blob: 9b8445d2a128ff24b6e29721f28c0806d2569377 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2015-2018 Etnaviv Project
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/delay.h>
#include <linux/dma-fence.h>
#include <linux/dma-mapping.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/thermal.h>
#include "etnaviv_cmdbuf.h"
#include "etnaviv_dump.h"
#include "etnaviv_gpu.h"
#include "etnaviv_gem.h"
#include "etnaviv_mmu.h"
#include "etnaviv_perfmon.h"
#include "etnaviv_sched.h"
#include "common.xml.h"
#include "state.xml.h"
#include "state_hi.xml.h"
#include "cmdstream.xml.h"
static const struct platform_device_id gpu_ids[] = {
{ .name = "etnaviv-gpu,2d" },
{ },
};
/*
* Driver functions:
*/
int etnaviv_gpu_get_param(struct etnaviv_gpu *gpu, u32 param, u64 *value)
{
struct etnaviv_drm_private *priv = gpu->drm->dev_private;
switch (param) {
case ETNAVIV_PARAM_GPU_MODEL:
*value = gpu->identity.model;
break;
case ETNAVIV_PARAM_GPU_REVISION:
*value = gpu->identity.revision;
break;
case ETNAVIV_PARAM_GPU_FEATURES_0:
*value = gpu->identity.features;
break;
case ETNAVIV_PARAM_GPU_FEATURES_1:
*value = gpu->identity.minor_features0;
break;
case ETNAVIV_PARAM_GPU_FEATURES_2:
*value = gpu->identity.minor_features1;
break;
case ETNAVIV_PARAM_GPU_FEATURES_3:
*value = gpu->identity.minor_features2;
break;
case ETNAVIV_PARAM_GPU_FEATURES_4:
*value = gpu->identity.minor_features3;
break;
case ETNAVIV_PARAM_GPU_FEATURES_5:
*value = gpu->identity.minor_features4;
break;
case ETNAVIV_PARAM_GPU_FEATURES_6:
*value = gpu->identity.minor_features5;
break;
case ETNAVIV_PARAM_GPU_FEATURES_7:
*value = gpu->identity.minor_features6;
break;
case ETNAVIV_PARAM_GPU_FEATURES_8:
*value = gpu->identity.minor_features7;
break;
case ETNAVIV_PARAM_GPU_FEATURES_9:
*value = gpu->identity.minor_features8;
break;
case ETNAVIV_PARAM_GPU_FEATURES_10:
*value = gpu->identity.minor_features9;
break;
case ETNAVIV_PARAM_GPU_FEATURES_11:
*value = gpu->identity.minor_features10;
break;
case ETNAVIV_PARAM_GPU_FEATURES_12:
*value = gpu->identity.minor_features11;
break;
case ETNAVIV_PARAM_GPU_STREAM_COUNT:
*value = gpu->identity.stream_count;
break;
case ETNAVIV_PARAM_GPU_REGISTER_MAX:
*value = gpu->identity.register_max;
break;
case ETNAVIV_PARAM_GPU_THREAD_COUNT:
*value = gpu->identity.thread_count;
break;
case ETNAVIV_PARAM_GPU_VERTEX_CACHE_SIZE:
*value = gpu->identity.vertex_cache_size;
break;
case ETNAVIV_PARAM_GPU_SHADER_CORE_COUNT:
*value = gpu->identity.shader_core_count;
break;
case ETNAVIV_PARAM_GPU_PIXEL_PIPES:
*value = gpu->identity.pixel_pipes;
break;
case ETNAVIV_PARAM_GPU_VERTEX_OUTPUT_BUFFER_SIZE:
*value = gpu->identity.vertex_output_buffer_size;
break;
case ETNAVIV_PARAM_GPU_BUFFER_SIZE:
*value = gpu->identity.buffer_size;
break;
case ETNAVIV_PARAM_GPU_INSTRUCTION_COUNT:
*value = gpu->identity.instruction_count;
break;
case ETNAVIV_PARAM_GPU_NUM_CONSTANTS:
*value = gpu->identity.num_constants;
break;
case ETNAVIV_PARAM_GPU_NUM_VARYINGS:
*value = gpu->identity.varyings_count;
break;
case ETNAVIV_PARAM_SOFTPIN_START_ADDR:
if (priv->mmu_global->version == ETNAVIV_IOMMU_V2)
*value = ETNAVIV_SOFTPIN_START_ADDRESS;
else
*value = ~0ULL;
break;
case ETNAVIV_PARAM_GPU_PRODUCT_ID:
*value = gpu->identity.product_id;
break;
case ETNAVIV_PARAM_GPU_CUSTOMER_ID:
*value = gpu->identity.customer_id;
break;
case ETNAVIV_PARAM_GPU_ECO_ID:
*value = gpu->identity.eco_id;
break;
default:
DBG("%s: invalid param: %u", dev_name(gpu->dev), param);
return -EINVAL;
}
return 0;
}
#define etnaviv_is_model_rev(gpu, mod, rev) \
((gpu)->identity.model == chipModel_##mod && \
(gpu)->identity.revision == rev)
#define etnaviv_field(val, field) \
(((val) & field##__MASK) >> field##__SHIFT)
static void etnaviv_hw_specs(struct etnaviv_gpu *gpu)
{
if (gpu->identity.minor_features0 &
chipMinorFeatures0_MORE_MINOR_FEATURES) {
u32 specs[4];
unsigned int streams;
specs[0] = gpu_read(gpu, VIVS_HI_CHIP_SPECS);
specs[1] = gpu_read(gpu, VIVS_HI_CHIP_SPECS_2);
specs[2] = gpu_read(gpu, VIVS_HI_CHIP_SPECS_3);
specs[3] = gpu_read(gpu, VIVS_HI_CHIP_SPECS_4);
gpu->identity.stream_count = etnaviv_field(specs[0],
VIVS_HI_CHIP_SPECS_STREAM_COUNT);
gpu->identity.register_max = etnaviv_field(specs[0],
VIVS_HI_CHIP_SPECS_REGISTER_MAX);
gpu->identity.thread_count = etnaviv_field(specs[0],
VIVS_HI_CHIP_SPECS_THREAD_COUNT);
gpu->identity.vertex_cache_size = etnaviv_field(specs[0],
VIVS_HI_CHIP_SPECS_VERTEX_CACHE_SIZE);
gpu->identity.shader_core_count = etnaviv_field(specs[0],
VIVS_HI_CHIP_SPECS_SHADER_CORE_COUNT);
gpu->identity.pixel_pipes = etnaviv_field(specs[0],
VIVS_HI_CHIP_SPECS_PIXEL_PIPES);
gpu->identity.vertex_output_buffer_size =
etnaviv_field(specs[0],
VIVS_HI_CHIP_SPECS_VERTEX_OUTPUT_BUFFER_SIZE);
gpu->identity.buffer_size = etnaviv_field(specs[1],
VIVS_HI_CHIP_SPECS_2_BUFFER_SIZE);
gpu->identity.instruction_count = etnaviv_field(specs[1],
VIVS_HI_CHIP_SPECS_2_INSTRUCTION_COUNT);
gpu->identity.num_constants = etnaviv_field(specs[1],
VIVS_HI_CHIP_SPECS_2_NUM_CONSTANTS);
gpu->identity.varyings_count = etnaviv_field(specs[2],
VIVS_HI_CHIP_SPECS_3_VARYINGS_COUNT);
/* This overrides the value from older register if non-zero */
streams = etnaviv_field(specs[3],
VIVS_HI_CHIP_SPECS_4_STREAM_COUNT);
if (streams)
gpu->identity.stream_count = streams;
}
/* Fill in the stream count if not specified */
if (gpu->identity.stream_count == 0) {
if (gpu->identity.model >= 0x1000)
gpu->identity.stream_count = 4;
else
gpu->identity.stream_count = 1;
}
/* Convert the register max value */
if (gpu->identity.register_max)
gpu->identity.register_max = 1 << gpu->identity.register_max;
else if (gpu->identity.model == chipModel_GC400)
gpu->identity.register_max = 32;
else
gpu->identity.register_max = 64;
/* Convert thread count */
if (gpu->identity.thread_count)
gpu->identity.thread_count = 1 << gpu->identity.thread_count;
else if (gpu->identity.model == chipModel_GC400)
gpu->identity.thread_count = 64;
else if (gpu->identity.model == chipModel_GC500 ||
gpu->identity.model == chipModel_GC530)
gpu->identity.thread_count = 128;
else
gpu->identity.thread_count = 256;
if (gpu->identity.vertex_cache_size == 0)
gpu->identity.vertex_cache_size = 8;
if (gpu->identity.shader_core_count == 0) {
if (gpu->identity.model >= 0x1000)
gpu->identity.shader_core_count = 2;
else
gpu->identity.shader_core_count = 1;
}
if (gpu->identity.pixel_pipes == 0)
gpu->identity.pixel_pipes = 1;
/* Convert virtex buffer size */
if (gpu->identity.vertex_output_buffer_size) {
gpu->identity.vertex_output_buffer_size =
1 << gpu->identity.vertex_output_buffer_size;
} else if (gpu->identity.model == chipModel_GC400) {
if (gpu->identity.revision < 0x4000)
gpu->identity.vertex_output_buffer_size = 512;
else if (gpu->identity.revision < 0x4200)
gpu->identity.vertex_output_buffer_size = 256;
else
gpu->identity.vertex_output_buffer_size = 128;
} else {
gpu->identity.vertex_output_buffer_size = 512;
}
switch (gpu->identity.instruction_count) {
case 0:
if (etnaviv_is_model_rev(gpu, GC2000, 0x5108) ||
gpu->identity.model == chipModel_GC880)
gpu->identity.instruction_count = 512;
else
gpu->identity.instruction_count = 256;
break;
case 1:
gpu->identity.instruction_count = 1024;
break;
case 2:
gpu->identity.instruction_count = 2048;
break;
default:
gpu->identity.instruction_count = 256;
break;
}
if (gpu->identity.num_constants == 0)
gpu->identity.num_constants = 168;
if (gpu->identity.varyings_count == 0) {
if (gpu->identity.minor_features1 & chipMinorFeatures1_HALTI0)
gpu->identity.varyings_count = 12;
else
gpu->identity.varyings_count = 8;
}
/*
* For some cores, two varyings are consumed for position, so the
* maximum varying count needs to be reduced by one.
