| /* |
| * kernel/cpuset.c |
| * |
| * Processor and Memory placement constraints for sets of tasks. |
| * |
| * Copyright (C) 2003 BULL SA. |
| * Copyright (C) 2004-2007 Silicon Graphics, Inc. |
| * Copyright (C) 2006 Google, Inc |
| * |
| * Portions derived from Patrick Mochel's sysfs code. |
| * sysfs is Copyright (c) 2001-3 Patrick Mochel |
| * |
| * 2003-10-10 Written by Simon Derr. |
| * 2003-10-22 Updates by Stephen Hemminger. |
| * 2004 May-July Rework by Paul Jackson. |
| * 2006 Rework by Paul Menage to use generic cgroups |
| * 2008 Rework of the scheduler domains and CPU hotplug handling |
| * by Max Krasnyansky |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file COPYING in the main directory of the Linux |
| * distribution for more details. |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/cpuset.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/mempolicy.h> |
| #include <linux/mm.h> |
| #include <linux/memory.h> |
| #include <linux/export.h> |
| #include <linux/rcupdate.h> |
| #include <linux/sched.h> |
| #include <linux/sched/deadline.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/task.h> |
| #include <linux/security.h> |
| #include <linux/spinlock.h> |
| #include <linux/oom.h> |
| #include <linux/sched/isolation.h> |
| #include <linux/cgroup.h> |
| #include <linux/wait.h> |
| #include <linux/workqueue.h> |
| |
| DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); |
| DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); |
| |
| /* |
| * There could be abnormal cpuset configurations for cpu or memory |
| * node binding, add this key to provide a quick low-cost judgment |
| * of the situation. |
| */ |
| DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); |
| |
| /* See "Frequency meter" comments, below. */ |
| |
| struct fmeter { |
| int cnt; /* unprocessed events count */ |
| int val; /* most recent output value */ |
| time64_t time; /* clock (secs) when val computed */ |
| spinlock_t lock; /* guards read or write of above */ |
| }; |
| |
| /* |
| * Invalid partition error code |
| */ |
| enum prs_errcode { |
| PERR_NONE = 0, |
| PERR_INVCPUS, |
| PERR_INVPARENT, |
| PERR_NOTPART, |
| PERR_NOTEXCL, |
| PERR_NOCPUS, |
| PERR_HOTPLUG, |
| PERR_CPUSEMPTY, |
| PERR_HKEEPING, |
| }; |
| |
| static const char * const perr_strings[] = { |
| [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive", |
| [PERR_INVPARENT] = "Parent is an invalid partition root", |
| [PERR_NOTPART] = "Parent is not a partition root", |
| [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", |
| [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", |
| [PERR_HOTPLUG] = "No cpu available due to hotplug", |
| [PERR_CPUSEMPTY] = "cpuset.cpus is empty", |
| [PERR_HKEEPING] = "partition config conflicts with housekeeping setup", |
| }; |
| |
| struct cpuset { |
| struct cgroup_subsys_state css; |
| |
| unsigned long flags; /* "unsigned long" so bitops work */ |
| |
| /* |
| * On default hierarchy: |
| * |
| * The user-configured masks can only be changed by writing to |
| * cpuset.cpus and cpuset.mems, and won't be limited by the |
| * parent masks. |
| * |
| * The effective masks is the real masks that apply to the tasks |
| * in the cpuset. They may be changed if the configured masks are |
| * changed or hotplug happens. |
| * |
| * effective_mask == configured_mask & parent's effective_mask, |
| * and if it ends up empty, it will inherit the parent's mask. |
| * |
| * |
| * On legacy hierarchy: |
| * |
| * The user-configured masks are always the same with effective masks. |
| */ |
| |
| /* user-configured CPUs and Memory Nodes allow to tasks */ |
| cpumask_var_t cpus_allowed; |
| nodemask_t mems_allowed; |
| |
| /* effective CPUs and Memory Nodes allow to tasks */ |
| cpumask_var_t effective_cpus; |
| nodemask_t effective_mems; |
| |
| /* |
| * Exclusive CPUs dedicated to current cgroup (default hierarchy only) |
| * |
| * This exclusive CPUs must be a subset of cpus_allowed. A parent |
| * cgroup can only grant exclusive CPUs to one of its children. |
| * |
| * When the cgroup becomes a valid partition root, effective_xcpus |
| * defaults to cpus_allowed if not set. The effective_cpus of a valid |
| * partition root comes solely from its effective_xcpus and some of the |
| * effective_xcpus may be distributed to sub-partitions below & hence |
| * excluded from its effective_cpus. |
| */ |
| cpumask_var_t effective_xcpus; |
| |
| /* |
| * Exclusive CPUs as requested by the user (default hierarchy only) |
| */ |
| cpumask_var_t exclusive_cpus; |
| |
| /* |
| * This is old Memory Nodes tasks took on. |
| * |
| * - top_cpuset.old_mems_allowed is initialized to mems_allowed. |
| * - A new cpuset's old_mems_allowed is initialized when some |
| * task is moved into it. |
| * - old_mems_allowed is used in cpuset_migrate_mm() when we change |
| * cpuset.mems_allowed and have tasks' nodemask updated, and |
| * then old_mems_allowed is updated to mems_allowed. |
| */ |
| nodemask_t old_mems_allowed; |
| |
| struct fmeter fmeter; /* memory_pressure filter */ |
| |
| /* |
| * Tasks are being attached to this cpuset. Used to prevent |
| * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). |
| */ |
| int attach_in_progress; |
| |
| /* partition number for rebuild_sched_domains() */ |
| int pn; |
| |
| /* for custom sched domain */ |
| int relax_domain_level; |
| |
| /* number of valid sub-partitions */ |
| int nr_subparts; |
| |
| /* partition root state */ |
| int partition_root_state; |
| |
| /* |
| * Default hierarchy only: |
| * use_parent_ecpus - set if using parent's effective_cpus |
| * child_ecpus_count - # of children with use_parent_ecpus set |
| */ |
| int use_parent_ecpus; |
| int child_ecpus_count; |
| |
| /* |
| * number of SCHED_DEADLINE tasks attached to this cpuset, so that we |
| * know when to rebuild associated root domain bandwidth information. |
| */ |
| int nr_deadline_tasks; |
| int nr_migrate_dl_tasks; |
| u64 sum_migrate_dl_bw; |
| |
| /* Invalid partition error code, not lock protected */ |
| enum prs_errcode prs_err; |
| |
| /* Handle for cpuset.cpus.partition */ |
| struct cgroup_file partition_file; |
| |
| /* Remote partition silbling list anchored at remote_children */ |
| struct list_head remote_sibling; |
| }; |
| |
| /* |
| * Legacy hierarchy call to cgroup_transfer_tasks() is handled asynchrously |
| */ |
| struct cpuset_remove_tasks_struct { |
| struct work_struct work; |
| struct cpuset *cs; |
| }; |
| |
| /* |
| * Exclusive CPUs distributed out to sub-partitions of top_cpuset |
| */ |
| static cpumask_var_t subpartitions_cpus; |
| |
| /* |
| * Exclusive CPUs in isolated partitions |
| */ |
| static cpumask_var_t isolated_cpus; |
| |
| /* List of remote partition root children */ |
| static struct list_head remote_children; |
| |
| /* |
| * Partition root states: |
| * |
| * 0 - member (not a partition root) |
| * 1 - partition root |
| * 2 - partition root without load balancing (isolated) |
| * -1 - invalid partition root |
| * -2 - invalid isolated partition root |
| */ |
| #define PRS_MEMBER 0 |
| #define PRS_ROOT 1 |
| #define PRS_ISOLATED 2 |
| #define PRS_INVALID_ROOT -1 |
| #define PRS_INVALID_ISOLATED -2 |
| |
| static inline bool is_prs_invalid(int prs_state) |
| { |
| return prs_state < 0; |
| } |
| |
| /* |
| * Temporary cpumasks for working with partitions that are passed among |
| * functions to avoid memory allocation in inner functions. |
| */ |
| struct tmpmasks { |
| cpumask_var_t addmask, delmask; /* For partition root */ |
| cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ |
| }; |
| |
| static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) |
| { |
| return css ? container_of(css, struct cpuset, css) : NULL; |
| } |
| |
| /* Retrieve the cpuset for a task */ |
| static inline struct cpuset *task_cs(struct task_struct *task) |
| { |
| return css_cs(task_css(task, cpuset_cgrp_id)); |
| } |
| |
| static inline struct cpuset *parent_cs(struct cpuset *cs) |
| { |
| return css_cs(cs->css.parent); |
| } |
| |
| void inc_dl_tasks_cs(struct task_struct *p) |
| { |
| struct cpuset *cs = task_cs(p); |
| |
| cs->nr_deadline_tasks++; |
| } |
| |
| void dec_dl_tasks_cs(struct task_struct *p) |
| { |
| struct cpuset *cs = task_cs(p); |
| |
| cs->nr_deadline_tasks--; |
| } |
| |
| /* bits in struct cpuset flags field */ |
| typedef enum { |
| CS_ONLINE, |
| CS_CPU_EXCLUSIVE, |
| CS_MEM_EXCLUSIVE, |
| CS_MEM_HARDWALL, |
| CS_MEMORY_MIGRATE, |
| CS_SCHED_LOAD_BALANCE, |
| CS_SPREAD_PAGE, |
| CS_SPREAD_SLAB, |
| } cpuset_flagbits_t; |
| |
| /* convenient tests for these bits */ |
| static inline bool is_cpuset_online(struct cpuset *cs) |
| { |
| return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); |
| } |
| |
| static inline int is_cpu_exclusive(const struct cpuset *cs) |
| { |
| return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); |
| } |
| |
| static inline int is_mem_exclusive(const struct cpuset *cs) |
| { |
| return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); |
| } |
| |
| static inline int is_mem_hardwall(const struct cpuset *cs) |
| { |
| return test_bit(CS_MEM_HARDWALL, &cs->flags); |
| } |
| |
| static inline int is_sched_load_balance(const struct cpuset *cs) |
| { |
| return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); |
| } |
| |
| static inline int is_memory_migrate(const struct cpuset *cs) |
| { |
| return test_bit(CS_MEMORY_MIGRATE, &cs->flags); |
| } |
| |
| static inline int is_spread_page(const struct cpuset *cs) |
| { |
| return test_bit(CS_SPREAD_PAGE, &cs->flags); |
| } |
| |
| static inline int is_spread_slab(const struct cpuset *cs) |
| { |
| return test_bit(CS_SPREAD_SLAB, &cs->flags); |
| } |
| |
| static inline int is_partition_valid(const struct cpuset *cs) |
| { |
| return cs->partition_root_state > 0; |
| } |
| |
| static inline int is_partition_invalid(const struct cpuset *cs) |
| { |
| return cs->partition_root_state < 0; |
| } |
| |
| /* |
| * Callers should hold callback_lock to modify partition_root_state. |
| */ |
| static inline void make_partition_invalid(struct cpuset *cs) |
| { |
| if (cs->partition_root_state > 0) |
| cs->partition_root_state = -cs->partition_root_state; |
| } |
| |
| /* |
| * Send notification event of whenever partition_root_state changes. |
| */ |
| static inline void notify_partition_change(struct cpuset *cs, int old_prs) |
| { |
| if (old_prs == cs->partition_root_state) |
| return; |
| cgroup_file_notify(&cs->partition_file); |
| |
| /* Reset prs_err if not invalid */ |
| if (is_partition_valid(cs)) |
| WRITE_ONCE(cs->prs_err, PERR_NONE); |
| } |
| |
| static struct cpuset top_cpuset = { |
| .flags = BIT(CS_ONLINE) | BIT(CS_CPU_EXCLUSIVE) | |
| BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE), |
| .partition_root_state = PRS_ROOT, |
| .relax_domain_level = -1, |
| .remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling), |
| }; |
| |
| /** |
| * cpuset_for_each_child - traverse online children of a cpuset |
| * @child_cs: loop cursor pointing to the current child |
| * @pos_css: used for iteration |
| * @parent_cs: target cpuset to walk children of |
| * |
| * Walk @child_cs through the online children of @parent_cs. Must be used |
| * with RCU read locked. |
| */ |
| #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ |
| css_for_each_child((pos_css), &(parent_cs)->css) \ |
| if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) |
| |
| /** |
| * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants |
| * @des_cs: loop cursor pointing to the current descendant |
| * @pos_css: used for iteration |
| * @root_cs: target cpuset to walk ancestor of |
| * |
| * Walk @des_cs through the online descendants of @root_cs. Must be used |
| * with RCU read locked. The caller may modify @pos_css by calling |
| * css_rightmost_descendant() to skip subtree. @root_cs is included in the |
| * iteration and the first node to be visited. |
| */ |
| #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ |
| css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ |
| if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) |
| |
| /* |
| * There are two global locks guarding cpuset structures - cpuset_mutex and |
| * callback_lock. We also require taking task_lock() when dereferencing a |
| * task's cpuset pointer. See "The task_lock() exception", at the end of this |
| * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems |
| * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset |
| * structures. Note that cpuset_mutex needs to be a mutex as it is used in |
| * paths that rely on priority inheritance (e.g. scheduler - on RT) for |
| * correctness. |
| * |
| * A task must hold both locks to modify cpusets. If a task holds |
| * cpuset_mutex, it blocks others, ensuring that it is the only task able to |
| * also acquire callback_lock and be able to modify cpusets. It can perform |
| * various checks on the cpuset structure first, knowing nothing will change. |
| * It can also allocate memory while just holding cpuset_mutex. While it is |
| * performing these checks, various callback routines can briefly acquire |
| * callback_lock to query cpusets. Once it is ready to make the changes, it |
| * takes callback_lock, blocking everyone else. |
| * |
| * Calls to the kernel memory allocator can not be made while holding |
| * callback_lock, as that would risk double tripping on callback_lock |
| * from one of the callbacks into the cpuset code from within |
| * __alloc_pages(). |
| * |
| * If a task is only holding callback_lock, then it has read-only |
| * access to cpusets. |
| * |
| * Now, the task_struct fields mems_allowed and mempolicy may be changed |
| * by other task, we use alloc_lock in the task_struct fields to protect |
| * them. |
| * |
| * The cpuset_common_file_read() handlers only hold callback_lock across |
| * small pieces of code, such as when reading out possibly multi-word |
| * cpumasks and nodemasks. |
| * |
| * Accessing a task's cpuset should be done in accordance with the |
| * guidelines for accessing subsystem state in kernel/cgroup.c |
| */ |
| |
| static DEFINE_MUTEX(cpuset_mutex); |
| |
| void cpuset_lock(void) |
| { |
| mutex_lock(&cpuset_mutex); |
| } |
| |
| void cpuset_unlock(void) |
| { |
| mutex_unlock(&cpuset_mutex); |
| } |
| |
| static DEFINE_SPINLOCK(callback_lock); |
| |
| static struct workqueue_struct *cpuset_migrate_mm_wq; |
| |
| static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); |
| |
| static inline void check_insane_mems_config(nodemask_t *nodes) |
| { |
| if (!cpusets_insane_config() && |
| movable_only_nodes(nodes)) { |
| static_branch_enable(&cpusets_insane_config_key); |
| pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" |
| "Cpuset allocations might fail even with a lot of memory available.\n", |
| nodemask_pr_args(nodes)); |
| } |
| } |
| |
| /* |
| * Cgroup v2 behavior is used on the "cpus" and "mems" control files when |
| * on default hierarchy or when the cpuset_v2_mode flag is set by mounting |
| * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. |
| * With v2 behavior, "cpus" and "mems" are always what the users have |
| * requested and won't be changed by hotplug events. Only the effective |
| * cpus or mems will be affected. |
| */ |
| static inline bool is_in_v2_mode(void) |
| { |
| return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || |
| (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); |
| } |
| |
| /** |
| * partition_is_populated - check if partition has tasks |
| * @cs: partition root to be checked |
| * @excluded_child: a child cpuset to be excluded in task checking |
| * Return: true if there are tasks, false otherwise |
| * |
| * It is assumed that @cs is a valid partition root. @excluded_child should |
| * be non-NULL when this cpuset is going to become a partition itself. |
| */ |
| static inline bool partition_is_populated(struct cpuset *cs, |
| struct cpuset *excluded_child) |
| { |
| struct cgroup_subsys_state *css; |
| struct cpuset *child; |
| |
| if (cs->css.cgroup->nr_populated_csets) |
| return true; |
| if (!excluded_child && !cs->nr_subparts) |
| return cgroup_is_populated(cs->css.cgroup); |
| |
| rcu_read_lock(); |
| cpuset_for_each_child(child, css, cs) { |
| if (child == excluded_child) |
| continue; |
| if (is_partition_valid(child)) |
| continue; |
| if (cgroup_is_populated(child->css.cgroup)) { |
| rcu_read_unlock(); |
| return true; |
| } |
| } |
| rcu_read_unlock(); |
| return false; |
| } |
| |
| /* |
| * Return in pmask the portion of a task's cpusets's cpus_allowed that |
| * are online and are capable of running the task. If none are found, |
| * walk up the cpuset hierarchy until we find one that does have some |
| * appropriate cpus. |
| * |
| * One way or another, we guarantee to return some non-empty subset |
| * of cpu_online_mask. |
| * |
| * Call with callback_lock or cpuset_mutex held. |
| */ |
| static void guarantee_online_cpus(struct task_struct *tsk, |
| struct cpumask *pmask) |
| { |
| const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); |
| struct cpuset *cs; |
| |
| if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) |
| cpumask_copy(pmask, cpu_online_mask); |
| |
| rcu_read_lock(); |
| cs = task_cs(tsk); |
| |
| while (!cpumask_intersects(cs->effective_cpus, pmask)) |
| cs = parent_cs(cs); |
| |
| cpumask_and(pmask, pmask, cs->effective_cpus); |
| rcu_read_unlock(); |
| } |
| |
| /* |
| * Return in *pmask the portion of a cpusets's mems_allowed that |
| * are online, with memory. If none are online with memory, walk |
| * up the cpuset hierarchy until we find one that does have some |
| * online mems. The top cpuset always has some mems online. |
| * |
| * One way or another, we guarantee to return some non-empty subset |
| * of node_states[N_MEMORY]. |
| * |
| * Call with callback_lock or cpuset_mutex held. |
| */ |
| static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) |
| { |
| while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) |
| cs = parent_cs(cs); |
| nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); |
| } |
| |
| /* |
| * update task's spread flag if cpuset's page/slab spread flag is set |
| * |
| * Call with callback_lock or cpuset_mutex held. The check can be skipped |
| * if on default hierarchy. |
| */ |
| static void cpuset_update_task_spread_flags(struct cpuset *cs, |
| struct task_struct *tsk) |
| { |
| if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) |
| return; |
| |
| if (is_spread_page(cs)) |
| task_set_spread_page(tsk); |
| else |
| task_clear_spread_page(tsk); |
| |
| if (is_spread_slab(cs)) |
| task_set_spread_slab(tsk); |
| else |
| task_clear_spread_slab(tsk); |
| } |
| |
| /* |
| * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? |
| * |
| * One cpuset is a subset of another if all its allowed CPUs and |
| * Memory Nodes are a subset of the other, and its exclusive flags |
| * are only set if the other's are set. Call holding cpuset_mutex. |
| */ |
| |
| static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) |
| { |
| return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && |
| nodes_subset(p->mems_allowed, q->mems_allowed) && |
| is_cpu_exclusive(p) <= is_cpu_exclusive(q) && |
