| // SPDX-License-Identifier: GPL-2.0 |
| /* Multipath TCP |
| * |
| * Copyright (c) 2017 - 2019, Intel Corporation. |
| */ |
| |
| #define pr_fmt(fmt) "MPTCP: " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/sched/signal.h> |
| #include <linux/atomic.h> |
| #include <net/sock.h> |
| #include <net/inet_common.h> |
| #include <net/inet_hashtables.h> |
| #include <net/protocol.h> |
| #include <net/tcp_states.h> |
| #if IS_ENABLED(CONFIG_MPTCP_IPV6) |
| #include <net/transp_v6.h> |
| #endif |
| #include <net/mptcp.h> |
| #include <net/hotdata.h> |
| #include <net/xfrm.h> |
| #include <asm/ioctls.h> |
| #include "protocol.h" |
| #include "mib.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/mptcp.h> |
| |
| #if IS_ENABLED(CONFIG_MPTCP_IPV6) |
| struct mptcp6_sock { |
| struct mptcp_sock msk; |
| struct ipv6_pinfo np; |
| }; |
| #endif |
| |
| enum { |
| MPTCP_CMSG_TS = BIT(0), |
| MPTCP_CMSG_INQ = BIT(1), |
| }; |
| |
| static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; |
| |
| static void __mptcp_destroy_sock(struct sock *sk); |
| static void mptcp_check_send_data_fin(struct sock *sk); |
| |
| DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); |
| static struct net_device mptcp_napi_dev; |
| |
| /* Returns end sequence number of the receiver's advertised window */ |
| static u64 mptcp_wnd_end(const struct mptcp_sock *msk) |
| { |
| return READ_ONCE(msk->wnd_end); |
| } |
| |
| static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) |
| { |
| #if IS_ENABLED(CONFIG_MPTCP_IPV6) |
| if (sk->sk_prot == &tcpv6_prot) |
| return &inet6_stream_ops; |
| #endif |
| WARN_ON_ONCE(sk->sk_prot != &tcp_prot); |
| return &inet_stream_ops; |
| } |
| |
| static int __mptcp_socket_create(struct mptcp_sock *msk) |
| { |
| struct mptcp_subflow_context *subflow; |
| struct sock *sk = (struct sock *)msk; |
| struct socket *ssock; |
| int err; |
| |
| err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); |
| if (err) |
| return err; |
| |
| msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; |
| WRITE_ONCE(msk->first, ssock->sk); |
| subflow = mptcp_subflow_ctx(ssock->sk); |
| list_add(&subflow->node, &msk->conn_list); |
| sock_hold(ssock->sk); |
| subflow->request_mptcp = 1; |
| subflow->subflow_id = msk->subflow_id++; |
| |
| /* This is the first subflow, always with id 0 */ |
| WRITE_ONCE(subflow->local_id, 0); |
| mptcp_sock_graft(msk->first, sk->sk_socket); |
| iput(SOCK_INODE(ssock)); |
| |
| return 0; |
| } |
| |
| /* If the MPC handshake is not started, returns the first subflow, |
| * eventually allocating it. |
| */ |
| struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) |
| { |
| struct sock *sk = (struct sock *)msk; |
| int ret; |
| |
| if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) |
| return ERR_PTR(-EINVAL); |
| |
| if (!msk->first) { |
| ret = __mptcp_socket_create(msk); |
| if (ret) |
| return ERR_PTR(ret); |
| } |
| |
| return msk->first; |
| } |
| |
| static void mptcp_drop(struct sock *sk, struct sk_buff *skb) |
| { |
| sk_drops_add(sk, skb); |
| __kfree_skb(skb); |
| } |
| |
| static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) |
| { |
| WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, |
| mptcp_sk(sk)->rmem_fwd_alloc + size); |
| } |
| |
| static void mptcp_rmem_charge(struct sock *sk, int size) |
| { |
| mptcp_rmem_fwd_alloc_add(sk, -size); |
| } |
| |
| static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, |
| struct sk_buff *from) |
| { |
| bool fragstolen; |
| int delta; |
| |
| if (MPTCP_SKB_CB(from)->offset || |
| !skb_try_coalesce(to, from, &fragstolen, &delta)) |
| return false; |
| |
| pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", |
| MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, |
| to->len, MPTCP_SKB_CB(from)->end_seq); |
| MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; |
| |
| /* note the fwd memory can reach a negative value after accounting |
| * for the delta, but the later skb free will restore a non |
| * negative one |
| */ |
| atomic_add(delta, &sk->sk_rmem_alloc); |
| mptcp_rmem_charge(sk, delta); |
| kfree_skb_partial(from, fragstolen); |
| |
| return true; |
| } |
| |
| static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, |
| struct sk_buff *from) |
| { |
| if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) |
| return false; |
| |
| return mptcp_try_coalesce((struct sock *)msk, to, from); |
| } |
| |
| static void __mptcp_rmem_reclaim(struct sock *sk, int amount) |
| { |
| amount >>= PAGE_SHIFT; |
| mptcp_rmem_charge(sk, amount << PAGE_SHIFT); |
| __sk_mem_reduce_allocated(sk, amount); |
| } |
| |
| static void mptcp_rmem_uncharge(struct sock *sk, int size) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| int reclaimable; |
| |
| mptcp_rmem_fwd_alloc_add(sk, size); |
| reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); |
| |
| /* see sk_mem_uncharge() for the rationale behind the following schema */ |
| if (unlikely(reclaimable >= PAGE_SIZE)) |
| __mptcp_rmem_reclaim(sk, reclaimable); |
| } |
| |
| static void mptcp_rfree(struct sk_buff *skb) |
| { |
| unsigned int len = skb->truesize; |
| struct sock *sk = skb->sk; |
| |
| atomic_sub(len, &sk->sk_rmem_alloc); |
| mptcp_rmem_uncharge(sk, len); |
| } |
| |
| void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) |
| { |
| skb_orphan(skb); |
| skb->sk = sk; |
| skb->destructor = mptcp_rfree; |
| atomic_add(skb->truesize, &sk->sk_rmem_alloc); |
| mptcp_rmem_charge(sk, skb->truesize); |
| } |
| |
| /* "inspired" by tcp_data_queue_ofo(), main differences: |
| * - use mptcp seqs |
| * - don't cope with sacks |
| */ |
| static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) |
| { |
| struct sock *sk = (struct sock *)msk; |
| struct rb_node **p, *parent; |
| u64 seq, end_seq, max_seq; |
| struct sk_buff *skb1; |
| |
| seq = MPTCP_SKB_CB(skb)->map_seq; |
| end_seq = MPTCP_SKB_CB(skb)->end_seq; |
| max_seq = atomic64_read(&msk->rcv_wnd_sent); |
| |
| pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, |
| RB_EMPTY_ROOT(&msk->out_of_order_queue)); |
| if (after64(end_seq, max_seq)) { |
| /* out of window */ |
| mptcp_drop(sk, skb); |
| pr_debug("oow by %lld, rcv_wnd_sent %llu\n", |
| (unsigned long long)end_seq - (unsigned long)max_seq, |
| (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); |
| return; |
| } |
| |
| p = &msk->out_of_order_queue.rb_node; |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); |
| if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { |
| rb_link_node(&skb->rbnode, NULL, p); |
| rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); |
| msk->ooo_last_skb = skb; |
| goto end; |
| } |
| |
| /* with 2 subflows, adding at end of ooo queue is quite likely |
| * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. |
| */ |
| if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); |
| return; |
| } |
| |
| /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ |
| if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); |
| parent = &msk->ooo_last_skb->rbnode; |
| p = &parent->rb_right; |
| goto insert; |
| } |
| |
| /* Find place to insert this segment. Handle overlaps on the way. */ |
| parent = NULL; |
| while (*p) { |
| parent = *p; |
| skb1 = rb_to_skb(parent); |
| if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { |
| p = &parent->rb_left; |
| continue; |
| } |
| if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { |
| if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { |
| /* All the bits are present. Drop. */ |
| mptcp_drop(sk, skb); |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); |
| return; |
| } |
| if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { |
| /* partial overlap: |
| * | skb | |
| * | skb1 | |
| * continue traversing |
| */ |
| } else { |
| /* skb's seq == skb1's seq and skb covers skb1. |
| * Replace skb1 with skb. |
| */ |
| rb_replace_node(&skb1->rbnode, &skb->rbnode, |
| &msk->out_of_order_queue); |
| mptcp_drop(sk, skb1); |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); |
| goto merge_right; |
| } |
| } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); |
| return; |
| } |
| p = &parent->rb_right; |
| } |
| |
| insert: |
| /* Insert segment into RB tree. */ |
| rb_link_node(&skb->rbnode, parent, p); |
| rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); |
| |
| merge_right: |
| /* Remove other segments covered by skb. */ |
| while ((skb1 = skb_rb_next(skb)) != NULL) { |
| if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) |
| break; |
| rb_erase(&skb1->rbnode, &msk->out_of_order_queue); |
| mptcp_drop(sk, skb1); |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); |
| } |
| /* If there is no skb after us, we are the last_skb ! */ |
| if (!skb1) |
| msk->ooo_last_skb = skb; |
| |
| end: |
| skb_condense(skb); |
| mptcp_set_owner_r(skb, sk); |
| } |
| |
| static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| int amt, amount; |
| |
| if (size <= msk->rmem_fwd_alloc) |
| return true; |
| |
| size -= msk->rmem_fwd_alloc; |
| amt = sk_mem_pages(size); |
| amount = amt << PAGE_SHIFT; |
| if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) |
| return false; |
| |
| mptcp_rmem_fwd_alloc_add(sk, amount); |
| return true; |
| } |
| |
| static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, |
| struct sk_buff *skb, unsigned int offset, |
| size_t copy_len) |
| { |
| struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); |
| struct sock *sk = (struct sock *)msk; |
| struct sk_buff *tail; |
| bool has_rxtstamp; |
| |
| __skb_unlink(skb, &ssk->sk_receive_queue); |
| |
| skb_ext_reset(skb); |
| skb_orphan(skb); |
| |
| /* try to fetch required memory from subflow */ |
| if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) { |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); |
| goto drop; |
| } |
| |
| has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; |
| |
| /* the skb map_seq accounts for the skb offset: |
| * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq |
| * value |
| */ |
| MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); |
| MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; |
| MPTCP_SKB_CB(skb)->offset = offset; |
| MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; |
| |
| if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { |
| /* in sequence */ |
| msk->bytes_received += copy_len; |
| WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); |
| tail = skb_peek_tail(&sk->sk_receive_queue); |
| if (tail && mptcp_try_coalesce(sk, tail, skb)) |
| return true; |
| |
| mptcp_set_owner_r(skb, sk); |
| __skb_queue_tail(&sk->sk_receive_queue, skb); |
| return true; |
| } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { |
| mptcp_data_queue_ofo(msk, skb); |
| return false; |
| } |
| |
| /* old data, keep it simple and drop the whole pkt, sender |
| * will retransmit as needed, if needed. |
| */ |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); |
| drop: |
| mptcp_drop(sk, skb); |
| return false; |
| } |
| |
| static void mptcp_stop_rtx_timer(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| sk_stop_timer(sk, &icsk->icsk_retransmit_timer); |
| mptcp_sk(sk)->timer_ival = 0; |
| } |
| |
| static void mptcp_close_wake_up(struct sock *sk) |
| { |
| if (sock_flag(sk, SOCK_DEAD)) |
| return; |
| |
| sk->sk_state_change(sk); |
| if (sk->sk_shutdown == SHUTDOWN_MASK || |
| sk->sk_state == TCP_CLOSE) |
| sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); |
| else |
| sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); |
| } |
| |
| /* called under the msk socket lock */ |
| static bool mptcp_pending_data_fin_ack(struct sock *sk) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| return ((1 << sk->sk_state) & |