*/
if (etnaviv_is_model_rev(gpu, GC5000, 0x5434) ||
etnaviv_is_model_rev(gpu, GC4000, 0x5222) ||
etnaviv_is_model_rev(gpu, GC4000, 0x5245) ||
etnaviv_is_model_rev(gpu, GC4000, 0x5208) ||
etnaviv_is_model_rev(gpu, GC3000, 0x5435) ||
etnaviv_is_model_rev(gpu, GC2200, 0x5244) ||
etnaviv_is_model_rev(gpu, GC2100, 0x5108) ||
etnaviv_is_model_rev(gpu, GC2000, 0x5108) ||
etnaviv_is_model_rev(gpu, GC1500, 0x5246) ||
etnaviv_is_model_rev(gpu, GC880, 0x5107) ||
etnaviv_is_model_rev(gpu, GC880, 0x5106))
gpu->identity.varyings_count -= 1;
}
static void etnaviv_hw_identify(struct etnaviv_gpu *gpu)
{
u32 chipIdentity;
chipIdentity = gpu_read(gpu, VIVS_HI_CHIP_IDENTITY);
/* Special case for older graphic cores. */
if (etnaviv_field(chipIdentity, VIVS_HI_CHIP_IDENTITY_FAMILY) == 0x01) {
gpu->identity.model = chipModel_GC500;
gpu->identity.revision = etnaviv_field(chipIdentity,
VIVS_HI_CHIP_IDENTITY_REVISION);
} else {
u32 chipDate = gpu_read(gpu, VIVS_HI_CHIP_DATE);
gpu->identity.model = gpu_read(gpu, VIVS_HI_CHIP_MODEL);
gpu->identity.revision = gpu_read(gpu, VIVS_HI_CHIP_REV);
gpu->identity.customer_id = gpu_read(gpu, VIVS_HI_CHIP_CUSTOMER_ID);
/*
* Reading these two registers on GC600 rev 0x19 result in a
* unhandled fault: external abort on non-linefetch
*/
if (!etnaviv_is_model_rev(gpu, GC600, 0x19)) {
gpu->identity.product_id = gpu_read(gpu, VIVS_HI_CHIP_PRODUCT_ID);
gpu->identity.eco_id = gpu_read(gpu, VIVS_HI_CHIP_ECO_ID);
}
/*
* !!!! HACK ALERT !!!!
* Because people change device IDs without letting software
* know about it - here is the hack to make it all look the
* same. Only for GC400 family.
*/
if ((gpu->identity.model & 0xff00) == 0x0400 &&
gpu->identity.model != chipModel_GC420) {
gpu->identity.model = gpu->identity.model & 0x0400;
}
/* Another special case */
if (etnaviv_is_model_rev(gpu, GC300, 0x2201)) {
u32 chipTime = gpu_read(gpu, VIVS_HI_CHIP_TIME);
if (chipDate == 0x20080814 && chipTime == 0x12051100) {
/*
* This IP has an ECO; put the correct
* revision in it.
*/
gpu->identity.revision = 0x1051;
}
}
/*
* NXP likes to call the GPU on the i.MX6QP GC2000+, but in
* reality it's just a re-branded GC3000. We can identify this
* core by the upper half of the revision register being all 1.
* Fix model/rev here, so all other places can refer to this
* core by its real identity.
*/
if (etnaviv_is_model_rev(gpu, GC2000, 0xffff5450)) {
gpu->identity.model = chipModel_GC3000;
gpu->identity.revision &= 0xffff;
}
if (etnaviv_is_model_rev(gpu, GC1000, 0x5037) && (chipDate == 0x20120617))
gpu->identity.eco_id = 1;
if (etnaviv_is_model_rev(gpu, GC320, 0x5303) && (chipDate == 0x20140511))
gpu->identity.eco_id = 1;
}
dev_info(gpu->dev, "model: GC%x, revision: %x\n",
gpu->identity.model, gpu->identity.revision);
gpu->idle_mask = ~VIVS_HI_IDLE_STATE_AXI_LP;
/*
* If there is a match in the HWDB, we aren't interested in the
* remaining register values, as they might be wrong.
*/
if (etnaviv_fill_identity_from_hwdb(gpu))
return;
gpu->identity.features = gpu_read(gpu, VIVS_HI_CHIP_FEATURE);
/* Disable fast clear on GC700. */
if (gpu->identity.model == chipModel_GC700)
gpu->identity.features &= ~chipFeatures_FAST_CLEAR;
/* These models/revisions don't have the 2D pipe bit */
if ((gpu->identity.model == chipModel_GC500 &&
gpu->identity.revision <= 2) ||
gpu->identity.model == chipModel_GC300)
gpu->identity.features |= chipFeatures_PIPE_2D;
if ((gpu->identity.model == chipModel_GC500 &&
gpu->identity.revision < 2) ||
(gpu->identity.model == chipModel_GC300 &&
gpu->identity.revision < 0x2000)) {
/*
* GC500 rev 1.x and GC300 rev < 2.0 doesn't have these
* registers.
*/
gpu->identity.minor_features0 = 0;
gpu->identity.minor_features1 = 0;
gpu->identity.minor_features2 = 0;
gpu->identity.minor_features3 = 0;
gpu->identity.minor_features4 = 0;
gpu->identity.minor_features5 = 0;
} else
gpu->identity.minor_features0 =
gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_0);
if (gpu->identity.minor_features0 &
chipMinorFeatures0_MORE_MINOR_FEATURES) {
gpu->identity.minor_features1 =
gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_1);
gpu->identity.minor_features2 =
gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_2);
gpu->identity.minor_features3 =
gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_3);
gpu->identity.minor_features4 =
gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_4);
gpu->identity.minor_features5 =
gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_5);
}
/* GC600/300 idle register reports zero bits where modules aren't present */
if (gpu->identity.model == chipModel_GC600 ||
gpu->identity.model == chipModel_GC300)
gpu->idle_mask = VIVS_HI_IDLE_STATE_TX |
VIVS_HI_IDLE_STATE_RA |
VIVS_HI_IDLE_STATE_SE |
VIVS_HI_IDLE_STATE_PA |
VIVS_HI_IDLE_STATE_SH |
VIVS_HI_IDLE_STATE_PE |
VIVS_HI_IDLE_STATE_DE |
VIVS_HI_IDLE_STATE_FE;
etnaviv_hw_specs(gpu);
}
static void etnaviv_gpu_load_clock(struct etnaviv_gpu *gpu, u32 clock)
{
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, clock |
VIVS_HI_CLOCK_CONTROL_FSCALE_CMD_LOAD);
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, clock);
}
static void etnaviv_gpu_update_clock(struct etnaviv_gpu *gpu)
{
if (gpu->identity.minor_features2 &
chipMinorFeatures2_DYNAMIC_FREQUENCY_SCALING) {
clk_set_rate(gpu->clk_core,
gpu->base_rate_core >> gpu->freq_scale);
clk_set_rate(gpu->clk_shader,
gpu->base_rate_shader >> gpu->freq_scale);
} else {
unsigned int fscale = 1 << (6 - gpu->freq_scale);
u32 clock = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL);
clock &= ~VIVS_HI_CLOCK_CONTROL_FSCALE_VAL__MASK;
clock |= VIVS_HI_CLOCK_CONTROL_FSCALE_VAL(fscale);
etnaviv_gpu_load_clock(gpu, clock);
}
/*
* Choose number of wait cycles to target a ~30us (1/32768) max latency
* until new work is picked up by the FE when it polls in the idle loop.