| is_mem_exclusive(p) <= is_mem_exclusive(q); |
| } |
| |
| /** |
| * alloc_cpumasks - allocate three cpumasks for cpuset |
| * @cs: the cpuset that have cpumasks to be allocated. |
| * @tmp: the tmpmasks structure pointer |
| * Return: 0 if successful, -ENOMEM otherwise. |
| * |
| * Only one of the two input arguments should be non-NULL. |
| */ |
| static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) |
| { |
| cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4; |
| |
| if (cs) { |
| pmask1 = &cs->cpus_allowed; |
| pmask2 = &cs->effective_cpus; |
| pmask3 = &cs->effective_xcpus; |
| pmask4 = &cs->exclusive_cpus; |
| } else { |
| pmask1 = &tmp->new_cpus; |
| pmask2 = &tmp->addmask; |
| pmask3 = &tmp->delmask; |
| pmask4 = NULL; |
| } |
| |
| if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) |
| goto free_one; |
| |
| if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) |
| goto free_two; |
| |
| if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL)) |
| goto free_three; |
| |
| |
| return 0; |
| |
| free_three: |
| free_cpumask_var(*pmask3); |
| free_two: |
| free_cpumask_var(*pmask2); |
| free_one: |
| free_cpumask_var(*pmask1); |
| return -ENOMEM; |
| } |
| |
| /** |
| * free_cpumasks - free cpumasks in a tmpmasks structure |
| * @cs: the cpuset that have cpumasks to be free. |
| * @tmp: the tmpmasks structure pointer |
| */ |
| static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) |
| { |
| if (cs) { |
| free_cpumask_var(cs->cpus_allowed); |
| free_cpumask_var(cs->effective_cpus); |
| free_cpumask_var(cs->effective_xcpus); |
| free_cpumask_var(cs->exclusive_cpus); |
| } |
| if (tmp) { |
| free_cpumask_var(tmp->new_cpus); |
| free_cpumask_var(tmp->addmask); |
| free_cpumask_var(tmp->delmask); |
| } |
| } |
| |
| /** |
| * alloc_trial_cpuset - allocate a trial cpuset |
| * @cs: the cpuset that the trial cpuset duplicates |
| */ |
| static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) |
| { |
| struct cpuset *trial; |
| |
| trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); |
| if (!trial) |
| return NULL; |
| |
| if (alloc_cpumasks(trial, NULL)) { |
| kfree(trial); |
| return NULL; |
| } |
| |
| cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); |
| cpumask_copy(trial->effective_cpus, cs->effective_cpus); |
| cpumask_copy(trial->effective_xcpus, cs->effective_xcpus); |
| cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus); |
| return trial; |
| } |
| |
| /** |
| * free_cpuset - free the cpuset |
| * @cs: the cpuset to be freed |
| */ |
| static inline void free_cpuset(struct cpuset *cs) |
| { |
| free_cpumasks(cs, NULL); |
| kfree(cs); |
| } |
| |
| static inline struct cpumask *fetch_xcpus(struct cpuset *cs) |
| { |
| return !cpumask_empty(cs->exclusive_cpus) ? cs->exclusive_cpus : |
| cpumask_empty(cs->effective_xcpus) ? cs->cpus_allowed |
| : cs->effective_xcpus; |
| } |
| |
| /* |
| * cpusets_are_exclusive() - check if two cpusets are exclusive |
| * |
| * Return true if exclusive, false if not |
| */ |
| static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2) |
| { |
| struct cpumask *xcpus1 = fetch_xcpus(cs1); |
| struct cpumask *xcpus2 = fetch_xcpus(cs2); |
| |
| if (cpumask_intersects(xcpus1, xcpus2)) |
| return false; |
| return true; |
| } |
| |
| /* |
| * validate_change_legacy() - Validate conditions specific to legacy (v1) |
| * behavior. |
| */ |
| static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial) |
| { |
| struct cgroup_subsys_state *css; |
| struct cpuset *c, *par; |
| int ret; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| /* Each of our child cpusets must be a subset of us */ |
| ret = -EBUSY; |
| cpuset_for_each_child(c, css, cur) |
| if (!is_cpuset_subset(c, trial)) |
| goto out; |
| |
| /* On legacy hierarchy, we must be a subset of our parent cpuset. */ |
| ret = -EACCES; |
| par = parent_cs(cur); |
| if (par && !is_cpuset_subset(trial, par)) |
| goto out; |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| /* |
| * validate_change() - Used to validate that any proposed cpuset change |
| * follows the structural rules for cpusets. |
| * |
| * If we replaced the flag and mask values of the current cpuset |
| * (cur) with those values in the trial cpuset (trial), would |
| * our various subset and exclusive rules still be valid? Presumes |
| * cpuset_mutex held. |
| * |
| * 'cur' is the address of an actual, in-use cpuset. Operations |
| * such as list traversal that depend on the actual address of the |
| * cpuset in the list must use cur below, not trial. |
| * |
| * 'trial' is the address of bulk structure copy of cur, with |
| * perhaps one or more of the fields cpus_allowed, mems_allowed, |
| * or flags changed to new, trial values. |
| * |
| * Return 0 if valid, -errno if not. |
| */ |
| |
| static int validate_change(struct cpuset *cur, struct cpuset *trial) |
| { |
| struct cgroup_subsys_state *css; |
| struct cpuset *c, *par; |
| int ret = 0; |
| |
| rcu_read_lock(); |
| |
| if (!is_in_v2_mode()) |
| ret = validate_change_legacy(cur, trial); |
| if (ret) |
| goto out; |
| |
| /* Remaining checks don't apply to root cpuset */ |
| if (cur == &top_cpuset) |
| goto out; |
| |
| par = parent_cs(cur); |
| |
| /* |
| * Cpusets with tasks - existing or newly being attached - can't |
| * be changed to have empty cpus_allowed or mems_allowed. |
| */ |
| ret = -ENOSPC; |
| if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { |
| if (!cpumask_empty(cur->cpus_allowed) && |
| cpumask_empty(trial->cpus_allowed)) |
| goto out; |
| if (!nodes_empty(cur->mems_allowed) && |
| nodes_empty(trial->mems_allowed)) |
| goto out; |
| } |
| |
| /* |
| * We can't shrink if we won't have enough room for SCHED_DEADLINE |
| * tasks. |
| */ |
| ret = -EBUSY; |
| if (is_cpu_exclusive(cur) && |
| !cpuset_cpumask_can_shrink(cur->cpus_allowed, |
| trial->cpus_allowed)) |
| goto out; |
| |
| /* |
| * If either I or some sibling (!= me) is exclusive, we can't |
| * overlap |
| */ |
| ret = -EINVAL; |
| cpuset_for_each_child(c, css, par) { |
| if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && |
| c != cur) { |
| if (!cpusets_are_exclusive(trial, c)) |
| goto out; |
| } |
| if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && |
| c != cur && |
| nodes_intersects(trial->mems_allowed, c->mems_allowed)) |
| goto out; |
| } |
| |
| ret = 0; |
| out: |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Helper routine for generate_sched_domains(). |
| * Do cpusets a, b have overlapping effective cpus_allowed masks? |
| */ |
| static int cpusets_overlap(struct cpuset *a, struct cpuset *b) |
| { |
| return cpumask_intersects(a->effective_cpus, b->effective_cpus); |
| } |
| |
| static void |
| update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) |
| { |
| if (dattr->relax_domain_level < c->relax_domain_level) |
| dattr->relax_domain_level = c->relax_domain_level; |
| return; |
| } |
| |
| static void update_domain_attr_tree(struct sched_domain_attr *dattr, |
| struct cpuset *root_cs) |
| { |
| struct cpuset *cp; |
| struct cgroup_subsys_state *pos_css; |
| |
| rcu_read_lock(); |
| cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { |
| /* skip the whole subtree if @cp doesn't have any CPU */ |
| if (cpumask_empty(cp->cpus_allowed)) { |
| pos_css = css_rightmost_descendant(pos_css); |
| continue; |
| } |
| |
| if (is_sched_load_balance(cp)) |
| update_domain_attr(dattr, cp); |
| } |
| rcu_read_unlock(); |
| } |
| |
| /* Must be called with cpuset_mutex held. */ |
| static inline int nr_cpusets(void) |
| { |
| /* jump label reference count + the top-level cpuset */ |
| return static_key_count(&cpusets_enabled_key.key) + 1; |
| } |
| |
| /* |
| * generate_sched_domains() |
| * |
| * This function builds a partial partition of the systems CPUs |
| * A 'partial partition' is a set of non-overlapping subsets whose |
| * union is a subset of that set. |
| * The output of this function needs to be passed to kernel/sched/core.c |
| * partition_sched_domains() routine, which will rebuild the scheduler's |
| * load balancing domains (sched domains) as specified by that partial |
| * partition. |
| * |
| * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst |
| * for a background explanation of this. |
| * |
| * Does not return errors, on the theory that the callers of this |
| * routine would rather not worry about failures to rebuild sched |
| * domains when operating in the severe memory shortage situations |
| * that could cause allocation failures below. |
| * |
| * Must be called with cpuset_mutex held. |
| * |
| * The three key local variables below are: |
| * cp - cpuset pointer, used (together with pos_css) to perform a |
| * top-down scan of all cpusets. For our purposes, rebuilding |
| * the schedulers sched domains, we can ignore !is_sched_load_ |
| * balance cpusets. |
| * csa - (for CpuSet Array) Array of pointers to all the cpusets |
| * that need to be load balanced, for convenient iterative |
| * access by the subsequent code that finds the best partition, |
| * i.e the set of domains (subsets) of CPUs such that the |
| * cpus_allowed of every cpuset marked is_sched_load_balance |
| * is a subset of one of these domains, while there are as |
| * many such domains as possible, each as small as possible. |
| * doms - Conversion of 'csa' to an array of cpumasks, for passing to |
| * the kernel/sched/core.c routine partition_sched_domains() in a |
| * convenient format, that can be easily compared to the prior |
| * value to determine what partition elements (sched domains) |
| * were changed (added or removed.) |
| * |
| * Finding the best partition (set of domains): |
| * The triple nested loops below over i, j, k scan over the |
| * load balanced cpusets (using the array of cpuset pointers in |
| * csa[]) looking for pairs of cpusets that have overlapping |
| * cpus_allowed, but which don't have the same 'pn' partition |
| * number and gives them in the same partition number. It keeps |
| * looping on the 'restart' label until it can no longer find |
| * any such pairs. |
| * |
| * The union of the cpus_allowed masks from the set of |
| * all cpusets having the same 'pn' value then form the one |
| * element of the partition (one sched domain) to be passed to |
| * partition_sched_domains(). |
| */ |
| static int generate_sched_domains(cpumask_var_t **domains, |
| struct sched_domain_attr **attributes) |
| { |
| struct cpuset *cp; /* top-down scan of cpusets */ |
| struct cpuset **csa; /* array of all cpuset ptrs */ |
| int csn; /* how many cpuset ptrs in csa so far */ |
| int i, j, k; /* indices for partition finding loops */ |
| cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ |
| struct sched_domain_attr *dattr; /* attributes for custom domains */ |
| int ndoms = 0; /* number of sched domains in result */ |
| int nslot; /* next empty doms[] struct cpumask slot */ |
| struct cgroup_subsys_state *pos_css; |
| bool root_load_balance = is_sched_load_balance(&top_cpuset); |
| |
| doms = NULL; |
| dattr = NULL; |
| csa = NULL; |
| |
| /* Special case for the 99% of systems with one, full, sched domain */ |
| if (root_load_balance && !top_cpuset.nr_subparts) { |
| ndoms = 1; |
| doms = alloc_sched_domains(ndoms); |
| if (!doms) |
| goto done; |
| |
| dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); |
| if (dattr) { |
| *dattr = SD_ATTR_INIT; |
| update_domain_attr_tree(dattr, &top_cpuset); |
| } |
| cpumask_and(doms[0], top_cpuset.effective_cpus, |
| housekeeping_cpumask(HK_TYPE_DOMAIN)); |
| |
| goto done; |
| } |
| |
| csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); |
| if (!csa) |
| goto done; |
| csn = 0; |
| |
| rcu_read_lock(); |
| if (root_load_balance) |
| csa[csn++] = &top_cpuset; |
| cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { |
| if (cp == &top_cpuset) |
| continue; |
| /* |
| * Continue traversing beyond @cp iff @cp has some CPUs and |
| * isn't load balancing. The former is obvious. The |
| * latter: All child cpusets contain a subset of the |
| * parent's cpus, so just skip them, and then we call |
| * update_domain_attr_tree() to calc relax_domain_level of |
| * the corresponding sched domain. |
| * |
| * If root is load-balancing, we can skip @cp if it |
| * is a subset of the root's effective_cpus. |
| */ |
| if (!cpumask_empty(cp->cpus_allowed) && |
| !(is_sched_load_balance(cp) && |
| cpumask_intersects(cp->cpus_allowed, |
| housekeeping_cpumask(HK_TYPE_DOMAIN)))) |
| continue; |
| |
| if (root_load_balance && |
| cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) |
| continue; |
| |
| if (is_sched_load_balance(cp) && |
| !cpumask_empty(cp->effective_cpus)) |
| csa[csn++] = cp; |
| |
| /* skip @cp's subtree if not a partition root */ |
| if (!is_partition_valid(cp)) |
| pos_css = css_rightmost_descendant(pos_css); |
| } |
| rcu_read_unlock(); |
| |
| for (i = 0; i < csn; i++) |
| csa[i]->pn = i; |
| ndoms = csn; |
| |
| restart: |
| /* Find the best partition (set of sched domains) */ |
| for (i = 0; i < csn; i++) { |
| struct cpuset *a = csa[i]; |
| int apn = a->pn; |
| |
| for (j = 0; j < csn; j++) { |
| struct cpuset *b = csa[j]; |
| int bpn = b->pn; |
| |
| if (apn != bpn && cpusets_overlap(a, b)) { |
| for (k = 0; k < csn; k++) { |
| struct cpuset *c = csa[k]; |
| |
| if (c->pn == bpn) |
| c->pn = apn; |
| } |
| ndoms--; /* one less element */ |
| goto restart; |
| } |
| } |
| } |
| |
| /* |
| * Now we know how many domains to create. |
| * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. |
| */ |
| doms = alloc_sched_domains(ndoms); |
| if (!doms) |
| goto done; |
| |
| /* |
| * The rest of the code, including the scheduler, can deal with |
| * dattr==NULL case. No need to abort if alloc fails. |
| */ |
| dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), |
| GFP_KERNEL); |
| |
| for (nslot = 0, i = 0; i < csn; i++) { |
| struct cpuset *a = csa[i]; |
| struct cpumask *dp; |
| int apn = a->pn; |
| |
| if (apn < 0) { |
| /* Skip completed partitions */ |
| continue; |
| } |
| |
| dp = doms[nslot]; |
| |
| if (nslot == ndoms) { |
| static int warnings = 10; |
| if (warnings) { |
| pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", |
| nslot, ndoms, csn, i, apn); |
| warnings--; |
| } |
| continue; |
| } |
| |
| cpumask_clear(dp); |
| if (dattr) |
| *(dattr + nslot) = SD_ATTR_INIT; |
| for (j = i; j < csn; j++) { |
| struct cpuset *b = csa[j]; |
| |
| if (apn == b->pn) { |
| cpumask_or(dp, dp, b->effective_cpus); |
| cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); |
| if (dattr) |
| update_domain_attr_tree(dattr + nslot, b); |
| |
| /* Done with this partition */ |
| b->pn = -1; |
| } |
| } |
| nslot++; |
| } |
| BUG_ON(nslot != ndoms); |
| |
| done: |
| kfree(csa); |
| |
| /* |
| * Fallback to the default domain if kmalloc() failed. |
| * See comments in partition_sched_domains(). |
| */ |
| if (doms == NULL) |
| ndoms = 1; |
| |
| *domains = doms; |
| *attributes = dattr; |
| return ndoms; |
| } |
| |
| static void dl_update_tasks_root_domain(struct cpuset *cs) |
| { |
| struct css_task_iter it; |
| struct task_struct *task; |
| |
| if (cs->nr_deadline_tasks == 0) |
| return; |
| |
| css_task_iter_start(&cs->css, 0, &it); |
| |
| while ((task = css_task_iter_next(&it))) |
| dl_add_task_root_domain(task); |
| |
| css_task_iter_end(&it); |
| } |
| |
| static void dl_rebuild_rd_accounting(void) |
| { |
| struct cpuset *cs = NULL; |
| struct cgroup_subsys_state *pos_css; |
| |
| lockdep_assert_held(&cpuset_mutex); |
| lockdep_assert_cpus_held(); |
| lockdep_assert_held(&sched_domains_mutex); |
| |
| rcu_read_lock(); |
| |
| /* |
| * Clear default root domain DL accounting, it will be computed again |
| * if a task belongs to it. |
| */ |
| dl_clear_root_domain(&def_root_domain); |
| |
| cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { |
| |
| if (cpumask_empty(cs->effective_cpus)) { |
| pos_css = css_rightmost_descendant(pos_css); |
| continue; |
| } |
| |
| css_get(&cs->css); |
| |
| rcu_read_unlock(); |
| |
| dl_update_tasks_root_domain(cs); |
| |
| rcu_read_lock(); |
| css_put(&cs->css); |
| } |
| rcu_read_unlock(); |
| } |
| |
| static void |
| partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], |
| struct sched_domain_attr *dattr_new) |
| { |
| mutex_lock(&sched_domains_mutex); |
| partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); |
| dl_rebuild_rd_accounting(); |
| mutex_unlock(&sched_domains_mutex); |
| } |
| |
| /* |
| * Rebuild scheduler domains. |
| * |
| * If the flag 'sched_load_balance' of any cpuset with non-empty |
| * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset |
| * which has that flag enabled, or if any cpuset with a non-empty |
| * 'cpus' is removed, then call this routine to rebuild the |
| * scheduler's dynamic sched domains. |
| * |
| * Call with cpuset_mutex held. Takes cpus_read_lock(). |
| */ |
| static void rebuild_sched_domains_locked(void) |
| { |
| struct cgroup_subsys_state *pos_css; |
| struct sched_domain_attr *attr; |
| cpumask_var_t *doms; |
| struct cpuset *cs; |
| int ndoms; |
| |
| lockdep_assert_cpus_held(); |
| lockdep_assert_held(&cpuset_mutex); |
| |
| /* |
| * If we have raced with CPU hotplug, return early to avoid |
| * passing doms with offlined cpu to partition_sched_domains(). |
| * Anyways, cpuset_handle_hotplug() will rebuild sched domains. |
| * |
| * With no CPUs in any subpartitions, top_cpuset's effective CPUs |
| * should be the same as the active CPUs, so checking only top_cpuset |
| * is enough to detect racing CPU offlines. |
| */ |
| if (cpumask_empty(subpartitions_cpus) && |
| !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) |
| return; |
| |
| /* |
| * With subpartition CPUs, however, the effective CPUs of a partition |
| * root should be only a subset of the active CPUs. Since a CPU in any |
| * partition root could be offlined, all must be checked. |
| */ |
| if (top_cpuset.nr_subparts) { |
| rcu_read_lock(); |
| cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { |
| if (!is_partition_valid(cs)) { |
| pos_css = css_rightmost_descendant(pos_css); |
| continue; |
| } |
| if (!cpumask_subset(cs->effective_cpus, |
| cpu_active_mask)) { |
| rcu_read_unlock(); |
| return; |
| } |
| } |
| rcu_read_unlock(); |
| } |
| |
| /* Generate domain masks and attrs */ |
| ndoms = generate_sched_domains(&doms, &attr); |
| |
| /* Have scheduler rebuild the domains */ |
| partition_and_rebuild_sched_domains(ndoms, doms, attr); |
| } |
| #else /* !CONFIG_SMP */ |
| static void rebuild_sched_domains_locked(void) |
| { |
| } |
| #endif /* CONFIG_SMP */ |
| |
| static void rebuild_sched_domains_cpuslocked(void) |
| { |
| mutex_lock(&cpuset_mutex); |
| rebuild_sched_domains_locked(); |
| mutex_unlock(&cpuset_mutex); |
| } |
| |
| void rebuild_sched_domains(void) |
| { |
| cpus_read_lock(); |
| rebuild_sched_domains_cpuslocked(); |
| cpus_read_unlock(); |
| } |
| |
| /** |
| * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. |
| * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed |
| * @new_cpus: the temp variable for the new effective_cpus mask |
| * |
| * Iterate through each task of @cs updating its cpus_allowed to the |
| * effective cpuset's. As this function is called with cpuset_mutex held, |
| * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask() |
| * is used instead of effective_cpus to make sure all offline CPUs are also |
| * included as hotplug code won't update cpumasks for tasks in top_cpuset. |
| */ |
| static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) |
| { |
| struct css_task_iter it; |
| struct task_struct *task; |
| bool top_cs = cs == &top_cpuset; |
| |
| css_task_iter_start(&cs->css, 0, &it); |
| while ((task = css_task_iter_next(&it))) { |
| const struct cpumask *possible_mask = task_cpu_possible_mask(task); |
| |
| if (top_cs) { |
| /* |
| * Percpu kthreads in top_cpuset are ignored |
| */ |
| if (kthread_is_per_cpu(task)) |
| continue; |
| cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus); |
| } else { |
| cpumask_and(new_cpus, possible_mask, cs->effective_cpus); |
| } |
| set_cpus_allowed_ptr(task, new_cpus); |
| } |
| css_task_iter_end(&it); |
| } |
| |
| /** |
| * compute_effective_cpumask - Compute the effective cpumask of the cpuset |
| * @new_cpus: the temp variable for the new effective_cpus mask |
| * @cs: the cpuset the need to recompute the new effective_cpus mask |
| * @parent: the parent cpuset |
| * |
| * The result is valid only if the given cpuset isn't a partition root. |
| */ |
| static void compute_effective_cpumask(struct cpumask *new_cpus, |
| struct cpuset *cs, struct cpuset *parent) |
| { |
| cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); |
| } |
| |
| /* |
| * Commands for update_parent_effective_cpumask |
| */ |
| enum partition_cmd { |
| partcmd_enable, /* Enable partition root */ |
| partcmd_enablei, /* Enable isolated partition root */ |
| partcmd_disable, /* Disable partition root */ |
| partcmd_update, /* Update parent's effective_cpus */ |
| partcmd_invalidate, /* Make partition invalid */ |
| }; |
| |
| static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, |
| int turning_on); |
| static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, |
| struct tmpmasks *tmp); |
| |
| /* |
| * Update partition exclusive flag |
| * |
| * Return: 0 if successful, an error code otherwise |
| */ |
| static int update_partition_exclusive(struct cpuset *cs, int new_prs) |
| { |
| bool exclusive = (new_prs > 0); |
| |
| if (exclusive && !is_cpu_exclusive(cs)) { |
| if (update_flag(CS_CPU_EXCLUSIVE, cs, 1)) |
| return PERR_NOTEXCL; |
| } else if (!exclusive && is_cpu_exclusive(cs)) { |
| /* Turning off CS_CPU_EXCLUSIVE will not return error */ |
| update_flag(CS_CPU_EXCLUSIVE, cs, 0); |
| } |
| return 0; |
| } |
| |
| /* |
| * Update partition load balance flag and/or rebuild sched domain |
| * |
| * Changing load balance flag will automatically call |
| * rebuild_sched_domains_locked(). |
| * This function is for cgroup v2 only. |
| */ |
| static void update_partition_sd_lb(struct cpuset *cs, int old_prs) |
| { |
| int new_prs = cs->partition_root_state; |
| bool rebuild_domains = (new_prs > 0) || (old_prs > 0); |
| bool new_lb; |
| |
| /* |
| * If cs is not a valid partition root, the load balance state |
| * will follow its parent. |
| */ |
| if (new_prs > 0) { |
| new_lb = (new_prs != PRS_ISOLATED); |
| } else { |
| new_lb = is_sched_load_balance(parent_cs(cs)); |
| } |
| if (new_lb != !!is_sched_load_balance(cs)) { |
| rebuild_domains = true; |
| if (new_lb) |
| set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); |
| else |
| clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); |
| } |
| |
| if (rebuild_domains) |
| rebuild_sched_domains_locked(); |
| } |
| |
| /* |
| * tasks_nocpu_error - Return true if tasks will have no effective_cpus |
| */ |
| static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs, |
| struct cpumask *xcpus) |
| { |
| /* |
| * A populated partition (cs or parent) can't have empty effective_cpus |
| */ |
| return (cpumask_subset(parent->effective_cpus, xcpus) && |
| partition_is_populated(parent, cs)) || |
| (!cpumask_intersects(xcpus, cpu_active_mask) && |
| partition_is_populated(cs, NULL)); |
| } |
| |
| static void reset_partition_data(struct cpuset *cs) |
| { |
| struct cpuset *parent = parent_cs(cs); |
| |
| if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) |
| return; |
| |
| lockdep_assert_held(&callback_lock); |
| |
| cs->nr_subparts = 0; |
| if (cpumask_empty(cs->exclusive_cpus)) { |
| cpumask_clear(cs->effective_xcpus); |
| if (is_cpu_exclusive(cs)) |
| clear_bit(CS_CPU_EXCLUSIVE, &cs->flags); |
| } |
| if (!cpumask_and(cs->effective_cpus, |
| parent->effective_cpus, cs->cpus_allowed)) { |
| cs->use_parent_ecpus = true; |
| parent->child_ecpus_count++; |
| cpumask_copy(cs->effective_cpus, parent->effective_cpus); |
| } |
| } |
| |
| /* |
| * partition_xcpus_newstate - Exclusive CPUs state change |
| * @old_prs: old partition_root_state |
| * @new_prs: new partition_root_state |
| * @xcpus: exclusive CPUs with state change |
| */ |
| static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus) |
| { |
| WARN_ON_ONCE(old_prs == new_prs); |
| if (new_prs == PRS_ISOLATED) |
| cpumask_or(isolated_cpus, isolated_cpus, xcpus); |
| else |
| cpumask_andnot(isolated_cpus, isolated_cpus, xcpus); |
| } |
| |
| /* |
| * partition_xcpus_add - Add new exclusive CPUs to partition |
| * @new_prs: new partition_root_state |
| * @parent: parent cpuset |
| * @xcpus: exclusive CPUs to be added |
| * Return: true if isolated_cpus modified, false otherwise |
| * |
| * Remote partition if parent == NULL |
| */ |
| static bool partition_xcpus_add(int new_prs, struct cpuset *parent, |
| struct cpumask *xcpus) |
| { |
| bool isolcpus_updated; |
| |
| WARN_ON_ONCE(new_prs < 0); |
| lockdep_assert_held(&callback_lock); |
| if (!parent) |
| parent = &top_cpuset; |
| |
| |
| if (parent == &top_cpuset) |
| cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus); |
| |
| isolcpus_updated = (new_prs != parent->partition_root_state); |
| if (isolcpus_updated) |
| partition_xcpus_newstate(parent->partition_root_state, new_prs, |
| xcpus); |
| |
| cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus); |
| return isolcpus_updated; |
| } |
| |
| /* |
| * partition_xcpus_del - Remove exclusive CPUs from partition |
| * @old_prs: old partition_root_state |
| * @parent: parent cpuset |
| * @xcpus: exclusive CPUs to be removed |
| * Return: true if isolated_cpus modified, false otherwise |
| * |
| * Remote partition if parent == NULL |
| */ |
| static bool partition_xcpus_del(int old_prs, struct cpuset *parent, |
| struct cpumask *xcpus) |
| { |
| bool isolcpus_updated; |
| |
| WARN_ON_ONCE(old_prs < 0); |
| lockdep_assert_held(&callback_lock); |
| if (!parent) |
| parent = &top_cpuset; |
| |
| if (parent == &top_cpuset) |
| cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus); |
| |
| isolcpus_updated = (old_prs != parent->partition_root_state); |
| if (isolcpus_updated) |
| partition_xcpus_newstate(old_prs, parent->partition_root_state, |
| xcpus); |
| |
| cpumask_and(xcpus, xcpus, cpu_active_mask); |
| cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus); |
| return isolcpus_updated; |
| } |
| |
| static void update_unbound_workqueue_cpumask(bool isolcpus_updated) |
| { |
| int ret; |
| |
| lockdep_assert_cpus_held(); |
| |
| if (!isolcpus_updated) |
| return; |
| |
| ret = workqueue_unbound_exclude_cpumask(isolated_cpus); |
| WARN_ON_ONCE(ret < 0); |
| } |
| |
| /** |
| * cpuset_cpu_is_isolated - Check if the given CPU is isolated |
| * @cpu: the CPU number to be checked |
| * Return: true if CPU is used in an isolated partition, false otherwise |
| */ |
| bool cpuset_cpu_is_isolated(int cpu) |
| { |
| return cpumask_test_cpu(cpu, isolated_cpus); |
| } |
| EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated); |
| |
| /* |
| * compute_effective_exclusive_cpumask - compute effective exclusive CPUs |
| * @cs: cpuset |
| * @xcpus: effective exclusive CPUs value to be set |
| * Return: true if xcpus is not empty, false otherwise. |
| * |
| * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set), |
| * it must be a subset of cpus_allowed and parent's effective_xcpus. |
| */ |
| static bool compute_effective_exclusive_cpumask(struct cpuset *cs, |
| struct cpumask *xcpus) |
| { |
| struct cpuset *parent = parent_cs(cs); |
| |
| if (!xcpus) |
| xcpus = cs->effective_xcpus; |
| |
| if (!cpumask_empty(cs->exclusive_cpus)) |
| cpumask_and(xcpus, cs->exclusive_cpus, cs->cpus_allowed); |
| else |
| cpumask_copy(xcpus, cs->cpus_allowed); |
| |
| return cpumask_and(xcpus, xcpus, parent->effective_xcpus); |
| } |
| |
| static inline bool is_remote_partition(struct cpuset *cs) |
| { |
| return !list_empty(&cs->remote_sibling); |
| } |
| |
| static inline bool is_local_partition(struct cpuset *cs) |
| { |
| return is_partition_valid(cs) && !is_remote_partition(cs); |
| } |
| |
| /* |
| * remote_partition_enable - Enable current cpuset as a remote partition root |
| * @cs: the cpuset to update |
| * @new_prs: new partition_root_state |
| * @tmp: temparary masks |
| * Return: 1 if successful, 0 if error |
| * |
| * Enable the current cpuset to become a remote partition root taking CPUs |
| * directly from the top cpuset. cpuset_mutex must be held by the caller. |
| */ |
| static int remote_partition_enable(struct cpuset *cs, int new_prs, |
| struct tmpmasks *tmp) |
| { |
| bool isolcpus_updated; |
| |
| /* |
| * The user must have sysadmin privilege. |
| */ |
| if (!capable(CAP_SYS_ADMIN)) |
| return 0; |
| |
| /* |
| * The requested exclusive_cpus must not be allocated to other |
| * partitions and it can't use up all the root's effective_cpus. |
| * |
| * Note that if there is any local partition root above it or |
| * remote partition root underneath it, its exclusive_cpus must |
| * have overlapped with subpartitions_cpus. |
| */ |
| compute_effective_exclusive_cpumask(cs, tmp->new_cpus); |
| if (cpumask_empty(tmp->new_cpus) || |
| cpumask_intersects(tmp->new_cpus, subpartitions_cpus) || |
| cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus)) |
| return 0; |
| |
| spin_lock_irq(&callback_lock); |
| isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus); |
| list_add(&cs->remote_sibling, &remote_children); |
| if (cs->use_parent_ecpus) { |
| struct cpuset *parent = parent_cs(cs); |
| |
| cs->use_parent_ecpus = false; |
| parent->child_ecpus_count--; |
| } |
| spin_unlock_irq(&callback_lock); |
| update_unbound_workqueue_cpumask(isolcpus_updated); |
| |
| /* |
| * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. |
| */ |
| update_tasks_cpumask(&top_cpuset, tmp->new_cpus); |
| update_sibling_cpumasks(&top_cpuset, NULL, tmp); |
| return 1; |
| } |
| |
| /* |
| * remote_partition_disable - Remove current cpuset from remote partition list |
| * @cs: the cpuset to update |
| * @tmp: temparary masks |
| * |
| * The effective_cpus is also updated. |
| * |
| * cpuset_mutex must be held by the caller. |
| */ |
| static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp) |
| { |
| bool isolcpus_updated; |
| |
| compute_effective_exclusive_cpumask(cs, tmp->new_cpus); |
| WARN_ON_ONCE(!is_remote_partition(cs)); |
| WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus)); |
| |
| spin_lock_irq(&callback_lock); |
| list_del_init(&cs->remote_sibling); |
| isolcpus_updated = partition_xcpus_del(cs->partition_root_state, |
| NULL, tmp->new_cpus); |
| cs->partition_root_state = -cs->partition_root_state; |
| if (!cs->prs_err) |
| cs->prs_err = PERR_INVCPUS; |
| reset_partition_data(cs); |
| spin_unlock_irq(&callback_lock); |
| update_unbound_workqueue_cpumask(isolcpus_updated); |
| |
| /* |
| * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. |
| */ |
| update_tasks_cpumask(&top_cpuset, tmp->new_cpus); |
| update_sibling_cpumasks(&top_cpuset, NULL, tmp); |
| } |
| |
| /* |
| * remote_cpus_update - cpus_exclusive change of remote partition |
| * @cs: the cpuset to be updated |
| * @newmask: the new effective_xcpus mask |
| * @tmp: temparary masks |
| * |
| * top_cpuset and subpartitions_cpus will be updated or partition can be |
| * invalidated. |
| */ |
| static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask, |
| struct tmpmasks *tmp) |
| { |
| bool adding, deleting; |
| int prs = cs->partition_root_state; |
| int isolcpus_updated = 0; |
| |
| if (WARN_ON_ONCE(!is_remote_partition(cs))) |
| return; |
| |
| WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); |
| |
| if (cpumask_empty(newmask)) |
| goto invalidate; |
| |
| adding = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus); |
| deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask); |
| |
| /* |
| * Additions of remote CPUs is only allowed if those CPUs are |
| * not allocated to other partitions and there are effective_cpus |
| * left in the top cpuset. |
| */ |
| if (adding && (!capable(CAP_SYS_ADMIN) || |
| cpumask_intersects(tmp->addmask, subpartitions_cpus) || |
| cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))) |
| goto invalidate; |
| |
| spin_lock_irq(&callback_lock); |
| if (adding) |
| isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask); |
| if (deleting) |
| isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask); |
| spin_unlock_irq(&callback_lock); |
| update_unbound_workqueue_cpumask(isolcpus_updated); |
| |
| /* |
| * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. |
| */ |
| update_tasks_cpumask(&top_cpuset, tmp->new_cpus); |
| update_sibling_cpumasks(&top_cpuset, NULL, tmp); |
| return; |
| |
| invalidate: |
| remote_partition_disable(cs, tmp); |
| } |
| |
| /* |
| * remote_partition_check - check if a child remote partition needs update |
| * @cs: the cpuset to be updated |
| * @newmask: the new effective_xcpus mask |
| * @delmask: temporary mask for deletion (not in tmp) |
| * @tmp: temparary masks |
| * |
| * This should be called before the given cs has updated its cpus_allowed |
| * and/or effective_xcpus. |
| */ |
| static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask, |
| struct cpumask *delmask, struct tmpmasks *tmp) |
| { |
| struct cpuset *child, *next; |
| int disable_cnt = 0; |
| |
| /* |
| * Compute the effective exclusive CPUs that will be deleted. |
| */ |
| if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) || |
| !cpumask_intersects(delmask, subpartitions_cpus)) |
| return; /* No deletion of exclusive CPUs in partitions */ |
| |
| /* |
| * Searching the remote children list to look for those that will |
| * be impacted by the deletion of exclusive CPUs. |
| * |
| * Since a cpuset must be removed from the remote children list |
| * before it can go offline and holding cpuset_mutex will prevent |
| * any change in cpuset status. RCU read lock isn't needed. |
| */ |
| lockdep_assert_held(&cpuset_mutex); |
| list_for_each_entry_safe(child, next, &remote_children, remote_sibling) |
| if (cpumask_intersects(child->effective_cpus, delmask)) { |
| remote_partition_disable(child, tmp); |
| disable_cnt++; |
| } |
| if (disable_cnt) |
| rebuild_sched_domains_locked(); |
| } |
| |
| /* |
| * prstate_housekeeping_conflict - check for partition & housekeeping conflicts |
| * @prstate: partition root state to be checked |
| * @new_cpus: cpu mask |
| * Return: true if there is conflict, false otherwise |
| * |
| * CPUs outside of housekeeping_cpumask(HK_TYPE_DOMAIN) can only be used in |
| * an isolated partition. |
| */ |
| static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus) |
| { |
| const struct cpumask *hk_domain = housekeeping_cpumask(HK_TYPE_DOMAIN); |
| bool all_in_hk = cpumask_subset(new_cpus, hk_domain); |
| |
| if (!all_in_hk && (prstate != PRS_ISOLATED)) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset |
| * @cs: The cpuset that requests change in partition root state |
| * @cmd: Partition root state change command |
| * @newmask: Optional new cpumask for partcmd_update |
| * @tmp: Temporary addmask and delmask |
| * Return: 0 or a partition root state error code |
| * |
| * For partcmd_enable*, the cpuset is being transformed from a non-partition |
| * root to a partition root. The effective_xcpus (cpus_allowed if |
| * effective_xcpus not set) mask of the given cpuset will be taken away from |
| * parent's effective_cpus. The function will return 0 if all the CPUs listed |
| * in effective_xcpus can be granted or an error code will be returned. |
| * |
| * For partcmd_disable, the cpuset is being transformed from a partition |
| * root back to a non-partition root. Any CPUs in effective_xcpus will be |
| * given back to parent's effective_cpus. 0 will always be returned. |
| * |
| * For partcmd_update, if the optional newmask is specified, the cpu list is |
| * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is |
| * assumed to remain the same. The cpuset should either be a valid or invalid |
| * partition root. The partition root state may change from valid to invalid |
| * or vice versa. An error code will be returned if transitioning from |
| * invalid to valid violates the exclusivity rule. |
| * |
| * For partcmd_invalidate, the current partition will be made invalid. |
| * |
| * The partcmd_enable* and partcmd_disable commands are used by |
| * update_prstate(). An error code may be returned and the caller will check |
| * for error. |
| * |
| * The partcmd_update command is used by update_cpumasks_hier() with newmask |
| * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used |
| * by update_cpumask() with NULL newmask. In both cases, the callers won't |
| * check for error and so partition_root_state and prs_error will be updated |
| * directly. |
| */ |
| static int update_parent_effective_cpumask(struct cpuset *cs, int cmd, |
| struct cpumask *newmask, |
| struct tmpmasks *tmp) |
| { |
| struct cpuset *parent = parent_cs(cs); |
| int adding; /* Adding cpus to parent's effective_cpus */ |
| int deleting; /* Deleting cpus from parent's effective_cpus */ |
| int old_prs, new_prs; |
| int part_error = PERR_NONE; /* Partition error? */ |
| int subparts_delta = 0; |
| struct cpumask *xcpus; /* cs effective_xcpus */ |
| int isolcpus_updated = 0; |
| bool nocpu; |
| |
| lockdep_assert_held(&cpuset_mutex); |
| |
| /* |
| * new_prs will only be changed for the partcmd_update and |
| * partcmd_invalidate commands. |
| */ |
| adding = deleting = false; |
| old_prs = new_prs = cs->partition_root_state; |
| xcpus = !cpumask_empty(cs->exclusive_cpus) |
| ? cs->effective_xcpus : cs->cpus_allowed; |
| |
| if (cmd == partcmd_invalidate) { |
| if (is_prs_invalid(old_prs)) |
| return 0; |
| |
| /* |
| * Make the current partition invalid. |
| */ |
| if (is_partition_valid(parent)) |
| adding = cpumask_and(tmp->addmask, |
| xcpus, parent->effective_xcpus); |
| if (old_prs > 0) { |
| new_prs = -old_prs; |
| subparts_delta--; |
| } |
| goto write_error; |
| } |
| |
| /* |
| * The parent must be a partition root. |
| * The new cpumask, if present, or the current cpus_allowed must |
| * not be empty. |
| */ |
| if (!is_partition_valid(parent)) { |
| return is_partition_invalid(parent) |
| ? PERR_INVPARENT : PERR_NOTPART; |
| } |
| if (!newmask && cpumask_empty(cs->cpus_allowed)) |
| return PERR_CPUSEMPTY; |
| |
| nocpu = tasks_nocpu_error(parent, cs, xcpus); |
| |
| if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) { |
| /* |
| * Enabling partition root is not allowed if its |