| (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && |
| msk->write_seq == READ_ONCE(msk->snd_una); |
| } |
| |
| static void mptcp_check_data_fin_ack(struct sock *sk) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| /* Look for an acknowledged DATA_FIN */ |
| if (mptcp_pending_data_fin_ack(sk)) { |
| WRITE_ONCE(msk->snd_data_fin_enable, 0); |
| |
| switch (sk->sk_state) { |
| case TCP_FIN_WAIT1: |
| mptcp_set_state(sk, TCP_FIN_WAIT2); |
| break; |
| case TCP_CLOSING: |
| case TCP_LAST_ACK: |
| mptcp_set_state(sk, TCP_CLOSE); |
| break; |
| } |
| |
| mptcp_close_wake_up(sk); |
| } |
| } |
| |
| /* can be called with no lock acquired */ |
| static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| if (READ_ONCE(msk->rcv_data_fin) && |
| ((1 << inet_sk_state_load(sk)) & |
| (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { |
| u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); |
| |
| if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { |
| if (seq) |
| *seq = rcv_data_fin_seq; |
| |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static void mptcp_set_datafin_timeout(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| u32 retransmits; |
| |
| retransmits = min_t(u32, icsk->icsk_retransmits, |
| ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); |
| |
| mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; |
| } |
| |
| static void __mptcp_set_timeout(struct sock *sk, long tout) |
| { |
| mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; |
| } |
| |
| static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) |
| { |
| const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); |
| |
| return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? |
| inet_csk(ssk)->icsk_timeout - jiffies : 0; |
| } |
| |
| static void mptcp_set_timeout(struct sock *sk) |
| { |
| struct mptcp_subflow_context *subflow; |
| long tout = 0; |
| |
| mptcp_for_each_subflow(mptcp_sk(sk), subflow) |
| tout = max(tout, mptcp_timeout_from_subflow(subflow)); |
| __mptcp_set_timeout(sk, tout); |
| } |
| |
| static inline bool tcp_can_send_ack(const struct sock *ssk) |
| { |
| return !((1 << inet_sk_state_load(ssk)) & |
| (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); |
| } |
| |
| void __mptcp_subflow_send_ack(struct sock *ssk) |
| { |
| if (tcp_can_send_ack(ssk)) |
| tcp_send_ack(ssk); |
| } |
| |
| static void mptcp_subflow_send_ack(struct sock *ssk) |
| { |
| bool slow; |
| |
| slow = lock_sock_fast(ssk); |
| __mptcp_subflow_send_ack(ssk); |
| unlock_sock_fast(ssk, slow); |
| } |
| |
| static void mptcp_send_ack(struct mptcp_sock *msk) |
| { |
| struct mptcp_subflow_context *subflow; |
| |
| mptcp_for_each_subflow(msk, subflow) |
| mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); |
| } |
| |
| static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) |
| { |
| bool slow; |
| |
| slow = lock_sock_fast(ssk); |
| if (tcp_can_send_ack(ssk)) |
| tcp_cleanup_rbuf(ssk, 1); |
| unlock_sock_fast(ssk, slow); |
| } |
| |
| static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) |
| { |
| const struct inet_connection_sock *icsk = inet_csk(ssk); |
| u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); |
| const struct tcp_sock *tp = tcp_sk(ssk); |
| |
| return (ack_pending & ICSK_ACK_SCHED) && |
| ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > |
| READ_ONCE(icsk->icsk_ack.rcv_mss)) || |
| (rx_empty && ack_pending & |
| (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); |
| } |
| |
| static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) |
| { |
| int old_space = READ_ONCE(msk->old_wspace); |
| struct mptcp_subflow_context *subflow; |
| struct sock *sk = (struct sock *)msk; |
| int space = __mptcp_space(sk); |
| bool cleanup, rx_empty; |
| |
| cleanup = (space > 0) && (space >= (old_space << 1)); |
| rx_empty = !__mptcp_rmem(sk); |
| |
| mptcp_for_each_subflow(msk, subflow) { |
| struct sock *ssk = mptcp_subflow_tcp_sock(subflow); |
| |
| if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) |
| mptcp_subflow_cleanup_rbuf(ssk); |
| } |
| } |
| |
| static bool mptcp_check_data_fin(struct sock *sk) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| u64 rcv_data_fin_seq; |
| bool ret = false; |
| |
| /* Need to ack a DATA_FIN received from a peer while this side |
| * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. |
| * msk->rcv_data_fin was set when parsing the incoming options |
| * at the subflow level and the msk lock was not held, so this |
| * is the first opportunity to act on the DATA_FIN and change |
| * the msk state. |
| * |
| * If we are caught up to the sequence number of the incoming |
| * DATA_FIN, send the DATA_ACK now and do state transition. If |
| * not caught up, do nothing and let the recv code send DATA_ACK |
| * when catching up. |
| */ |
| |
| if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { |
| WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); |
| WRITE_ONCE(msk->rcv_data_fin, 0); |
| |
| WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); |
| smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ |
| |
| switch (sk->sk_state) { |
| case TCP_ESTABLISHED: |
| mptcp_set_state(sk, TCP_CLOSE_WAIT); |
| break; |
| case TCP_FIN_WAIT1: |
| mptcp_set_state(sk, TCP_CLOSING); |
| break; |
| case TCP_FIN_WAIT2: |
| mptcp_set_state(sk, TCP_CLOSE); |
| break; |
| default: |
| /* Other states not expected */ |
| WARN_ON_ONCE(1); |
| break; |
| } |
| |
| ret = true; |
| if (!__mptcp_check_fallback(msk)) |
| mptcp_send_ack(msk); |
| mptcp_close_wake_up(sk); |
| } |
| return ret; |
| } |
| |
| static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) |
| { |
| if (READ_ONCE(msk->allow_infinite_fallback)) { |
| MPTCP_INC_STATS(sock_net(ssk), |
| MPTCP_MIB_DSSCORRUPTIONFALLBACK); |
| mptcp_do_fallback(ssk); |
| } else { |
| MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); |
| mptcp_subflow_reset(ssk); |
| } |
| } |
| |
| static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, |
| struct sock *ssk, |
| unsigned int *bytes) |
| { |
| struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); |
| struct sock *sk = (struct sock *)msk; |
| unsigned int moved = 0; |
| bool more_data_avail; |
| struct tcp_sock *tp; |
| bool done = false; |
| int sk_rbuf; |
| |
| sk_rbuf = READ_ONCE(sk->sk_rcvbuf); |
| |
| if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { |
| int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); |
| |
| if (unlikely(ssk_rbuf > sk_rbuf)) { |
| WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); |
| sk_rbuf = ssk_rbuf; |
| } |
| } |
| |
| pr_debug("msk=%p ssk=%p\n", msk, ssk); |
| tp = tcp_sk(ssk); |
| do { |
| u32 map_remaining, offset; |
| u32 seq = tp->copied_seq; |
| struct sk_buff *skb; |
| bool fin; |
| |
| /* try to move as much data as available */ |
| map_remaining = subflow->map_data_len - |
| mptcp_subflow_get_map_offset(subflow); |
| |
| skb = skb_peek(&ssk->sk_receive_queue); |
| if (!skb) { |
| /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), |
| * a different CPU can have already processed the pending |
| * data, stop here or we can enter an infinite loop |
| */ |
| if (!moved) |
| done = true; |
| break; |
| } |
| |
| if (__mptcp_check_fallback(msk)) { |
| /* Under fallback skbs have no MPTCP extension and TCP could |
| * collapse them between the dummy map creation and the |
| * current dequeue. Be sure to adjust the map size. |
| */ |
| map_remaining = skb->len; |
| subflow->map_data_len = skb->len; |
| } |
| |
| offset = seq - TCP_SKB_CB(skb)->seq; |
| fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; |
| if (fin) { |
| done = true; |
| seq++; |
| } |
| |
| if (offset < skb->len) { |
| size_t len = skb->len - offset; |
| |
| if (tp->urg_data) |
| done = true; |
| |
| if (__mptcp_move_skb(msk, ssk, skb, offset, len)) |
| moved += len; |
| seq += len; |
| |
| if (unlikely(map_remaining < len)) { |
| DEBUG_NET_WARN_ON_ONCE(1); |
| mptcp_dss_corruption(msk, ssk); |
| } |
| } else { |
| if (unlikely(!fin)) { |
| DEBUG_NET_WARN_ON_ONCE(1); |
| mptcp_dss_corruption(msk, ssk); |
| } |
| |
| sk_eat_skb(ssk, skb); |
| done = true; |
| } |
| |
| WRITE_ONCE(tp->copied_seq, seq); |
| more_data_avail = mptcp_subflow_data_available(ssk); |
| |
| if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { |
| done = true; |
| break; |
| } |
| } while (more_data_avail); |
| |
| if (moved > 0) |
| msk->last_data_recv = tcp_jiffies32; |
| *bytes += moved; |
| return done; |
| } |
| |
| static bool __mptcp_ofo_queue(struct mptcp_sock *msk) |
| { |
| struct sock *sk = (struct sock *)msk; |
| struct sk_buff *skb, *tail; |
| bool moved = false; |
| struct rb_node *p; |
| u64 end_seq; |
| |
| p = rb_first(&msk->out_of_order_queue); |
| pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); |
| while (p) { |
| skb = rb_to_skb(p); |
| if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) |
| break; |
| |
| p = rb_next(p); |
| rb_erase(&skb->rbnode, &msk->out_of_order_queue); |
| |
| if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, |
| msk->ack_seq))) { |
| mptcp_drop(sk, skb); |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); |
| continue; |
| } |
| |
| end_seq = MPTCP_SKB_CB(skb)->end_seq; |
| tail = skb_peek_tail(&sk->sk_receive_queue); |
| if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { |
| int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; |
| |
| /* skip overlapping data, if any */ |
| pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", |
| MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, |
| delta); |
| MPTCP_SKB_CB(skb)->offset += delta; |
| MPTCP_SKB_CB(skb)->map_seq += delta; |
| __skb_queue_tail(&sk->sk_receive_queue, skb); |
| } |
| msk->bytes_received += end_seq - msk->ack_seq; |
| WRITE_ONCE(msk->ack_seq, end_seq); |
| moved = true; |
| } |
| return moved; |
| } |
| |
| static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) |
| { |
| int err = sock_error(ssk); |
| int ssk_state; |
| |
| if (!err) |
| return false; |
| |
| /* only propagate errors on fallen-back sockets or |
| * on MPC connect |
| */ |
| if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) |
| return false; |
| |
| /* We need to propagate only transition to CLOSE state. |
| * Orphaned socket will see such state change via |
| * subflow_sched_work_if_closed() and that path will properly |
| * destroy the msk as needed. |
| */ |
| ssk_state = inet_sk_state_load(ssk); |
| if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) |
| mptcp_set_state(sk, ssk_state); |
| WRITE_ONCE(sk->sk_err, -err); |
| |
| /* This barrier is coupled with smp_rmb() in mptcp_poll() */ |
| smp_wmb(); |
| sk_error_report(sk); |
| return true; |
| } |
| |
| void __mptcp_error_report(struct sock *sk) |
| { |
| struct mptcp_subflow_context *subflow; |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| mptcp_for_each_subflow(msk, subflow) |
| if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) |
| break; |
| } |
| |
| /* In most cases we will be able to lock the mptcp socket. If its already |
| * owned, we need to defer to the work queue to avoid ABBA deadlock. |
| */ |
| static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) |
| { |
| struct sock *sk = (struct sock *)msk; |
| unsigned int moved = 0; |
| |
| __mptcp_move_skbs_from_subflow(msk, ssk, &moved); |
| __mptcp_ofo_queue(msk); |
| if (unlikely(ssk->sk_err)) { |
| if (!sock_owned_by_user(sk)) |
| __mptcp_error_report(sk); |
| else |
| __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); |
| } |
| |
| /* If the moves have caught up with the DATA_FIN sequence number |
| * it's time to ack the DATA_FIN and change socket state, but |
