| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #ifndef BTRFS_CTREE_H |
| #define BTRFS_CTREE_H |
| |
| #include <linux/pagemap.h> |
| #include <linux/spinlock.h> |
| #include <linux/rbtree.h> |
| #include <linux/mutex.h> |
| #include <linux/wait.h> |
| #include <linux/list.h> |
| #include <linux/atomic.h> |
| #include <linux/xarray.h> |
| #include <linux/refcount.h> |
| #include <uapi/linux/btrfs_tree.h> |
| #include "locking.h" |
| #include "fs.h" |
| #include "accessors.h" |
| #include "extent-io-tree.h" |
| |
| struct extent_buffer; |
| struct btrfs_block_rsv; |
| struct btrfs_trans_handle; |
| struct btrfs_block_group; |
| |
| /* Read ahead values for struct btrfs_path.reada */ |
| enum { |
| READA_NONE, |
| READA_BACK, |
| READA_FORWARD, |
| /* |
| * Similar to READA_FORWARD but unlike it: |
| * |
| * 1) It will trigger readahead even for leaves that are not close to |
| * each other on disk; |
| * 2) It also triggers readahead for nodes; |
| * 3) During a search, even when a node or leaf is already in memory, it |
| * will still trigger readahead for other nodes and leaves that follow |
| * it. |
| * |
| * This is meant to be used only when we know we are iterating over the |
| * entire tree or a very large part of it. |
| */ |
| READA_FORWARD_ALWAYS, |
| }; |
| |
| /* |
| * btrfs_paths remember the path taken from the root down to the leaf. |
| * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point |
| * to any other levels that are present. |
| * |
| * The slots array records the index of the item or block pointer |
| * used while walking the tree. |
| */ |
| struct btrfs_path { |
| struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; |
| int slots[BTRFS_MAX_LEVEL]; |
| /* if there is real range locking, this locks field will change */ |
| u8 locks[BTRFS_MAX_LEVEL]; |
| u8 reada; |
| /* keep some upper locks as we walk down */ |
| u8 lowest_level; |
| |
| /* |
| * set by btrfs_split_item, tells search_slot to keep all locks |
| * and to force calls to keep space in the nodes |
| */ |
| unsigned int search_for_split:1; |
| unsigned int keep_locks:1; |
| unsigned int skip_locking:1; |
| unsigned int search_commit_root:1; |
| unsigned int need_commit_sem:1; |
| unsigned int skip_release_on_error:1; |
| /* |
| * Indicate that new item (btrfs_search_slot) is extending already |
| * existing item and ins_len contains only the data size and not item |
| * header (ie. sizeof(struct btrfs_item) is not included). |
| */ |
| unsigned int search_for_extension:1; |
| /* Stop search if any locks need to be taken (for read) */ |
| unsigned int nowait:1; |
| }; |
| |
| /* |
| * The state of btrfs root |
| */ |
| enum { |
| /* |
| * btrfs_record_root_in_trans is a multi-step process, and it can race |
| * with the balancing code. But the race is very small, and only the |
| * first time the root is added to each transaction. So IN_TRANS_SETUP |
| * is used to tell us when more checks are required |
| */ |
| BTRFS_ROOT_IN_TRANS_SETUP, |
| |
| /* |
| * Set if tree blocks of this root can be shared by other roots. |
| * Only subvolume trees and their reloc trees have this bit set. |
| * Conflicts with TRACK_DIRTY bit. |
| * |
| * This affects two things: |
| * |
| * - How balance works |
| * For shareable roots, we need to use reloc tree and do path |
| * replacement for balance, and need various pre/post hooks for |
| * snapshot creation to handle them. |
| * |
| * While for non-shareable trees, we just simply do a tree search |
| * with COW. |
| * |
| * - How dirty roots are tracked |
| * For shareable roots, btrfs_record_root_in_trans() is needed to |
| * track them, while non-subvolume roots have TRACK_DIRTY bit, they |
| * don't need to set this manually. |
| */ |
| BTRFS_ROOT_SHAREABLE, |
| BTRFS_ROOT_TRACK_DIRTY, |
| BTRFS_ROOT_IN_RADIX, |
| BTRFS_ROOT_ORPHAN_ITEM_INSERTED, |
| BTRFS_ROOT_DEFRAG_RUNNING, |
| BTRFS_ROOT_FORCE_COW, |
| BTRFS_ROOT_MULTI_LOG_TASKS, |
| BTRFS_ROOT_DIRTY, |
| BTRFS_ROOT_DELETING, |
| |
| /* |
| * Reloc tree is orphan, only kept here for qgroup delayed subtree scan |