| * effective_xcpus is empty or doesn't overlap with |
| * parent's effective_xcpus. |
| */ |
| if (cpumask_empty(xcpus) || |
| !cpumask_intersects(xcpus, parent->effective_xcpus)) |
| return PERR_INVCPUS; |
| |
| if (prstate_housekeeping_conflict(new_prs, xcpus)) |
| return PERR_HKEEPING; |
| |
| /* |
| * A parent can be left with no CPU as long as there is no |
| * task directly associated with the parent partition. |
| */ |
| if (nocpu) |
| return PERR_NOCPUS; |
| |
| cpumask_copy(tmp->delmask, xcpus); |
| deleting = true; |
| subparts_delta++; |
| new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED; |
| } else if (cmd == partcmd_disable) { |
| /* |
| * May need to add cpus to parent's effective_cpus for |
| * valid partition root. |
| */ |
| adding = !is_prs_invalid(old_prs) && |
| cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus); |
| if (adding) |
| subparts_delta--; |
| new_prs = PRS_MEMBER; |
| } else if (newmask) { |
| /* |
| * Empty cpumask is not allowed |
| */ |
| if (cpumask_empty(newmask)) { |
| part_error = PERR_CPUSEMPTY; |
| goto write_error; |
| } |
| |
| /* |
| * partcmd_update with newmask: |
| * |
| * Compute add/delete mask to/from effective_cpus |
| * |
| * For valid partition: |
| * addmask = exclusive_cpus & ~newmask |
| * & parent->effective_xcpus |
| * delmask = newmask & ~exclusive_cpus |
| * & parent->effective_xcpus |
| * |
| * For invalid partition: |
| * delmask = newmask & parent->effective_xcpus |
| */ |
| if (is_prs_invalid(old_prs)) { |
| adding = false; |
| deleting = cpumask_and(tmp->delmask, |
| newmask, parent->effective_xcpus); |
| } else { |
| cpumask_andnot(tmp->addmask, xcpus, newmask); |
| adding = cpumask_and(tmp->addmask, tmp->addmask, |
| parent->effective_xcpus); |
| |
| cpumask_andnot(tmp->delmask, newmask, xcpus); |
| deleting = cpumask_and(tmp->delmask, tmp->delmask, |
| parent->effective_xcpus); |
| } |
| /* |
| * Make partition invalid if parent's effective_cpus could |
| * become empty and there are tasks in the parent. |
| */ |
| if (nocpu && (!adding || |
| !cpumask_intersects(tmp->addmask, cpu_active_mask))) { |
| part_error = PERR_NOCPUS; |
| deleting = false; |
| adding = cpumask_and(tmp->addmask, |
| xcpus, parent->effective_xcpus); |
| } |
| } else { |
| /* |
| * partcmd_update w/o newmask |
| * |
| * delmask = effective_xcpus & parent->effective_cpus |
| * |
| * This can be called from: |
| * 1) update_cpumasks_hier() |
| * 2) cpuset_hotplug_update_tasks() |
| * |
| * Check to see if it can be transitioned from valid to |
| * invalid partition or vice versa. |
| * |
| * A partition error happens when parent has tasks and all |
| * its effective CPUs will have to be distributed out. |
| */ |
| WARN_ON_ONCE(!is_partition_valid(parent)); |
| if (nocpu) { |
| part_error = PERR_NOCPUS; |
| if (is_partition_valid(cs)) |
| adding = cpumask_and(tmp->addmask, |
| xcpus, parent->effective_xcpus); |
| } else if (is_partition_invalid(cs) && |
| cpumask_subset(xcpus, parent->effective_xcpus)) { |
| struct cgroup_subsys_state *css; |
| struct cpuset *child; |
| bool exclusive = true; |
| |
| /* |
| * Convert invalid partition to valid has to |
| * pass the cpu exclusivity test. |
| */ |
| rcu_read_lock(); |
| cpuset_for_each_child(child, css, parent) { |
| if (child == cs) |
| continue; |
| if (!cpusets_are_exclusive(cs, child)) { |
| exclusive = false; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| if (exclusive) |
| deleting = cpumask_and(tmp->delmask, |
| xcpus, parent->effective_cpus); |
| else |
| part_error = PERR_NOTEXCL; |
| } |
| } |
| |
| write_error: |
| if (part_error) |
| WRITE_ONCE(cs->prs_err, part_error); |
| |
| if (cmd == partcmd_update) { |
| /* |
| * Check for possible transition between valid and invalid |
| * partition root. |
| */ |
| switch (cs->partition_root_state) { |
| case PRS_ROOT: |
| case PRS_ISOLATED: |
| if (part_error) { |
| new_prs = -old_prs; |
| subparts_delta--; |
| } |
| break; |
| case PRS_INVALID_ROOT: |
| case PRS_INVALID_ISOLATED: |
| if (!part_error) { |
| new_prs = -old_prs; |
| subparts_delta++; |
| } |
| break; |
| } |
| } |
| |
| if (!adding && !deleting && (new_prs == old_prs)) |
| return 0; |
| |
| /* |
| * Transitioning between invalid to valid or vice versa may require |
| * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update, |
| * validate_change() has already been successfully called and |
| * CPU lists in cs haven't been updated yet. So defer it to later. |
| */ |
| if ((old_prs != new_prs) && (cmd != partcmd_update)) { |
| int err = update_partition_exclusive(cs, new_prs); |
| |
| if (err) |
| return err; |
| } |
| |
| /* |
| * Change the parent's effective_cpus & effective_xcpus (top cpuset |
| * only). |
| * |
| * Newly added CPUs will be removed from effective_cpus and |
| * newly deleted ones will be added back to effective_cpus. |
| */ |
| spin_lock_irq(&callback_lock); |
| if (old_prs != new_prs) { |
| cs->partition_root_state = new_prs; |
| if (new_prs <= 0) |
| cs->nr_subparts = 0; |
| } |
| /* |
| * Adding to parent's effective_cpus means deletion CPUs from cs |
| * and vice versa. |
| */ |
| if (adding) |
| isolcpus_updated += partition_xcpus_del(old_prs, parent, |
| tmp->addmask); |
| if (deleting) |
| isolcpus_updated += partition_xcpus_add(new_prs, parent, |
| tmp->delmask); |
| |
| if (is_partition_valid(parent)) { |
| parent->nr_subparts += subparts_delta; |
| WARN_ON_ONCE(parent->nr_subparts < 0); |
| } |
| spin_unlock_irq(&callback_lock); |
| update_unbound_workqueue_cpumask(isolcpus_updated); |
| |
| if ((old_prs != new_prs) && (cmd == partcmd_update)) |
| update_partition_exclusive(cs, new_prs); |
| |
| if (adding || deleting) { |
| update_tasks_cpumask(parent, tmp->addmask); |
| update_sibling_cpumasks(parent, cs, tmp); |
| } |
| |
| /* |
| * For partcmd_update without newmask, it is being called from |
| * cpuset_handle_hotplug(). Update the load balance flag and |
| * scheduling domain accordingly. |
| */ |
| if ((cmd == partcmd_update) && !newmask) |
| update_partition_sd_lb(cs, old_prs); |
| |
| notify_partition_change(cs, old_prs); |
| return 0; |
| } |
| |
| /** |
| * compute_partition_effective_cpumask - compute effective_cpus for partition |
| * @cs: partition root cpuset |
| * @new_ecpus: previously computed effective_cpus to be updated |
| * |
| * Compute the effective_cpus of a partition root by scanning effective_xcpus |
| * of child partition roots and excluding their effective_xcpus. |
| * |
| * This has the side effect of invalidating valid child partition roots, |
| * if necessary. Since it is called from either cpuset_hotplug_update_tasks() |
| * or update_cpumasks_hier() where parent and children are modified |
| * successively, we don't need to call update_parent_effective_cpumask() |
| * and the child's effective_cpus will be updated in later iterations. |
| * |
| * Note that rcu_read_lock() is assumed to be held. |
| */ |
| static void compute_partition_effective_cpumask(struct cpuset *cs, |
| struct cpumask *new_ecpus) |
| { |
| struct cgroup_subsys_state *css; |
| struct cpuset *child; |
| bool populated = partition_is_populated(cs, NULL); |
| |
| /* |
| * Check child partition roots to see if they should be |
| * invalidated when |
| * 1) child effective_xcpus not a subset of new |
| * excluisve_cpus |
| * 2) All the effective_cpus will be used up and cp |
| * has tasks |
| */ |
| compute_effective_exclusive_cpumask(cs, new_ecpus); |
| cpumask_and(new_ecpus, new_ecpus, cpu_active_mask); |
| |
| rcu_read_lock(); |
| cpuset_for_each_child(child, css, cs) { |
| if (!is_partition_valid(child)) |
| continue; |
| |
| child->prs_err = 0; |
| if (!cpumask_subset(child->effective_xcpus, |
| cs->effective_xcpus)) |
| child->prs_err = PERR_INVCPUS; |
| else if (populated && |
| cpumask_subset(new_ecpus, child->effective_xcpus)) |
| child->prs_err = PERR_NOCPUS; |
| |
| if (child->prs_err) { |
| int old_prs = child->partition_root_state; |
| |
| /* |
| * Invalidate child partition |
| */ |
| spin_lock_irq(&callback_lock); |
| make_partition_invalid(child); |
| cs->nr_subparts--; |
| child->nr_subparts = 0; |
| spin_unlock_irq(&callback_lock); |
| notify_partition_change(child, old_prs); |
| continue; |
| } |
| cpumask_andnot(new_ecpus, new_ecpus, |
| child->effective_xcpus); |
| } |
| rcu_read_unlock(); |
| } |
| |
| /* |
| * update_cpumasks_hier() flags |
| */ |
| #define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */ |
| #define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */ |
| |
| /* |
| * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree |
| * @cs: the cpuset to consider |
| * @tmp: temp variables for calculating effective_cpus & partition setup |
| * @force: don't skip any descendant cpusets if set |
| * |
| * When configured cpumask is changed, the effective cpumasks of this cpuset |
| * and all its descendants need to be updated. |
| * |
| * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. |
| * |
| * Called with cpuset_mutex held |
| */ |
| static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, |
| int flags) |
| { |
| struct cpuset *cp; |
| struct cgroup_subsys_state *pos_css; |
| bool need_rebuild_sched_domains = false; |
| int old_prs, new_prs; |
| |
| rcu_read_lock(); |
| cpuset_for_each_descendant_pre(cp, pos_css, cs) { |
| struct cpuset *parent = parent_cs(cp); |
| bool remote = is_remote_partition(cp); |
| bool update_parent = false; |
| |
| /* |
| * Skip descendent remote partition that acquires CPUs |
| * directly from top cpuset unless it is cs. |
| */ |
| if (remote && (cp != cs)) { |
| pos_css = css_rightmost_descendant(pos_css); |
| continue; |
| } |
| |
| /* |
| * Update effective_xcpus if exclusive_cpus set. |
| * The case when exclusive_cpus isn't set is handled later. |
| */ |
| if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) { |
| spin_lock_irq(&callback_lock); |
| compute_effective_exclusive_cpumask(cp, NULL); |
| spin_unlock_irq(&callback_lock); |
| } |
| |
| old_prs = new_prs = cp->partition_root_state; |
| if (remote || (is_partition_valid(parent) && |
| is_partition_valid(cp))) |
| compute_partition_effective_cpumask(cp, tmp->new_cpus); |
| else |
| compute_effective_cpumask(tmp->new_cpus, cp, parent); |
| |
| /* |
| * A partition with no effective_cpus is allowed as long as |
| * there is no task associated with it. Call |
| * update_parent_effective_cpumask() to check it. |
| */ |
| if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) { |
| update_parent = true; |
| goto update_parent_effective; |
| } |
| |
| /* |
| * If it becomes empty, inherit the effective mask of the |
| * parent, which is guaranteed to have some CPUs unless |
| * it is a partition root that has explicitly distributed |
| * out all its CPUs. |
| */ |
| if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) { |
| cpumask_copy(tmp->new_cpus, parent->effective_cpus); |
| if (!cp->use_parent_ecpus) { |
| cp->use_parent_ecpus = true; |
| parent->child_ecpus_count++; |
| } |
| } else if (cp->use_parent_ecpus) { |
| cp->use_parent_ecpus = false; |
| WARN_ON_ONCE(!parent->child_ecpus_count); |
| parent->child_ecpus_count--; |
| } |
| |
| if (remote) |
| goto get_css; |
| |
| /* |
| * Skip the whole subtree if |
| * 1) the cpumask remains the same, |
| * 2) has no partition root state, |
| * 3) HIER_CHECKALL flag not set, and |
| * 4) for v2 load balance state same as its parent. |
| */ |
| if (!cp->partition_root_state && !(flags & HIER_CHECKALL) && |
| cpumask_equal(tmp->new_cpus, cp->effective_cpus) && |
| (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || |
| (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { |
| pos_css = css_rightmost_descendant(pos_css); |
| continue; |
| } |
| |
| update_parent_effective: |
| /* |
| * update_parent_effective_cpumask() should have been called |
| * for cs already in update_cpumask(). We should also call |
| * update_tasks_cpumask() again for tasks in the parent |
| * cpuset if the parent's effective_cpus changes. |
| */ |
| if ((cp != cs) && old_prs) { |
| switch (parent->partition_root_state) { |
| case PRS_ROOT: |
| case PRS_ISOLATED: |
| update_parent = true; |
| break; |
| |
| default: |
| /* |
| * When parent is not a partition root or is |
| * invalid, child partition roots become |
| * invalid too. |
| */ |
| if (is_partition_valid(cp)) |
| new_prs = -cp->partition_root_state; |
| WRITE_ONCE(cp->prs_err, |
| is_partition_invalid(parent) |
| ? PERR_INVPARENT : PERR_NOTPART); |
| break; |
| } |
| } |
| get_css: |
| if (!css_tryget_online(&cp->css)) |
| continue; |
| rcu_read_unlock(); |
| |
| if (update_parent) { |
| update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp); |
| /* |
| * The cpuset partition_root_state may become |
| * invalid. Capture it. |
| */ |
| new_prs = cp->partition_root_state; |
| } |
| |
| spin_lock_irq(&callback_lock); |
| cpumask_copy(cp->effective_cpus, tmp->new_cpus); |
| cp->partition_root_state = new_prs; |
| /* |
| * Make sure effective_xcpus is properly set for a valid |
| * partition root. |
| */ |
| if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus)) |
| cpumask_and(cp->effective_xcpus, |
| cp->cpus_allowed, parent->effective_xcpus); |
| else if (new_prs < 0) |
| reset_partition_data(cp); |
| spin_unlock_irq(&callback_lock); |
| |
| notify_partition_change(cp, old_prs); |
| |
| WARN_ON(!is_in_v2_mode() && |
| !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); |
| |
| update_tasks_cpumask(cp, cp->effective_cpus); |
| |
| /* |
| * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE |
| * from parent if current cpuset isn't a valid partition root |
| * and their load balance states differ. |
| */ |
| if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && |
| !is_partition_valid(cp) && |
| (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { |
| if (is_sched_load_balance(parent)) |
| set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); |
| else |
| clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); |
| } |
| |
| /* |
| * On legacy hierarchy, if the effective cpumask of any non- |
| * empty cpuset is changed, we need to rebuild sched domains. |
| * On default hierarchy, the cpuset needs to be a partition |
| * root as well. |
| */ |
| if (!cpumask_empty(cp->cpus_allowed) && |
| is_sched_load_balance(cp) && |
| (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || |
| is_partition_valid(cp))) |
| need_rebuild_sched_domains = true; |
| |
| rcu_read_lock(); |
| css_put(&cp->css); |
| } |
| rcu_read_unlock(); |
| |
| if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD)) |
| rebuild_sched_domains_locked(); |
| } |
| |
| /** |
| * update_sibling_cpumasks - Update siblings cpumasks |
| * @parent: Parent cpuset |
| * @cs: Current cpuset |
| * @tmp: Temp variables |
| */ |
| static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, |
| struct tmpmasks *tmp) |
| { |
| struct cpuset *sibling; |
| struct cgroup_subsys_state *pos_css; |
| |
| lockdep_assert_held(&cpuset_mutex); |
| |
| /* |
| * Check all its siblings and call update_cpumasks_hier() |
| * if their effective_cpus will need to be changed. |
| * |
| * With the addition of effective_xcpus which is a subset of |
| * cpus_allowed. It is possible a change in parent's effective_cpus |
| * due to a change in a child partition's effective_xcpus will impact |
| * its siblings even if they do not inherit parent's effective_cpus |
| * directly. |
| * |
| * The update_cpumasks_hier() function may sleep. So we have to |
| * release the RCU read lock before calling it. HIER_NO_SD_REBUILD |
| * flag is used to suppress rebuild of sched domains as the callers |
| * will take care of that. |
| */ |
| rcu_read_lock(); |
| cpuset_for_each_child(sibling, pos_css, parent) { |
| if (sibling == cs) |
| continue; |
| if (!sibling->use_parent_ecpus && |
| !is_partition_valid(sibling)) { |
| compute_effective_cpumask(tmp->new_cpus, sibling, |
| parent); |
| if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus)) |
| continue; |
| } |
| if (!css_tryget_online(&sibling->css)) |
| continue; |
| |
| rcu_read_unlock(); |
| update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD); |
| rcu_read_lock(); |
| css_put(&sibling->css); |
| } |
| rcu_read_unlock(); |
| } |
| |
| /** |
| * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it |
| * @cs: the cpuset to consider |
| * @trialcs: trial cpuset |
| * @buf: buffer of cpu numbers written to this cpuset |
| */ |
| static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, |
| const char *buf) |
| { |
| int retval; |
| struct tmpmasks tmp; |
| struct cpuset *parent = parent_cs(cs); |
| bool invalidate = false; |
| int hier_flags = 0; |
| int old_prs = cs->partition_root_state; |
| |
| /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ |
| if (cs == &top_cpuset) |
| return -EACCES; |
| |
| /* |
| * An empty cpus_allowed is ok only if the cpuset has no tasks. |
| * Since cpulist_parse() fails on an empty mask, we special case |
| * that parsing. The validate_change() call ensures that cpusets |
| * with tasks have cpus. |
| */ |
| if (!*buf) { |
| cpumask_clear(trialcs->cpus_allowed); |
| cpumask_clear(trialcs->effective_xcpus); |
| } else { |
| retval = cpulist_parse(buf, trialcs->cpus_allowed); |
| if (retval < 0) |
| return retval; |
| |
| if (!cpumask_subset(trialcs->cpus_allowed, |
| top_cpuset.cpus_allowed)) |
| return -EINVAL; |
| |
| /* |
| * When exclusive_cpus isn't explicitly set, it is constrainted |
| * by cpus_allowed and parent's effective_xcpus. Otherwise, |
| * trialcs->effective_xcpus is used as a temporary cpumask |
| * for checking validity of the partition root. |
| */ |
| if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs)) |
| compute_effective_exclusive_cpumask(trialcs, NULL); |
| } |
| |
| /* Nothing to do if the cpus didn't change */ |
| if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) |
| return 0; |
| |
| if (alloc_cpumasks(NULL, &tmp)) |
| return -ENOMEM; |
| |
| if (old_prs) { |
| if (is_partition_valid(cs) && |
| cpumask_empty(trialcs->effective_xcpus)) { |
| invalidate = true; |
| cs->prs_err = PERR_INVCPUS; |
| } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) { |
| invalidate = true; |
| cs->prs_err = PERR_HKEEPING; |
| } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) { |
| invalidate = true; |
| cs->prs_err = PERR_NOCPUS; |
| } |
| } |
| |
| /* |
| * Check all the descendants in update_cpumasks_hier() if |
| * effective_xcpus is to be changed. |
| */ |
| if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus)) |
| hier_flags = HIER_CHECKALL; |
| |
| retval = validate_change(cs, trialcs); |
| |
| if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { |
| struct cgroup_subsys_state *css; |
| struct cpuset *cp; |
| |
| /* |
| * The -EINVAL error code indicates that partition sibling |
| * CPU exclusivity rule has been violated. We still allow |
| * the cpumask change to proceed while invalidating the |
| * partition. However, any conflicting sibling partitions |
| * have to be marked as invalid too. |
| */ |
| invalidate = true; |
| rcu_read_lock(); |
| cpuset_for_each_child(cp, css, parent) { |
| struct cpumask *xcpus = fetch_xcpus(trialcs); |
| |
| if (is_partition_valid(cp) && |
| cpumask_intersects(xcpus, cp->effective_xcpus)) { |