| * this is not a good place to change state. Let the workqueue |
| * do it. |
| */ |
| if (mptcp_pending_data_fin(sk, NULL)) |
| mptcp_schedule_work(sk); |
| return moved > 0; |
| } |
| |
| void mptcp_data_ready(struct sock *sk, struct sock *ssk) |
| { |
| struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| int sk_rbuf, ssk_rbuf; |
| |
| /* The peer can send data while we are shutting down this |
| * subflow at msk destruction time, but we must avoid enqueuing |
| * more data to the msk receive queue |
| */ |
| if (unlikely(subflow->disposable)) |
| return; |
| |
| ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); |
| sk_rbuf = READ_ONCE(sk->sk_rcvbuf); |
| if (unlikely(ssk_rbuf > sk_rbuf)) |
| sk_rbuf = ssk_rbuf; |
| |
| /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ |
| if (__mptcp_rmem(sk) > sk_rbuf) |
| return; |
| |
| /* Wake-up the reader only for in-sequence data */ |
| mptcp_data_lock(sk); |
| if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) |
| sk->sk_data_ready(sk); |
| mptcp_data_unlock(sk); |
| } |
| |
| static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) |
| { |
| mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); |
| WRITE_ONCE(msk->allow_infinite_fallback, false); |
| mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); |
| } |
| |
| static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) |
| { |
| struct sock *sk = (struct sock *)msk; |
| |
| if (sk->sk_state != TCP_ESTABLISHED) |
| return false; |
| |
| /* attach to msk socket only after we are sure we will deal with it |
| * at close time |
| */ |
| if (sk->sk_socket && !ssk->sk_socket) |
| mptcp_sock_graft(ssk, sk->sk_socket); |
| |
| mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; |
| mptcp_sockopt_sync_locked(msk, ssk); |
| mptcp_subflow_joined(msk, ssk); |
| mptcp_stop_tout_timer(sk); |
| __mptcp_propagate_sndbuf(sk, ssk); |
| return true; |
| } |
| |
| static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) |
| { |
| struct mptcp_subflow_context *tmp, *subflow; |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| list_for_each_entry_safe(subflow, tmp, join_list, node) { |
| struct sock *ssk = mptcp_subflow_tcp_sock(subflow); |
| bool slow = lock_sock_fast(ssk); |
| |
| list_move_tail(&subflow->node, &msk->conn_list); |
| if (!__mptcp_finish_join(msk, ssk)) |
| mptcp_subflow_reset(ssk); |
| unlock_sock_fast(ssk, slow); |
| } |
| } |
| |
| static bool mptcp_rtx_timer_pending(struct sock *sk) |
| { |
| return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); |
| } |
| |
| static void mptcp_reset_rtx_timer(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| unsigned long tout; |
| |
| /* prevent rescheduling on close */ |
| if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) |
| return; |
| |
| tout = mptcp_sk(sk)->timer_ival; |
| sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); |
| } |
| |
| bool mptcp_schedule_work(struct sock *sk) |
| { |
| if (inet_sk_state_load(sk) != TCP_CLOSE && |
| schedule_work(&mptcp_sk(sk)->work)) { |
| /* each subflow already holds a reference to the sk, and the |
| * workqueue is invoked by a subflow, so sk can't go away here. |
| */ |
| sock_hold(sk); |
| return true; |
| } |
| return false; |
| } |
| |
| static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) |
| { |
| struct mptcp_subflow_context *subflow; |
| |
| msk_owned_by_me(msk); |
| |
| mptcp_for_each_subflow(msk, subflow) { |
| if (READ_ONCE(subflow->data_avail)) |
| return mptcp_subflow_tcp_sock(subflow); |
| } |
| |
| return NULL; |
| } |
| |
| static bool mptcp_skb_can_collapse_to(u64 write_seq, |
| const struct sk_buff *skb, |
| const struct mptcp_ext *mpext) |
| { |
| if (!tcp_skb_can_collapse_to(skb)) |
| return false; |
| |
| /* can collapse only if MPTCP level sequence is in order and this |
| * mapping has not been xmitted yet |
| */ |
| return mpext && mpext->data_seq + mpext->data_len == write_seq && |
| !mpext->frozen; |
| } |
| |
| /* we can append data to the given data frag if: |
| * - there is space available in the backing page_frag |
| * - the data frag tail matches the current page_frag free offset |
| * - the data frag end sequence number matches the current write seq |
| */ |
| static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, |
| const struct page_frag *pfrag, |
| const struct mptcp_data_frag *df) |
| { |
| return df && pfrag->page == df->page && |
| pfrag->size - pfrag->offset > 0 && |
| pfrag->offset == (df->offset + df->data_len) && |
| df->data_seq + df->data_len == msk->write_seq; |
| } |
| |
| static void dfrag_uncharge(struct sock *sk, int len) |
| { |
| sk_mem_uncharge(sk, len); |
| sk_wmem_queued_add(sk, -len); |
| } |
| |
| static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) |
| { |
| int len = dfrag->data_len + dfrag->overhead; |
| |
| list_del(&dfrag->list); |
| dfrag_uncharge(sk, len); |
| put_page(dfrag->page); |
| } |
| |
| /* called under both the msk socket lock and the data lock */ |
| static void __mptcp_clean_una(struct sock *sk) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| struct mptcp_data_frag *dtmp, *dfrag; |
| u64 snd_una; |
| |
| snd_una = msk->snd_una; |
| list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { |
| if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) |
| break; |
| |
| if (unlikely(dfrag == msk->first_pending)) { |
| /* in recovery mode can see ack after the current snd head */ |
| if (WARN_ON_ONCE(!msk->recovery)) |
| break; |
| |
| WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); |
| } |
| |
| dfrag_clear(sk, dfrag); |
| } |
| |
| dfrag = mptcp_rtx_head(sk); |
| if (dfrag && after64(snd_una, dfrag->data_seq)) { |
| u64 delta = snd_una - dfrag->data_seq; |
| |
| /* prevent wrap around in recovery mode */ |
| if (unlikely(delta > dfrag->already_sent)) { |
| if (WARN_ON_ONCE(!msk->recovery)) |
| goto out; |
| if (WARN_ON_ONCE(delta > dfrag->data_len)) |
| goto out; |
| dfrag->already_sent += delta - dfrag->already_sent; |
| } |
| |
| dfrag->data_seq += delta; |
| dfrag->offset += delta; |
| dfrag->data_len -= delta; |
| dfrag->already_sent -= delta; |
| |
| dfrag_uncharge(sk, delta); |
| } |
| |
| /* all retransmitted data acked, recovery completed */ |
| if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) |
| msk->recovery = false; |
| |
| out: |
| if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { |
| if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) |
| mptcp_stop_rtx_timer(sk); |
| } else { |
| mptcp_reset_rtx_timer(sk); |
| } |
| |
| if (mptcp_pending_data_fin_ack(sk)) |
| mptcp_schedule_work(sk); |
| } |
| |
| static void __mptcp_clean_una_wakeup(struct sock *sk) |
| { |
| lockdep_assert_held_once(&sk->sk_lock.slock); |
| |
| __mptcp_clean_una(sk); |
| mptcp_write_space(sk); |
| } |
| |
| static void mptcp_clean_una_wakeup(struct sock *sk) |
| { |
| mptcp_data_lock(sk); |
| __mptcp_clean_una_wakeup(sk); |
| mptcp_data_unlock(sk); |
| } |
| |
| static void mptcp_enter_memory_pressure(struct sock *sk) |
| { |
| struct mptcp_subflow_context *subflow; |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| bool first = true; |
| |
| mptcp_for_each_subflow(msk, subflow) { |
| struct sock *ssk = mptcp_subflow_tcp_sock(subflow); |
| |
| if (first) |
| tcp_enter_memory_pressure(ssk); |
| sk_stream_moderate_sndbuf(ssk); |
| |
| first = false; |
| } |
| __mptcp_sync_sndbuf(sk); |
| } |
| |
| /* ensure we get enough memory for the frag hdr, beyond some minimal amount of |
| * data |
| */ |
| static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) |
| { |
| if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), |
| pfrag, sk->sk_allocation))) |
| return true; |
| |
| mptcp_enter_memory_pressure(sk); |
| return false; |
| } |
| |
| static struct mptcp_data_frag * |
| mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, |
| int orig_offset) |
| { |
| int offset = ALIGN(orig_offset, sizeof(long)); |
| struct mptcp_data_frag *dfrag; |
| |
| dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); |
| dfrag->data_len = 0; |
| dfrag->data_seq = msk->write_seq; |
| dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); |
| dfrag->offset = offset + sizeof(struct mptcp_data_frag); |
| dfrag->already_sent = 0; |
| dfrag->page = pfrag->page; |
| |
| return dfrag; |
| } |
| |
| struct mptcp_sendmsg_info { |
| int mss_now; |
| int size_goal; |
| u16 limit; |
| u16 sent; |
| unsigned int flags; |
| bool data_lock_held; |
| }; |
| |
| static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, |
| u64 data_seq, int avail_size) |
| { |
| u64 window_end = mptcp_wnd_end(msk); |
| u64 mptcp_snd_wnd; |
| |
| if (__mptcp_check_fallback(msk)) |
| return avail_size; |
| |
| mptcp_snd_wnd = window_end - data_seq; |
| avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); |
| |
| if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { |
| tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); |
| MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); |
| } |
| |
| return avail_size; |
| } |
| |
| static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) |
| { |
| struct skb_ext *mpext = __skb_ext_alloc(gfp); |
| |
| if (!mpext) |
| return false; |
| __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); |
| return true; |
| } |
| |
| static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) |
| { |
| struct sk_buff *skb; |
| |
| skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); |
| if (likely(skb)) { |
| if (likely(__mptcp_add_ext(skb, gfp))) { |
| skb_reserve(skb, MAX_TCP_HEADER); |
| skb->ip_summed = CHECKSUM_PARTIAL; |
| INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); |
| return skb; |
| } |
| __kfree_skb(skb); |
| } else { |
| mptcp_enter_memory_pressure(sk); |
| } |
| return NULL; |
| } |
| |
| static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) |
| { |
| struct sk_buff *skb; |
| |
| skb = __mptcp_do_alloc_tx_skb(sk, gfp); |
| if (!skb) |
| return NULL; |
| |
| if (likely(sk_wmem_schedule(ssk, skb->truesize))) { |
| tcp_skb_entail(ssk, skb); |
| return skb; |
| } |
| tcp_skb_tsorted_anchor_cleanup(skb); |
| kfree_skb(skb); |
| return NULL; |
| } |
| |
| static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) |
| { |
| gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; |
| |
| return __mptcp_alloc_tx_skb(sk, ssk, gfp); |
| } |
| |
| /* note: this always recompute the csum on the whole skb, even |
| * if we just appended a single frag. More status info needed |
| */ |
| static void mptcp_update_data_checksum(struct sk_buff *skb, int added) |
| { |
| struct mptcp_ext *mpext = mptcp_get_ext(skb); |
| __wsum csum = ~csum_unfold(mpext->csum); |
| int offset = skb->len - added; |
| |
| mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); |
| } |
| |
| static void mptcp_update_infinite_map(struct mptcp_sock *msk, |
| struct sock *ssk, |
| struct mptcp_ext *mpext) |
| { |
| if (!mpext) |
| return; |
| |
| mpext->infinite_map = 1; |
| mpext->data_len = 0; |
| |
| MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); |
| mptcp_subflow_ctx(ssk)->send_infinite_map = 0; |
| pr_fallback(msk); |
| mptcp_do_fallback(ssk); |
| } |
| |
| #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) |
| |
| static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, |
| struct mptcp_data_frag *dfrag, |
| struct mptcp_sendmsg_info *info) |
| { |
| u64 data_seq = dfrag->data_seq + info->sent; |
| int offset = dfrag->offset + info->sent; |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| bool zero_window_probe = false; |
| struct mptcp_ext *mpext = NULL; |
| bool can_coalesce = false; |
| bool reuse_skb = true; |
| struct sk_buff *skb; |
| size_t copy; |
| int i; |
| |
| pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", |
| msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); |
| |
| if (WARN_ON_ONCE(info->sent > info->limit || |
| info->limit > dfrag->data_len)) |
| return 0; |
| |
| if (unlikely(!__tcp_can_send(ssk))) |
| return -EAGAIN; |
| |
| /* compute send limit */ |
| if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) |
| ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; |
| info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); |
| copy = info->size_goal; |
| |
| skb = tcp_write_queue_tail(ssk); |
| if (skb && copy > skb->len) { |
| /* Limit the write to the size available in the |
| * current skb, if any, so that we create at most a new skb. |
| * Explicitly tells TCP internals to avoid collapsing on later |
| * queue management operation, to avoid breaking the ext <-> |
| * SSN association set here |
| */ |
| mpext = mptcp_get_ext(skb); |
| if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { |
| TCP_SKB_CB(skb)->eor = 1; |
| tcp_mark_push(tcp_sk(ssk), skb); |
| goto alloc_skb; |
| } |
| |
| i = skb_shinfo(skb)->nr_frags; |
| can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); |
| if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { |
| tcp_mark_push(tcp_sk(ssk), skb); |
| goto alloc_skb; |
| } |
| |
| copy -= skb->len; |
| } else { |
| alloc_skb: |
| skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); |
| if (!skb) |
| return -ENOMEM; |
| |
| i = skb_shinfo(skb)->nr_frags; |
| reuse_skb = false; |
| mpext = mptcp_get_ext(skb); |
| } |
| |
| /* Zero window and all data acked? Probe. */ |
| copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); |
| if (copy == 0) { |
| u64 snd_una = READ_ONCE(msk->snd_una); |
| |
| if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { |
| tcp_remove_empty_skb(ssk); |
| return 0; |
| } |
| |
| zero_window_probe = true; |
| data_seq = snd_una - 1; |
| copy = 1; |
| } |
| |
| copy = min_t(size_t, copy, info->limit - info->sent); |
| if (!sk_wmem_schedule(ssk, copy)) { |
| tcp_remove_empty_skb(ssk); |
| return -ENOMEM; |
| } |
| |
| if (can_coalesce) { |
| skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); |
| } else { |
| get_page(dfrag->page); |
| skb_fill_page_desc(skb, i, dfrag->page, offset, copy); |
| } |
| |
| skb->len += copy; |
| skb->data_len += copy; |
| skb->truesize += copy; |
| sk_wmem_queued_add(ssk, copy); |
| sk_mem_charge(ssk, copy); |
| WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); |
| TCP_SKB_CB(skb)->end_seq += copy; |
| tcp_skb_pcount_set(skb, 0); |
| |
| /* on skb reuse we just need to update the DSS len */ |
| if (reuse_skb) { |
| TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; |
| mpext->data_len += copy; |
| goto out; |
| } |
| |
| memset(mpext, 0, sizeof(*mpext)); |
| mpext->data_seq = data_seq; |
| mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; |
| mpext->data_len = copy; |
| mpext->use_map = 1; |
| mpext->dsn64 = 1; |
| |
| pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", |
| mpext->data_seq, mpext->subflow_seq, mpext->data_len, |
| mpext->dsn64); |
| |
| if (zero_window_probe) { |
| mptcp_subflow_ctx(ssk)->rel_write_seq += copy; |
| mpext->frozen = 1; |
| if (READ_ONCE(msk->csum_enabled)) |
| mptcp_update_data_checksum(skb, copy); |
| tcp_push_pending_frames(ssk); |
| return 0; |
| } |
| out: |
| if (READ_ONCE(msk->csum_enabled)) |
| mptcp_update_data_checksum(skb, copy); |
| if (mptcp_subflow_ctx(ssk)->send_infinite_map) |
| mptcp_update_infinite_map(msk, ssk, mpext); |
| trace_mptcp_sendmsg_frag(mpext); |
| mptcp_subflow_ctx(ssk)->rel_write_seq += copy; |
| return copy; |
| } |
| |
| #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ |
| sizeof(struct tcphdr) - \ |
| MAX_TCP_OPTION_SPACE - \ |
| sizeof(struct ipv6hdr) - \ |
| sizeof(struct frag_hdr)) |
| |
| struct subflow_send_info { |
| struct sock *ssk; |
| u64 linger_time; |
| }; |
| |
| void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) |
| { |
| if (!subflow->stale) |
| return; |
| |
| subflow->stale = 0; |
| MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); |
| } |
| |
| bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) |
| { |
| if (unlikely(subflow->stale)) { |
| u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); |
| |
| if (subflow->stale_rcv_tstamp == rcv_tstamp) |
| return false; |
| |
| mptcp_subflow_set_active(subflow); |
| } |
| return __mptcp_subflow_active(subflow); |
| } |
| |
| #define SSK_MODE_ACTIVE 0 |
| #define SSK_MODE_BACKUP 1 |
| #define SSK_MODE_MAX 2 |
| |
| /* implement the mptcp packet scheduler; |
| * returns the subflow that will transmit the next DSS |
| * additionally updates the rtx timeout |
| */ |
| struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) |
| { |
| struct subflow_send_info send_info[SSK_MODE_MAX]; |
| struct mptcp_subflow_context *subflow; |
| struct sock *sk = (struct sock *)msk; |
| u32 pace, burst, wmem; |
| int i, nr_active = 0; |
| struct sock *ssk; |
| u64 linger_time; |
| long tout = 0; |
| |
| /* pick the subflow with the lower wmem/wspace ratio */ |
| for (i = 0; i < SSK_MODE_MAX; ++i) { |
| send_info[i].ssk = NULL; |
| send_info[i].linger_time = -1; |
| } |
| |
| mptcp_for_each_subflow(msk, subflow) { |
| bool backup = subflow->backup || subflow->request_bkup; |
| |
| trace_mptcp_subflow_get_send(subflow); |
| ssk = mptcp_subflow_tcp_sock(subflow); |
| if (!mptcp_subflow_active(subflow)) |
| continue; |
| |
| tout = max(tout, mptcp_timeout_from_subflow(subflow)); |
| nr_active += !backup; |
| pace = subflow->avg_pacing_rate; |
| if (unlikely(!pace)) { |
| /* init pacing rate from socket */ |
| subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); |
| pace = subflow->avg_pacing_rate; |
| if (!pace) |
| continue; |
| } |
| |
| linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); |
| if (linger_time < send_info[backup].linger_time) { |
| send_info[backup].ssk = ssk; |
| send_info[backup].linger_time = linger_time; |
| } |
| } |
| __mptcp_set_timeout(sk, tout); |
| |
| /* pick the best backup if no other subflow is active */ |
| if (!nr_active) |
| send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; |
| |
| /* According to the blest algorithm, to avoid HoL blocking for the |
| * faster flow, we need to: |
| * - estimate the faster flow linger time |
| * - use the above to estimate the amount of byte transferred |
| * by the faster flow |
| * - check that the amount of queued data is greter than the above, |
| * otherwise do not use the picked, slower, subflow |
| * We select the subflow with the shorter estimated time to flush |
| * the queued mem, which basically ensure the above. We just need |
| * to check that subflow has a non empty cwin. |
| */ |
| ssk = send_info[SSK_MODE_ACTIVE].ssk; |
| if (!ssk || !sk_stream_memory_free(ssk)) |
| return NULL; |
| |
| burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); |
| wmem = READ_ONCE(ssk->sk_wmem_queued); |
| if (!burst) |
| return ssk; |
| |
| subflow = mptcp_subflow_ctx(ssk); |
| subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + |
| READ_ONCE(ssk->sk_pacing_rate) * burst, |
| burst + wmem); |
| msk->snd_burst = burst; |
| return ssk; |
| } |
| |
| static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) |
| { |
| tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); |
| release_sock(ssk); |
| } |
| |
| static void mptcp_update_post_push(struct mptcp_sock *msk, |
| struct mptcp_data_frag *dfrag, |
| u32 sent) |
| { |
| u64 snd_nxt_new = dfrag->data_seq; |
| |
| dfrag->already_sent += sent; |
| |
| msk->snd_burst -= sent; |
| |
| snd_nxt_new += dfrag->already_sent; |
| |
| /* snd_nxt_new can be smaller than snd_nxt in case mptcp |
| * is recovering after a failover. In that event, this re-sends |
| * old segments. |
| * |
| * Thus compute snd_nxt_new candidate based on |
| * the dfrag->data_seq that was sent and the data |
| * that has been handed to the subflow for transmission |
| * and skip update in case it was old dfrag. |
| */ |
| if (likely(after64(snd_nxt_new, msk->snd_nxt))) { |
| msk->bytes_sent += snd_nxt_new - msk->snd_nxt; |
| WRITE_ONCE(msk->snd_nxt, snd_nxt_new); |
| } |
| } |
| |
| void mptcp_check_and_set_pending(struct sock *sk) |
| { |
| if (mptcp_send_head(sk)) { |
| mptcp_data_lock(sk); |
| mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); |
| mptcp_data_unlock(sk); |
| } |
| } |
| |
| static int __subflow_push_pending(struct sock *sk, struct sock *ssk, |
| struct mptcp_sendmsg_info *info) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| struct mptcp_data_frag *dfrag; |
| int len, copied = 0, err = 0; |
| |
| while ((dfrag = mptcp_send_head(sk))) { |
| info->sent = dfrag->already_sent; |
| info->limit = dfrag->data_len; |
| len = dfrag->data_len - dfrag->already_sent; |
| while (len > 0) { |
| int ret = 0; |
| |
| ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); |
| if (ret <= 0) { |
| err = copied ? : ret; |
| goto out; |
| } |
| |
| info->sent += ret; |
| copied += ret; |
| len -= ret; |
| |
| mptcp_update_post_push(msk, dfrag, ret); |
| } |
| WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); |
| |
| if (msk->snd_burst <= 0 || |
| !sk_stream_memory_free(ssk) || |
| !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { |
| err = copied; |
| goto out; |
| } |
| mptcp_set_timeout(sk); |
| } |
| err = copied; |
| |
| out: |
| if (err > 0) |
| msk->last_data_sent = tcp_jiffies32; |
| return err; |
| } |
| |
| void __mptcp_push_pending(struct sock *sk, unsigned int flags) |
| { |
| struct sock *prev_ssk = NULL, *ssk = NULL; |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| struct mptcp_sendmsg_info info = { |
| .flags = flags, |
| }; |
| bool do_check_data_fin = false; |
| int push_count = 1; |
| |
| while (mptcp_send_head(sk) && (push_count > 0)) { |
| struct mptcp_subflow_context *subflow; |
| int ret = 0; |
| |
| if (mptcp_sched_get_send(msk)) |
| break; |
| |
| push_count = 0; |
| |
| mptcp_for_each_subflow(msk, subflow) { |
| if (READ_ONCE(subflow->scheduled)) { |
| mptcp_subflow_set_scheduled(subflow, false); |
| |
| prev_ssk = ssk; |
| ssk = mptcp_subflow_tcp_sock(subflow); |
| if (ssk != prev_ssk) { |
| /* First check. If the ssk has changed since |
| * the last round, release prev_ssk |
| */ |
| if (prev_ssk) |
| mptcp_push_release(prev_ssk, &info); |
| |
| /* Need to lock the new subflow only if different |
| * from the previous one, otherwise we are still |
| * helding the relevant lock |
| */ |
| lock_sock(ssk); |
| } |
| |
| push_count++; |
| |
| ret = __subflow_push_pending(sk, ssk, &info); |
| if (ret <= 0) { |
| if (ret != -EAGAIN || |
| (1 << ssk->sk_state) & |
| (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) |
| push_count--; |
| continue; |
| } |
| do_check_data_fin = true; |
| } |
| } |
| } |
| |
| /* at this point we held the socket lock for the last subflow we used */ |
| if (ssk) |
| mptcp_push_release(ssk, &info); |
| |
| /* ensure the rtx timer is running */ |
| if (!mptcp_rtx_timer_pending(sk)) |
| mptcp_reset_rtx_timer(sk); |
| if (do_check_data_fin) |
| mptcp_check_send_data_fin(sk); |
| } |
| |
| static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| struct mptcp_sendmsg_info info = { |
| .data_lock_held = true, |
| }; |
| bool keep_pushing = true; |
| struct sock *xmit_ssk; |
| int copied = 0; |
| |
| info.flags = 0; |
| while (mptcp_send_head(sk) && keep_pushing) { |
| struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); |
| int ret = 0; |
| |
| /* check for a different subflow usage only after |
| * spooling the first chunk of data |
| */ |
| if (first) { |
| mptcp_subflow_set_scheduled(subflow, false); |
| ret = __subflow_push_pending(sk, ssk, &info); |