* If the GPU base frequency is unknown use 200 wait cycles.
*/
gpu->fe_waitcycles = clamp(gpu->base_rate_core >> (15 - gpu->freq_scale),
200UL, 0xffffUL);
}
static int etnaviv_hw_reset(struct etnaviv_gpu *gpu)
{
u32 control, idle;
unsigned long timeout;
bool failed = true;
/* We hope that the GPU resets in under one second */
timeout = jiffies + msecs_to_jiffies(1000);
while (time_is_after_jiffies(timeout)) {
/* enable clock */
unsigned int fscale = 1 << (6 - gpu->freq_scale);
control = VIVS_HI_CLOCK_CONTROL_FSCALE_VAL(fscale);
etnaviv_gpu_load_clock(gpu, control);
/* isolate the GPU. */
control |= VIVS_HI_CLOCK_CONTROL_ISOLATE_GPU;
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control);
if (gpu->sec_mode == ETNA_SEC_KERNEL) {
gpu_write(gpu, VIVS_MMUv2_AHB_CONTROL,
VIVS_MMUv2_AHB_CONTROL_RESET);
} else {
/* set soft reset. */
control |= VIVS_HI_CLOCK_CONTROL_SOFT_RESET;
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control);
}
/* wait for reset. */
usleep_range(10, 20);
/* reset soft reset bit. */
control &= ~VIVS_HI_CLOCK_CONTROL_SOFT_RESET;
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control);
/* reset GPU isolation. */
control &= ~VIVS_HI_CLOCK_CONTROL_ISOLATE_GPU;
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control);
/* read idle register. */
idle = gpu_read(gpu, VIVS_HI_IDLE_STATE);
/* try resetting again if FE is not idle */
if ((idle & VIVS_HI_IDLE_STATE_FE) == 0) {
dev_dbg(gpu->dev, "FE is not idle\n");
continue;
}
/* read reset register. */
control = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL);
/* is the GPU idle? */
if (((control & VIVS_HI_CLOCK_CONTROL_IDLE_3D) == 0) ||
((control & VIVS_HI_CLOCK_CONTROL_IDLE_2D) == 0)) {
dev_dbg(gpu->dev, "GPU is not idle\n");
continue;
}
/* disable debug registers, as they are not normally needed */
control |= VIVS_HI_CLOCK_CONTROL_DISABLE_DEBUG_REGISTERS;
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control);
failed = false;
break;
}
if (failed) {
idle = gpu_read(gpu, VIVS_HI_IDLE_STATE);
control = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL);
dev_err(gpu->dev, "GPU failed to reset: FE %sidle, 3D %sidle, 2D %sidle\n",
idle & VIVS_HI_IDLE_STATE_FE ? "" : "not ",
control & VIVS_HI_CLOCK_CONTROL_IDLE_3D ? "" : "not ",
control & VIVS_HI_CLOCK_CONTROL_IDLE_2D ? "" : "not ");
return -EBUSY;
}
/* We rely on the GPU running, so program the clock */
etnaviv_gpu_update_clock(gpu);
gpu->state = ETNA_GPU_STATE_RESET;
gpu->exec_state = -1;
if (gpu->mmu_context)
etnaviv_iommu_context_put(gpu->mmu_context);
gpu->mmu_context = NULL;
return 0;
}
static void etnaviv_gpu_enable_mlcg(struct etnaviv_gpu *gpu)
{
u32 pmc, ppc;
/* enable clock gating */
ppc = gpu_read_power(gpu, VIVS_PM_POWER_CONTROLS);
ppc |= VIVS_PM_POWER_CONTROLS_ENABLE_MODULE_CLOCK_GATING;
/* Disable stall module clock gating for 4.3.0.1 and 4.3.0.2 revs */
if (gpu->identity.revision == 0x4301 ||
gpu->identity.revision == 0x4302)
ppc |= VIVS_PM_POWER_CONTROLS_DISABLE_STALL_MODULE_CLOCK_GATING;
gpu_write_power(gpu, VIVS_PM_POWER_CONTROLS, ppc);
pmc = gpu_read_power(gpu, VIVS_PM_MODULE_CONTROLS);
/* Disable PA clock gating for GC400+ without bugfix except for GC420 */
if (gpu->identity.model >= chipModel_GC400 &&
gpu->identity.model != chipModel_GC420 &&
!(gpu->identity.minor_features3 & chipMinorFeatures3_BUG_FIXES12))
pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_PA;
/*
* Disable PE clock gating on revs < 5.0.0.0 when HZ is
* present without a bug fix.
*/
if (gpu->identity.revision < 0x5000 &&
gpu->identity.minor_features0 & chipMinorFeatures0_HZ &&
!(gpu->identity.minor_features1 &
chipMinorFeatures1_DISABLE_PE_GATING))
pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_PE;
if (gpu->identity.revision < 0x5422)
pmc |= BIT(15); /* Unknown bit */
/* Disable TX clock gating on affected core revisions. */
if (etnaviv_is_model_rev(gpu, GC4000, 0x5222) ||
etnaviv_is_model_rev(gpu, GC2000, 0x5108) ||
etnaviv_is_model_rev(gpu, GC2000, 0x6202) ||
etnaviv_is_model_rev(gpu, GC2000, 0x6203))
pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_TX;
/* Disable SE and RA clock gating on affected core revisions. */
if (etnaviv_is_model_rev(gpu, GC7000, 0x6202))
pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_SE |
VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_RA;
pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_RA_HZ;
pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_RA_EZ;
gpu_write_power(gpu, VIVS_PM_MODULE_CONTROLS, pmc);
}
void etnaviv_gpu_start_fe(struct etnaviv_gpu *gpu, u32 address, u16 prefetch)
{
gpu_write(gpu, VIVS_FE_COMMAND_ADDRESS, address);
gpu_write(gpu, VIVS_FE_COMMAND_CONTROL,
VIVS_FE_COMMAND_CONTROL_ENABLE |
VIVS_FE_COMMAND_CONTROL_PREFETCH(prefetch));
if (gpu->sec_mode == ETNA_SEC_KERNEL) {
gpu_write(gpu, VIVS_MMUv2_SEC_COMMAND_CONTROL,
VIVS_MMUv2_SEC_COMMAND_CONTROL_ENABLE |
VIVS_MMUv2_SEC_COMMAND_CONTROL_PREFETCH(prefetch));
}
}
static void etnaviv_gpu_start_fe_idleloop(struct etnaviv_gpu *gpu,
struct etnaviv_iommu_context *context)
{
u16 prefetch;
u32 address;
WARN_ON(gpu->state != ETNA_GPU_STATE_INITIALIZED);
/* setup the MMU */
etnaviv_iommu_restore(gpu, context);
/* Start command processor */
prefetch = etnaviv_buffer_init(gpu);
address = etnaviv_cmdbuf_get_va(&gpu->buffer,
&gpu->mmu_context->cmdbuf_mapping);
etnaviv_gpu_start_fe(gpu, address, prefetch);
gpu->state = ETNA_GPU_STATE_RUNNING;
}
static void etnaviv_gpu_setup_pulse_eater(struct etnaviv_gpu *gpu)
{
/*
* Base value for VIVS_PM_PULSE_EATER register on models where it
* cannot be read, extracted from vivante kernel driver.