| * |
| * Set for the subvolume tree owning the reloc tree. |
| */ |
| BTRFS_ROOT_DEAD_RELOC_TREE, |
| /* Mark dead root stored on device whose cleanup needs to be resumed */ |
| BTRFS_ROOT_DEAD_TREE, |
| /* The root has a log tree. Used for subvolume roots and the tree root. */ |
| BTRFS_ROOT_HAS_LOG_TREE, |
| /* Qgroup flushing is in progress */ |
| BTRFS_ROOT_QGROUP_FLUSHING, |
| /* We started the orphan cleanup for this root. */ |
| BTRFS_ROOT_ORPHAN_CLEANUP, |
| /* This root has a drop operation that was started previously. */ |
| BTRFS_ROOT_UNFINISHED_DROP, |
| /* This reloc root needs to have its buffers lockdep class reset. */ |
| BTRFS_ROOT_RESET_LOCKDEP_CLASS, |
| }; |
| |
| /* |
| * Record swapped tree blocks of a subvolume tree for delayed subtree trace |
| * code. For detail check comment in fs/btrfs/qgroup.c. |
| */ |
| struct btrfs_qgroup_swapped_blocks { |
| spinlock_t lock; |
| /* RM_EMPTY_ROOT() of above blocks[] */ |
| bool swapped; |
| struct rb_root blocks[BTRFS_MAX_LEVEL]; |
| }; |
| |
| /* |
| * in ram representation of the tree. extent_root is used for all allocations |
| * and for the extent tree extent_root root. |
| */ |
| struct btrfs_root { |
| struct rb_node rb_node; |
| |
| struct extent_buffer *node; |
| |
| struct extent_buffer *commit_root; |
| struct btrfs_root *log_root; |
| struct btrfs_root *reloc_root; |
| |
| unsigned long state; |
| struct btrfs_root_item root_item; |
| struct btrfs_key root_key; |
| struct btrfs_fs_info *fs_info; |
| struct extent_io_tree dirty_log_pages; |
| |
| struct mutex objectid_mutex; |
| |
| spinlock_t accounting_lock; |
| struct btrfs_block_rsv *block_rsv; |
| |
| struct mutex log_mutex; |
| wait_queue_head_t log_writer_wait; |
| wait_queue_head_t log_commit_wait[2]; |
| struct list_head log_ctxs[2]; |
| /* Used only for log trees of subvolumes, not for the log root tree */ |
| atomic_t log_writers; |
| atomic_t log_commit[2]; |
| /* Used only for log trees of subvolumes, not for the log root tree */ |
| atomic_t log_batch; |
| /* |
| * Protected by the 'log_mutex' lock but can be read without holding |
| * that lock to avoid unnecessary lock contention, in which case it |
| * should be read using btrfs_get_root_log_transid() except if it's a |
| * log tree in which case it can be directly accessed. Updates to this |
| * field should always use btrfs_set_root_log_transid(), except for log |
| * trees where the field can be updated directly. |
| */ |
| int log_transid; |
| /* No matter the commit succeeds or not*/ |
| int log_transid_committed; |
| /* |
| * Just be updated when the commit succeeds. Use |
| * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit() |
| * to access this field. |
| */ |
| int last_log_commit; |
| pid_t log_start_pid; |
| |
| u64 last_trans; |
| |
| u64 free_objectid; |
| |
| struct btrfs_key defrag_progress; |
| struct btrfs_key defrag_max; |
| |
| /* The dirty list is only used by non-shareable roots */ |
| struct list_head dirty_list; |
| |
| struct list_head root_list; |
| |
| spinlock_t inode_lock; |
| /* red-black tree that keeps track of in-memory inodes */ |
| struct rb_root inode_tree; |
| |
| /* |
| * Xarray that keeps track of delayed nodes of every inode, protected |
| * by @inode_lock. |
| */ |
| struct xarray delayed_nodes; |
| /* |
| * right now this just gets used so that a root has its own devid |
| * for stat. It may be used for more later |
| */ |
| dev_t anon_dev; |
| |
| spinlock_t root_item_lock; |
| refcount_t refs; |
| |
| struct mutex delalloc_mutex; |
| spinlock_t delalloc_lock; |
| /* |
| * all of the inodes that have delalloc bytes. It is possible for |
| * this list to be empty even when there is still dirty data=ordered |
| * extents waiting to finish IO. |
| */ |
| struct list_head delalloc_inodes; |
| struct list_head delalloc_root; |
| u64 nr_delalloc_inodes; |
| |
| struct mutex ordered_extent_mutex; |
| /* |
| * this is used by the balancing code to wait for all the pending |
| * ordered extents |
| */ |
