OPP_CONFIG_PROP_NAME)
_opp_put_prop_name(data->opp_table);
if (data->flags & OPP_CONFIG_CLK)
_opp_put_clknames(data->opp_table);
dev_pm_opp_put_opp_table(data->opp_table);
kfree(data);
}
/**
* dev_pm_opp_set_config() - Set OPP configuration for the device.
* @dev: Device for which configuration is being set.
* @config: OPP configuration.
*
* This allows all device OPP configurations to be performed at once.
*
* This must be called before any OPPs are initialized for the device. This may
* be called multiple times for the same OPP table, for example once for each
* CPU that share the same table. This must be balanced by the same number of
* calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
*
* This returns a token to the caller, which must be passed to
* dev_pm_opp_clear_config() to free the resources later. The value of the
* returned token will be >= 1 for success and negative for errors. The minimum
* value of 1 is chosen here to make it easy for callers to manage the resource.
*/
int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
{
struct opp_table *opp_table;
struct opp_config_data *data;
unsigned int id;
int ret;
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
opp_table = _add_opp_table(dev, false);
if (IS_ERR(opp_table)) {
kfree(data);
return PTR_ERR(opp_table);
}
data->opp_table = opp_table;
data->flags = 0;
/* This should be called before OPPs are initialized */
if (WARN_ON(!list_empty(&opp_table->opp_list))) {
ret = -EBUSY;
goto err;
}
/* Configure clocks */
if (config->clk_names) {
ret = _opp_set_clknames(opp_table, dev, config->clk_names,
config->config_clks);
if (ret)
goto err;
data->flags |= OPP_CONFIG_CLK;
} else if (config->config_clks) {
/* Don't allow config callback without clocks */
ret = -EINVAL;
goto err;
}
/* Configure property names */
if (config->prop_name) {
ret = _opp_set_prop_name(opp_table, config->prop_name);
if (ret)
goto err;
data->flags |= OPP_CONFIG_PROP_NAME;
}
/* Configure config_regulators helper */
if (config->config_regulators) {
ret = _opp_set_config_regulators_helper(opp_table, dev,
config->config_regulators);
if (ret)
goto err;
data->flags |= OPP_CONFIG_REGULATOR_HELPER;
}
/* Configure supported hardware */
if (config->supported_hw) {
ret = _opp_set_supported_hw(opp_table, config->supported_hw,
config->supported_hw_count);
if (ret)
goto err;
data->flags |= OPP_CONFIG_SUPPORTED_HW;
}
/* Configure supplies */
if (config->regulator_names) {
ret = _opp_set_regulators(opp_table, dev,
config->regulator_names);
if (ret)
goto err;
data->flags |= OPP_CONFIG_REGULATOR;
}
/* Attach genpds */
if (config->genpd_names) {
if (config->required_devs)
goto err;
ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
config->virt_devs);
if (ret)
goto err;
data->flags |= OPP_CONFIG_GENPD;
} else if (config->required_devs) {
ret = _opp_set_required_devs(opp_table, dev,
config->required_devs);
if (ret)
goto err;
data->flags |= OPP_CONFIG_REQUIRED_DEVS;
}
ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
GFP_KERNEL);
if (ret)
goto err;
return id;
err:
_opp_clear_config(data);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
/**
* dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
* @token: The token returned by dev_pm_opp_set_config() previously.
*
* This allows all device OPP configurations to be cleared at once. This must be
* called once for each call made to dev_pm_opp_set_config(), in order to free
* the OPPs properly.
*
* Currently the first call itself ends up freeing all the OPP configurations,
* while the later ones only drop the OPP table reference. This works well for
* now as we would never want to use an half initialized OPP table and want to
* remove the configurations together.
*/
void dev_pm_opp_clear_config(int token)
{
struct opp_config_data *data;
/*
* This lets the callers call this unconditionally and keep their code
* simple.