| rcu_read_unlock(); |
| update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp); |
| rcu_read_lock(); |
| } |
| } |
| rcu_read_unlock(); |
| retval = 0; |
| } |
| |
| if (retval < 0) |
| goto out_free; |
| |
| if (is_partition_valid(cs) || |
| (is_partition_invalid(cs) && !invalidate)) { |
| struct cpumask *xcpus = trialcs->effective_xcpus; |
| |
| if (cpumask_empty(xcpus) && is_partition_invalid(cs)) |
| xcpus = trialcs->cpus_allowed; |
| |
| /* |
| * Call remote_cpus_update() to handle valid remote partition |
| */ |
| if (is_remote_partition(cs)) |
| remote_cpus_update(cs, xcpus, &tmp); |
| else if (invalidate) |
| update_parent_effective_cpumask(cs, partcmd_invalidate, |
| NULL, &tmp); |
| else |
| update_parent_effective_cpumask(cs, partcmd_update, |
| xcpus, &tmp); |
| } else if (!cpumask_empty(cs->exclusive_cpus)) { |
| /* |
| * Use trialcs->effective_cpus as a temp cpumask |
| */ |
| remote_partition_check(cs, trialcs->effective_xcpus, |
| trialcs->effective_cpus, &tmp); |
| } |
| |
| spin_lock_irq(&callback_lock); |
| cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); |
| cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); |
| if ((old_prs > 0) && !is_partition_valid(cs)) |
| reset_partition_data(cs); |
| spin_unlock_irq(&callback_lock); |
| |
| /* effective_cpus/effective_xcpus will be updated here */ |
| update_cpumasks_hier(cs, &tmp, hier_flags); |
| |
| /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ |
| if (cs->partition_root_state) |
| update_partition_sd_lb(cs, old_prs); |
| out_free: |
| free_cpumasks(NULL, &tmp); |
| return retval; |
| } |
| |
| /** |
| * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset |
| * @cs: the cpuset to consider |
| * @trialcs: trial cpuset |
| * @buf: buffer of cpu numbers written to this cpuset |
| * |
| * The tasks' cpumask will be updated if cs is a valid partition root. |
| */ |
| static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs, |
| const char *buf) |
| { |
| int retval; |
| struct tmpmasks tmp; |
| struct cpuset *parent = parent_cs(cs); |
| bool invalidate = false; |
| int hier_flags = 0; |
| int old_prs = cs->partition_root_state; |
| |
| if (!*buf) { |
| cpumask_clear(trialcs->exclusive_cpus); |
| cpumask_clear(trialcs->effective_xcpus); |
| } else { |
| retval = cpulist_parse(buf, trialcs->exclusive_cpus); |
| if (retval < 0) |
| return retval; |
| if (!is_cpu_exclusive(cs)) |
| set_bit(CS_CPU_EXCLUSIVE, &trialcs->flags); |
| } |
| |
| /* Nothing to do if the CPUs didn't change */ |
| if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus)) |
| return 0; |
| |
| if (*buf) |
| compute_effective_exclusive_cpumask(trialcs, NULL); |
| |
| /* |
| * Check all the descendants in update_cpumasks_hier() if |
| * effective_xcpus is to be changed. |
| */ |
| if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus)) |
| hier_flags = HIER_CHECKALL; |
| |
| retval = validate_change(cs, trialcs); |
| if (retval) |
| return retval; |
| |
| if (alloc_cpumasks(NULL, &tmp)) |
| return -ENOMEM; |
| |
| if (old_prs) { |
| if (cpumask_empty(trialcs->effective_xcpus)) { |
| invalidate = true; |
| cs->prs_err = PERR_INVCPUS; |
| } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) { |
| invalidate = true; |
| cs->prs_err = PERR_HKEEPING; |
| } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) { |
| invalidate = true; |
| cs->prs_err = PERR_NOCPUS; |
| } |
| |
| if (is_remote_partition(cs)) { |
| if (invalidate) |
| remote_partition_disable(cs, &tmp); |
| else |
| remote_cpus_update(cs, trialcs->effective_xcpus, |
| &tmp); |
| } else if (invalidate) { |
| update_parent_effective_cpumask(cs, partcmd_invalidate, |
| NULL, &tmp); |
| } else { |
| update_parent_effective_cpumask(cs, partcmd_update, |
| trialcs->effective_xcpus, &tmp); |
| } |
| } else if (!cpumask_empty(trialcs->exclusive_cpus)) { |
| /* |
| * Use trialcs->effective_cpus as a temp cpumask |
| */ |
| remote_partition_check(cs, trialcs->effective_xcpus, |
| trialcs->effective_cpus, &tmp); |
| } |
| spin_lock_irq(&callback_lock); |
| cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus); |
| cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); |
| if ((old_prs > 0) && !is_partition_valid(cs)) |
| reset_partition_data(cs); |
| spin_unlock_irq(&callback_lock); |
| |
| /* |
| * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus |
| * of the subtree when it is a valid partition root or effective_xcpus |
| * is updated. |
| */ |
| if (is_partition_valid(cs) || hier_flags) |
| update_cpumasks_hier(cs, &tmp, hier_flags); |
| |
| /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ |
| if (cs->partition_root_state) |
| update_partition_sd_lb(cs, old_prs); |
| |
| free_cpumasks(NULL, &tmp); |
| return 0; |
| } |
| |
| /* |
| * Migrate memory region from one set of nodes to another. This is |
| * performed asynchronously as it can be called from process migration path |
| * holding locks involved in process management. All mm migrations are |
| * performed in the queued order and can be waited for by flushing |
| * cpuset_migrate_mm_wq. |
| */ |
| |
| struct cpuset_migrate_mm_work { |
| struct work_struct work; |
| struct mm_struct *mm; |
| nodemask_t from; |
| nodemask_t to; |
| }; |
| |
| static void cpuset_migrate_mm_workfn(struct work_struct *work) |
| { |
| struct cpuset_migrate_mm_work *mwork = |
| container_of(work, struct cpuset_migrate_mm_work, work); |
| |
| /* on a wq worker, no need to worry about %current's mems_allowed */ |
| do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); |
| mmput(mwork->mm); |
| kfree(mwork); |
| } |
| |
| static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, |
| const nodemask_t *to) |
| { |
| struct cpuset_migrate_mm_work *mwork; |
| |
| if (nodes_equal(*from, *to)) { |
| mmput(mm); |
| return; |
| } |
| |
| mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); |
| if (mwork) { |
| mwork->mm = mm; |
| mwork->from = *from; |
| mwork->to = *to; |
| INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); |
| queue_work(cpuset_migrate_mm_wq, &mwork->work); |
| } else { |
| mmput(mm); |
| } |
| } |
| |
| static void cpuset_post_attach(void) |
| { |
| flush_workqueue(cpuset_migrate_mm_wq); |
| } |
| |
| /* |
| * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy |
| * @tsk: the task to change |
| * @newmems: new nodes that the task will be set |
| * |
| * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed |
| * and rebind an eventual tasks' mempolicy. If the task is allocating in |
| * parallel, it might temporarily see an empty intersection, which results in |
| * a seqlock check and retry before OOM or allocation failure. |
| */ |
| static void cpuset_change_task_nodemask(struct task_struct *tsk, |
| nodemask_t *newmems) |
| { |
| task_lock(tsk); |
| |
| local_irq_disable(); |
| write_seqcount_begin(&tsk->mems_allowed_seq); |
| |
| nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); |
| mpol_rebind_task(tsk, newmems); |
| tsk->mems_allowed = *newmems; |
| |
| write_seqcount_end(&tsk->mems_allowed_seq); |
| local_irq_enable(); |
| |
| task_unlock(tsk); |
| } |
| |
| static void *cpuset_being_rebound; |
| |
| /** |
| * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. |
| * @cs: the cpuset in which each task's mems_allowed mask needs to be changed |
| * |
| * Iterate through each task of @cs updating its mems_allowed to the |
| * effective cpuset's. As this function is called with cpuset_mutex held, |
| * cpuset membership stays stable. |
| */ |
| static void update_tasks_nodemask(struct cpuset *cs) |
| { |
| static nodemask_t newmems; /* protected by cpuset_mutex */ |
| struct css_task_iter it; |
| struct task_struct *task; |
| |
| cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ |
| |
| guarantee_online_mems(cs, &newmems); |
| |
| /* |
| * The mpol_rebind_mm() call takes mmap_lock, which we couldn't |
| * take while holding tasklist_lock. Forks can happen - the |
| * mpol_dup() cpuset_being_rebound check will catch such forks, |
| * and rebind their vma mempolicies too. Because we still hold |
| * the global cpuset_mutex, we know that no other rebind effort |
| * will be contending for the global variable cpuset_being_rebound. |
| * It's ok if we rebind the same mm twice; mpol_rebind_mm() |
| * is idempotent. Also migrate pages in each mm to new nodes. |
| */ |
| css_task_iter_start(&cs->css, 0, &it); |
| while ((task = css_task_iter_next(&it))) { |
| struct mm_struct *mm; |
| bool migrate; |
| |
| cpuset_change_task_nodemask(task, &newmems); |
| |
| mm = get_task_mm(task); |
| if (!mm) |
| continue; |
| |
| migrate = is_memory_migrate(cs); |
| |
| mpol_rebind_mm(mm, &cs->mems_allowed); |
| if (migrate) |
| cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); |
| else |
| mmput(mm); |
| } |
| css_task_iter_end(&it); |
| |
| /* |
| * All the tasks' nodemasks have been updated, update |
| * cs->old_mems_allowed. |
| */ |
| cs->old_mems_allowed = newmems; |
| |
| /* We're done rebinding vmas to this cpuset's new mems_allowed. */ |
| cpuset_being_rebound = NULL; |
| } |
| |
| /* |
| * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree |
| * @cs: the cpuset to consider |
| * @new_mems: a temp variable for calculating new effective_mems |
| * |
| * When configured nodemask is changed, the effective nodemasks of this cpuset |
| * and all its descendants need to be updated. |
| * |
| * On legacy hierarchy, effective_mems will be the same with mems_allowed. |
| * |
| * Called with cpuset_mutex held |
| */ |
| static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) |
| { |
| struct cpuset *cp; |
| struct cgroup_subsys_state *pos_css; |
| |
| rcu_read_lock(); |
| cpuset_for_each_descendant_pre(cp, pos_css, cs) { |
| struct cpuset *parent = parent_cs(cp); |
| |
| nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); |
| |
| /* |
| * If it becomes empty, inherit the effective mask of the |
| * parent, which is guaranteed to have some MEMs. |
| */ |
| if (is_in_v2_mode() && nodes_empty(*new_mems)) |
| *new_mems = parent->effective_mems; |
| |
| /* Skip the whole subtree if the nodemask remains the same. */ |
| if (nodes_equal(*new_mems, cp->effective_mems)) { |
| pos_css = css_rightmost_descendant(pos_css); |
| continue; |
| } |
| |
| if (!css_tryget_online(&cp->css)) |
| continue; |
| rcu_read_unlock(); |
| |
| spin_lock_irq(&callback_lock); |
| cp->effective_mems = *new_mems; |
| spin_unlock_irq(&callback_lock); |
| |
| WARN_ON(!is_in_v2_mode() && |
| !nodes_equal(cp->mems_allowed, cp->effective_mems)); |
| |
| update_tasks_nodemask(cp); |
| |
| rcu_read_lock(); |
| css_put(&cp->css); |
| } |
| rcu_read_unlock(); |
| } |
| |
| /* |
| * Handle user request to change the 'mems' memory placement |
| * of a cpuset. Needs to validate the request, update the |
| * cpusets mems_allowed, and for each task in the cpuset, |
| * update mems_allowed and rebind task's mempolicy and any vma |
| * mempolicies and if the cpuset is marked 'memory_migrate', |
| * migrate the tasks pages to the new memory. |
| * |
| * Call with cpuset_mutex held. May take callback_lock during call. |
| * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, |
| * lock each such tasks mm->mmap_lock, scan its vma's and rebind |
| * their mempolicies to the cpusets new mems_allowed. |
| */ |
| static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, |
| const char *buf) |
| { |
| int retval; |
| |
| /* |
| * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; |
| * it's read-only |
| */ |
| if (cs == &top_cpuset) { |
| retval = -EACCES; |
| goto done; |
| } |
| |
| /* |
| * An empty mems_allowed is ok iff there are no tasks in the cpuset. |
| * Since nodelist_parse() fails on an empty mask, we special case |
| * that parsing. The validate_change() call ensures that cpusets |
| * with tasks have memory. |
| */ |
| if (!*buf) { |
| nodes_clear(trialcs->mems_allowed); |
| } else { |
| retval = nodelist_parse(buf, trialcs->mems_allowed); |
| if (retval < 0) |
| goto done; |
| |
| if (!nodes_subset(trialcs->mems_allowed, |
| top_cpuset.mems_allowed)) { |
| retval = -EINVAL; |
| goto done; |
| } |
| } |
| |
| if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { |
| retval = 0; /* Too easy - nothing to do */ |
| goto done; |
| } |
| retval = validate_change(cs, trialcs); |
| if (retval < 0) |
| goto done; |
| |
| check_insane_mems_config(&trialcs->mems_allowed); |
| |
| spin_lock_irq(&callback_lock); |
| cs->mems_allowed = trialcs->mems_allowed; |
| spin_unlock_irq(&callback_lock); |
| |
| /* use trialcs->mems_allowed as a temp variable */ |
| update_nodemasks_hier(cs, &trialcs->mems_allowed); |
| done: |
| return retval; |
| } |
| |
| bool current_cpuset_is_being_rebound(void) |
| { |
| bool ret; |
| |
| rcu_read_lock(); |
| ret = task_cs(current) == cpuset_being_rebound; |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static int update_relax_domain_level(struct cpuset *cs, s64 val) |
| { |
| #ifdef CONFIG_SMP |
| if (val < -1 || val > sched_domain_level_max + 1) |
| return -EINVAL; |
| #endif |
| |
| if (val != cs->relax_domain_level) { |
| cs->relax_domain_level = val; |
| if (!cpumask_empty(cs->cpus_allowed) && |
| is_sched_load_balance(cs)) |
| rebuild_sched_domains_locked(); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * update_tasks_flags - update the spread flags of tasks in the cpuset. |
| * @cs: the cpuset in which each task's spread flags needs to be changed |
| * |
| * Iterate through each task of @cs updating its spread flags. As this |
| * function is called with cpuset_mutex held, cpuset membership stays |
| * stable. |
| */ |
| static void update_tasks_flags(struct cpuset *cs) |
| { |
| struct css_task_iter it; |
| struct task_struct *task; |
| |
| css_task_iter_start(&cs->css, 0, &it); |
| while ((task = css_task_iter_next(&it))) |
| cpuset_update_task_spread_flags(cs, task); |
| css_task_iter_end(&it); |
| } |
| |
| /* |
| * update_flag - read a 0 or a 1 in a file and update associated flag |
| * bit: the bit to update (see cpuset_flagbits_t) |
| * cs: the cpuset to update |
| * turning_on: whether the flag is being set or cleared |
| * |
| * Call with cpuset_mutex held. |
| */ |
| |
| static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, |
| int turning_on) |
| { |
| struct cpuset *trialcs; |
| int balance_flag_changed; |
| int spread_flag_changed; |
| int err; |
| |
| trialcs = alloc_trial_cpuset(cs); |
| if (!trialcs) |
| return -ENOMEM; |
| |
| if (turning_on) |
| set_bit(bit, &trialcs->flags); |
| else |
| clear_bit(bit, &trialcs->flags); |
| |
| err = validate_change(cs, trialcs); |
| if (err < 0) |
| goto out; |
| |
| balance_flag_changed = (is_sched_load_balance(cs) != |
| is_sched_load_balance(trialcs)); |
| |
| spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) |
| || (is_spread_page(cs) != is_spread_page(trialcs))); |
| |
| spin_lock_irq(&callback_lock); |
| cs->flags = trialcs->flags; |
| spin_unlock_irq(&callback_lock); |
| |
| if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) |
| rebuild_sched_domains_locked(); |
| |
| if (spread_flag_changed) |
| update_tasks_flags(cs); |
| out: |
| free_cpuset(trialcs); |
| return err; |
| } |
| |
| /** |
| * update_prstate - update partition_root_state |
| * @cs: the cpuset to update |
| * @new_prs: new partition root state |
| * Return: 0 if successful, != 0 if error |
| * |
| * Call with cpuset_mutex held. |
| */ |
| static int update_prstate(struct cpuset *cs, int new_prs) |
| { |
| int err = PERR_NONE, old_prs = cs->partition_root_state; |
| struct cpuset *parent = parent_cs(cs); |
| struct tmpmasks tmpmask; |
| bool new_xcpus_state = false; |
| |
| if (old_prs == new_prs) |
| return 0; |
| |
| /* |
| * Treat a previously invalid partition root as if it is a "member". |
| */ |
| if (new_prs && is_prs_invalid(old_prs)) |
| old_prs = PRS_MEMBER; |
| |
| if (alloc_cpumasks(NULL, &tmpmask)) |
| return -ENOMEM; |
| |
| /* |
| * Setup effective_xcpus if not properly set yet, it will be cleared |
| * later if partition becomes invalid. |
| */ |
| if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) { |
| spin_lock_irq(&callback_lock); |
| cpumask_and(cs->effective_xcpus, |
| cs->cpus_allowed, parent->effective_xcpus); |
| spin_unlock_irq(&callback_lock); |
| } |
| |
| err = update_partition_exclusive(cs, new_prs); |
| if (err) |
| goto out; |
| |
| if (!old_prs) { |
| enum partition_cmd cmd = (new_prs == PRS_ROOT) |
| ? partcmd_enable : partcmd_enablei; |
| |
| /* |
| * cpus_allowed cannot be empty. |
| */ |
| if (cpumask_empty(cs->cpus_allowed)) { |
| err = PERR_CPUSEMPTY; |
| goto out; |
| } |
| |
| err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask); |
| /* |
| * If an attempt to become local partition root fails, |
| * try to become a remote partition root instead. |
| */ |
| if (err && remote_partition_enable(cs, new_prs, &tmpmask)) |
| err = 0; |
| } else if (old_prs && new_prs) { |
| /* |
| * A change in load balance state only, no change in cpumasks. |
| */ |
| new_xcpus_state = true; |
| } else { |
| /* |
| * Switching back to member is always allowed even if it |
| * disables child partitions. |
| */ |
| if (is_remote_partition(cs)) |
| remote_partition_disable(cs, &tmpmask); |
| else |
| update_parent_effective_cpumask(cs, partcmd_disable, |
| NULL, &tmpmask); |
| |
| /* |
| * Invalidation of child partitions will be done in |
| * update_cpumasks_hier(). |
| */ |
| } |
| out: |
| /* |
| * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error |
| * happens. |
| */ |
| if (err) { |
| new_prs = -new_prs; |
| update_partition_exclusive(cs, new_prs); |
| } |
| |
| spin_lock_irq(&callback_lock); |
| cs->partition_root_state = new_prs; |
| WRITE_ONCE(cs->prs_err, err); |
| if (!is_partition_valid(cs)) |
| reset_partition_data(cs); |
| else if (new_xcpus_state) |
| partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus); |
| spin_unlock_irq(&callback_lock); |
| update_unbound_workqueue_cpumask(new_xcpus_state); |
| |
| /* Force update if switching back to member */ |
| update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0); |
| |
| /* Update sched domains and load balance flag */ |
| update_partition_sd_lb(cs, old_prs); |
| |
| notify_partition_change(cs, old_prs); |
| free_cpumasks(NULL, &tmpmask); |
| return 0; |
| } |
| |
| /* |
| * Frequency meter - How fast is some event occurring? |
| * |
| * These routines manage a digitally filtered, constant time based, |
| * event frequency meter. There are four routines: |
| * fmeter_init() - initialize a frequency meter. |
| * fmeter_markevent() - called each time the event happens. |
| * fmeter_getrate() - returns the recent rate of such events. |
| * fmeter_update() - internal routine used to update fmeter. |
| * |
| * A common data structure is passed to each of these routines, |
| * which is used to keep track of the state required to manage the |
| * frequency meter and its digital filter. |
| * |
| * The filter works on the number of events marked per unit time. |
| * The filter is single-pole low-pass recursive (IIR). The time unit |
| * is 1 second. Arithmetic is done using 32-bit integers scaled to |
| * simulate 3 decimal digits of precision (multiplied by 1000). |
| * |