*/
u32 pulse_eater = 0x01590880;
if (etnaviv_is_model_rev(gpu, GC4000, 0x5208) ||
etnaviv_is_model_rev(gpu, GC4000, 0x5222)) {
pulse_eater |= BIT(23);
}
if (etnaviv_is_model_rev(gpu, GC1000, 0x5039) ||
etnaviv_is_model_rev(gpu, GC1000, 0x5040)) {
pulse_eater &= ~BIT(16);
pulse_eater |= BIT(17);
}
if ((gpu->identity.revision > 0x5420) &&
(gpu->identity.features & chipFeatures_PIPE_3D))
{
/* Performance fix: disable internal DFS */
pulse_eater = gpu_read_power(gpu, VIVS_PM_PULSE_EATER);
pulse_eater |= BIT(18);
}
gpu_write_power(gpu, VIVS_PM_PULSE_EATER, pulse_eater);
}
static void etnaviv_gpu_hw_init(struct etnaviv_gpu *gpu)
{
WARN_ON(!(gpu->state == ETNA_GPU_STATE_IDENTIFIED ||
gpu->state == ETNA_GPU_STATE_RESET));
if ((etnaviv_is_model_rev(gpu, GC320, 0x5007) ||
etnaviv_is_model_rev(gpu, GC320, 0x5220)) &&
gpu_read(gpu, VIVS_HI_CHIP_TIME) != 0x2062400) {
u32 mc_memory_debug;
mc_memory_debug = gpu_read(gpu, VIVS_MC_DEBUG_MEMORY) & ~0xff;
if (gpu->identity.revision == 0x5007)
mc_memory_debug |= 0x0c;
else
mc_memory_debug |= 0x08;
gpu_write(gpu, VIVS_MC_DEBUG_MEMORY, mc_memory_debug);
}
/* enable module-level clock gating */
etnaviv_gpu_enable_mlcg(gpu);
/*
* Update GPU AXI cache atttribute to "cacheable, no allocate".
* This is necessary to prevent the iMX6 SoC locking up.
*/
gpu_write(gpu, VIVS_HI_AXI_CONFIG,
VIVS_HI_AXI_CONFIG_AWCACHE(2) |
VIVS_HI_AXI_CONFIG_ARCACHE(2));
/* GC2000 rev 5108 needs a special bus config */
if (etnaviv_is_model_rev(gpu, GC2000, 0x5108)) {
u32 bus_config = gpu_read(gpu, VIVS_MC_BUS_CONFIG);
bus_config &= ~(VIVS_MC_BUS_CONFIG_FE_BUS_CONFIG__MASK |
VIVS_MC_BUS_CONFIG_TX_BUS_CONFIG__MASK);
bus_config |= VIVS_MC_BUS_CONFIG_FE_BUS_CONFIG(1) |
VIVS_MC_BUS_CONFIG_TX_BUS_CONFIG(0);
gpu_write(gpu, VIVS_MC_BUS_CONFIG, bus_config);
}
if (gpu->sec_mode == ETNA_SEC_KERNEL) {
u32 val = gpu_read(gpu, VIVS_MMUv2_AHB_CONTROL);
val |= VIVS_MMUv2_AHB_CONTROL_NONSEC_ACCESS;
gpu_write(gpu, VIVS_MMUv2_AHB_CONTROL, val);
}
/* setup the pulse eater */
etnaviv_gpu_setup_pulse_eater(gpu);
gpu_write(gpu, VIVS_HI_INTR_ENBL, ~0U);
gpu->state = ETNA_GPU_STATE_INITIALIZED;
}
int etnaviv_gpu_init(struct etnaviv_gpu *gpu)
{
struct etnaviv_drm_private *priv = gpu->drm->dev_private;
dma_addr_t cmdbuf_paddr;
int ret, i;
ret = pm_runtime_get_sync(gpu->dev);
if (ret < 0) {
dev_err(gpu->dev, "Failed to enable GPU power domain\n");
goto pm_put;
}
etnaviv_hw_identify(gpu);
if (gpu->identity.model == 0) {
dev_err(gpu->dev, "Unknown GPU model\n");
ret = -ENXIO;
goto fail;
}
if (gpu->identity.nn_core_count > 0)
dev_warn(gpu->dev, "etnaviv has been instantiated on a NPU, "
"for which the UAPI is still experimental\n");
/* Exclude VG cores with FE2.0 */
if (gpu->identity.features & chipFeatures_PIPE_VG &&
gpu->identity.features & chipFeatures_FE20) {
dev_info(gpu->dev, "Ignoring GPU with VG and FE2.0\n");
ret = -ENXIO;
goto fail;
}
/*
* On cores with security features supported, we claim control over the
* security states.
*/
if ((gpu->identity.minor_features7 & chipMinorFeatures7_BIT_SECURITY) &&
(gpu->identity.minor_features10 & chipMinorFeatures10_SECURITY_AHB))
gpu->sec_mode = ETNA_SEC_KERNEL;
gpu->state = ETNA_GPU_STATE_IDENTIFIED;
ret = etnaviv_hw_reset(gpu);
if (ret) {
dev_err(gpu->dev, "GPU reset failed\n");
goto fail;
}
ret = etnaviv_iommu_global_init(gpu);
if (ret)
goto fail;
/*
* If the GPU is part of a system with DMA addressing limitations,
* request pages for our SHM backend buffers from the DMA32 zone to
* hopefully avoid performance killing SWIOTLB bounce buffering.
*/
if (dma_addressing_limited(gpu->dev))
priv->shm_gfp_mask |= GFP_DMA32;
/* Create buffer: */
ret = etnaviv_cmdbuf_init(priv->cmdbuf_suballoc, &gpu->buffer,
PAGE_SIZE);
if (ret) {
dev_err(gpu->dev, "could not create command buffer\n");
goto fail;
}
/*
* Set the GPU linear window to cover the cmdbuf region, as the GPU
* won't be able to start execution otherwise. The alignment to 128M is
* chosen arbitrarily but helps in debugging, as the MMU offset
* calculations are much more straight forward this way.
*
* On MC1.0 cores the linear window offset is ignored by the TS engine,
* leading to inconsistent memory views. Avoid using the offset on those
* cores if possible, otherwise disable the TS feature.