| spinlock_t ordered_extent_lock; |
| |
| /* |
| * all of the data=ordered extents pending writeback |
| * these can span multiple transactions and basically include |
| * every dirty data page that isn't from nodatacow |
| */ |
| struct list_head ordered_extents; |
| struct list_head ordered_root; |
| u64 nr_ordered_extents; |
| |
| /* |
| * Not empty if this subvolume root has gone through tree block swap |
| * (relocation) |
| * |
| * Will be used by reloc_control::dirty_subvol_roots. |
| */ |
| struct list_head reloc_dirty_list; |
| |
| /* |
| * Number of currently running SEND ioctls to prevent |
| * manipulation with the read-only status via SUBVOL_SETFLAGS |
| */ |
| int send_in_progress; |
| /* |
| * Number of currently running deduplication operations that have a |
| * destination inode belonging to this root. Protected by the lock |
| * root_item_lock. |
| */ |
| int dedupe_in_progress; |
| /* For exclusion of snapshot creation and nocow writes */ |
| struct btrfs_drew_lock snapshot_lock; |
| |
| atomic_t snapshot_force_cow; |
| |
| /* For qgroup metadata reserved space */ |
| spinlock_t qgroup_meta_rsv_lock; |
| u64 qgroup_meta_rsv_pertrans; |
| u64 qgroup_meta_rsv_prealloc; |
| wait_queue_head_t qgroup_flush_wait; |
| |
| /* Number of active swapfiles */ |
| atomic_t nr_swapfiles; |
| |
| /* Record pairs of swapped blocks for qgroup */ |
| struct btrfs_qgroup_swapped_blocks swapped_blocks; |
| |
| /* Used only by log trees, when logging csum items */ |
| struct extent_io_tree log_csum_range; |
| |
| /* Used in simple quotas, track root during relocation. */ |
| u64 relocation_src_root; |
| |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| u64 alloc_bytenr; |
| #endif |
| |
| #ifdef CONFIG_BTRFS_DEBUG |
| struct list_head leak_list; |
| #endif |
| }; |
| |
| static inline bool btrfs_root_readonly(const struct btrfs_root *root) |
| { |
| /* Byte-swap the constant at compile time, root_item::flags is LE */ |
| return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; |
| } |
| |
| static inline bool btrfs_root_dead(const struct btrfs_root *root) |
| { |
| /* Byte-swap the constant at compile time, root_item::flags is LE */ |
| return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; |
| } |
| |
| static inline u64 btrfs_root_id(const struct btrfs_root *root) |
| { |
| return root->root_key.objectid; |
| } |
| |
| static inline int btrfs_get_root_log_transid(const struct btrfs_root *root) |
| { |
| return READ_ONCE(root->log_transid); |
| } |
| |
| static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid) |
| { |
| WRITE_ONCE(root->log_transid, log_transid); |
| } |
| |
| static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root) |
| { |
| return READ_ONCE(root->last_log_commit); |
| } |
| |
| static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id) |
| { |
| WRITE_ONCE(root->last_log_commit, commit_id); |
| } |
| |
| /* |
| * Structure that conveys information about an extent that is going to replace |
| * all the extents in a file range. |
| */ |
| struct btrfs_replace_extent_info { |
| u64 disk_offset; |
| u64 disk_len; |
| u64 data_offset; |
| u64 data_len; |
| u64 file_offset; |
| /* Pointer to a file extent item of type regular or prealloc. */ |
| char *extent_buf; |
| /* |
| * Set to true when attempting to replace a file range with a new extent |
| * described by this structure, set to false when attempting to clone an |
| * existing extent into a file range. |
| */ |
| bool is_new_extent; |
| /* Indicate if we should update the inode's mtime and ctime. */ |
| bool update_times; |
| /* Meaningful only if is_new_extent is true. */ |
| int qgroup_reserved; |
| /* |
| * Meaningful only if is_new_extent is true. |
| * Used to track how many extent items we have already inserted in a |
| * subvolume tree that refer to the extent described by this structure, |
| * so that we know when to create a new delayed ref or update an existing |
| * one. |
| */ |
| int insertions; |
| }; |
| |
| /* Arguments for btrfs_drop_extents() */ |
| struct btrfs_drop_extents_args { |