| * With an FM_COEF of 933, and a time base of 1 second, the filter |
| * has a half-life of 10 seconds, meaning that if the events quit |
| * happening, then the rate returned from the fmeter_getrate() |
| * will be cut in half each 10 seconds, until it converges to zero. |
| * |
| * It is not worth doing a real infinitely recursive filter. If more |
| * than FM_MAXTICKS ticks have elapsed since the last filter event, |
| * just compute FM_MAXTICKS ticks worth, by which point the level |
| * will be stable. |
| * |
| * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid |
| * arithmetic overflow in the fmeter_update() routine. |
| * |
| * Given the simple 32 bit integer arithmetic used, this meter works |
| * best for reporting rates between one per millisecond (msec) and |
| * one per 32 (approx) seconds. At constant rates faster than one |
| * per msec it maxes out at values just under 1,000,000. At constant |
| * rates between one per msec, and one per second it will stabilize |
| * to a value N*1000, where N is the rate of events per second. |
| * At constant rates between one per second and one per 32 seconds, |
| * it will be choppy, moving up on the seconds that have an event, |
| * and then decaying until the next event. At rates slower than |
| * about one in 32 seconds, it decays all the way back to zero between |
| * each event. |
| */ |
| |
| #define FM_COEF 933 /* coefficient for half-life of 10 secs */ |
| #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ |
| #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ |
| #define FM_SCALE 1000 /* faux fixed point scale */ |
| |
| /* Initialize a frequency meter */ |
| static void fmeter_init(struct fmeter *fmp) |
| { |
| fmp->cnt = 0; |
| fmp->val = 0; |
| fmp->time = 0; |
| spin_lock_init(&fmp->lock); |
| } |
| |
| /* Internal meter update - process cnt events and update value */ |
| static void fmeter_update(struct fmeter *fmp) |
| { |
| time64_t now; |
| u32 ticks; |
| |
| now = ktime_get_seconds(); |
| ticks = now - fmp->time; |
| |
| if (ticks == 0) |
| return; |
| |
| ticks = min(FM_MAXTICKS, ticks); |
| while (ticks-- > 0) |
| fmp->val = (FM_COEF * fmp->val) / FM_SCALE; |
| fmp->time = now; |
| |
| fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; |
| fmp->cnt = 0; |
| } |
| |
| /* Process any previous ticks, then bump cnt by one (times scale). */ |
| static void fmeter_markevent(struct fmeter *fmp) |
| { |
| spin_lock(&fmp->lock); |
| fmeter_update(fmp); |
| fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); |
| spin_unlock(&fmp->lock); |
| } |
| |
| /* Process any previous ticks, then return current value. */ |
| static int fmeter_getrate(struct fmeter *fmp) |
| { |
| int val; |
| |
| spin_lock(&fmp->lock); |
| fmeter_update(fmp); |
| val = fmp->val; |
| spin_unlock(&fmp->lock); |
| return val; |
| } |
| |
| static struct cpuset *cpuset_attach_old_cs; |
| |
| /* |
| * Check to see if a cpuset can accept a new task |
| * For v1, cpus_allowed and mems_allowed can't be empty. |
| * For v2, effective_cpus can't be empty. |
| * Note that in v1, effective_cpus = cpus_allowed. |
| */ |
| static int cpuset_can_attach_check(struct cpuset *cs) |
| { |
| if (cpumask_empty(cs->effective_cpus) || |
| (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) |
| return -ENOSPC; |
| return 0; |
| } |
| |
| static void reset_migrate_dl_data(struct cpuset *cs) |
| { |
| cs->nr_migrate_dl_tasks = 0; |
| cs->sum_migrate_dl_bw = 0; |
| } |
| |
| /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ |
| static int cpuset_can_attach(struct cgroup_taskset *tset) |
| { |
| struct cgroup_subsys_state *css; |
| struct cpuset *cs, *oldcs; |
| struct task_struct *task; |
| bool cpus_updated, mems_updated; |
| int ret; |
| |
| /* used later by cpuset_attach() */ |
| cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); |
| oldcs = cpuset_attach_old_cs; |
| cs = css_cs(css); |
| |
| mutex_lock(&cpuset_mutex); |
| |
| /* Check to see if task is allowed in the cpuset */ |
| ret = cpuset_can_attach_check(cs); |
| if (ret) |
| goto out_unlock; |
| |
| cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); |
| mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); |
| |
| cgroup_taskset_for_each(task, css, tset) { |
| ret = task_can_attach(task); |
| if (ret) |
| goto out_unlock; |
| |
| /* |
| * Skip rights over task check in v2 when nothing changes, |
| * migration permission derives from hierarchy ownership in |
| * cgroup_procs_write_permission()). |
| */ |
| if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || |
| (cpus_updated || mems_updated)) { |
| ret = security_task_setscheduler(task); |
| if (ret) |
| goto out_unlock; |
| } |
| |
| if (dl_task(task)) { |
| cs->nr_migrate_dl_tasks++; |
| cs->sum_migrate_dl_bw += task->dl.dl_bw; |
| } |
| } |
| |
| if (!cs->nr_migrate_dl_tasks) |
| goto out_success; |
| |
| if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { |
| int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); |
| |
| if (unlikely(cpu >= nr_cpu_ids)) { |
| reset_migrate_dl_data(cs); |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| |
| ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); |
| if (ret) { |
| reset_migrate_dl_data(cs); |
| goto out_unlock; |
| } |
| } |
| |
| out_success: |
| /* |
| * Mark attach is in progress. This makes validate_change() fail |
| * changes which zero cpus/mems_allowed. |
| */ |
| cs->attach_in_progress++; |
| out_unlock: |
| mutex_unlock(&cpuset_mutex); |
| return ret; |
| } |
| |
| static void cpuset_cancel_attach(struct cgroup_taskset *tset) |
| { |
| struct cgroup_subsys_state *css; |
| struct cpuset *cs; |
| |
| cgroup_taskset_first(tset, &css); |
| cs = css_cs(css); |
| |
| mutex_lock(&cpuset_mutex); |
| cs->attach_in_progress--; |
| if (!cs->attach_in_progress) |
| wake_up(&cpuset_attach_wq); |
| |
| if (cs->nr_migrate_dl_tasks) { |
| int cpu = cpumask_any(cs->effective_cpus); |
| |
| dl_bw_free(cpu, cs->sum_migrate_dl_bw); |
| reset_migrate_dl_data(cs); |
| } |
| |
| mutex_unlock(&cpuset_mutex); |
| } |
| |
| /* |
| * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() |
| * but we can't allocate it dynamically there. Define it global and |
| * allocate from cpuset_init(). |
| */ |
| static cpumask_var_t cpus_attach; |
| static nodemask_t cpuset_attach_nodemask_to; |
| |
| static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) |
| { |
| lockdep_assert_held(&cpuset_mutex); |
| |
| if (cs != &top_cpuset) |
| guarantee_online_cpus(task, cpus_attach); |
| else |
| cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), |
| subpartitions_cpus); |
| /* |
| * can_attach beforehand should guarantee that this doesn't |
| * fail. TODO: have a better way to handle failure here |
| */ |
| WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); |
| |
| cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); |
| cpuset_update_task_spread_flags(cs, task); |
| } |
| |
| static void cpuset_attach(struct cgroup_taskset *tset) |
| { |
| struct task_struct *task; |
| struct task_struct *leader; |
| struct cgroup_subsys_state *css; |
| struct cpuset *cs; |
| struct cpuset *oldcs = cpuset_attach_old_cs; |
| bool cpus_updated, mems_updated; |
| |
| cgroup_taskset_first(tset, &css); |
| cs = css_cs(css); |
| |
| lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ |
| mutex_lock(&cpuset_mutex); |
| cpus_updated = !cpumask_equal(cs->effective_cpus, |
| oldcs->effective_cpus); |
| mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); |
| |
| /* |
| * In the default hierarchy, enabling cpuset in the child cgroups |
| * will trigger a number of cpuset_attach() calls with no change |
| * in effective cpus and mems. In that case, we can optimize out |
| * by skipping the task iteration and update. |
| */ |
| if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && |
| !cpus_updated && !mems_updated) { |
| cpuset_attach_nodemask_to = cs->effective_mems; |
| goto out; |
| } |
| |
| guarantee_online_mems(cs, &cpuset_attach_nodemask_to); |
| |
| cgroup_taskset_for_each(task, css, tset) |
| cpuset_attach_task(cs, task); |
| |
| /* |
| * Change mm for all threadgroup leaders. This is expensive and may |
| * sleep and should be moved outside migration path proper. Skip it |
| * if there is no change in effective_mems and CS_MEMORY_MIGRATE is |
| * not set. |
| */ |
| cpuset_attach_nodemask_to = cs->effective_mems; |
| if (!is_memory_migrate(cs) && !mems_updated) |
| goto out; |
| |
| cgroup_taskset_for_each_leader(leader, css, tset) { |
| struct mm_struct *mm = get_task_mm(leader); |
| |
| if (mm) { |
| mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); |
| |
| /* |
| * old_mems_allowed is the same with mems_allowed |
| * here, except if this task is being moved |
| * automatically due to hotplug. In that case |
| * @mems_allowed has been updated and is empty, so |
| * @old_mems_allowed is the right nodesets that we |
| * migrate mm from. |
| */ |
| if (is_memory_migrate(cs)) |
| cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, |
| &cpuset_attach_nodemask_to); |
| else |
| mmput(mm); |
| } |
| } |
| |
| out: |
| cs->old_mems_allowed = cpuset_attach_nodemask_to; |
| |
| if (cs->nr_migrate_dl_tasks) { |
| cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; |
| oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; |
| reset_migrate_dl_data(cs); |
| } |
| |
| cs->attach_in_progress--; |
| if (!cs->attach_in_progress) |
| wake_up(&cpuset_attach_wq); |
| |
| mutex_unlock(&cpuset_mutex); |
| } |
| |
| /* The various types of files and directories in a cpuset file system */ |
| |
| typedef enum { |
| FILE_MEMORY_MIGRATE, |
| FILE_CPULIST, |
| FILE_MEMLIST, |
| FILE_EFFECTIVE_CPULIST, |
| FILE_EFFECTIVE_MEMLIST, |
| FILE_SUBPARTS_CPULIST, |
| FILE_EXCLUSIVE_CPULIST, |
| FILE_EFFECTIVE_XCPULIST, |
| FILE_ISOLATED_CPULIST, |
| FILE_CPU_EXCLUSIVE, |
| FILE_MEM_EXCLUSIVE, |
| FILE_MEM_HARDWALL, |
| FILE_SCHED_LOAD_BALANCE, |
| FILE_PARTITION_ROOT, |
| FILE_SCHED_RELAX_DOMAIN_LEVEL, |
| FILE_MEMORY_PRESSURE_ENABLED, |
| FILE_MEMORY_PRESSURE, |
| FILE_SPREAD_PAGE, |
| FILE_SPREAD_SLAB, |
| } cpuset_filetype_t; |
| |
| static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, |
| u64 val) |
| { |
| struct cpuset *cs = css_cs(css); |
| cpuset_filetype_t type = cft->private; |
| int retval = 0; |
| |
| cpus_read_lock(); |
| mutex_lock(&cpuset_mutex); |
| if (!is_cpuset_online(cs)) { |
| retval = -ENODEV; |
| goto out_unlock; |
| } |
| |
| switch (type) { |
| case FILE_CPU_EXCLUSIVE: |
| retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); |
| break; |
| case FILE_MEM_EXCLUSIVE: |
| retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); |
| break; |
| case FILE_MEM_HARDWALL: |
| retval = update_flag(CS_MEM_HARDWALL, cs, val); |
| break; |
| case FILE_SCHED_LOAD_BALANCE: |
| retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); |
| break; |
| case FILE_MEMORY_MIGRATE: |
| retval = update_flag(CS_MEMORY_MIGRATE, cs, val); |
| break; |
| case FILE_MEMORY_PRESSURE_ENABLED: |
| cpuset_memory_pressure_enabled = !!val; |
| break; |
| case FILE_SPREAD_PAGE: |
| retval = update_flag(CS_SPREAD_PAGE, cs, val); |
| break; |
| case FILE_SPREAD_SLAB: |
| retval = update_flag(CS_SPREAD_SLAB, cs, val); |
| break; |
| default: |
| retval = -EINVAL; |
| break; |
| } |
| out_unlock: |
| mutex_unlock(&cpuset_mutex); |
| cpus_read_unlock(); |
| return retval; |
| } |
| |
| static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, |
| s64 val) |
| { |
| struct cpuset *cs = css_cs(css); |
| cpuset_filetype_t type = cft->private; |
| int retval = -ENODEV; |
| |
| cpus_read_lock(); |
| mutex_lock(&cpuset_mutex); |
| if (!is_cpuset_online(cs)) |
| goto out_unlock; |
| |
| switch (type) { |
| case FILE_SCHED_RELAX_DOMAIN_LEVEL: |
| retval = update_relax_domain_level(cs, val); |
| break; |
| default: |
| retval = -EINVAL; |
| break; |
| } |
| out_unlock: |
| mutex_unlock(&cpuset_mutex); |
| cpus_read_unlock(); |
| return retval; |
| } |
| |
| /* |
| * Common handling for a write to a "cpus" or "mems" file. |
| */ |
| static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, |
| char *buf, size_t nbytes, loff_t off) |
| { |
| struct cpuset *cs = css_cs(of_css(of)); |
| struct cpuset *trialcs; |
| int retval = -ENODEV; |
| |
| buf = strstrip(buf); |
| |
| /* |
| * CPU or memory hotunplug may leave @cs w/o any execution |
| * resources, in which case the hotplug code asynchronously updates |
| * configuration and transfers all tasks to the nearest ancestor |
| * which can execute. |
| * |
| * As writes to "cpus" or "mems" may restore @cs's execution |
| * resources, wait for the previously scheduled operations before |
| * proceeding, so that we don't end up keep removing tasks added |
| * after execution capability is restored. |
| * |
| * cpuset_handle_hotplug may call back into cgroup core asynchronously |
| * via cgroup_transfer_tasks() and waiting for it from a cgroupfs |
| * operation like this one can lead to a deadlock through kernfs |
| * active_ref protection. Let's break the protection. Losing the |
| * protection is okay as we check whether @cs is online after |
| * grabbing cpuset_mutex anyway. This only happens on the legacy |
| * hierarchies. |
| */ |
| css_get(&cs->css); |
| kernfs_break_active_protection(of->kn); |
| |
| cpus_read_lock(); |
| mutex_lock(&cpuset_mutex); |
| if (!is_cpuset_online(cs)) |
| goto out_unlock; |
| |
| trialcs = alloc_trial_cpuset(cs); |
| if (!trialcs) { |
| retval = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| switch (of_cft(of)->private) { |
| case FILE_CPULIST: |
| retval = update_cpumask(cs, trialcs, buf); |
| break; |
| case FILE_EXCLUSIVE_CPULIST: |
| retval = update_exclusive_cpumask(cs, trialcs, buf); |
| break; |
| case FILE_MEMLIST: |
| retval = update_nodemask(cs, trialcs, buf); |
| break; |
| default: |
| retval = -EINVAL; |
| break; |
| } |
| |
| free_cpuset(trialcs); |
| out_unlock: |
| mutex_unlock(&cpuset_mutex); |
| cpus_read_unlock(); |
| kernfs_unbreak_active_protection(of->kn); |
| css_put(&cs->css); |
| flush_workqueue(cpuset_migrate_mm_wq); |
| return retval ?: nbytes; |
| } |
| |
| /* |
| * These ascii lists should be read in a single call, by using a user |
| * buffer large enough to hold the entire map. If read in smaller |
| * chunks, there is no guarantee of atomicity. Since the display format |
| * used, list of ranges of sequential numbers, is variable length, |
| * and since these maps can change value dynamically, one could read |
| * gibberish by doing partial reads while a list was changing. |
| */ |
| static int cpuset_common_seq_show(struct seq_file *sf, void *v) |
| { |
| struct cpuset *cs = css_cs(seq_css(sf)); |
| cpuset_filetype_t type = seq_cft(sf)->private; |
| int ret = 0; |
| |
| spin_lock_irq(&callback_lock); |
| |
| switch (type) { |
| case FILE_CPULIST: |
| seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); |
| break; |
| case FILE_MEMLIST: |
| seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); |
| break; |
| case FILE_EFFECTIVE_CPULIST: |
| seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); |
| break; |
| case FILE_EFFECTIVE_MEMLIST: |
| seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); |
| break; |
| case FILE_EXCLUSIVE_CPULIST: |
| seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus)); |
| break; |
| case FILE_EFFECTIVE_XCPULIST: |
| seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus)); |
| break; |
| case FILE_SUBPARTS_CPULIST: |
| seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus)); |
| break; |
| case FILE_ISOLATED_CPULIST: |
| seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus)); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| spin_unlock_irq(&callback_lock); |
| return ret; |
| } |
| |
| static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) |
| { |
| struct cpuset *cs = css_cs(css); |
| cpuset_filetype_t type = cft->private; |
| switch (type) { |
| case FILE_CPU_EXCLUSIVE: |
| return is_cpu_exclusive(cs); |
| case FILE_MEM_EXCLUSIVE: |
| return is_mem_exclusive(cs); |
| case FILE_MEM_HARDWALL: |
| return is_mem_hardwall(cs); |
| case FILE_SCHED_LOAD_BALANCE: |
| return is_sched_load_balance(cs); |
| case FILE_MEMORY_MIGRATE: |
| return is_memory_migrate(cs); |
| case FILE_MEMORY_PRESSURE_ENABLED: |
| return cpuset_memory_pressure_enabled; |
| case FILE_MEMORY_PRESSURE: |
| return fmeter_getrate(&cs->fmeter); |
| case FILE_SPREAD_PAGE: |
| return is_spread_page(cs); |
| case FILE_SPREAD_SLAB: |
| return is_spread_slab(cs); |
| default: |
| BUG(); |
| } |
| |
| /* Unreachable but makes gcc happy */ |
| return 0; |
| } |
| |
| static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) |
| { |
| struct cpuset *cs = css_cs(css); |
| cpuset_filetype_t type = cft->private; |
| switch (type) { |
| case FILE_SCHED_RELAX_DOMAIN_LEVEL: |
| return cs->relax_domain_level; |
| default: |
| BUG(); |
| } |
| |
| /* Unreachable but makes gcc happy */ |
| return 0; |
| } |
| |
| static int sched_partition_show(struct seq_file *seq, void *v) |
| { |
| struct cpuset *cs = css_cs(seq_css(seq)); |
| const char *err, *type = NULL; |
| |
| switch (cs->partition_root_state) { |
| case PRS_ROOT: |
| seq_puts(seq, "root\n"); |
| break; |
| case PRS_ISOLATED: |
| seq_puts(seq, "isolated\n"); |
| break; |
| case PRS_MEMBER: |
| seq_puts(seq, "member\n"); |
| break; |
| case PRS_INVALID_ROOT: |
| type = "root"; |
| fallthrough; |
| case PRS_INVALID_ISOLATED: |
| if (!type) |
| type = "isolated"; |
| err = perr_strings[READ_ONCE(cs->prs_err)]; |
| if (err) |
| seq_printf(seq, "%s invalid (%s)\n", type, err); |
| else |
| seq_printf(seq, "%s invalid\n", type); |
| break; |
| } |
| return 0; |
| } |
| |
| static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, |
| size_t nbytes, loff_t off) |
| { |
| struct cpuset *cs = css_cs(of_css(of)); |
| int val; |
| int retval = -ENODEV; |
| |
| buf = strstrip(buf); |
| |
| if (!strcmp(buf, "root")) |
| val = PRS_ROOT; |
| else if (!strcmp(buf, "member")) |
| val = PRS_MEMBER; |
| else if (!strcmp(buf, "isolated")) |
| val = PRS_ISOLATED; |
| else |
| return -EINVAL; |
| |
| css_get(&cs->css); |
| cpus_read_lock(); |
| mutex_lock(&cpuset_mutex); |
| if (!is_cpuset_online(cs)) |
| goto out_unlock; |
| |
| retval = update_prstate(cs, val); |
| out_unlock: |
| mutex_unlock(&cpuset_mutex); |
| cpus_read_unlock(); |
| css_put(&cs->css); |
| return retval ?: nbytes; |
| } |
| |
| /* |
| * for the common functions, 'private' gives the type of file |
| */ |
| |
| static struct cftype legacy_files[] = { |
| { |
| .name = "cpus", |
| .seq_show = cpuset_common_seq_show, |
| .write = cpuset_write_resmask, |
| .max_write_len = (100U + 6 * NR_CPUS), |
| .private = FILE_CPULIST, |
| }, |
| |
| { |
| .name = "mems", |
| .seq_show = cpuset_common_seq_show, |
| .write = cpuset_write_resmask, |
| .max_write_len = (100U + 6 * MAX_NUMNODES), |
| .private = FILE_MEMLIST, |
| }, |
| |
| { |
| .name = "effective_cpus", |
| .seq_show = cpuset_common_seq_show, |
| .private = FILE_EFFECTIVE_CPULIST, |
| }, |
| |
| { |
| .name = "effective_mems", |
| .seq_show = cpuset_common_seq_show, |
| .private = FILE_EFFECTIVE_MEMLIST, |
| }, |
| |
| { |
| .name = "cpu_exclusive", |
| .read_u64 = cpuset_read_u64, |
| .write_u64 = cpuset_write_u64, |