*/
cmdbuf_paddr = ALIGN_DOWN(etnaviv_cmdbuf_get_pa(&gpu->buffer), SZ_128M);
if (!(gpu->identity.features & chipFeatures_PIPE_3D) ||
(gpu->identity.minor_features0 & chipMinorFeatures0_MC20)) {
if (cmdbuf_paddr >= SZ_2G)
priv->mmu_global->memory_base = SZ_2G;
else
priv->mmu_global->memory_base = cmdbuf_paddr;
} else if (cmdbuf_paddr + SZ_128M >= SZ_2G) {
dev_info(gpu->dev,
"Need to move linear window on MC1.0, disabling TS\n");
gpu->identity.features &= ~chipFeatures_FAST_CLEAR;
priv->mmu_global->memory_base = SZ_2G;
}
/* Setup event management */
spin_lock_init(&gpu->event_spinlock);
init_completion(&gpu->event_free);
bitmap_zero(gpu->event_bitmap, ETNA_NR_EVENTS);
for (i = 0; i < ARRAY_SIZE(gpu->event); i++)
complete(&gpu->event_free);
/* Now program the hardware */
mutex_lock(&gpu->lock);
etnaviv_gpu_hw_init(gpu);
mutex_unlock(&gpu->lock);
pm_runtime_mark_last_busy(gpu->dev);
pm_runtime_put_autosuspend(gpu->dev);
return 0;
fail:
pm_runtime_mark_last_busy(gpu->dev);
pm_put:
pm_runtime_put_autosuspend(gpu->dev);
return ret;
}
#ifdef CONFIG_DEBUG_FS
struct dma_debug {
u32 address[2];
u32 state[2];
};
static void verify_dma(struct etnaviv_gpu *gpu, struct dma_debug *debug)
{
u32 i;
debug->address[0] = gpu_read(gpu, VIVS_FE_DMA_ADDRESS);
debug->state[0] = gpu_read(gpu, VIVS_FE_DMA_DEBUG_STATE);
for (i = 0; i < 500; i++) {
debug->address[1] = gpu_read(gpu, VIVS_FE_DMA_ADDRESS);
debug->state[1] = gpu_read(gpu, VIVS_FE_DMA_DEBUG_STATE);
if (debug->address[0] != debug->address[1])
break;
if (debug->state[0] != debug->state[1])
break;
}
}
int etnaviv_gpu_debugfs(struct etnaviv_gpu *gpu, struct seq_file *m)
{
struct dma_debug debug;
u32 dma_lo, dma_hi, axi, idle;
int ret;
seq_printf(m, "%s Status:\n", dev_name(gpu->dev));
ret = pm_runtime_get_sync(gpu->dev);
if (ret < 0)
goto pm_put;
dma_lo = gpu_read(gpu, VIVS_FE_DMA_LOW);
dma_hi = gpu_read(gpu, VIVS_FE_DMA_HIGH);
axi = gpu_read(gpu, VIVS_HI_AXI_STATUS);
idle = gpu_read(gpu, VIVS_HI_IDLE_STATE);
verify_dma(gpu, &debug);
seq_puts(m, "\tidentity\n");
seq_printf(m, "\t model: 0x%x\n", gpu->identity.model);
seq_printf(m, "\t revision: 0x%x\n", gpu->identity.revision);
seq_printf(m, "\t product_id: 0x%x\n", gpu->identity.product_id);
seq_printf(m, "\t customer_id: 0x%x\n", gpu->identity.customer_id);
seq_printf(m, "\t eco_id: 0x%x\n", gpu->identity.eco_id);
seq_puts(m, "\tfeatures\n");
seq_printf(m, "\t major_features: 0x%08x\n",
gpu->identity.features);
seq_printf(m, "\t minor_features0: 0x%08x\n",
gpu->identity.minor_features0);
seq_printf(m, "\t minor_features1: 0x%08x\n",
gpu->identity.minor_features1);
seq_printf(m, "\t minor_features2: 0x%08x\n",
gpu->identity.minor_features2);
seq_printf(m, "\t minor_features3: 0x%08x\n",
gpu->identity.minor_features3);
seq_printf(m, "\t minor_features4: 0x%08x\n",
gpu->identity.minor_features4);
seq_printf(m, "\t minor_features5: 0x%08x\n",
gpu->identity.minor_features5);
seq_printf(m, "\t minor_features6: 0x%08x\n",
gpu->identity.minor_features6);
seq_printf(m, "\t minor_features7: 0x%08x\n",
gpu->identity.minor_features7);
seq_printf(m, "\t minor_features8: 0x%08x\n",
gpu->identity.minor_features8);
seq_printf(m, "\t minor_features9: 0x%08x\n",
gpu->identity.minor_features9);
seq_printf(m, "\t minor_features10: 0x%08x\n",
gpu->identity.minor_features10);
seq_printf(m, "\t minor_features11: 0x%08x\n",
gpu->identity.minor_features11);
seq_puts(m, "\tspecs\n");
seq_printf(m, "\t stream_count: %d\n",
gpu->identity.stream_count);
seq_printf(m, "\t register_max: %d\n",
gpu->identity.register_max);
seq_printf(m, "\t thread_count: %d\n",
gpu->identity.thread_count);
seq_printf(m, "\t vertex_cache_size: %d\n",
gpu->identity.vertex_cache_size);
seq_printf(m, "\t shader_core_count: %d\n",
gpu->identity.shader_core_count);
seq_printf(m, "\t nn_core_count: %d\n",
gpu->identity.nn_core_count);
seq_printf(m, "\t pixel_pipes: %d\n",
gpu->identity.pixel_pipes);
seq_printf(m, "\t vertex_output_buffer_size: %d\n",
gpu->identity.vertex_output_buffer_size);
seq_printf(m, "\t buffer_size: %d\n",
gpu->identity.buffer_size);
seq_printf(m, "\t instruction_count: %d\n",
gpu->identity.instruction_count);
seq_printf(m, "\t num_constants: %d\n",
gpu->identity.num_constants);
seq_printf(m, "\t varyings_count: %d\n",
gpu->identity.varyings_count);
seq_printf(m, "\taxi: 0x%08x\n", axi);
seq_printf(m, "\tidle: 0x%08x\n", idle);
idle |= ~gpu->idle_mask & ~VIVS_HI_IDLE_STATE_AXI_LP;
if ((idle & VIVS_HI_IDLE_STATE_FE) == 0)
seq_puts(m, "\t FE is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_DE) == 0)
seq_puts(m, "\t DE is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_PE) == 0)
seq_puts(m, "\t PE is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_SH) == 0)
seq_puts(m, "\t SH is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_PA) == 0)
seq_puts(m, "\t PA is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_SE) == 0)
seq_puts(m, "\t SE is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_RA) == 0)
seq_puts(m, "\t RA is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_TX) == 0)
seq_puts(m, "\t TX is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_VG) == 0)
seq_puts(m, "\t VG is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_IM) == 0)
seq_puts(m, "\t IM is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_FP) == 0)
seq_puts(m, "\t FP is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_TS) == 0)
seq_puts(m, "\t TS is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_BL) == 0)
seq_puts(m, "\t BL is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_ASYNCFE) == 0)
seq_puts(m, "\t ASYNCFE is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_MC) == 0)
seq_puts(m, "\t MC is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_PPA) == 0)
seq_puts(m, "\t PPA is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_WD) == 0)
seq_puts(m, "\t WD is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_NN) == 0)
seq_puts(m, "\t NN is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_TP) == 0)
seq_puts(m, "\t TP is not idle\n");
if (idle & VIVS_HI_IDLE_STATE_AXI_LP)
seq_puts(m, "\t AXI low power mode\n");
if (gpu->identity.features & chipFeatures_DEBUG_MODE) {
u32 read0 = gpu_read(gpu, VIVS_MC_DEBUG_READ0);
u32 read1 = gpu_read(gpu, VIVS_MC_DEBUG_READ1);
u32 write = gpu_read(gpu, VIVS_MC_DEBUG_WRITE);
seq_puts(m, "\tMC\n");
seq_printf(m, "\t read0: 0x%08x\n", read0);
seq_printf(m, "\t read1: 0x%08x\n", read1);
seq_printf(m, "\t write: 0x%08x\n", write);
}
seq_puts(m, "\tDMA ");
if (debug.address[0] == debug.address[1] &&
debug.state[0] == debug.state[1]) {
seq_puts(m, "seems to be stuck\n");
} else if (debug.address[0] == debug.address[1]) {
seq_puts(m, "address is constant\n");
} else {
seq_puts(m, "is running\n");
}
seq_printf(m, "\t address 0: 0x%08x\n", debug.address[0]);
seq_printf(m, "\t address 1: 0x%08x\n", debug.address[1]);
seq_printf(m, "\t state 0: 0x%08x\n", debug.state[0]);
seq_printf(m, "\t state 1: 0x%08x\n", debug.state[1]);
seq_printf(m, "\t last fetch 64 bit word: 0x%08x 0x%08x\n",
dma_lo, dma_hi);
ret = 0;
pm_runtime_mark_last_busy(gpu->dev);
pm_put:
pm_runtime_put_autosuspend(gpu->dev);
return ret;
}
#endif
/* fence object management */
struct etnaviv_fence {
struct etnaviv_gpu *gpu;
struct dma_fence base;
};
static inline struct etnaviv_fence *to_etnaviv_fence(struct dma_fence *fence)
{
return container_of(fence, struct etnaviv_fence, base);
}
static const char *etnaviv_fence_get_driver_name(struct dma_fence *fence)
{
return "etnaviv";
}
static const char *etnaviv_fence_get_timeline_name(struct dma_fence *fence)
{
struct etnaviv_fence *f = to_etnaviv_fence(fence);
return dev_name(f->gpu->dev);
}
static bool etnaviv_fence_signaled(struct dma_fence *fence)
{
struct etnaviv_fence *f = to_etnaviv_fence(fence);
return (s32)(f->gpu->completed_fence - f->base.seqno) >= 0;
}
static void etnaviv_fence_release(struct dma_fence *fence)
{
struct etnaviv_fence *f = to_etnaviv_fence(fence);
kfree_rcu(f, base.rcu);
}
static const struct dma_fence_ops etnaviv_fence_ops = {
.get_driver_name = etnaviv_fence_get_driver_name,
.get_timeline_name = etnaviv_fence_get_timeline_name,
.signaled = etnaviv_fence_signaled,
.release = etnaviv_fence_release,
};
static struct dma_fence *etnaviv_gpu_fence_alloc(struct etnaviv_gpu *gpu)
{
struct etnaviv_fence *f;
/*
* GPU lock must already be held, otherwise fence completion order might
* not match the seqno order assigned here.