| first = false; |
| if (ret <= 0) |
| break; |
| copied += ret; |
| continue; |
| } |
| |
| if (mptcp_sched_get_send(msk)) |
| goto out; |
| |
| if (READ_ONCE(subflow->scheduled)) { |
| mptcp_subflow_set_scheduled(subflow, false); |
| ret = __subflow_push_pending(sk, ssk, &info); |
| if (ret <= 0) |
| keep_pushing = false; |
| copied += ret; |
| } |
| |
| mptcp_for_each_subflow(msk, subflow) { |
| if (READ_ONCE(subflow->scheduled)) { |
| xmit_ssk = mptcp_subflow_tcp_sock(subflow); |
| if (xmit_ssk != ssk) { |
| mptcp_subflow_delegate(subflow, |
| MPTCP_DELEGATE_SEND); |
| keep_pushing = false; |
| } |
| } |
| } |
| } |
| |
| out: |
| /* __mptcp_alloc_tx_skb could have released some wmem and we are |
| * not going to flush it via release_sock() |
| */ |
| if (copied) { |
| tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, |
| info.size_goal); |
| if (!mptcp_rtx_timer_pending(sk)) |
| mptcp_reset_rtx_timer(sk); |
| |
| if (msk->snd_data_fin_enable && |
| msk->snd_nxt + 1 == msk->write_seq) |
| mptcp_schedule_work(sk); |
| } |
| } |
| |
| static int mptcp_disconnect(struct sock *sk, int flags); |
| |
| static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, |
| size_t len, int *copied_syn) |
| { |
| unsigned int saved_flags = msg->msg_flags; |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| struct sock *ssk; |
| int ret; |
| |
| /* on flags based fastopen the mptcp is supposed to create the |
| * first subflow right now. Otherwise we are in the defer_connect |
| * path, and the first subflow must be already present. |
| * Since the defer_connect flag is cleared after the first succsful |
| * fastopen attempt, no need to check for additional subflow status. |
| */ |
| if (msg->msg_flags & MSG_FASTOPEN) { |
| ssk = __mptcp_nmpc_sk(msk); |
| if (IS_ERR(ssk)) |
| return PTR_ERR(ssk); |
| } |
| if (!msk->first) |
| return -EINVAL; |
| |
| ssk = msk->first; |
| |
| lock_sock(ssk); |
| msg->msg_flags |= MSG_DONTWAIT; |
| msk->fastopening = 1; |
| ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); |
| msk->fastopening = 0; |
| msg->msg_flags = saved_flags; |
| release_sock(ssk); |
| |
| /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ |
| if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { |
| ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, |
| msg->msg_namelen, msg->msg_flags, 1); |
| |
| /* Keep the same behaviour of plain TCP: zero the copied bytes in |
| * case of any error, except timeout or signal |
| */ |
| if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) |
| *copied_syn = 0; |
| } else if (ret && ret != -EINPROGRESS) { |
| /* The disconnect() op called by tcp_sendmsg_fastopen()/ |
| * __inet_stream_connect() can fail, due to looking check, |
| * see mptcp_disconnect(). |
| * Attempt it again outside the problematic scope. |
| */ |
| if (!mptcp_disconnect(sk, 0)) |
| sk->sk_socket->state = SS_UNCONNECTED; |
| } |
| inet_clear_bit(DEFER_CONNECT, sk); |
| |
| return ret; |
| } |
| |
| static int do_copy_data_nocache(struct sock *sk, int copy, |
| struct iov_iter *from, char *to) |
| { |
| if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { |
| if (!copy_from_iter_full_nocache(to, copy, from)) |
| return -EFAULT; |
| } else if (!copy_from_iter_full(to, copy, from)) { |
| return -EFAULT; |
| } |
| return 0; |
| } |
| |
| /* open-code sk_stream_memory_free() plus sent limit computation to |
| * avoid indirect calls in fast-path. |
| * Called under the msk socket lock, so we can avoid a bunch of ONCE |
| * annotations. |
| */ |
| static u32 mptcp_send_limit(const struct sock *sk) |
| { |
| const struct mptcp_sock *msk = mptcp_sk(sk); |
| u32 limit, not_sent; |
| |
| if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) |
| return 0; |
| |
| limit = mptcp_notsent_lowat(sk); |
| if (limit == UINT_MAX) |
| return UINT_MAX; |
| |
| not_sent = msk->write_seq - msk->snd_nxt; |
| if (not_sent >= limit) |
| return 0; |
| |
| return limit - not_sent; |
| } |
| |
| static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| struct page_frag *pfrag; |
| size_t copied = 0; |
| int ret = 0; |
| long timeo; |
| |
| /* silently ignore everything else */ |
| msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; |
| |
| lock_sock(sk); |
| |
| if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || |
| msg->msg_flags & MSG_FASTOPEN)) { |
| int copied_syn = 0; |
| |
| ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); |
| copied += copied_syn; |
| if (ret == -EINPROGRESS && copied_syn > 0) |
| goto out; |
| else if (ret) |
| goto do_error; |
| } |
| |
| timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); |
| |
| if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { |
| ret = sk_stream_wait_connect(sk, &timeo); |
| if (ret) |
| goto do_error; |
| } |
| |
| ret = -EPIPE; |
| if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) |
| goto do_error; |
| |
| pfrag = sk_page_frag(sk); |
| |
| while (msg_data_left(msg)) { |
| int total_ts, frag_truesize = 0; |
| struct mptcp_data_frag *dfrag; |
| bool dfrag_collapsed; |
| size_t psize, offset; |
| u32 copy_limit; |
| |
| /* ensure fitting the notsent_lowat() constraint */ |
| copy_limit = mptcp_send_limit(sk); |
| if (!copy_limit) |
| goto wait_for_memory; |
| |
| /* reuse tail pfrag, if possible, or carve a new one from the |
| * page allocator |
| */ |
| dfrag = mptcp_pending_tail(sk); |
| dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); |
| if (!dfrag_collapsed) { |
| if (!mptcp_page_frag_refill(sk, pfrag)) |
| goto wait_for_memory; |
| |
| dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); |
| frag_truesize = dfrag->overhead; |
| } |
| |
| /* we do not bound vs wspace, to allow a single packet. |
| * memory accounting will prevent execessive memory usage |
| * anyway |
| */ |
| offset = dfrag->offset + dfrag->data_len; |
| psize = pfrag->size - offset; |
| psize = min_t(size_t, psize, msg_data_left(msg)); |
| psize = min_t(size_t, psize, copy_limit); |
| total_ts = psize + frag_truesize; |
| |
| if (!sk_wmem_schedule(sk, total_ts)) |
| goto wait_for_memory; |
| |
| ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, |
| page_address(dfrag->page) + offset); |
| if (ret) |
| goto do_error; |
| |
| /* data successfully copied into the write queue */ |
| sk_forward_alloc_add(sk, -total_ts); |
| copied += psize; |
| dfrag->data_len += psize; |
| frag_truesize += psize; |
| pfrag->offset += frag_truesize; |
| WRITE_ONCE(msk->write_seq, msk->write_seq + psize); |
| |
| /* charge data on mptcp pending queue to the msk socket |
| * Note: we charge such data both to sk and ssk |
| */ |
| sk_wmem_queued_add(sk, frag_truesize); |
| if (!dfrag_collapsed) { |
| get_page(dfrag->page); |
| list_add_tail(&dfrag->list, &msk->rtx_queue); |
| if (!msk->first_pending) |
| WRITE_ONCE(msk->first_pending, dfrag); |
| } |
| pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, |
| dfrag->data_seq, dfrag->data_len, dfrag->already_sent, |
| !dfrag_collapsed); |
| |
| continue; |
| |
| wait_for_memory: |
| set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| __mptcp_push_pending(sk, msg->msg_flags); |
| ret = sk_stream_wait_memory(sk, &timeo); |
| if (ret) |
| goto do_error; |
| } |
| |
| if (copied) |
| __mptcp_push_pending(sk, msg->msg_flags); |
| |
| out: |
| release_sock(sk); |
| return copied; |
| |
| do_error: |
| if (copied) |
| goto out; |
| |
| copied = sk_stream_error(sk, msg->msg_flags, ret); |
| goto out; |
| } |
| |
| static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, |
| struct msghdr *msg, |
| size_t len, int flags, |
| struct scm_timestamping_internal *tss, |
| int *cmsg_flags) |
| { |
| struct sk_buff *skb, *tmp; |
| int copied = 0; |
| |
| skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { |
| u32 offset = MPTCP_SKB_CB(skb)->offset; |
| u32 data_len = skb->len - offset; |
| u32 count = min_t(size_t, len - copied, data_len); |
| int err; |
| |
| if (!(flags & MSG_TRUNC)) { |
| err = skb_copy_datagram_msg(skb, offset, msg, count); |
| if (unlikely(err < 0)) { |
| if (!copied) |
| return err; |
| break; |
| } |
| } |
| |
| if (MPTCP_SKB_CB(skb)->has_rxtstamp) { |
| tcp_update_recv_tstamps(skb, tss); |
| *cmsg_flags |= MPTCP_CMSG_TS; |
| } |
| |
| copied += count; |
| |
| if (count < data_len) { |
| if (!(flags & MSG_PEEK)) { |
| MPTCP_SKB_CB(skb)->offset += count; |
| MPTCP_SKB_CB(skb)->map_seq += count; |
| msk->bytes_consumed += count; |
| } |
| break; |
| } |
| |
| if (!(flags & MSG_PEEK)) { |
| /* we will bulk release the skb memory later */ |
| skb->destructor = NULL; |
| WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); |
| __skb_unlink(skb, &msk->receive_queue); |
| __kfree_skb(skb); |
| msk->bytes_consumed += count; |
| } |
| |
| if (copied >= len) |
| break; |
| } |
| |
| return copied; |
| } |
| |
| /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. |
| * |
| * Only difference: Use highest rtt estimate of the subflows in use. |
| */ |
| static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) |
| { |
| struct mptcp_subflow_context *subflow; |
| struct sock *sk = (struct sock *)msk; |
| u8 scaling_ratio = U8_MAX; |
| u32 time, advmss = 1; |
| u64 rtt_us, mstamp; |
| |
| msk_owned_by_me(msk); |
| |
| if (copied <= 0) |
| return; |
| |
| if (!msk->rcvspace_init) |
| mptcp_rcv_space_init(msk, msk->first); |
| |
| msk->rcvq_space.copied += copied; |
| |
| mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); |
| time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); |
| |
| rtt_us = msk->rcvq_space.rtt_us; |
| if (rtt_us && time < (rtt_us >> 3)) |
| return; |
| |
| rtt_us = 0; |
| mptcp_for_each_subflow(msk, subflow) { |
| const struct tcp_sock *tp; |
| u64 sf_rtt_us; |
| u32 sf_advmss; |
| |
| tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); |
| |
| sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); |
| sf_advmss = READ_ONCE(tp->advmss); |
| |
| rtt_us = max(sf_rtt_us, rtt_us); |
| advmss = max(sf_advmss, advmss); |
| scaling_ratio = min(tp->scaling_ratio, scaling_ratio); |
| } |
| |
| msk->rcvq_space.rtt_us = rtt_us; |
| msk->scaling_ratio = scaling_ratio; |
| if (time < (rtt_us >> 3) || rtt_us == 0) |
| return; |
| |
| if (msk->rcvq_space.copied <= msk->rcvq_space.space) |
| goto new_measure; |
| |
| if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && |
| !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { |
| u64 rcvwin, grow; |
| int rcvbuf; |
| |
| rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; |
| |
| grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); |
| |
| do_div(grow, msk->rcvq_space.space); |
| rcvwin += (grow << 1); |
| |
| rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin), |
| READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); |
| |
| if (rcvbuf > sk->sk_rcvbuf) { |
| u32 window_clamp; |
| |
| window_clamp = mptcp_win_from_space(sk, rcvbuf); |
| WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); |
| |
| /* Make subflows follow along. If we do not do this, we |
| * get drops at subflow level if skbs can't be moved to |
| * the mptcp rx queue fast enough (announced rcv_win can |
| * exceed ssk->sk_rcvbuf). |
| */ |
| mptcp_for_each_subflow(msk, subflow) { |
| struct sock *ssk; |
| bool slow; |
| |
| ssk = mptcp_subflow_tcp_sock(subflow); |
| slow = lock_sock_fast(ssk); |
| WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); |
| WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); |
| tcp_cleanup_rbuf(ssk, 1); |
| unlock_sock_fast(ssk, slow); |
| } |
| } |
| } |
| |
| msk->rcvq_space.space = msk->rcvq_space.copied; |
| new_measure: |
| msk->rcvq_space.copied = 0; |
| msk->rcvq_space.time = mstamp; |
| } |
| |