*/
if (unlikely(token <= 0))
return;
data = xa_erase(&opp_configs, token);
if (WARN_ON(!data))
return;
_opp_clear_config(data);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
static void devm_pm_opp_config_release(void *token)
{
dev_pm_opp_clear_config((unsigned long)token);
}
/**
* devm_pm_opp_set_config() - Set OPP configuration for the device.
* @dev: Device for which configuration is being set.
* @config: OPP configuration.
*
* This allows all device OPP configurations to be performed at once.
* This is a resource-managed variant of dev_pm_opp_set_config().
*
* Return: 0 on success and errorno otherwise.
*/
int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
{
int token = dev_pm_opp_set_config(dev, config);
if (token < 0)
return token;
return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
(void *) ((unsigned long) token));
}
EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
/**
* dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
* @src_table: OPP table which has @dst_table as one of its required OPP table.
* @dst_table: Required OPP table of the @src_table.
* @src_opp: OPP from the @src_table.
*
* This function returns the OPP (present in @dst_table) pointed out by the
* "required-opps" property of the @src_opp (present in @src_table).
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*
* Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
*/
struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
struct opp_table *dst_table,
struct dev_pm_opp *src_opp)
{
struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
int i;
if (!src_table || !dst_table || !src_opp ||
!src_table->required_opp_tables)
return ERR_PTR(-EINVAL);
/* required-opps not fully initialized yet */
if (lazy_linking_pending(src_table))
return ERR_PTR(-EBUSY);
for (i = 0; i < src_table->required_opp_count; i++) {
if (src_table->required_opp_tables[i] == dst_table) {
mutex_lock(&src_table->lock);
list_for_each_entry(opp, &src_table->opp_list, node) {
if (opp == src_opp) {
dest_opp = opp->required_opps[i];
dev_pm_opp_get(dest_opp);
break;
}
}
mutex_unlock(&src_table->lock);
break;
}
}
if (IS_ERR(dest_opp)) {
pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
src_table, dst_table);
}
return dest_opp;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
/**
* dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
* @src_table: OPP table which has dst_table as one of its required OPP table.
* @dst_table: Required OPP table of the src_table.
* @pstate: Current performance state of the src_table.
*
* This Returns pstate of the OPP (present in @dst_table) pointed out by the
* "required-opps" property of the OPP (present in @src_table) which has
* performance state set to @pstate.
*
* Return: Zero or positive performance state on success, otherwise negative
* value on errors.
*/
int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
struct opp_table *dst_table,
unsigned int pstate)
{
struct dev_pm_opp *opp;
int dest_pstate = -EINVAL;
int i;
/*
* Normally the src_table will have the "required_opps" property set to
* point to one of the OPPs in the dst_table, but in some cases the
* genpd and its master have one to one mapping of performance states
* and so none of them have the "required-opps" property set. Return the
* pstate of the src_table as it is in such cases.
*/
if (!src_table || !src_table->required_opp_count)
return pstate;
/* Both OPP tables must belong to genpds */
if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
pr_err("%s: Performance state is only valid for genpds.\n", __func__);
return -EINVAL;
}
/* required-opps not fully initialized yet */
if (lazy_linking_pending(src_table))
return -EBUSY;
for (i = 0; i < src_table->required_opp_count; i++) {
if (src_table->required_opp_tables[i]->np == dst_table->np)
break;
}
if (unlikely(i == src_table->required_opp_count)) {
pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
__func__, src_table, dst_table);
return -EINVAL;
}
mutex_lock(&src_table->lock);
list_for_each_entry(opp, &src_table->opp_list, node) {
if (opp->level == pstate) {
dest_pstate = opp->required_opps[i]->level;
goto unlock;
}
}
pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
dst_table);
unlock:
mutex_unlock(&src_table->lock);
return dest_pstate;
}
/**
* dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
* @dev: The device for which we do this operation
* @data: The OPP data for the OPP to add
*
* This function adds an opp definition to the opp table and returns status.