| /* Input parameters */ |
| |
| /* |
| * If NULL, btrfs_drop_extents() will allocate and free its own path. |
| * If 'replace_extent' is true, this must not be NULL. Also the path |
| * is always released except if 'replace_extent' is true and |
| * btrfs_drop_extents() sets 'extent_inserted' to true, in which case |
| * the path is kept locked. |
| */ |
| struct btrfs_path *path; |
| /* Start offset of the range to drop extents from */ |
| u64 start; |
| /* End (exclusive, last byte + 1) of the range to drop extents from */ |
| u64 end; |
| /* If true drop all the extent maps in the range */ |
| bool drop_cache; |
| /* |
| * If true it means we want to insert a new extent after dropping all |
| * the extents in the range. If this is true, the 'extent_item_size' |
| * parameter must be set as well and the 'extent_inserted' field will |
| * be set to true by btrfs_drop_extents() if it could insert the new |
| * extent. |
| * Note: when this is set to true the path must not be NULL. |
| */ |
| bool replace_extent; |
| /* |
| * Used if 'replace_extent' is true. Size of the file extent item to |
| * insert after dropping all existing extents in the range |
| */ |
| u32 extent_item_size; |
| |
| /* Output parameters */ |
| |
| /* |
| * Set to the minimum between the input parameter 'end' and the end |
| * (exclusive, last byte + 1) of the last dropped extent. This is always |
| * set even if btrfs_drop_extents() returns an error. |
| */ |
| u64 drop_end; |
| /* |
| * The number of allocated bytes found in the range. This can be smaller |
| * than the range's length when there are holes in the range. |
| */ |
| u64 bytes_found; |
| /* |
| * Only set if 'replace_extent' is true. Set to true if we were able |
| * to insert a replacement extent after dropping all extents in the |
| * range, otherwise set to false by btrfs_drop_extents(). |
| * Also, if btrfs_drop_extents() has set this to true it means it |
| * returned with the path locked, otherwise if it has set this to |
| * false it has returned with the path released. |
| */ |
| bool extent_inserted; |
| }; |
| |
| struct btrfs_file_private { |
| void *filldir_buf; |
| u64 last_index; |
| struct extent_state *llseek_cached_state; |
| }; |
| |
| static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) |
| { |
| return info->nodesize - sizeof(struct btrfs_header); |
| } |
| |
| static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) |
| { |
| return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); |
| } |
| |
| static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) |
| { |
| return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); |
| } |
| |
| static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) |
| { |
| return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); |
| } |
| |
| #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ |
| ((bytes) >> (fs_info)->sectorsize_bits) |
| |
| static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) |
| { |
| return mapping_gfp_constraint(mapping, ~__GFP_FS); |
| } |
| |
| void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end); |
| int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, |
| u64 num_bytes, u64 *actual_bytes); |
| int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); |
| |
| /* ctree.c */ |
| int __init btrfs_ctree_init(void); |
| void __cold btrfs_ctree_exit(void); |
| |
| int btrfs_bin_search(struct extent_buffer *eb, int first_slot, |
| const struct btrfs_key *key, int *slot); |
| |
| int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); |
| |
| #ifdef __LITTLE_ENDIAN |
| |
| /* |
| * Compare two keys, on little-endian the disk order is same as CPU order and |
| * we can avoid the conversion. |
| */ |
| static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key, |
| const struct btrfs_key *k2) |
| { |
| const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; |
| |
| return btrfs_comp_cpu_keys(k1, k2); |
| } |
| |
| #else |
| |
| /* Compare two keys in a memcmp fashion. */ |