*/
lockdep_assert_held(&gpu->lock);
f = kzalloc(sizeof(*f), GFP_KERNEL);
if (!f)
return NULL;
f->gpu = gpu;
dma_fence_init(&f->base, &etnaviv_fence_ops, &gpu->fence_spinlock,
gpu->fence_context, ++gpu->next_fence);
return &f->base;
}
/* returns true if fence a comes after fence b */
static inline bool fence_after(u32 a, u32 b)
{
return (s32)(a - b) > 0;
}
/*
* event management:
*/
static int event_alloc(struct etnaviv_gpu *gpu, unsigned nr_events,
unsigned int *events)
{
unsigned long timeout = msecs_to_jiffies(10 * 10000);
unsigned i, acquired = 0, rpm_count = 0;
int ret;
for (i = 0; i < nr_events; i++) {
unsigned long remaining;
remaining = wait_for_completion_timeout(&gpu->event_free, timeout);
if (!remaining) {
dev_err(gpu->dev, "wait_for_completion_timeout failed");
ret = -EBUSY;
goto out;
}
acquired++;
timeout = remaining;
}
spin_lock(&gpu->event_spinlock);
for (i = 0; i < nr_events; i++) {
int event = find_first_zero_bit(gpu->event_bitmap, ETNA_NR_EVENTS);
events[i] = event;
memset(&gpu->event[event], 0, sizeof(struct etnaviv_event));
set_bit(event, gpu->event_bitmap);
}
spin_unlock(&gpu->event_spinlock);
for (i = 0; i < nr_events; i++) {
ret = pm_runtime_resume_and_get(gpu->dev);
if (ret)
goto out_rpm;
rpm_count++;
}
return 0;
out_rpm:
for (i = 0; i < rpm_count; i++)
pm_runtime_put_autosuspend(gpu->dev);
out:
for (i = 0; i < acquired; i++)
complete(&gpu->event_free);
return ret;
}
static void event_free(struct etnaviv_gpu *gpu, unsigned int event)
{
if (!test_bit(event, gpu->event_bitmap)) {
dev_warn(gpu->dev, "event %u is already marked as free",
event);
} else {
clear_bit(event, gpu->event_bitmap);
complete(&gpu->event_free);
}
pm_runtime_put_autosuspend(gpu->dev);
}
/*
* Cmdstream submission/retirement:
*/
int etnaviv_gpu_wait_fence_interruptible(struct etnaviv_gpu *gpu,
u32 id, struct drm_etnaviv_timespec *timeout)
{
struct dma_fence *fence;
int ret;
/*
* Look up the fence and take a reference. We might still find a fence
* whose refcount has already dropped to zero. dma_fence_get_rcu
* pretends we didn't find a fence in that case.
*/
rcu_read_lock();
fence = xa_load(&gpu->user_fences, id);
if (fence)
fence = dma_fence_get_rcu(fence);
rcu_read_unlock();
if (!fence)
return 0;
if (!timeout) {
/* No timeout was requested: just test for completion */
ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
} else {
unsigned long remaining = etnaviv_timeout_to_jiffies(timeout);
ret = dma_fence_wait_timeout(fence, true, remaining);
if (ret == 0)
ret = -ETIMEDOUT;
else if (ret != -ERESTARTSYS)
ret = 0;
}
dma_fence_put(fence);
return ret;
}
/*
* Wait for an object to become inactive. This, on it's own, is not race
* free: the object is moved by the scheduler off the active list, and
* then the iova is put. Moreover, the object could be re-submitted just
* after we notice that it's become inactive.
*
* Although the retirement happens under the gpu lock, we don't want to hold
* that lock in this function while waiting.
*/
int etnaviv_gpu_wait_obj_inactive(struct etnaviv_gpu *gpu,
struct etnaviv_gem_object *etnaviv_obj,
struct drm_etnaviv_timespec *timeout)
{
unsigned long remaining;
long ret;
if (!timeout)
return !is_active(etnaviv_obj) ? 0 : -EBUSY;
remaining = etnaviv_timeout_to_jiffies(timeout);
ret = wait_event_interruptible_timeout(gpu->fence_event,
!is_active(etnaviv_obj),
remaining);
if (ret > 0)
return 0;
else if (ret == -ERESTARTSYS)
return -ERESTARTSYS;
else
return -ETIMEDOUT;
}
static void sync_point_perfmon_sample(struct etnaviv_gpu *gpu,
struct etnaviv_event *event, unsigned int flags)
{
const struct etnaviv_gem_submit *submit = event->submit;
unsigned int i;
for (i = 0; i < submit->nr_pmrs; i++) {
const struct etnaviv_perfmon_request *pmr = submit->pmrs + i;
if (pmr->flags == flags)
etnaviv_perfmon_process(gpu, pmr, submit->exec_state);
}
}
static void sync_point_perfmon_sample_pre(struct etnaviv_gpu *gpu,
struct etnaviv_event *event)
{
u32 val;
/* disable clock gating */
val = gpu_read_power(gpu, VIVS_PM_POWER_CONTROLS);
val &= ~VIVS_PM_POWER_CONTROLS_ENABLE_MODULE_CLOCK_GATING;
gpu_write_power(gpu, VIVS_PM_POWER_CONTROLS, val);
/* enable debug register */
val = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL);
val &= ~VIVS_HI_CLOCK_CONTROL_DISABLE_DEBUG_REGISTERS;
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, val);
sync_point_perfmon_sample(gpu, event, ETNA_PM_PROCESS_PRE);
}
static void sync_point_perfmon_sample_post(struct etnaviv_gpu *gpu,
struct etnaviv_event *event)
{
const struct etnaviv_gem_submit *submit = event->submit;
unsigned int i;
u32 val;
sync_point_perfmon_sample(gpu, event, ETNA_PM_PROCESS_POST);
for (i = 0; i < submit->nr_pmrs; i++) {
const struct etnaviv_perfmon_request *pmr = submit->pmrs + i;
*pmr->bo_vma = pmr->sequence;
}
/* disable debug register */
val = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL);
val |= VIVS_HI_CLOCK_CONTROL_DISABLE_DEBUG_REGISTERS;
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, val);
/* enable clock gating */
val = gpu_read_power(gpu, VIVS_PM_POWER_CONTROLS);
val |= VIVS_PM_POWER_CONTROLS_ENABLE_MODULE_CLOCK_GATING;
gpu_write_power(gpu, VIVS_PM_POWER_CONTROLS, val);
}
/* add bo's to gpu's ring, and kick gpu: */
struct dma_fence *etnaviv_gpu_submit(struct etnaviv_gem_submit *submit)
{
struct etnaviv_gpu *gpu = submit->gpu;
struct dma_fence *gpu_fence;
unsigned int i, nr_events = 1, event[3];
int ret;
/*
* if there are performance monitor requests we need to have
* - a sync point to re-configure gpu and process ETNA_PM_PROCESS_PRE
* requests.
* - a sync point to re-configure gpu, process ETNA_PM_PROCESS_POST requests
* and update the sequence number for userspace.