* The opp is made available by default and it can be controlled using
* dev_pm_opp_enable/disable functions.
*
* Return:
* 0 On success OR
* Duplicate OPPs (both freq and volt are same) and opp->available
* -EEXIST Freq are same and volt are different OR
* Duplicate OPPs (both freq and volt are same) and !opp->available
* -ENOMEM Memory allocation failure
*/
int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
{
struct opp_table *opp_table;
int ret;
opp_table = _add_opp_table(dev, true);
if (IS_ERR(opp_table))
return PTR_ERR(opp_table);
/* Fix regulator count for dynamic OPPs */
opp_table->regulator_count = 1;
ret = _opp_add_v1(opp_table, dev, data, true);
if (ret)
dev_pm_opp_put_opp_table(opp_table);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
/**
* _opp_set_availability() - helper to set the availability of an opp
* @dev: device for which we do this operation
* @freq: OPP frequency to modify availability
* @availability_req: availability status requested for this opp
*
* Set the availability of an OPP, opp_{enable,disable} share a common logic
* which is isolated here.
*
* Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
* copy operation, returns 0 if no modification was done OR modification was
* successful.
*/
static int _opp_set_availability(struct device *dev, unsigned long freq,
bool availability_req)
{
struct opp_table *opp_table;
struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
int r = 0;
/* Find the opp_table */
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
r = PTR_ERR(opp_table);
dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
return r;
}
if (!assert_single_clk(opp_table)) {
r = -EINVAL;
goto put_table;
}
mutex_lock(&opp_table->lock);
/* Do we have the frequency? */
list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
if (tmp_opp->rates[0] == freq) {
opp = tmp_opp;
break;
}
}
if (IS_ERR(opp)) {
r = PTR_ERR(opp);
goto unlock;
}
/* Is update really needed? */
if (opp->available == availability_req)
goto unlock;
opp->available = availability_req;
dev_pm_opp_get(opp);
mutex_unlock(&opp_table->lock);
/* Notify the change of the OPP availability */
if (availability_req)
blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
opp);
else
blocking_notifier_call_chain(&opp_table->head,
OPP_EVENT_DISABLE, opp);
dev_pm_opp_put(opp);
goto put_table;
unlock:
mutex_unlock(&opp_table->lock);
put_table:
dev_pm_opp_put_opp_table(opp_table);
return r;
}
/**
* dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
* @dev: device for which we do this operation
* @freq: OPP frequency to adjust voltage of
* @u_volt: new OPP target voltage
* @u_volt_min: new OPP min voltage
* @u_volt_max: new OPP max voltage
*
* Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
* copy operation, returns 0 if no modifcation was done OR modification was
* successful.
*/
int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
unsigned long u_volt, unsigned long u_volt_min,
unsigned long u_volt_max)
{
struct opp_table *opp_table;
struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
int r = 0;
/* Find the opp_table */
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
r = PTR_ERR(opp_table);
dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
return r;
}
if (!assert_single_clk(opp_table)) {
r = -EINVAL;
goto put_table;
}
mutex_lock(&opp_table->lock);
/* Do we have the frequency? */
list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
if (tmp_opp->rates[0] == freq) {
opp = tmp_opp;
break;
}
}
if (IS_ERR(opp)) {
r = PTR_ERR(opp);
goto adjust_unlock;
}
/* Is update really needed? */
if (opp->supplies->u_volt == u_volt)
goto adjust_unlock;
opp->supplies->u_volt = u_volt;
opp->supplies->u_volt_min = u_volt_min;
opp->supplies->u_volt_max = u_volt_max;
dev_pm_opp_get(opp);
mutex_unlock(&opp_table->lock);
/* Notify the voltage change of the OPP */
blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
opp);
dev_pm_opp_put(opp);
goto put_table;
adjust_unlock:
mutex_unlock(&opp_table->lock);
put_table:
dev_pm_opp_put_opp_table(opp_table);
return r;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
/**
* dev_pm_opp_sync_regulators() - Sync state of voltage regulators
* @dev: device for which we do this operation
*
* Sync voltage state of the OPP table regulators.