| static void __mptcp_update_rmem(struct sock *sk) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| if (!msk->rmem_released) |
| return; |
| |
| atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); |
| mptcp_rmem_uncharge(sk, msk->rmem_released); |
| WRITE_ONCE(msk->rmem_released, 0); |
| } |
| |
| static void __mptcp_splice_receive_queue(struct sock *sk) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); |
| } |
| |
| static bool __mptcp_move_skbs(struct mptcp_sock *msk) |
| { |
| struct sock *sk = (struct sock *)msk; |
| unsigned int moved = 0; |
| bool ret, done; |
| |
| do { |
| struct sock *ssk = mptcp_subflow_recv_lookup(msk); |
| bool slowpath; |
| |
| /* we can have data pending in the subflows only if the msk |
| * receive buffer was full at subflow_data_ready() time, |
| * that is an unlikely slow path. |
| */ |
| if (likely(!ssk)) |
| break; |
| |
| slowpath = lock_sock_fast(ssk); |
| mptcp_data_lock(sk); |
| __mptcp_update_rmem(sk); |
| done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); |
| mptcp_data_unlock(sk); |
| |
| if (unlikely(ssk->sk_err)) |
| __mptcp_error_report(sk); |
| unlock_sock_fast(ssk, slowpath); |
| } while (!done); |
| |
| /* acquire the data lock only if some input data is pending */ |
| ret = moved > 0; |
| if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || |
| !skb_queue_empty_lockless(&sk->sk_receive_queue)) { |
| mptcp_data_lock(sk); |
| __mptcp_update_rmem(sk); |
| ret |= __mptcp_ofo_queue(msk); |
| __mptcp_splice_receive_queue(sk); |
| mptcp_data_unlock(sk); |
| } |
| if (ret) |
| mptcp_check_data_fin((struct sock *)msk); |
| return !skb_queue_empty(&msk->receive_queue); |
| } |
| |
| static unsigned int mptcp_inq_hint(const struct sock *sk) |
| { |
| const struct mptcp_sock *msk = mptcp_sk(sk); |
| const struct sk_buff *skb; |
| |
| skb = skb_peek(&msk->receive_queue); |
| if (skb) { |
| u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; |
| |
| if (hint_val >= INT_MAX) |
| return INT_MAX; |
| |
| return (unsigned int)hint_val; |
| } |
| |
| if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, |
| int flags, int *addr_len) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| struct scm_timestamping_internal tss; |
| int copied = 0, cmsg_flags = 0; |
| int target; |
| long timeo; |
| |
| /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ |
| if (unlikely(flags & MSG_ERRQUEUE)) |
| return inet_recv_error(sk, msg, len, addr_len); |
| |
| lock_sock(sk); |
| if (unlikely(sk->sk_state == TCP_LISTEN)) { |
| copied = -ENOTCONN; |
| goto out_err; |
| } |
| |
| timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); |
| |
| len = min_t(size_t, len, INT_MAX); |
| target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); |
| |
| if (unlikely(msk->recvmsg_inq)) |
| cmsg_flags = MPTCP_CMSG_INQ; |
| |
| while (copied < len) { |
| int bytes_read; |
| |
| bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); |
| if (unlikely(bytes_read < 0)) { |
| if (!copied) |
| copied = bytes_read; |
| goto out_err; |
| } |
| |
| copied += bytes_read; |
| |
| /* be sure to advertise window change */ |
| mptcp_cleanup_rbuf(msk); |
| |
| if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) |
| continue; |
| |
| /* only the MPTCP socket status is relevant here. The exit |
| * conditions mirror closely tcp_recvmsg() |
| */ |
| if (copied >= target) |
| break; |
| |
| if (copied) { |
| if (sk->sk_err || |
| sk->sk_state == TCP_CLOSE || |
| (sk->sk_shutdown & RCV_SHUTDOWN) || |
| !timeo || |
| signal_pending(current)) |
| break; |
| } else { |
| if (sk->sk_err) { |
| copied = sock_error(sk); |
| break; |
| } |
| |
| if (sk->sk_shutdown & RCV_SHUTDOWN) { |
| /* race breaker: the shutdown could be after the |
| * previous receive queue check |
| */ |
| if (__mptcp_move_skbs(msk)) |
| continue; |
| break; |
| } |
| |
| if (sk->sk_state == TCP_CLOSE) { |
| copied = -ENOTCONN; |
| break; |
| } |
| |
| if (!timeo) { |
| copied = -EAGAIN; |
| break; |
| } |
| |
| if (signal_pending(current)) { |
| copied = sock_intr_errno(timeo); |
| break; |
| } |
| } |
| |
| pr_debug("block timeout %ld\n", timeo); |
| sk_wait_data(sk, &timeo, NULL); |
| } |
| |
| out_err: |
| if (cmsg_flags && copied >= 0) { |
| if (cmsg_flags & MPTCP_CMSG_TS) |
| tcp_recv_timestamp(msg, sk, &tss); |
| |
| if (cmsg_flags & MPTCP_CMSG_INQ) { |
| unsigned int inq = mptcp_inq_hint(sk); |
| |
| put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); |
| } |
| } |
| |
| pr_debug("msk=%p rx queue empty=%d:%d copied=%d\n", |
| msk, skb_queue_empty_lockless(&sk->sk_receive_queue), |
| skb_queue_empty(&msk->receive_queue), copied); |
| if (!(flags & MSG_PEEK)) |
| mptcp_rcv_space_adjust(msk, copied); |
| |
| release_sock(sk); |
| return copied; |
| } |
| |
| static void mptcp_retransmit_timer(struct timer_list *t) |
| { |
| struct inet_connection_sock *icsk = from_timer(icsk, t, |
| icsk_retransmit_timer); |
| struct sock *sk = &icsk->icsk_inet.sk; |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| bh_lock_sock(sk); |
| if (!sock_owned_by_user(sk)) { |
| /* we need a process context to retransmit */ |
| if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) |
| mptcp_schedule_work(sk); |
| } else { |
| /* delegate our work to tcp_release_cb() */ |
| __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); |
| } |
| bh_unlock_sock(sk); |
| sock_put(sk); |
| } |
| |
| static void mptcp_tout_timer(struct timer_list *t) |
| { |
| struct sock *sk = from_timer(sk, t, sk_timer); |
| |
| mptcp_schedule_work(sk); |
| sock_put(sk); |
| } |
| |
| /* Find an idle subflow. Return NULL if there is unacked data at tcp |
| * level. |
| * |
| * A backup subflow is returned only if that is the only kind available. |
| */ |
| struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) |
| { |
| struct sock *backup = NULL, *pick = NULL; |
| struct mptcp_subflow_context *subflow; |
| int min_stale_count = INT_MAX; |
| |
| mptcp_for_each_subflow(msk, subflow) { |
| struct sock *ssk = mptcp_subflow_tcp_sock(subflow); |
| |
| if (!__mptcp_subflow_active(subflow)) |
| continue; |
| |
| /* still data outstanding at TCP level? skip this */ |
| if (!tcp_rtx_and_write_queues_empty(ssk)) { |
| mptcp_pm_subflow_chk_stale(msk, ssk); |
| min_stale_count = min_t(int, min_stale_count, subflow->stale_count); |
| continue; |
| } |
| |
| if (subflow->backup || subflow->request_bkup) { |
| if (!backup) |
| backup = ssk; |
| continue; |
| } |
| |
| if (!pick) |
| pick = ssk; |
| } |
| |
| if (pick) |
| return pick; |
| |
| /* use backup only if there are no progresses anywhere */ |
| return min_stale_count > 1 ? backup : NULL; |
| } |
| |
| bool __mptcp_retransmit_pending_data(struct sock *sk) |
| { |
| struct mptcp_data_frag *cur, *rtx_head; |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| if (__mptcp_check_fallback(msk)) |
| return false; |
| |
| /* the closing socket has some data untransmitted and/or unacked: |
| * some data in the mptcp rtx queue has not really xmitted yet. |
| * keep it simple and re-inject the whole mptcp level rtx queue |
| */ |
| mptcp_data_lock(sk); |
| __mptcp_clean_una_wakeup(sk); |
| rtx_head = mptcp_rtx_head(sk); |
| if (!rtx_head) { |
| mptcp_data_unlock(sk); |
| return false; |
| } |
| |
| msk->recovery_snd_nxt = msk->snd_nxt; |
| msk->recovery = true; |
| mptcp_data_unlock(sk); |
| |
| msk->first_pending = rtx_head; |
| msk->snd_burst = 0; |
| |
| /* be sure to clear the "sent status" on all re-injected fragments */ |
| list_for_each_entry(cur, &msk->rtx_queue, list) { |
| if (!cur->already_sent) |
| break; |
| cur->already_sent = 0; |
| } |
| |
| return true; |
| } |
| |
| /* flags for __mptcp_close_ssk() */ |
| #define MPTCP_CF_PUSH BIT(1) |
| #define MPTCP_CF_FASTCLOSE BIT(2) |
| |
| /* be sure to send a reset only if the caller asked for it, also |
| * clean completely the subflow status when the subflow reaches |
| * TCP_CLOSE state |
| */ |
| static void __mptcp_subflow_disconnect(struct sock *ssk, |
| struct mptcp_subflow_context *subflow, |
| unsigned int flags) |
| { |
| if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || |
| (flags & MPTCP_CF_FASTCLOSE)) { |
| /* The MPTCP code never wait on the subflow sockets, TCP-level |
| * disconnect should never fail |
| */ |
| WARN_ON_ONCE(tcp_disconnect(ssk, 0)); |
| mptcp_subflow_ctx_reset(subflow); |
| } else { |
| tcp_shutdown(ssk, SEND_SHUTDOWN); |
| } |
| } |
| |
| /* subflow sockets can be either outgoing (connect) or incoming |
| * (accept). |
| * |
| * Outgoing subflows use in-kernel sockets. |
| * Incoming subflows do not have their own 'struct socket' allocated, |
| * so we need to use tcp_close() after detaching them from the mptcp |
| * parent socket. |
| */ |
| static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, |
| struct mptcp_subflow_context *subflow, |
| unsigned int flags) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| bool dispose_it, need_push = false; |
| |
| /* If the first subflow moved to a close state before accept, e.g. due |
| * to an incoming reset or listener shutdown, the subflow socket is |
| * already deleted by inet_child_forget() and the mptcp socket can't |
| * survive too. |
| */ |
| if (msk->in_accept_queue && msk->first == ssk && |
| (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { |
| /* ensure later check in mptcp_worker() will dispose the msk */ |
| sock_set_flag(sk, SOCK_DEAD); |
| mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); |
| lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); |
| mptcp_subflow_drop_ctx(ssk); |
| goto out_release; |
| } |
| |
| dispose_it = msk->free_first || ssk != msk->first; |
| if (dispose_it) |
| list_del(&subflow->node); |
| |
| lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); |
| |
| if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { |
| /* be sure to force the tcp_close path |
| * to generate the egress reset |
| */ |
| ssk->sk_lingertime = 0; |
| sock_set_flag(ssk, SOCK_LINGER); |
| subflow->send_fastclose = 1; |
| } |
| |
| need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); |
| if (!dispose_it) { |
| __mptcp_subflow_disconnect(ssk, subflow, flags); |
| release_sock(ssk); |
| |
| goto out; |
| } |
| |
| subflow->disposable = 1; |
| |
| /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops |
| * the ssk has been already destroyed, we just need to release the |
| * reference owned by msk; |
| */ |
| if (!inet_csk(ssk)->icsk_ulp_ops) { |
| WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); |
| kfree_rcu(subflow, rcu); |
| } else { |
| /* otherwise tcp will dispose of the ssk and subflow ctx */ |
| __tcp_close(ssk, 0); |
| |
| /* close acquired an extra ref */ |
| __sock_put(ssk); |
| } |
| |
| out_release: |
| __mptcp_subflow_error_report(sk, ssk); |
| release_sock(ssk); |
| |
| sock_put(ssk); |
| |
| if (ssk == msk->first) |
| WRITE_ONCE(msk->first, NULL); |
| |
| out: |
| __mptcp_sync_sndbuf(sk); |
| if (need_push) |
| __mptcp_push_pending(sk, 0); |
| |
| /* Catch every 'all subflows closed' scenario, including peers silently |
| * closing them, e.g. due to timeout. |
| * For established sockets, allow an additional timeout before closing, |
| * as the protocol can still create more subflows. |
| */ |
| if (list_is_singular(&msk->conn_list) && msk->first && |
| inet_sk_state_load(msk->first) == TCP_CLOSE) { |
| if (sk->sk_state != TCP_ESTABLISHED || |
| msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { |
| mptcp_set_state(sk, TCP_CLOSE); |
| mptcp_close_wake_up(sk); |
| } else { |
| mptcp_start_tout_timer(sk); |
| } |
| } |
| } |
| |
| void mptcp_close_ssk(struct sock *sk, struct sock *ssk, |
| struct mptcp_subflow_context *subflow) |
| { |
| /* The first subflow can already be closed and still in the list */ |