| .private = FILE_CPU_EXCLUSIVE, |
| }, |
| |
| { |
| .name = "mem_exclusive", |
| .read_u64 = cpuset_read_u64, |
| .write_u64 = cpuset_write_u64, |
| .private = FILE_MEM_EXCLUSIVE, |
| }, |
| |
| { |
| .name = "mem_hardwall", |
| .read_u64 = cpuset_read_u64, |
| .write_u64 = cpuset_write_u64, |
| .private = FILE_MEM_HARDWALL, |
| }, |
| |
| { |
| .name = "sched_load_balance", |
| .read_u64 = cpuset_read_u64, |
| .write_u64 = cpuset_write_u64, |
| .private = FILE_SCHED_LOAD_BALANCE, |
| }, |
| |
| { |
| .name = "sched_relax_domain_level", |
| .read_s64 = cpuset_read_s64, |
| .write_s64 = cpuset_write_s64, |
| .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, |
| }, |
| |
| { |
| .name = "memory_migrate", |
| .read_u64 = cpuset_read_u64, |
| .write_u64 = cpuset_write_u64, |
| .private = FILE_MEMORY_MIGRATE, |
| }, |
| |
| { |
| .name = "memory_pressure", |
| .read_u64 = cpuset_read_u64, |
| .private = FILE_MEMORY_PRESSURE, |
| }, |
| |
| { |
| .name = "memory_spread_page", |
| .read_u64 = cpuset_read_u64, |
| .write_u64 = cpuset_write_u64, |
| .private = FILE_SPREAD_PAGE, |
| }, |
| |
| { |
| /* obsolete, may be removed in the future */ |
| .name = "memory_spread_slab", |
| .read_u64 = cpuset_read_u64, |
| .write_u64 = cpuset_write_u64, |
| .private = FILE_SPREAD_SLAB, |
| }, |
| |
| { |
| .name = "memory_pressure_enabled", |
| .flags = CFTYPE_ONLY_ON_ROOT, |
| .read_u64 = cpuset_read_u64, |
| .write_u64 = cpuset_write_u64, |
| .private = FILE_MEMORY_PRESSURE_ENABLED, |
| }, |
| |
| { } /* terminate */ |
| }; |
| |
| /* |
| * This is currently a minimal set for the default hierarchy. It can be |
| * expanded later on by migrating more features and control files from v1. |
| */ |
| static struct cftype dfl_files[] = { |
| { |
| .name = "cpus", |
| .seq_show = cpuset_common_seq_show, |
| .write = cpuset_write_resmask, |
| .max_write_len = (100U + 6 * NR_CPUS), |
| .private = FILE_CPULIST, |
| .flags = CFTYPE_NOT_ON_ROOT, |
| }, |
| |
| { |
| .name = "mems", |
| .seq_show = cpuset_common_seq_show, |
| .write = cpuset_write_resmask, |
| .max_write_len = (100U + 6 * MAX_NUMNODES), |
| .private = FILE_MEMLIST, |
| .flags = CFTYPE_NOT_ON_ROOT, |
| }, |
| |
| { |
| .name = "cpus.effective", |
| .seq_show = cpuset_common_seq_show, |
| .private = FILE_EFFECTIVE_CPULIST, |
| }, |
| |
| { |
| .name = "mems.effective", |
| .seq_show = cpuset_common_seq_show, |
| .private = FILE_EFFECTIVE_MEMLIST, |
| }, |
| |
| { |
| .name = "cpus.partition", |
| .seq_show = sched_partition_show, |
| .write = sched_partition_write, |
| .private = FILE_PARTITION_ROOT, |
| .flags = CFTYPE_NOT_ON_ROOT, |
| .file_offset = offsetof(struct cpuset, partition_file), |
| }, |
| |
| { |
| .name = "cpus.exclusive", |
| .seq_show = cpuset_common_seq_show, |
| .write = cpuset_write_resmask, |
| .max_write_len = (100U + 6 * NR_CPUS), |
| .private = FILE_EXCLUSIVE_CPULIST, |
| .flags = CFTYPE_NOT_ON_ROOT, |
| }, |
| |
| { |
| .name = "cpus.exclusive.effective", |
| .seq_show = cpuset_common_seq_show, |
| .private = FILE_EFFECTIVE_XCPULIST, |
| .flags = CFTYPE_NOT_ON_ROOT, |
| }, |
| |
| { |
| .name = "cpus.subpartitions", |
| .seq_show = cpuset_common_seq_show, |
| .private = FILE_SUBPARTS_CPULIST, |
| .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG, |
| }, |
| |
| { |
| .name = "cpus.isolated", |
| .seq_show = cpuset_common_seq_show, |
| .private = FILE_ISOLATED_CPULIST, |
| .flags = CFTYPE_ONLY_ON_ROOT, |
| }, |
| |
| { } /* terminate */ |
| }; |
| |
| |
| /** |
| * cpuset_css_alloc - Allocate a cpuset css |
| * @parent_css: Parent css of the control group that the new cpuset will be |
| * part of |
| * Return: cpuset css on success, -ENOMEM on failure. |
| * |
| * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return |
| * top cpuset css otherwise. |
| */ |
| static struct cgroup_subsys_state * |
| cpuset_css_alloc(struct cgroup_subsys_state *parent_css) |
| { |
| struct cpuset *cs; |
| |
| if (!parent_css) |
| return &top_cpuset.css; |
| |
| cs = kzalloc(sizeof(*cs), GFP_KERNEL); |
| if (!cs) |
| return ERR_PTR(-ENOMEM); |
| |
| if (alloc_cpumasks(cs, NULL)) { |
| kfree(cs); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); |
| nodes_clear(cs->mems_allowed); |
| nodes_clear(cs->effective_mems); |
| fmeter_init(&cs->fmeter); |
| cs->relax_domain_level = -1; |
| INIT_LIST_HEAD(&cs->remote_sibling); |
| |
| /* Set CS_MEMORY_MIGRATE for default hierarchy */ |
| if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) |
| __set_bit(CS_MEMORY_MIGRATE, &cs->flags); |
| |
| return &cs->css; |
| } |
| |
| static int cpuset_css_online(struct cgroup_subsys_state *css) |
| { |
| struct cpuset *cs = css_cs(css); |
| struct cpuset *parent = parent_cs(cs); |
| struct cpuset *tmp_cs; |
| struct cgroup_subsys_state *pos_css; |
| |
| if (!parent) |
| return 0; |
| |
| cpus_read_lock(); |
| mutex_lock(&cpuset_mutex); |
| |
| set_bit(CS_ONLINE, &cs->flags); |
| if (is_spread_page(parent)) |
| set_bit(CS_SPREAD_PAGE, &cs->flags); |
| if (is_spread_slab(parent)) |
| set_bit(CS_SPREAD_SLAB, &cs->flags); |
| |
| cpuset_inc(); |
| |
| spin_lock_irq(&callback_lock); |
| if (is_in_v2_mode()) { |
| cpumask_copy(cs->effective_cpus, parent->effective_cpus); |
| cs->effective_mems = parent->effective_mems; |
| cs->use_parent_ecpus = true; |
| parent->child_ecpus_count++; |
| } |
| |
| /* |
| * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated |
| */ |
| if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && |
| !is_sched_load_balance(parent)) |
| clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); |
| |
| spin_unlock_irq(&callback_lock); |
| |
| if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) |
| goto out_unlock; |
| |
| /* |
| * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is |
| * set. This flag handling is implemented in cgroup core for |
| * historical reasons - the flag may be specified during mount. |
| * |
| * Currently, if any sibling cpusets have exclusive cpus or mem, we |
| * refuse to clone the configuration - thereby refusing the task to |
| * be entered, and as a result refusing the sys_unshare() or |
| * clone() which initiated it. If this becomes a problem for some |
| * users who wish to allow that scenario, then this could be |
| * changed to grant parent->cpus_allowed-sibling_cpus_exclusive |
| * (and likewise for mems) to the new cgroup. |
| */ |
| rcu_read_lock(); |
| cpuset_for_each_child(tmp_cs, pos_css, parent) { |
| if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { |
| rcu_read_unlock(); |
| goto out_unlock; |
| } |
| } |
| rcu_read_unlock(); |
| |
| spin_lock_irq(&callback_lock); |
| cs->mems_allowed = parent->mems_allowed; |
| cs->effective_mems = parent->mems_allowed; |
| cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); |
| cpumask_copy(cs->effective_cpus, parent->cpus_allowed); |
| spin_unlock_irq(&callback_lock); |
| out_unlock: |
| mutex_unlock(&cpuset_mutex); |
| cpus_read_unlock(); |
| return 0; |
| } |
| |
| /* |
| * If the cpuset being removed has its flag 'sched_load_balance' |
| * enabled, then simulate turning sched_load_balance off, which |
| * will call rebuild_sched_domains_locked(). That is not needed |
| * in the default hierarchy where only changes in partition |
| * will cause repartitioning. |
| * |
| * If the cpuset has the 'sched.partition' flag enabled, simulate |
| * turning 'sched.partition" off. |
| */ |
| |
| static void cpuset_css_offline(struct cgroup_subsys_state *css) |
| { |
| struct cpuset *cs = css_cs(css); |
| |
| cpus_read_lock(); |
| mutex_lock(&cpuset_mutex); |
| |
| if (is_partition_valid(cs)) |
| update_prstate(cs, 0); |
| |
| if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && |
| is_sched_load_balance(cs)) |
| update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); |
| |
| if (cs->use_parent_ecpus) { |
| struct cpuset *parent = parent_cs(cs); |
| |
| cs->use_parent_ecpus = false; |
| parent->child_ecpus_count--; |
| } |
| |
| cpuset_dec(); |
| clear_bit(CS_ONLINE, &cs->flags); |
| |
| mutex_unlock(&cpuset_mutex); |
| cpus_read_unlock(); |
| } |
| |
| static void cpuset_css_free(struct cgroup_subsys_state *css) |
| { |
| struct cpuset *cs = css_cs(css); |
| |
| free_cpuset(cs); |
| } |
| |
| static void cpuset_bind(struct cgroup_subsys_state *root_css) |
| { |
| mutex_lock(&cpuset_mutex); |
| spin_lock_irq(&callback_lock); |
| |
| if (is_in_v2_mode()) { |
| cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); |
| cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask); |
| top_cpuset.mems_allowed = node_possible_map; |
| } else { |
| cpumask_copy(top_cpuset.cpus_allowed, |
| top_cpuset.effective_cpus); |
| top_cpuset.mems_allowed = top_cpuset.effective_mems; |
| } |
| |
| spin_unlock_irq(&callback_lock); |
| mutex_unlock(&cpuset_mutex); |
| } |
| |
| /* |
| * In case the child is cloned into a cpuset different from its parent, |
| * additional checks are done to see if the move is allowed. |
| */ |
| static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) |
| { |
| struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); |
| bool same_cs; |
| int ret; |
| |
| rcu_read_lock(); |
| same_cs = (cs == task_cs(current)); |
| rcu_read_unlock(); |
| |
| if (same_cs) |
| return 0; |
| |
| lockdep_assert_held(&cgroup_mutex); |
| mutex_lock(&cpuset_mutex); |
| |
| /* Check to see if task is allowed in the cpuset */ |
| ret = cpuset_can_attach_check(cs); |
| if (ret) |
| goto out_unlock; |
| |
| ret = task_can_attach(task); |
| if (ret) |
| goto out_unlock; |
| |
| ret = security_task_setscheduler(task); |
| if (ret) |
| goto out_unlock; |
| |
| /* |
| * Mark attach is in progress. This makes validate_change() fail |
| * changes which zero cpus/mems_allowed. |
| */ |
| cs->attach_in_progress++; |
| out_unlock: |
| mutex_unlock(&cpuset_mutex); |
| return ret; |
| } |
| |
| static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) |
| { |
| struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); |
| bool same_cs; |
| |
| rcu_read_lock(); |
| same_cs = (cs == task_cs(current)); |
| rcu_read_unlock(); |
| |
| if (same_cs) |
| return; |
| |
| mutex_lock(&cpuset_mutex); |
| cs->attach_in_progress--; |
| if (!cs->attach_in_progress) |
| wake_up(&cpuset_attach_wq); |
| mutex_unlock(&cpuset_mutex); |
| } |
| |
| /* |
| * Make sure the new task conform to the current state of its parent, |
| * which could have been changed by cpuset just after it inherits the |
| * state from the parent and before it sits on the cgroup's task list. |
| */ |
| static void cpuset_fork(struct task_struct *task) |
| { |
| struct cpuset *cs; |
| bool same_cs; |
| |
| rcu_read_lock(); |
| cs = task_cs(task); |
| same_cs = (cs == task_cs(current)); |
| rcu_read_unlock(); |
| |
| if (same_cs) { |
| if (cs == &top_cpuset) |
| return; |
| |
| set_cpus_allowed_ptr(task, current->cpus_ptr); |
| task->mems_allowed = current->mems_allowed; |
| return; |
| } |
| |
| /* CLONE_INTO_CGROUP */ |
| mutex_lock(&cpuset_mutex); |
| guarantee_online_mems(cs, &cpuset_attach_nodemask_to); |
| cpuset_attach_task(cs, task); |
| |
| cs->attach_in_progress--; |
| if (!cs->attach_in_progress) |
| wake_up(&cpuset_attach_wq); |
| |
| mutex_unlock(&cpuset_mutex); |
| } |
| |
| struct cgroup_subsys cpuset_cgrp_subsys = { |
| .css_alloc = cpuset_css_alloc, |
| .css_online = cpuset_css_online, |
| .css_offline = cpuset_css_offline, |
| .css_free = cpuset_css_free, |
| .can_attach = cpuset_can_attach, |
| .cancel_attach = cpuset_cancel_attach, |
| .attach = cpuset_attach, |
| .post_attach = cpuset_post_attach, |
| .bind = cpuset_bind, |
| .can_fork = cpuset_can_fork, |
| .cancel_fork = cpuset_cancel_fork, |
| .fork = cpuset_fork, |
| .legacy_cftypes = legacy_files, |
| .dfl_cftypes = dfl_files, |
| .early_init = true, |
| .threaded = true, |
| }; |
| |
| /** |
| * cpuset_init - initialize cpusets at system boot |
| * |
| * Description: Initialize top_cpuset |
| **/ |
| |
| int __init cpuset_init(void) |
| { |
| BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); |
| BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); |
| BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL)); |
| BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL)); |
| BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL)); |
| BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL)); |
| |
| cpumask_setall(top_cpuset.cpus_allowed); |
| nodes_setall(top_cpuset.mems_allowed); |
| cpumask_setall(top_cpuset.effective_cpus); |
| cpumask_setall(top_cpuset.effective_xcpus); |
| cpumask_setall(top_cpuset.exclusive_cpus); |
| nodes_setall(top_cpuset.effective_mems); |
| |
| fmeter_init(&top_cpuset.fmeter); |
| INIT_LIST_HEAD(&remote_children); |
| |
| BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); |
| |
| return 0; |
| } |
| |
| /* |
| * If CPU and/or memory hotplug handlers, below, unplug any CPUs |
| * or memory nodes, we need to walk over the cpuset hierarchy, |
| * removing that CPU or node from all cpusets. If this removes the |
| * last CPU or node from a cpuset, then move the tasks in the empty |
| * cpuset to its next-highest non-empty parent. |
| */ |
| static void remove_tasks_in_empty_cpuset(struct cpuset *cs) |
| { |
| struct cpuset *parent; |
| |
| /* |
| * Find its next-highest non-empty parent, (top cpuset |
| * has online cpus, so can't be empty). |
| */ |
| parent = parent_cs(cs); |
| while (cpumask_empty(parent->cpus_allowed) || |
| nodes_empty(parent->mems_allowed)) |
| parent = parent_cs(parent); |
| |
| if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { |
| pr_err("cpuset: failed to transfer tasks out of empty cpuset "); |
| pr_cont_cgroup_name(cs->css.cgroup); |
| pr_cont("\n"); |
| } |
| } |
| |
| static void cpuset_migrate_tasks_workfn(struct work_struct *work) |
| { |
| struct cpuset_remove_tasks_struct *s; |
| |
| s = container_of(work, struct cpuset_remove_tasks_struct, work); |
| remove_tasks_in_empty_cpuset(s->cs); |
| css_put(&s->cs->css); |
| kfree(s); |
| } |
| |
| static void |
| hotplug_update_tasks_legacy(struct cpuset *cs, |
| struct cpumask *new_cpus, nodemask_t *new_mems, |
| bool cpus_updated, bool mems_updated) |
| { |
| bool is_empty; |
| |
| spin_lock_irq(&callback_lock); |
| cpumask_copy(cs->cpus_allowed, new_cpus); |
| cpumask_copy(cs->effective_cpus, new_cpus); |
| cs->mems_allowed = *new_mems; |
| cs->effective_mems = *new_mems; |
| spin_unlock_irq(&callback_lock); |
| |
| /* |
| * Don't call update_tasks_cpumask() if the cpuset becomes empty, |
| * as the tasks will be migrated to an ancestor. |
| */ |
| if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) |
| update_tasks_cpumask(cs, new_cpus); |
| if (mems_updated && !nodes_empty(cs->mems_allowed)) |
| update_tasks_nodemask(cs); |
| |
| is_empty = cpumask_empty(cs->cpus_allowed) || |
| nodes_empty(cs->mems_allowed); |
| |
| /* |
| * Move tasks to the nearest ancestor with execution resources, |
| * This is full cgroup operation which will also call back into |
| * cpuset. Execute it asynchronously using workqueue. |
| */ |
| if (is_empty && cs->css.cgroup->nr_populated_csets && |
| css_tryget_online(&cs->css)) { |
| struct cpuset_remove_tasks_struct *s; |
| |
| s = kzalloc(sizeof(*s), GFP_KERNEL); |
| if (WARN_ON_ONCE(!s)) { |
| css_put(&cs->css); |
| return; |
| } |
| |
| s->cs = cs; |
| INIT_WORK(&s->work, cpuset_migrate_tasks_workfn); |
| schedule_work(&s->work); |
| } |
| } |
| |
| static void |
| hotplug_update_tasks(struct cpuset *cs, |
| struct cpumask *new_cpus, nodemask_t *new_mems, |
| bool cpus_updated, bool mems_updated) |
| { |
| /* A partition root is allowed to have empty effective cpus */ |
| if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) |
| cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); |
| if (nodes_empty(*new_mems)) |
| *new_mems = parent_cs(cs)->effective_mems; |
| |
| spin_lock_irq(&callback_lock); |
| cpumask_copy(cs->effective_cpus, new_cpus); |
| cs->effective_mems = *new_mems; |
| spin_unlock_irq(&callback_lock); |
| |
| if (cpus_updated) |
| update_tasks_cpumask(cs, new_cpus); |
| if (mems_updated) |
| update_tasks_nodemask(cs); |
| } |
| |
| static bool force_rebuild; |
| |
| void cpuset_force_rebuild(void) |
| { |
| force_rebuild = true; |
| } |
| |
| /** |
| * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug |
| * @cs: cpuset in interest |
| * @tmp: the tmpmasks structure pointer |
| * |
| * Compare @cs's cpu and mem masks against top_cpuset and if some have gone |
| * offline, update @cs accordingly. If @cs ends up with no CPU or memory, |
| * all its tasks are moved to the nearest ancestor with both resources. |
| */ |
| static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) |
| { |
| static cpumask_t new_cpus; |
| static nodemask_t new_mems; |
| bool cpus_updated; |
| bool mems_updated; |
| bool remote; |
| int partcmd = -1; |
| struct cpuset *parent; |
| retry: |
| wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); |
| |
| mutex_lock(&cpuset_mutex); |
| |
| /* |
| * We have raced with task attaching. We wait until attaching |
| * is finished, so we won't attach a task to an empty cpuset. |
| */ |
| if (cs->attach_in_progress) { |
| mutex_unlock(&cpuset_mutex); |
| goto retry; |
| } |
| |
| parent = parent_cs(cs); |
| compute_effective_cpumask(&new_cpus, cs, parent); |
| nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); |
| |
| if (!tmp || !cs->partition_root_state) |
| goto update_tasks; |
| |
| /* |
| * Compute effective_cpus for valid partition root, may invalidate |
| * child partition roots if necessary. |
| */ |
| remote = is_remote_partition(cs); |
| if (remote || (is_partition_valid(cs) && is_partition_valid(parent))) |
| compute_partition_effective_cpumask(cs, &new_cpus); |
| |
| if (remote && cpumask_empty(&new_cpus) && |
| partition_is_populated(cs, NULL)) { |
| remote_partition_disable(cs, tmp); |
| compute_effective_cpumask(&new_cpus, cs, parent); |
| remote = false; |
| cpuset_force_rebuild(); |
| } |
| |
| /* |
| * Force the partition to become invalid if either one of |
| * the following conditions hold: |
| * 1) empty effective cpus but not valid empty partition. |
| * 2) parent is invalid or doesn't grant any cpus to child |
| * partitions. |
| */ |
| if (is_local_partition(cs) && (!is_partition_valid(parent) || |
| tasks_nocpu_error(parent, cs, &new_cpus))) |
| partcmd = partcmd_invalidate; |
| /* |
| * On the other hand, an invalid partition root may be transitioned |
| * back to a regular one. |
| */ |
| else if (is_partition_valid(parent) && is_partition_invalid(cs)) |
| partcmd = partcmd_update; |
| |
| if (partcmd >= 0) { |
| update_parent_effective_cpumask(cs, partcmd, NULL, tmp); |
| if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) { |
| compute_partition_effective_cpumask(cs, &new_cpus); |
| cpuset_force_rebuild(); |
| } |
| } |
| |
| update_tasks: |
| cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); |
| mems_updated = !nodes_equal(new_mems, cs->effective_mems); |
| if (!cpus_updated && !mems_updated) |
| goto unlock; /* Hotplug doesn't affect this cpuset */ |
| |
| if (mems_updated) |
| check_insane_mems_config(&new_mems); |
| |
| if (is_in_v2_mode()) |
| hotplug_update_tasks(cs, &new_cpus, &new_mems, |
| cpus_updated, mems_updated); |
| else |
| hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, |
| cpus_updated, mems_updated); |
| |
| unlock: |
| mutex_unlock(&cpuset_mutex); |
| } |
| |
| /** |
| * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset |
| * |
| * This function is called after either CPU or memory configuration has |
| * changed and updates cpuset accordingly. The top_cpuset is always |
| * synchronized to cpu_active_mask and N_MEMORY, which is necessary in |
| * order to make cpusets transparent (of no affect) on systems that are |
| * actively using CPU hotplug but making no active use of cpusets. |
| * |
| * Non-root cpusets are only affected by offlining. If any CPUs or memory |
| * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on |
| * all descendants. |
| * |
| * Note that CPU offlining during suspend is ignored. We don't modify |
| * cpusets across suspend/resume cycles at all. |
| * |
| * CPU / memory hotplug is handled synchronously. |
| */ |
| static void cpuset_handle_hotplug(void) |
| { |
| static cpumask_t new_cpus; |
| static nodemask_t new_mems; |
| bool cpus_updated, mems_updated; |
| bool on_dfl = is_in_v2_mode(); |
| struct tmpmasks tmp, *ptmp = NULL; |
| |
| if (on_dfl && !alloc_cpumasks(NULL, &tmp)) |
| ptmp = &tmp; |
| |
| lockdep_assert_cpus_held(); |
| mutex_lock(&cpuset_mutex); |
| |
| /* fetch the available cpus/mems and find out which changed how */ |
| cpumask_copy(&new_cpus, cpu_active_mask); |
| new_mems = node_states[N_MEMORY]; |
| |
| /* |
| * If subpartitions_cpus is populated, it is likely that the check |
| * below will produce a false positive on cpus_updated when the cpu |
| * list isn't changed. It is extra work, but it is better to be safe. |
| */ |
| cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) || |
| !cpumask_empty(subpartitions_cpus); |
| mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); |
| |
| /* |
| * In the rare case that hotplug removes all the cpus in |
| * subpartitions_cpus, we assumed that cpus are updated. |
| */ |
| if (!cpus_updated && top_cpuset.nr_subparts) |
| cpus_updated = true; |
| |
| /* For v1, synchronize cpus_allowed to cpu_active_mask */ |
| if (cpus_updated) { |
| spin_lock_irq(&callback_lock); |
| if (!on_dfl) |
| cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); |
| /* |
| * Make sure that CPUs allocated to child partitions |
| * do not show up in effective_cpus. If no CPU is left, |
| * we clear the subpartitions_cpus & let the child partitions |
| * fight for the CPUs again. |
| */ |
| if (!cpumask_empty(subpartitions_cpus)) { |
| if (cpumask_subset(&new_cpus, subpartitions_cpus)) { |
| top_cpuset.nr_subparts = 0; |
| cpumask_clear(subpartitions_cpus); |
| } else { |
| cpumask_andnot(&new_cpus, &new_cpus, |
| subpartitions_cpus); |
| } |
| } |
| cpumask_copy(top_cpuset.effective_cpus, &new_cpus); |
| spin_unlock_irq(&callback_lock); |
| /* we don't mess with cpumasks of tasks in top_cpuset */ |
| } |
| |
| /* synchronize mems_allowed to N_MEMORY */ |
| if (mems_updated) { |
| spin_lock_irq(&callback_lock); |
| if (!on_dfl) |
| top_cpuset.mems_allowed = new_mems; |
| top_cpuset.effective_mems = new_mems; |
| spin_unlock_irq(&callback_lock); |
| update_tasks_nodemask(&top_cpuset); |
| } |
| |
| mutex_unlock(&cpuset_mutex); |
| |
| /* if cpus or mems changed, we need to propagate to descendants */ |
| if (cpus_updated || mems_updated) { |
| struct cpuset *cs; |
| struct cgroup_subsys_state *pos_css; |
| |
| rcu_read_lock(); |
| cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { |
| if (cs == &top_cpuset || !css_tryget_online(&cs->css)) |
| continue; |
| rcu_read_unlock(); |
| |
| cpuset_hotplug_update_tasks(cs, ptmp); |
| |
| rcu_read_lock(); |
| css_put(&cs->css); |
| } |
| rcu_read_unlock(); |
| } |
| |
| /* rebuild sched domains if cpus_allowed has changed */ |
| if (cpus_updated || force_rebuild) { |
| force_rebuild = false; |
| rebuild_sched_domains_cpuslocked(); |
| } |
| |
| free_cpumasks(NULL, ptmp); |
| } |
| |
| void cpuset_update_active_cpus(void) |
| { |
| /* |
| * We're inside cpu hotplug critical region which usually nests |
| * inside cgroup synchronization. Bounce actual hotplug processing |
| * to a work item to avoid reverse locking order. |
| */ |
| cpuset_handle_hotplug(); |
| } |
| |
| /* |
| * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. |
| * Call this routine anytime after node_states[N_MEMORY] changes. |
| * See cpuset_update_active_cpus() for CPU hotplug handling. |
| */ |
| static int cpuset_track_online_nodes(struct notifier_block *self, |
| unsigned long action, void *arg) |
| { |
| cpuset_handle_hotplug(); |
| return NOTIFY_OK; |
| } |
| |
| /** |
| * cpuset_init_smp - initialize cpus_allowed |
| * |
| * Description: Finish top cpuset after cpu, node maps are initialized |
| */ |
| void __init cpuset_init_smp(void) |
| { |
| /* |
| * cpus_allowd/mems_allowed set to v2 values in the initial |
| * cpuset_bind() call will be reset to v1 values in another |
| * cpuset_bind() call when v1 cpuset is mounted. |
| */ |
| top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; |
| |
| cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); |
| top_cpuset.effective_mems = node_states[N_MEMORY]; |
| |
| hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); |
| |
| cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); |
| BUG_ON(!cpuset_migrate_mm_wq); |
| } |
| |
| /** |
| * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. |
| * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. |
| * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. |
| * |
| * Description: Returns the cpumask_var_t cpus_allowed of the cpuset |
| * attached to the specified @tsk. Guaranteed to return some non-empty |
| * subset of cpu_online_mask, even if this means going outside the |
| * tasks cpuset, except when the task is in the top cpuset. |
| **/ |
| |
| void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) |
| { |
| unsigned long flags; |
| struct cpuset *cs; |
| |
| spin_lock_irqsave(&callback_lock, flags); |
| rcu_read_lock(); |
| |
| cs = task_cs(tsk); |
| if (cs != &top_cpuset) |
| guarantee_online_cpus(tsk, pmask); |
| /* |
| * Tasks in the top cpuset won't get update to their cpumasks |
| * when a hotplug online/offline event happens. So we include all |
| * offline cpus in the allowed cpu list. |
| */ |
| if ((cs == &top_cpuset) || cpumask_empty(pmask)) { |
| const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); |
| |
| /* |
| * We first exclude cpus allocated to partitions. If there is no |
| * allowable online cpu left, we fall back to all possible cpus. |
| */ |
| cpumask_andnot(pmask, possible_mask, subpartitions_cpus); |
| if (!cpumask_intersects(pmask, cpu_online_mask)) |
| cpumask_copy(pmask, possible_mask); |
| } |
| |
| rcu_read_unlock(); |
| spin_unlock_irqrestore(&callback_lock, flags); |
| } |
| |
| /** |
| * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. |
| * @tsk: pointer to task_struct with which the scheduler is struggling |
| * |
| * Description: In the case that the scheduler cannot find an allowed cpu in |
| * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy |
| * mode however, this value is the same as task_cs(tsk)->effective_cpus, |
| * which will not contain a sane cpumask during cases such as cpu hotplugging. |
| * This is the absolute last resort for the scheduler and it is only used if |
| * _every_ other avenue has been traveled. |
| * |
| * Returns true if the affinity of @tsk was changed, false otherwise. |
| **/ |
| |
| bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) |
| { |
| const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); |
| const struct cpumask *cs_mask; |
| bool changed = false; |
| |
| rcu_read_lock(); |
| cs_mask = task_cs(tsk)->cpus_allowed; |
| if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { |
| do_set_cpus_allowed(tsk, cs_mask); |
| changed = true; |
| } |
| rcu_read_unlock(); |
| |
| /* |
| * We own tsk->cpus_allowed, nobody can change it under us. |
| * |
| * But we used cs && cs->cpus_allowed lockless and thus can |
| * race with cgroup_attach_task() or update_cpumask() and get |
| * the wrong tsk->cpus_allowed. However, both cases imply the |
| * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() |
| * which takes task_rq_lock(). |
| * |
| * If we are called after it dropped the lock we must see all |
| * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary |
| * set any mask even if it is not right from task_cs() pov, |
| * the pending set_cpus_allowed_ptr() will fix things. |
| * |
| * select_fallback_rq() will fix things ups and set cpu_possible_mask |
| * if required. |
| */ |
| return changed; |
| } |
| |
| void __init cpuset_init_current_mems_allowed(void) |
| { |
| nodes_setall(current->mems_allowed); |
| } |
| |
| /** |
| * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. |
| * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. |
| * |
| * Description: Returns the nodemask_t mems_allowed of the cpuset |
| * attached to the specified @tsk. Guaranteed to return some non-empty |
| * subset of node_states[N_MEMORY], even if this means going outside the |
| * tasks cpuset. |
| **/ |
| |
| nodemask_t cpuset_mems_allowed(struct task_struct *tsk) |
| { |
| nodemask_t mask; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&callback_lock, flags); |
| rcu_read_lock(); |
| guarantee_online_mems(task_cs(tsk), &mask); |
| rcu_read_unlock(); |
| spin_unlock_irqrestore(&callback_lock, flags); |
| |
| return mask; |
| } |
| |
| /** |
| * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed |
| * @nodemask: the nodemask to be checked |
| * |
| * Are any of the nodes in the nodemask allowed in current->mems_allowed? |
| */ |
| int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) |
| { |
| return nodes_intersects(*nodemask, current->mems_allowed); |
| } |
| |
| /* |
| * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or |
| * mem_hardwall ancestor to the specified cpuset. Call holding |
| * callback_lock. If no ancestor is mem_exclusive or mem_hardwall |
| * (an unusual configuration), then returns the root cpuset. |
| */ |
| static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) |
| { |
| while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) |
| cs = parent_cs(cs); |
| return cs; |
| } |
| |
| /* |
| * cpuset_node_allowed - Can we allocate on a memory node? |
| * @node: is this an allowed node? |
| * @gfp_mask: memory allocation flags |
| * |
| * If we're in interrupt, yes, we can always allocate. If @node is set in |
| * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this |
| * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, |
| * yes. If current has access to memory reserves as an oom victim, yes. |
| * Otherwise, no. |
| * |
| * GFP_USER allocations are marked with the __GFP_HARDWALL bit, |
| * and do not allow allocations outside the current tasks cpuset |
| * unless the task has been OOM killed. |
| * GFP_KERNEL allocations are not so marked, so can escape to the |
| * nearest enclosing hardwalled ancestor cpuset. |
| * |
| * Scanning up parent cpusets requires callback_lock. The |
| * __alloc_pages() routine only calls here with __GFP_HARDWALL bit |
| * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the |
| * current tasks mems_allowed came up empty on the first pass over |
| * the zonelist. So only GFP_KERNEL allocations, if all nodes in the |
| * cpuset are short of memory, might require taking the callback_lock. |
| * |
| * The first call here from mm/page_alloc:get_page_from_freelist() |
| * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, |
| * so no allocation on a node outside the cpuset is allowed (unless |
| * in interrupt, of course). |
| * |
| * The second pass through get_page_from_freelist() doesn't even call |
| * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() |
| * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set |
| * in alloc_flags. That logic and the checks below have the combined |
| * affect that: |
| * in_interrupt - any node ok (current task context irrelevant) |
| * GFP_ATOMIC - any node ok |
| * tsk_is_oom_victim - any node ok |
| * GFP_KERNEL - any node in enclosing hardwalled cpuset ok |
| * GFP_USER - only nodes in current tasks mems allowed ok. |
| */ |
| bool cpuset_node_allowed(int node, gfp_t gfp_mask) |
| { |
| struct cpuset *cs; /* current cpuset ancestors */ |
| bool allowed; /* is allocation in zone z allowed? */ |
| unsigned long flags; |
| |
| if (in_interrupt()) |
| return true; |
| if (node_isset(node, current->mems_allowed)) |
| return true; |
| /* |
| * Allow tasks that have access to memory reserves because they have |
| * been OOM killed to get memory anywhere. |
| */ |
| if (unlikely(tsk_is_oom_victim(current))) |
| return true; |
| if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ |
| return false; |
| |
| if (current->flags & PF_EXITING) /* Let dying task have memory */ |
| return true; |
| |
| /* Not hardwall and node outside mems_allowed: scan up cpusets */ |
| spin_lock_irqsave(&callback_lock, flags); |
| |
| rcu_read_lock(); |
| cs = nearest_hardwall_ancestor(task_cs(current)); |
| allowed = node_isset(node, cs->mems_allowed); |
| rcu_read_unlock(); |
| |
| spin_unlock_irqrestore(&callback_lock, flags); |
| return allowed; |
| } |
| |
| /** |
| * cpuset_spread_node() - On which node to begin search for a page |
| * @rotor: round robin rotor |
| * |
| * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for |
| * tasks in a cpuset with is_spread_page or is_spread_slab set), |
| * and if the memory allocation used cpuset_mem_spread_node() |
| * to determine on which node to start looking, as it will for |
| * certain page cache or slab cache pages such as used for file |
| * system buffers and inode caches, then instead of starting on the |
| * local node to look for a free page, rather spread the starting |
| * node around the tasks mems_allowed nodes. |
| * |
| * We don't have to worry about the returned node being offline |
| * because "it can't happen", and even if it did, it would be ok. |
| * |
| * The routines calling guarantee_online_mems() are careful to |
| * only set nodes in task->mems_allowed that are online. So it |
| * should not be possible for the following code to return an |
| * offline node. But if it did, that would be ok, as this routine |
| * is not returning the node where the allocation must be, only |
| * the node where the search should start. The zonelist passed to |
| * __alloc_pages() will include all nodes. If the slab allocator |
| * is passed an offline node, it will fall back to the local node. |
| * See kmem_cache_alloc_node(). |
| */ |
| static int cpuset_spread_node(int *rotor) |
| { |
| return *rotor = next_node_in(*rotor, current->mems_allowed); |
| } |
| |
| /** |
| * cpuset_mem_spread_node() - On which node to begin search for a file page |
| */ |
| int cpuset_mem_spread_node(void) |
| { |
| if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) |
| current->cpuset_mem_spread_rotor = |
| node_random(¤t->mems_allowed); |
| |
| return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); |
| } |
| |
| /** |
| * cpuset_slab_spread_node() - On which node to begin search for a slab page |
| */ |
| int cpuset_slab_spread_node(void) |
| { |
| if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) |
| current->cpuset_slab_spread_rotor = |
| node_random(¤t->mems_allowed); |
| |
| return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); |
| } |
| EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); |
| |
| /** |
| * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? |
| * @tsk1: pointer to task_struct of some task. |
| * @tsk2: pointer to task_struct of some other task. |
| * |
| * Description: Return true if @tsk1's mems_allowed intersects the |
| * mems_allowed of @tsk2. Used by the OOM killer to determine if |
| * one of the task's memory usage might impact the memory available |
| * to the other. |
| **/ |
| |
| int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, |
| const struct task_struct *tsk2) |
| { |
| return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); |
| } |
| |
| /** |
| * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed |
| * |
| * Description: Prints current's name, cpuset name, and cached copy of its |
| * mems_allowed to the kernel log. |
| */ |
| void cpuset_print_current_mems_allowed(void) |
| { |
| struct cgroup *cgrp; |
| |
| rcu_read_lock(); |
| |
| cgrp = task_cs(current)->css.cgroup; |
| pr_cont(",cpuset="); |
| pr_cont_cgroup_name(cgrp); |
| pr_cont(",mems_allowed=%*pbl", |
| nodemask_pr_args(¤t->mems_allowed)); |
| |
| rcu_read_unlock(); |
| } |
| |
| /* |
| * Collection of memory_pressure is suppressed unless |
| * this flag is enabled by writing "1" to the special |
| * cpuset file 'memory_pressure_enabled' in the root cpuset. |
| */ |
| |
| int cpuset_memory_pressure_enabled __read_mostly; |
| |
| /* |
| * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. |
| * |
| * Keep a running average of the rate of synchronous (direct) |
| * page reclaim efforts initiated by tasks in each cpuset. |
| * |
| * This represents the rate at which some task in the cpuset |
| * ran low on memory on all nodes it was allowed to use, and |
| * had to enter the kernels page reclaim code in an effort to |
| * create more free memory by tossing clean pages or swapping |
| * or writing dirty pages. |
| * |
| * Display to user space in the per-cpuset read-only file |
| * "memory_pressure". Value displayed is an integer |
| * representing the recent rate of entry into the synchronous |
| * (direct) page reclaim by any task attached to the cpuset. |
| */ |
| |
| void __cpuset_memory_pressure_bump(void) |
| { |
| rcu_read_lock(); |
| fmeter_markevent(&task_cs(current)->fmeter); |
| rcu_read_unlock(); |
| } |
| |
| #ifdef CONFIG_PROC_PID_CPUSET |
| /* |
| * proc_cpuset_show() |
| * - Print tasks cpuset path into seq_file. |
| * - Used for /proc/<pid>/cpuset. |
| * - No need to task_lock(tsk) on this tsk->cpuset reference, as it |
| * doesn't really matter if tsk->cpuset changes after we read it, |
| * and we take cpuset_mutex, keeping cpuset_attach() from changing it |
| * anyway. |
| */ |
| int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, |
| struct pid *pid, struct task_struct *tsk) |
| { |
| char *buf; |
| struct cgroup_subsys_state *css; |
| int retval; |
| |
| retval = -ENOMEM; |
| buf = kmalloc(PATH_MAX, GFP_KERNEL); |
| if (!buf) |
| goto out; |
| |
| css = task_get_css(tsk, cpuset_cgrp_id); |
| retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, |
| current->nsproxy->cgroup_ns); |
| css_put(css); |
| if (retval == -E2BIG) |
| retval = -ENAMETOOLONG; |
| if (retval < 0) |
| goto out_free; |
| seq_puts(m, buf); |
| seq_putc(m, '\n'); |
| retval = 0; |
| out_free: |
| kfree(buf); |
| out: |
| return retval; |
| } |
| #endif /* CONFIG_PROC_PID_CPUSET */ |
| |
| /* Display task mems_allowed in /proc/<pid>/status file. */ |
| void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) |
| { |
| seq_printf(m, "Mems_allowed:\t%*pb\n", |
| nodemask_pr_args(&task->mems_allowed)); |
| seq_printf(m, "Mems_allowed_list:\t%*pbl\n", |
| nodemask_pr_args(&task->mems_allowed)); |
| } |