| static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk, |
| const struct btrfs_key *k2) |
| { |
| struct btrfs_key k1; |
| |
| btrfs_disk_key_to_cpu(&k1, disk); |
| |
| return btrfs_comp_cpu_keys(&k1, k2); |
| } |
| |
| #endif |
| |
| int btrfs_previous_item(struct btrfs_root *root, |
| struct btrfs_path *path, u64 min_objectid, |
| int type); |
| int btrfs_previous_extent_item(struct btrfs_root *root, |
| struct btrfs_path *path, u64 min_objectid); |
| void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| const struct btrfs_key *new_key); |
| struct extent_buffer *btrfs_root_node(struct btrfs_root *root); |
| int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, |
| struct btrfs_key *key, int lowest_level, |
| u64 min_trans); |
| int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, |
| struct btrfs_path *path, |
| u64 min_trans); |
| struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, |
| int slot); |
| |
| int btrfs_cow_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct extent_buffer *buf, |
| struct extent_buffer *parent, int parent_slot, |
| struct extent_buffer **cow_ret, |
| enum btrfs_lock_nesting nest); |
| int btrfs_force_cow_block(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *buf, |
| struct extent_buffer *parent, int parent_slot, |
| struct extent_buffer **cow_ret, |
| u64 search_start, u64 empty_size, |
| enum btrfs_lock_nesting nest); |
| int btrfs_copy_root(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *buf, |
| struct extent_buffer **cow_ret, u64 new_root_objectid); |
| bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct extent_buffer *buf); |
| int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| struct btrfs_path *path, int level, int slot); |
| void btrfs_extend_item(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, u32 data_size); |
| void btrfs_truncate_item(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, u32 new_size, int from_end); |
| int btrfs_split_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| const struct btrfs_key *new_key, |
| unsigned long split_offset); |
| int btrfs_duplicate_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| const struct btrfs_key *new_key); |
| int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, |
| u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); |
| int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| const struct btrfs_key *key, struct btrfs_path *p, |
| int ins_len, int cow); |
| int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, |
| struct btrfs_path *p, u64 time_seq); |
| int btrfs_search_slot_for_read(struct btrfs_root *root, |
| const struct btrfs_key *key, |
| struct btrfs_path *p, int find_higher, |
| int return_any); |
| void btrfs_release_path(struct btrfs_path *p); |
| struct btrfs_path *btrfs_alloc_path(void); |
| void btrfs_free_path(struct btrfs_path *p); |
| |
| int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| struct btrfs_path *path, int slot, int nr); |
| static inline int btrfs_del_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path) |
| { |
| return btrfs_del_items(trans, root, path, path->slots[0], 1); |
| } |
| |
| /* |
| * Describes a batch of items to insert in a btree. This is used by |
| * btrfs_insert_empty_items(). |
| */ |
| struct btrfs_item_batch { |
| /* |
| * Pointer to an array containing the keys of the items to insert (in |
| * sorted order). |
| */ |
| const struct btrfs_key *keys; |
| /* Pointer to an array containing the data size for each item to insert. */ |
| const u32 *data_sizes; |
| /* |
| * The sum of data sizes for all items. The caller can compute this while |
| * setting up the data_sizes array, so it ends up being more efficient |
| * than having btrfs_insert_empty_items() or setup_item_for_insert() |
| * doing it, as it would avoid an extra loop over a potentially large |
| * array, and in the case of setup_item_for_insert(), we would be doing |
| * it while holding a write lock on a leaf and often on upper level nodes |
| * too, unnecessarily increasing the size of a critical section. |