| if (subflow->close_event_done) |
| return; |
| |
| subflow->close_event_done = true; |
| |
| if (sk->sk_state == TCP_ESTABLISHED) |
| mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); |
| |
| /* subflow aborted before reaching the fully_established status |
| * attempt the creation of the next subflow |
| */ |
| mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); |
| |
| __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); |
| } |
| |
| static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) |
| { |
| return 0; |
| } |
| |
| static void __mptcp_close_subflow(struct sock *sk) |
| { |
| struct mptcp_subflow_context *subflow, *tmp; |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| might_sleep(); |
| |
| mptcp_for_each_subflow_safe(msk, subflow, tmp) { |
| struct sock *ssk = mptcp_subflow_tcp_sock(subflow); |
| int ssk_state = inet_sk_state_load(ssk); |
| |
| if (ssk_state != TCP_CLOSE && |
| (ssk_state != TCP_CLOSE_WAIT || |
| inet_sk_state_load(sk) != TCP_ESTABLISHED)) |
| continue; |
| |
| /* 'subflow_data_ready' will re-sched once rx queue is empty */ |
| if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) |
| continue; |
| |
| mptcp_close_ssk(sk, ssk, subflow); |
| } |
| |
| } |
| |
| static bool mptcp_close_tout_expired(const struct sock *sk) |
| { |
| if (!inet_csk(sk)->icsk_mtup.probe_timestamp || |
| sk->sk_state == TCP_CLOSE) |
| return false; |
| |
| return time_after32(tcp_jiffies32, |
| inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); |
| } |
| |
| static void mptcp_check_fastclose(struct mptcp_sock *msk) |
| { |
| struct mptcp_subflow_context *subflow, *tmp; |
| struct sock *sk = (struct sock *)msk; |
| |
| if (likely(!READ_ONCE(msk->rcv_fastclose))) |
| return; |
| |
| mptcp_token_destroy(msk); |
| |
| mptcp_for_each_subflow_safe(msk, subflow, tmp) { |
| struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); |
| bool slow; |
| |
| slow = lock_sock_fast(tcp_sk); |
| if (tcp_sk->sk_state != TCP_CLOSE) { |
| mptcp_send_active_reset_reason(tcp_sk); |
| tcp_set_state(tcp_sk, TCP_CLOSE); |
| } |
| unlock_sock_fast(tcp_sk, slow); |
| } |
| |
| /* Mirror the tcp_reset() error propagation */ |
| switch (sk->sk_state) { |
| case TCP_SYN_SENT: |
| WRITE_ONCE(sk->sk_err, ECONNREFUSED); |
| break; |
| case TCP_CLOSE_WAIT: |
| WRITE_ONCE(sk->sk_err, EPIPE); |
| break; |
| case TCP_CLOSE: |
| return; |
| default: |
| WRITE_ONCE(sk->sk_err, ECONNRESET); |
| } |
| |
| mptcp_set_state(sk, TCP_CLOSE); |
| WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); |
| smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ |
| set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); |
| |
| /* the calling mptcp_worker will properly destroy the socket */ |
| if (sock_flag(sk, SOCK_DEAD)) |
| return; |
| |
| sk->sk_state_change(sk); |
| sk_error_report(sk); |
| } |
| |
| static void __mptcp_retrans(struct sock *sk) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| struct mptcp_subflow_context *subflow; |
| struct mptcp_sendmsg_info info = {}; |
| struct mptcp_data_frag *dfrag; |
| struct sock *ssk; |
| int ret, err; |
| u16 len = 0; |
| |
| mptcp_clean_una_wakeup(sk); |
| |
| /* first check ssk: need to kick "stale" logic */ |
| err = mptcp_sched_get_retrans(msk); |
| dfrag = mptcp_rtx_head(sk); |
| if (!dfrag) { |
| if (mptcp_data_fin_enabled(msk)) { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| icsk->icsk_retransmits++; |
| mptcp_set_datafin_timeout(sk); |
| mptcp_send_ack(msk); |
| |
| goto reset_timer; |
| } |
| |
| if (!mptcp_send_head(sk)) |
| return; |
| |
| goto reset_timer; |
| } |
| |
| if (err) |
| goto reset_timer; |
| |
| mptcp_for_each_subflow(msk, subflow) { |
| if (READ_ONCE(subflow->scheduled)) { |
| u16 copied = 0; |
| |
| mptcp_subflow_set_scheduled(subflow, false); |
| |
| ssk = mptcp_subflow_tcp_sock(subflow); |
| |
| lock_sock(ssk); |
| |
| /* limit retransmission to the bytes already sent on some subflows */ |
| info.sent = 0; |
| info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : |
| dfrag->already_sent; |
| while (info.sent < info.limit) { |
| ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); |
| if (ret <= 0) |
| break; |
| |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); |
| copied += ret; |
| info.sent += ret; |
| } |
| if (copied) { |
| len = max(copied, len); |
| tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, |
| info.size_goal); |
| WRITE_ONCE(msk->allow_infinite_fallback, false); |
| } |
| |
| release_sock(ssk); |
| } |
| } |
| |
| msk->bytes_retrans += len; |
| dfrag->already_sent = max(dfrag->already_sent, len); |
| |
| reset_timer: |
| mptcp_check_and_set_pending(sk); |
| |
| if (!mptcp_rtx_timer_pending(sk)) |
| mptcp_reset_rtx_timer(sk); |
| } |
| |
| /* schedule the timeout timer for the relevant event: either close timeout |
| * or mp_fail timeout. The close timeout takes precedence on the mp_fail one |
| */ |
| void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) |
| { |
| struct sock *sk = (struct sock *)msk; |
| unsigned long timeout, close_timeout; |
| |
| if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) |
| return; |
| |
| close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + |
| mptcp_close_timeout(sk); |
| |
| /* the close timeout takes precedence on the fail one, and here at least one of |
| * them is active |
| */ |
| timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; |
| |
| sk_reset_timer(sk, &sk->sk_timer, timeout); |
| } |
| |
| static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) |
| { |
| struct sock *ssk = msk->first; |
| bool slow; |
| |
| if (!ssk) |
| return; |
| |
| pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); |
| |
| slow = lock_sock_fast(ssk); |
| mptcp_subflow_reset(ssk); |
| WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); |
| unlock_sock_fast(ssk, slow); |
| } |
| |
| static void mptcp_do_fastclose(struct sock *sk) |
| { |
| struct mptcp_subflow_context *subflow, *tmp; |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| mptcp_set_state(sk, TCP_CLOSE); |
| mptcp_for_each_subflow_safe(msk, subflow, tmp) |
| __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), |
| subflow, MPTCP_CF_FASTCLOSE); |
| } |
| |
| static void mptcp_worker(struct work_struct *work) |
| { |
| struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); |
| struct sock *sk = (struct sock *)msk; |
| unsigned long fail_tout; |
| int state; |
| |
| lock_sock(sk); |
| state = sk->sk_state; |
| if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) |
| goto unlock; |
| |
| mptcp_check_fastclose(msk); |
| |
| mptcp_pm_nl_work(msk); |
| |
| mptcp_check_send_data_fin(sk); |
| mptcp_check_data_fin_ack(sk); |
| mptcp_check_data_fin(sk); |
| |
| if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) |
| __mptcp_close_subflow(sk); |
| |
| if (mptcp_close_tout_expired(sk)) { |
| mptcp_do_fastclose(sk); |
| mptcp_close_wake_up(sk); |
| } |
| |
| if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { |
| __mptcp_destroy_sock(sk); |
| goto unlock; |
| } |
| |
| if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) |
| __mptcp_retrans(sk); |
| |
| fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; |
| if (fail_tout && time_after(jiffies, fail_tout)) |
| mptcp_mp_fail_no_response(msk); |
| |
| unlock: |
| release_sock(sk); |
| sock_put(sk); |
| } |
| |
| static void __mptcp_init_sock(struct sock *sk) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| INIT_LIST_HEAD(&msk->conn_list); |
| INIT_LIST_HEAD(&msk->join_list); |
| INIT_LIST_HEAD(&msk->rtx_queue); |
| INIT_WORK(&msk->work, mptcp_worker); |
| __skb_queue_head_init(&msk->receive_queue); |
| msk->out_of_order_queue = RB_ROOT; |
| msk->first_pending = NULL; |
| WRITE_ONCE(msk->rmem_fwd_alloc, 0); |
| WRITE_ONCE(msk->rmem_released, 0); |
| msk->timer_ival = TCP_RTO_MIN; |
| msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; |
| |
| WRITE_ONCE(msk->first, NULL); |
| inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; |
| WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); |
| WRITE_ONCE(msk->allow_infinite_fallback, true); |
| msk->recovery = false; |
| msk->subflow_id = 1; |
| msk->last_data_sent = tcp_jiffies32; |
| msk->last_data_recv = tcp_jiffies32; |
| msk->last_ack_recv = tcp_jiffies32; |
| |
| mptcp_pm_data_init(msk); |
| |
| /* re-use the csk retrans timer for MPTCP-level retrans */ |
| timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); |
| timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); |
| } |
| |
| static void mptcp_ca_reset(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| tcp_assign_congestion_control(sk); |
| strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, |
| sizeof(mptcp_sk(sk)->ca_name)); |
| |
| /* no need to keep a reference to the ops, the name will suffice */ |
| tcp_cleanup_congestion_control(sk); |
| icsk->icsk_ca_ops = NULL; |
| } |
| |
| static int mptcp_init_sock(struct sock *sk) |
| { |
| struct net *net = sock_net(sk); |
| int ret; |
| |
| __mptcp_init_sock(sk); |
| |
| if (!mptcp_is_enabled(net)) |
| return -ENOPROTOOPT; |
| |
| if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) |
| return -ENOMEM; |
| |
| ret = mptcp_init_sched(mptcp_sk(sk), |
| mptcp_sched_find(mptcp_get_scheduler(net))); |
| if (ret) |
| return ret; |
| |
| set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); |
| |
| /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will |
| * propagate the correct value |
| */ |
| mptcp_ca_reset(sk); |
| |
| sk_sockets_allocated_inc(sk); |
| sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); |
| sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); |
| |
| return 0; |
| } |
| |
| static void __mptcp_clear_xmit(struct sock *sk) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| struct mptcp_data_frag *dtmp, *dfrag; |
| |
| WRITE_ONCE(msk->first_pending, NULL); |
| list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) |
| dfrag_clear(sk, dfrag); |
| } |
| |
| void mptcp_cancel_work(struct sock *sk) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| if (cancel_work_sync(&msk->work)) |
| __sock_put(sk); |
| } |
| |
| void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) |
| { |
| lock_sock(ssk); |
| |
| switch (ssk->sk_state) { |
| case TCP_LISTEN: |
| if (!(how & RCV_SHUTDOWN)) |
| break; |
| fallthrough; |
| case TCP_SYN_SENT: |
| WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); |
| break; |
| default: |
| if (__mptcp_check_fallback(mptcp_sk(sk))) { |
| pr_debug("Fallback\n"); |
| ssk->sk_shutdown |= how; |
| tcp_shutdown(ssk, how); |
| |
| /* simulate the data_fin ack reception to let the state |
| * machine move forward |
| */ |
| WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); |
| mptcp_schedule_work(sk); |
| } else { |
| pr_debug("Sending DATA_FIN on subflow %p\n", ssk); |
| tcp_send_ack(ssk); |
| if (!mptcp_rtx_timer_pending(sk)) |
| mptcp_reset_rtx_timer(sk); |
| } |
| break; |
| } |
| |
| release_sock(ssk); |
| } |
| |
| void mptcp_set_state(struct sock *sk, int state) |
| { |
| int oldstate = sk->sk_state; |
| |
| switch (state) { |
| case TCP_ESTABLISHED: |
| if (oldstate != TCP_ESTABLISHED) |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); |
| break; |
| case TCP_CLOSE_WAIT: |
| /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: |
| * MPTCP "accepted" sockets will be created later on. So no |
| * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. |
| */ |
| break; |
| default: |
| if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) |
| MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); |
| } |
| |
| inet_sk_state_store(sk, state); |
| } |
| |