*/
if (submit->nr_pmrs)
nr_events = 3;
ret = event_alloc(gpu, nr_events, event);
if (ret) {
DRM_ERROR("no free events\n");
pm_runtime_put_noidle(gpu->dev);
return NULL;
}
mutex_lock(&gpu->lock);
gpu_fence = etnaviv_gpu_fence_alloc(gpu);
if (!gpu_fence) {
for (i = 0; i < nr_events; i++)
event_free(gpu, event[i]);
goto out_unlock;
}
if (gpu->state == ETNA_GPU_STATE_INITIALIZED)
etnaviv_gpu_start_fe_idleloop(gpu, submit->mmu_context);
if (submit->prev_mmu_context)
etnaviv_iommu_context_put(submit->prev_mmu_context);
submit->prev_mmu_context = etnaviv_iommu_context_get(gpu->mmu_context);
if (submit->nr_pmrs) {
gpu->event[event[1]].sync_point = &sync_point_perfmon_sample_pre;
kref_get(&submit->refcount);
gpu->event[event[1]].submit = submit;
etnaviv_sync_point_queue(gpu, event[1]);
}
gpu->event[event[0]].fence = gpu_fence;
submit->cmdbuf.user_size = submit->cmdbuf.size - 8;
etnaviv_buffer_queue(gpu, submit->exec_state, submit->mmu_context,
event[0], &submit->cmdbuf);
if (submit->nr_pmrs) {
gpu->event[event[2]].sync_point = &sync_point_perfmon_sample_post;
kref_get(&submit->refcount);
gpu->event[event[2]].submit = submit;
etnaviv_sync_point_queue(gpu, event[2]);
}
out_unlock:
mutex_unlock(&gpu->lock);
return gpu_fence;
}
static void sync_point_worker(struct work_struct *work)
{
struct etnaviv_gpu *gpu = container_of(work, struct etnaviv_gpu,
sync_point_work);
struct etnaviv_event *event = &gpu->event[gpu->sync_point_event];
u32 addr = gpu_read(gpu, VIVS_FE_DMA_ADDRESS);
event->sync_point(gpu, event);
etnaviv_submit_put(event->submit);
event_free(gpu, gpu->sync_point_event);
/* restart FE last to avoid GPU and IRQ racing against this worker */
etnaviv_gpu_start_fe(gpu, addr + 2, 2);
}
void etnaviv_gpu_recover_hang(struct etnaviv_gem_submit *submit)
{
struct etnaviv_gpu *gpu = submit->gpu;
char *comm = NULL, *cmd = NULL;
struct task_struct *task;
unsigned int i;
dev_err(gpu->dev, "recover hung GPU!\n");
task = get_pid_task(submit->pid, PIDTYPE_PID);
if (task) {
comm = kstrdup(task->comm, GFP_KERNEL);
cmd = kstrdup_quotable_cmdline(task, GFP_KERNEL);
put_task_struct(task);
}
if (comm && cmd)
dev_err(gpu->dev, "offending task: %s (%s)\n", comm, cmd);
kfree(cmd);
kfree(comm);
if (pm_runtime_get_sync(gpu->dev) < 0)
goto pm_put;
mutex_lock(&gpu->lock);
etnaviv_hw_reset(gpu);
/* complete all events, the GPU won't do it after the reset */
spin_lock(&gpu->event_spinlock);
for_each_set_bit(i, gpu->event_bitmap, ETNA_NR_EVENTS)
event_free(gpu, i);
spin_unlock(&gpu->event_spinlock);
etnaviv_gpu_hw_init(gpu);
mutex_unlock(&gpu->lock);
pm_runtime_mark_last_busy(gpu->dev);
pm_put:
pm_runtime_put_autosuspend(gpu->dev);
}
static void dump_mmu_fault(struct etnaviv_gpu *gpu)
{
static const char *fault_reasons[] = {
"slave not present",
"page not present",
"write violation",
"out of bounds",
"read security violation",
"write security violation",
};
u32 status_reg, status;
int i;
if (gpu->sec_mode == ETNA_SEC_NONE)
status_reg = VIVS_MMUv2_STATUS;
else
status_reg = VIVS_MMUv2_SEC_STATUS;
status = gpu_read(gpu, status_reg);
dev_err_ratelimited(gpu->dev, "MMU fault status 0x%08x\n", status);
for (i = 0; i < 4; i++) {
const char *reason = "unknown";
u32 address_reg;
u32 mmu_status;
mmu_status = (status >> (i * 4)) & VIVS_MMUv2_STATUS_EXCEPTION0__MASK;
if (!mmu_status)
continue;
if ((mmu_status - 1) < ARRAY_SIZE(fault_reasons))
reason = fault_reasons[mmu_status - 1];
if (gpu->sec_mode == ETNA_SEC_NONE)
address_reg = VIVS_MMUv2_EXCEPTION_ADDR(i);
else
address_reg = VIVS_MMUv2_SEC_EXCEPTION_ADDR;
dev_err_ratelimited(gpu->dev,
"MMU %d fault (%s) addr 0x%08x\n",
i, reason, gpu_read(gpu, address_reg));
}
}
static irqreturn_t irq_handler(int irq, void *data)
{
struct etnaviv_gpu *gpu = data;
irqreturn_t ret = IRQ_NONE;
u32 intr = gpu_read(gpu, VIVS_HI_INTR_ACKNOWLEDGE);
if (intr != 0) {
int event;
pm_runtime_mark_last_busy(gpu->dev);
dev_dbg(gpu->dev, "intr 0x%08x\n", intr);
if (intr & VIVS_HI_INTR_ACKNOWLEDGE_AXI_BUS_ERROR) {
dev_err(gpu->dev, "AXI bus error\n");
intr &= ~VIVS_HI_INTR_ACKNOWLEDGE_AXI_BUS_ERROR;
}
if (intr & VIVS_HI_INTR_ACKNOWLEDGE_MMU_EXCEPTION) {
dump_mmu_fault(gpu);
gpu->state = ETNA_GPU_STATE_FAULT;
drm_sched_fault(&gpu->sched);
intr &= ~VIVS_HI_INTR_ACKNOWLEDGE_MMU_EXCEPTION;
}
while ((event = ffs(intr)) != 0) {
struct dma_fence *fence;
event -= 1;
intr &= ~(1 << event);
dev_dbg(gpu->dev, "event %u\n", event);
if (gpu->event[event].sync_point) {
gpu->sync_point_event = event;
queue_work(gpu->wq, &gpu->sync_point_work);
}
fence = gpu->event[event].fence;
if (!fence)
continue;
gpu->event[event].fence = NULL;
/*
* Events can be processed out of order. Eg,
* - allocate and queue event 0
* - allocate event 1
* - event 0 completes, we process it
* - allocate and queue event 0
* - event 1 and event 0 complete
* we can end up processing event 0 first, then 1.
*/
if (fence_after(fence->seqno, gpu->completed_fence))
gpu->completed_fence = fence->seqno;
dma_fence_signal(fence);
event_free(gpu, event);
}
ret = IRQ_HANDLED;
}
return ret;
}
static int etnaviv_gpu_clk_enable(struct etnaviv_gpu *gpu)
{
int ret;
ret = clk_prepare_enable(gpu->clk_reg);
if (ret)
return ret;
ret = clk_prepare_enable(gpu->clk_bus);
if (ret)
goto disable_clk_reg;
ret = clk_prepare_enable(gpu->clk_core);
if (ret)
goto disable_clk_bus;
ret = clk_prepare_enable(gpu->clk_shader);
if (ret)
goto disable_clk_core;
return 0;
disable_clk_core:
clk_disable_unprepare(gpu->clk_core);
disable_clk_bus:
clk_disable_unprepare(gpu->clk_bus);
disable_clk_reg:
clk_disable_unprepare(gpu->clk_reg);
return ret;
}
static int etnaviv_gpu_clk_disable(struct etnaviv_gpu *gpu)
{
clk_disable_unprepare(gpu->clk_shader);
clk_disable_unprepare(gpu->clk_core);
clk_disable_unprepare(gpu->clk_bus);
clk_disable_unprepare(gpu->clk_reg);
return 0;
}
int etnaviv_gpu_wait_idle(struct etnaviv_gpu *gpu, unsigned int timeout_ms)
{
unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
do {
u32 idle = gpu_read(gpu, VIVS_HI_IDLE_STATE);
if ((idle & gpu->idle_mask) == gpu->idle_mask)
return 0;
if (time_is_before_jiffies(timeout)) {
dev_warn(gpu->dev,
"timed out waiting for idle: idle=0x%x\n",
idle);
return -ETIMEDOUT;
}
udelay(5);
} while (1);
}
static void etnaviv_gpu_hw_suspend(struct etnaviv_gpu *gpu)
{
if (gpu->state == ETNA_GPU_STATE_RUNNING) {
/* Replace the last WAIT with END */
mutex_lock(&gpu->lock);
etnaviv_buffer_end(gpu);
mutex_unlock(&gpu->lock);
/*
* We know that only the FE is busy here, this should
* happen quickly (as the WAIT is only 200 cycles). If
* we fail, just warn and continue.