| */ |
| u32 total_data_size; |
| /* Size of the keys and data_sizes arrays (number of items in the batch). */ |
| int nr; |
| }; |
| |
| void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| const struct btrfs_key *key, |
| u32 data_size); |
| int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| const struct btrfs_key *key, void *data, u32 data_size); |
| int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| const struct btrfs_item_batch *batch); |
| |
| static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| const struct btrfs_key *key, |
| u32 data_size) |
| { |
| struct btrfs_item_batch batch; |
| |
| batch.keys = key; |
| batch.data_sizes = &data_size; |
| batch.total_data_size = data_size; |
| batch.nr = 1; |
| |
| return btrfs_insert_empty_items(trans, root, path, &batch); |
| } |
| |
| int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, |
| u64 time_seq); |
| |
| int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, |
| struct btrfs_path *path); |
| |
| int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, |
| struct btrfs_path *path); |
| |
| /* |
| * Search in @root for a given @key, and store the slot found in @found_key. |
| * |
| * @root: The root node of the tree. |
| * @key: The key we are looking for. |
| * @found_key: Will hold the found item. |
| * @path: Holds the current slot/leaf. |
| * @iter_ret: Contains the value returned from btrfs_search_slot or |
| * btrfs_get_next_valid_item, whichever was executed last. |
| * |
| * The @iter_ret is an output variable that will contain the return value of |
| * btrfs_search_slot, if it encountered an error, or the value returned from |
| * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid |
| * slot was found, 1 if there were no more leaves, and <0 if there was an error. |
| * |
| * It's recommended to use a separate variable for iter_ret and then use it to |
| * set the function return value so there's no confusion of the 0/1/errno |
| * values stemming from btrfs_search_slot. |
| */ |
| #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \ |
| for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \ |
| (iter_ret) >= 0 && \ |
| (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ |
| (path)->slots[0]++ \ |
| ) |
| |
| int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq); |
| |
| /* |
| * Search the tree again to find a leaf with greater keys. |
| * |
| * Returns 0 if it found something or 1 if there are no greater leaves. |
| * Returns < 0 on error. |
| */ |
| static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) |
| { |
| return btrfs_next_old_leaf(root, path, 0); |
| } |
| |
| static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) |
| { |
| return btrfs_next_old_item(root, p, 0); |
| } |
| int btrfs_leaf_free_space(const struct extent_buffer *leaf); |
| |
| static inline int is_fstree(u64 rootid) |
| { |
| if (rootid == BTRFS_FS_TREE_OBJECTID || |
| ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && |
| !btrfs_qgroup_level(rootid))) |
| return 1; |
| return 0; |
| } |
| |
| static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) |
| { |
| return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; |
| } |
| |
| u16 btrfs_csum_type_size(u16 type); |
| int btrfs_super_csum_size(const struct btrfs_super_block *s); |
| const char *btrfs_super_csum_name(u16 csum_type); |
| const char *btrfs_super_csum_driver(u16 csum_type); |
| size_t __attribute_const__ btrfs_get_num_csums(void); |
| |
| /* |
| * We use page status Private2 to indicate there is an ordered extent with |
| * unfinished IO. |
| * |
| * Rename the Private2 accessors to Ordered, to improve readability. |
| */ |
| #define PageOrdered(page) PagePrivate2(page) |
| #define SetPageOrdered(page) SetPagePrivate2(page) |
| #define ClearPageOrdered(page) ClearPagePrivate2(page) |
| #define folio_test_ordered(folio) folio_test_private_2(folio) |
| #define folio_set_ordered(folio) folio_set_private_2(folio) |
| #define folio_clear_ordered(folio) folio_clear_private_2(folio) |
| |
| #endif |