*
* Return: 0 on success or a negative error value.
*/
int dev_pm_opp_sync_regulators(struct device *dev)
{
struct opp_table *opp_table;
struct regulator *reg;
int i, ret = 0;
/* Device may not have OPP table */
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return 0;
/* Regulator may not be required for the device */
if (unlikely(!opp_table->regulators))
goto put_table;
/* Nothing to sync if voltage wasn't changed */
if (!opp_table->enabled)
goto put_table;
for (i = 0; i < opp_table->regulator_count; i++) {
reg = opp_table->regulators[i];
ret = regulator_sync_voltage(reg);
if (ret)
break;
}
put_table:
/* Drop reference taken by _find_opp_table() */
dev_pm_opp_put_opp_table(opp_table);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
/**
* dev_pm_opp_enable() - Enable a specific OPP
* @dev: device for which we do this operation
* @freq: OPP frequency to enable
*
* Enables a provided opp. If the operation is valid, this returns 0, else the
* corresponding error value. It is meant to be used for users an OPP available
* after being temporarily made unavailable with dev_pm_opp_disable.
*
* Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
* copy operation, returns 0 if no modification was done OR modification was
* successful.
*/
int dev_pm_opp_enable(struct device *dev, unsigned long freq)
{
return _opp_set_availability(dev, freq, true);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
/**
* dev_pm_opp_disable() - Disable a specific OPP
* @dev: device for which we do this operation
* @freq: OPP frequency to disable
*
* Disables a provided opp. If the operation is valid, this returns
* 0, else the corresponding error value. It is meant to be a temporary
* control by users to make this OPP not available until the circumstances are
* right to make it available again (with a call to dev_pm_opp_enable).
*
* Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
* copy operation, returns 0 if no modification was done OR modification was
* successful.
*/
int dev_pm_opp_disable(struct device *dev, unsigned long freq)
{
return _opp_set_availability(dev, freq, false);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
/**
* dev_pm_opp_register_notifier() - Register OPP notifier for the device
* @dev: Device for which notifier needs to be registered
* @nb: Notifier block to be registered
*
* Return: 0 on success or a negative error value.
*/
int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
{
struct opp_table *opp_table;
int ret;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return PTR_ERR(opp_table);
ret = blocking_notifier_chain_register(&opp_table->head, nb);
dev_pm_opp_put_opp_table(opp_table);
return ret;
}
EXPORT_SYMBOL(dev_pm_opp_register_notifier);
/**
* dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
* @dev: Device for which notifier needs to be unregistered
* @nb: Notifier block to be unregistered
*
* Return: 0 on success or a negative error value.
*/
int dev_pm_opp_unregister_notifier(struct device *dev,
struct notifier_block *nb)
{
struct opp_table *opp_table;
int ret;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return PTR_ERR(opp_table);
ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
dev_pm_opp_put_opp_table(opp_table);
return ret;
}
EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
/**
* dev_pm_opp_remove_table() - Free all OPPs associated with the device
* @dev: device pointer used to lookup OPP table.
*
* Free both OPPs created using static entries present in DT and the
* dynamically added entries.
*/
void dev_pm_opp_remove_table(struct device *dev)
{
struct opp_table *opp_table;
/* Check for existing table for 'dev' */
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
int error = PTR_ERR(opp_table);
if (error != -ENODEV)
WARN(1, "%s: opp_table: %d\n",
IS_ERR_OR_NULL(dev) ?
"Invalid device" : dev_name(dev),
error);
return;
}
/*
* Drop the extra reference only if the OPP table was successfully added
* with dev_pm_opp_of_add_table() earlier.
**/
if (_opp_remove_all_static(opp_table))
dev_pm_opp_put_opp_table(opp_table);
/* Drop reference taken by _find_opp_table() */
dev_pm_opp_put_opp_table(opp_table);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);