*/
etnaviv_gpu_wait_idle(gpu, 100);
gpu->state = ETNA_GPU_STATE_INITIALIZED;
}
gpu->exec_state = -1;
}
static int etnaviv_gpu_hw_resume(struct etnaviv_gpu *gpu)
{
int ret;
ret = mutex_lock_killable(&gpu->lock);
if (ret)
return ret;
etnaviv_gpu_update_clock(gpu);
etnaviv_gpu_hw_init(gpu);
mutex_unlock(&gpu->lock);
return 0;
}
static int
etnaviv_gpu_cooling_get_max_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
*state = 6;
return 0;
}
static int
etnaviv_gpu_cooling_get_cur_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
struct etnaviv_gpu *gpu = cdev->devdata;
*state = gpu->freq_scale;
return 0;
}
static int
etnaviv_gpu_cooling_set_cur_state(struct thermal_cooling_device *cdev,
unsigned long state)
{
struct etnaviv_gpu *gpu = cdev->devdata;
mutex_lock(&gpu->lock);
gpu->freq_scale = state;
if (!pm_runtime_suspended(gpu->dev))
etnaviv_gpu_update_clock(gpu);
mutex_unlock(&gpu->lock);
return 0;
}
static const struct thermal_cooling_device_ops cooling_ops = {
.get_max_state = etnaviv_gpu_cooling_get_max_state,
.get_cur_state = etnaviv_gpu_cooling_get_cur_state,
.set_cur_state = etnaviv_gpu_cooling_set_cur_state,
};
static int etnaviv_gpu_bind(struct device *dev, struct device *master,
void *data)
{
struct drm_device *drm = data;
struct etnaviv_drm_private *priv = drm->dev_private;
struct etnaviv_gpu *gpu = dev_get_drvdata(dev);
int ret;
if (IS_ENABLED(CONFIG_DRM_ETNAVIV_THERMAL)) {
gpu->cooling = thermal_of_cooling_device_register(dev->of_node,
(char *)dev_name(dev), gpu, &cooling_ops);
if (IS_ERR(gpu->cooling))
return PTR_ERR(gpu->cooling);
}
gpu->wq = alloc_ordered_workqueue(dev_name(dev), 0);
if (!gpu->wq) {
ret = -ENOMEM;
goto out_thermal;
}
ret = etnaviv_sched_init(gpu);
if (ret)
goto out_workqueue;
if (!IS_ENABLED(CONFIG_PM)) {
ret = etnaviv_gpu_clk_enable(gpu);
if (ret < 0)
goto out_sched;
}
gpu->drm = drm;
gpu->fence_context = dma_fence_context_alloc(1);
xa_init_flags(&gpu->user_fences, XA_FLAGS_ALLOC);
spin_lock_init(&gpu->fence_spinlock);
INIT_WORK(&gpu->sync_point_work, sync_point_worker);
init_waitqueue_head(&gpu->fence_event);
priv->gpu[priv->num_gpus++] = gpu;
return 0;
out_sched:
etnaviv_sched_fini(gpu);
out_workqueue:
destroy_workqueue(gpu->wq);
out_thermal:
if (IS_ENABLED(CONFIG_DRM_ETNAVIV_THERMAL))
thermal_cooling_device_unregister(gpu->cooling);
return ret;
}
static void etnaviv_gpu_unbind(struct device *dev, struct device *master,
void *data)
{
struct etnaviv_gpu *gpu = dev_get_drvdata(dev);
DBG("%s", dev_name(gpu->dev));
destroy_workqueue(gpu->wq);
etnaviv_sched_fini(gpu);
if (IS_ENABLED(CONFIG_PM)) {
pm_runtime_get_sync(gpu->dev);
pm_runtime_put_sync_suspend(gpu->dev);
} else {
etnaviv_gpu_hw_suspend(gpu);
etnaviv_gpu_clk_disable(gpu);
}
if (gpu->mmu_context)
etnaviv_iommu_context_put(gpu->mmu_context);
etnaviv_cmdbuf_free(&gpu->buffer);
etnaviv_iommu_global_fini(gpu);
gpu->drm = NULL;
xa_destroy(&gpu->user_fences);
if (IS_ENABLED(CONFIG_DRM_ETNAVIV_THERMAL))
thermal_cooling_device_unregister(gpu->cooling);
gpu->cooling = NULL;
}
static const struct component_ops gpu_ops = {
.bind = etnaviv_gpu_bind,
.unbind = etnaviv_gpu_unbind,
};
static const struct of_device_id etnaviv_gpu_match[] = {
{
.compatible = "vivante,gc"
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, etnaviv_gpu_match);
static int etnaviv_gpu_platform_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct etnaviv_gpu *gpu;
int err;
gpu = devm_kzalloc(dev, sizeof(*gpu), GFP_KERNEL);
if (!gpu)
return -ENOMEM;
gpu->dev = &pdev->dev;
mutex_init(&gpu->lock);
mutex_init(&gpu->sched_lock);
/* Map registers: */
gpu->mmio = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(gpu->mmio))
return PTR_ERR(gpu->mmio);
/* Get Interrupt: */
gpu->irq = platform_get_irq(pdev, 0);
if (gpu->irq < 0)
return gpu->irq;
err = devm_request_irq(&pdev->dev, gpu->irq, irq_handler, 0,
dev_name(gpu->dev), gpu);
if (err) {
dev_err(dev, "failed to request IRQ%u: %d\n", gpu->irq, err);
return err;
}
/* Get Clocks: */
gpu->clk_reg = devm_clk_get_optional(&pdev->dev, "reg");
DBG("clk_reg: %p", gpu->clk_reg);
if (IS_ERR(gpu->clk_reg))
return PTR_ERR(gpu->clk_reg);
gpu->clk_bus = devm_clk_get_optional(&pdev->dev, "bus");
DBG("clk_bus: %p", gpu->clk_bus);
if (IS_ERR(gpu->clk_bus))
return PTR_ERR(gpu->clk_bus);
gpu->clk_core = devm_clk_get(&pdev->dev, "core");
DBG("clk_core: %p", gpu->clk_core);
if (IS_ERR(gpu->clk_core))
return PTR_ERR(gpu->clk_core);
gpu->base_rate_core = clk_get_rate(gpu->clk_core);
gpu->clk_shader = devm_clk_get_optional(&pdev->dev, "shader");
DBG("clk_shader: %p", gpu->clk_shader);
if (IS_ERR(gpu->clk_shader))
return PTR_ERR(gpu->clk_shader);
gpu->base_rate_shader = clk_get_rate(gpu->clk_shader);
/* TODO: figure out max mapped size */
dev_set_drvdata(dev, gpu);
/*
* We treat the device as initially suspended. The runtime PM
* autosuspend delay is rather arbitary: no measurements have
* yet been performed to determine an appropriate value.
*/
pm_runtime_use_autosuspend(gpu->dev);
pm_runtime_set_autosuspend_delay(gpu->dev, 200);
pm_runtime_enable(gpu->dev);
err = component_add(&pdev->dev, &gpu_ops);
if (err < 0) {
dev_err(&pdev->dev, "failed to register component: %d\n", err);
return err;
}
return 0;
}
static void etnaviv_gpu_platform_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &gpu_ops);
pm_runtime_disable(&pdev->dev);
}
static int etnaviv_gpu_rpm_suspend(struct device *dev)
{
struct etnaviv_gpu *gpu = dev_get_drvdata(dev);
u32 idle, mask;
/* If there are any jobs in the HW queue, we're not idle */
if (atomic_read(&gpu->sched.credit_count))
return -EBUSY;
/* Check whether the hardware (except FE and MC) is idle */
mask = gpu->idle_mask & ~(VIVS_HI_IDLE_STATE_FE |
VIVS_HI_IDLE_STATE_MC);
idle = gpu_read(gpu, VIVS_HI_IDLE_STATE) & mask;
if (idle != mask) {
dev_warn_ratelimited(dev, "GPU not yet idle, mask: 0x%08x\n",
idle);
return -EBUSY;
}
etnaviv_gpu_hw_suspend(gpu);
gpu->state = ETNA_GPU_STATE_IDENTIFIED;
return etnaviv_gpu_clk_disable(gpu);
}
static int etnaviv_gpu_rpm_resume(struct device *dev)
{
struct etnaviv_gpu *gpu = dev_get_drvdata(dev);
int ret;
ret = etnaviv_gpu_clk_enable(gpu);
if (ret)
return ret;
/* Re-initialise the basic hardware state */
if (gpu->state == ETNA_GPU_STATE_IDENTIFIED) {
ret = etnaviv_gpu_hw_resume(gpu);
if (ret) {
etnaviv_gpu_clk_disable(gpu);
return ret;
}
}
return 0;
}
static const struct dev_pm_ops etnaviv_gpu_pm_ops = {
RUNTIME_PM_OPS(etnaviv_gpu_rpm_suspend, etnaviv_gpu_rpm_resume, NULL)
};
struct platform_driver etnaviv_gpu_driver = {
.driver = {
.name = "etnaviv-gpu",
.owner = THIS_MODULE,
.pm = pm_ptr(&etnaviv_gpu_pm_ops),
.of_match_table = etnaviv_gpu_match,
},
.probe = etnaviv_gpu_platform_probe,
.remove_new = etnaviv_gpu_platform_remove,
.id_table = gpu_ids,
};