| static const unsigned char new_state[16] = { |
| /* current state: new state: action: */ |
| [0 /* (Invalid) */] = TCP_CLOSE, |
| [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, |
| [TCP_SYN_SENT] = TCP_CLOSE, |
| [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, |
| [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, |
| [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, |
| [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ |
| [TCP_CLOSE] = TCP_CLOSE, |
| [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, |
| [TCP_LAST_ACK] = TCP_LAST_ACK, |
| [TCP_LISTEN] = TCP_CLOSE, |
| [TCP_CLOSING] = TCP_CLOSING, |
| [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ |
| }; |
| |
| static int mptcp_close_state(struct sock *sk) |
| { |
| int next = (int)new_state[sk->sk_state]; |
| int ns = next & TCP_STATE_MASK; |
| |
| mptcp_set_state(sk, ns); |
| |
| return next & TCP_ACTION_FIN; |
| } |
| |
| static void mptcp_check_send_data_fin(struct sock *sk) |
| { |
| struct mptcp_subflow_context *subflow; |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", |
| msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), |
| msk->snd_nxt, msk->write_seq); |
| |
| /* we still need to enqueue subflows or not really shutting down, |
| * skip this |
| */ |
| if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || |
| mptcp_send_head(sk)) |
| return; |
| |
| WRITE_ONCE(msk->snd_nxt, msk->write_seq); |
| |
| mptcp_for_each_subflow(msk, subflow) { |
| struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); |
| |
| mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); |
| } |
| } |
| |
| static void __mptcp_wr_shutdown(struct sock *sk) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", |
| msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, |
| !!mptcp_send_head(sk)); |
| |
| /* will be ignored by fallback sockets */ |
| WRITE_ONCE(msk->write_seq, msk->write_seq + 1); |
| WRITE_ONCE(msk->snd_data_fin_enable, 1); |
| |
| mptcp_check_send_data_fin(sk); |
| } |
| |
| static void __mptcp_destroy_sock(struct sock *sk) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| pr_debug("msk=%p\n", msk); |
| |
| might_sleep(); |
| |
| mptcp_stop_rtx_timer(sk); |
| sk_stop_timer(sk, &sk->sk_timer); |
| msk->pm.status = 0; |
| mptcp_release_sched(msk); |
| |
| sk->sk_prot->destroy(sk); |
| |
| WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc)); |
| WARN_ON_ONCE(msk->rmem_released); |
| sk_stream_kill_queues(sk); |
| xfrm_sk_free_policy(sk); |
| |
| sock_put(sk); |
| } |
| |
| void __mptcp_unaccepted_force_close(struct sock *sk) |
| { |
| sock_set_flag(sk, SOCK_DEAD); |
| mptcp_do_fastclose(sk); |
| __mptcp_destroy_sock(sk); |
| } |
| |
| static __poll_t mptcp_check_readable(struct sock *sk) |
| { |
| return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; |
| } |
| |
| static void mptcp_check_listen_stop(struct sock *sk) |
| { |
| struct sock *ssk; |
| |
| if (inet_sk_state_load(sk) != TCP_LISTEN) |
| return; |
| |
| sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); |
| ssk = mptcp_sk(sk)->first; |
| if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) |
| return; |
| |
| lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); |
| tcp_set_state(ssk, TCP_CLOSE); |
| mptcp_subflow_queue_clean(sk, ssk); |
| inet_csk_listen_stop(ssk); |
| mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); |
| release_sock(ssk); |
| } |
| |
| bool __mptcp_close(struct sock *sk, long timeout) |
| { |
| struct mptcp_subflow_context *subflow; |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| bool do_cancel_work = false; |
| int subflows_alive = 0; |
| |
| WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); |
| |
| if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { |
| mptcp_check_listen_stop(sk); |
| mptcp_set_state(sk, TCP_CLOSE); |
| goto cleanup; |
| } |
| |
| if (mptcp_data_avail(msk) || timeout < 0) { |
| /* If the msk has read data, or the caller explicitly ask it, |
| * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose |
| */ |
| mptcp_do_fastclose(sk); |
| timeout = 0; |
| } else if (mptcp_close_state(sk)) { |
| __mptcp_wr_shutdown(sk); |
| } |
| |
| sk_stream_wait_close(sk, timeout); |
| |
| cleanup: |
| /* orphan all the subflows */ |
| mptcp_for_each_subflow(msk, subflow) { |
| struct sock *ssk = mptcp_subflow_tcp_sock(subflow); |
| bool slow = lock_sock_fast_nested(ssk); |
| |
| subflows_alive += ssk->sk_state != TCP_CLOSE; |
| |
| /* since the close timeout takes precedence on the fail one, |
| * cancel the latter |
| */ |
| if (ssk == msk->first) |
| subflow->fail_tout = 0; |
| |
| /* detach from the parent socket, but allow data_ready to |
| * push incoming data into the mptcp stack, to properly ack it |
| */ |
| ssk->sk_socket = NULL; |
| ssk->sk_wq = NULL; |
| unlock_sock_fast(ssk, slow); |
| } |
| sock_orphan(sk); |
| |
| /* all the subflows are closed, only timeout can change the msk |
| * state, let's not keep resources busy for no reasons |
| */ |
| if (subflows_alive == 0) |
| mptcp_set_state(sk, TCP_CLOSE); |
| |
| sock_hold(sk); |
| pr_debug("msk=%p state=%d\n", sk, sk->sk_state); |
| if (msk->token) |
| mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); |
| |
| if (sk->sk_state == TCP_CLOSE) { |
| __mptcp_destroy_sock(sk); |
| do_cancel_work = true; |
| } else { |
| mptcp_start_tout_timer(sk); |
| } |
| |
| return do_cancel_work; |
| } |
| |
| static void mptcp_close(struct sock *sk, long timeout) |
| { |
| bool do_cancel_work; |
| |
| lock_sock(sk); |
| |
| do_cancel_work = __mptcp_close(sk, timeout); |
| release_sock(sk); |
| if (do_cancel_work) |
| mptcp_cancel_work(sk); |
| |
| sock_put(sk); |
| } |
| |
| static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) |
| { |
| #if IS_ENABLED(CONFIG_MPTCP_IPV6) |
| const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); |
| struct ipv6_pinfo *msk6 = inet6_sk(msk); |
| |
| msk->sk_v6_daddr = ssk->sk_v6_daddr; |
| msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; |
| |
| if (msk6 && ssk6) { |
| msk6->saddr = ssk6->saddr; |
| msk6->flow_label = ssk6->flow_label; |
| } |
| #endif |
| |
| inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; |
| inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; |
| inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; |
| inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; |
| inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; |
| inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; |
| } |
| |
| static int mptcp_disconnect(struct sock *sk, int flags) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| /* We are on the fastopen error path. We can't call straight into the |
| * subflows cleanup code due to lock nesting (we are already under |
| * msk->firstsocket lock). |
| */ |
| if (msk->fastopening) |
| return -EBUSY; |
| |
| mptcp_check_listen_stop(sk); |
| mptcp_set_state(sk, TCP_CLOSE); |
| |
| mptcp_stop_rtx_timer(sk); |
| mptcp_stop_tout_timer(sk); |
| |
| if (msk->token) |
| mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); |
| |
| /* msk->subflow is still intact, the following will not free the first |
| * subflow |
| */ |
| mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); |
| WRITE_ONCE(msk->flags, 0); |
| msk->cb_flags = 0; |
| msk->recovery = false; |
| WRITE_ONCE(msk->can_ack, false); |
| WRITE_ONCE(msk->fully_established, false); |
| WRITE_ONCE(msk->rcv_data_fin, false); |
| WRITE_ONCE(msk->snd_data_fin_enable, false); |
| WRITE_ONCE(msk->rcv_fastclose, false); |
| WRITE_ONCE(msk->use_64bit_ack, false); |
| WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); |
| mptcp_pm_data_reset(msk); |
| mptcp_ca_reset(sk); |
| msk->bytes_consumed = 0; |
| msk->bytes_acked = 0; |
| msk->bytes_received = 0; |
| msk->bytes_sent = 0; |
| msk->bytes_retrans = 0; |
| msk->rcvspace_init = 0; |
| |
| WRITE_ONCE(sk->sk_shutdown, 0); |
| sk_error_report(sk); |
| return 0; |
| } |
| |
| #if IS_ENABLED(CONFIG_MPTCP_IPV6) |
| static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) |
| { |
| unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); |
| |
| return (struct ipv6_pinfo *)(((u8 *)sk) + offset); |
| } |
| |
| static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) |
| { |
| const struct ipv6_pinfo *np = inet6_sk(sk); |
| struct ipv6_txoptions *opt; |
| struct ipv6_pinfo *newnp; |
| |
| newnp = inet6_sk(newsk); |
| |
| rcu_read_lock(); |
| opt = rcu_dereference(np->opt); |
| if (opt) { |
| opt = ipv6_dup_options(newsk, opt); |
| if (!opt) |
| net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); |
| } |
| RCU_INIT_POINTER(newnp->opt, opt); |
| rcu_read_unlock(); |
| } |
| #endif |
| |
| static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) |
| { |
| struct ip_options_rcu *inet_opt, *newopt = NULL; |
| const struct inet_sock *inet = inet_sk(sk); |
| struct inet_sock *newinet; |
| |
| newinet = inet_sk(newsk); |
| |
| rcu_read_lock(); |
| inet_opt = rcu_dereference(inet->inet_opt); |
| if (inet_opt) { |
| newopt = sock_kmalloc(newsk, sizeof(*inet_opt) + |
| inet_opt->opt.optlen, GFP_ATOMIC); |
| if (newopt) |
| memcpy(newopt, inet_opt, sizeof(*inet_opt) + |
| inet_opt->opt.optlen); |
| else |
| net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); |
| } |
| RCU_INIT_POINTER(newinet->inet_opt, newopt); |
| rcu_read_unlock(); |
| } |
| |
| struct sock *mptcp_sk_clone_init(const struct sock *sk, |
| const struct mptcp_options_received *mp_opt, |
| struct sock *ssk, |
| struct request_sock *req) |
| { |
| struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); |
| struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); |
| struct mptcp_subflow_context *subflow; |
| struct mptcp_sock *msk; |
| |
| if (!nsk) |
| return NULL; |
| |
| #if IS_ENABLED(CONFIG_MPTCP_IPV6) |
| if (nsk->sk_family == AF_INET6) |
| inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); |
| #endif |
| |
| __mptcp_init_sock(nsk); |
| |
| #if IS_ENABLED(CONFIG_MPTCP_IPV6) |
| if (nsk->sk_family == AF_INET6) |
| mptcp_copy_ip6_options(nsk, sk); |
| else |
| #endif |
| mptcp_copy_ip_options(nsk, sk); |
| |
| msk = mptcp_sk(nsk); |
| WRITE_ONCE(msk->local_key, subflow_req->local_key); |
| WRITE_ONCE(msk->token, subflow_req->token); |
| msk->in_accept_queue = 1; |
| WRITE_ONCE(msk->fully_established, false); |
| if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) |
| WRITE_ONCE(msk->csum_enabled, true); |
| |
| WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); |
| WRITE_ONCE(msk->snd_nxt, msk->write_seq); |
| WRITE_ONCE(msk->snd_una, msk->write_seq); |
| WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); |
| msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; |
| mptcp_init_sched(msk, mptcp_sk(sk)->sched); |
| |
| /* passive msk is created after the first/MPC subflow */ |
| msk->subflow_id = 2; |
| |
| sock_reset_flag(nsk, SOCK_RCU_FREE); |
| security_inet_csk_clone(nsk, req); |
| |
| /* this can't race with mptcp_close(), as the msk is |
| * not yet exposted to user-space |
| */ |
| mptcp_set_state(nsk, TCP_ESTABLISHED); |
| |
| /* The msk maintain a ref to each subflow in the connections list */ |
| WRITE_ONCE(msk->first, ssk); |
| subflow = mptcp_subflow_ctx(ssk); |
| list_add(&subflow->node, &msk->conn_list); |
| sock_hold(ssk); |
| |
| /* new mpc subflow takes ownership of the newly |
| * created mptcp socket |
| */ |
| mptcp_token_accept(subflow_req, msk); |
| |
| /* set msk addresses early to ensure mptcp_pm_get_local_id() |
| * uses the correct data |
| */ |
| mptcp_copy_inaddrs(nsk, ssk); |
| __mptcp_propagate_sndbuf(nsk, ssk); |
| |
| mptcp_rcv_space_init(msk, ssk); |
| |
| if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) |
| __mptcp_subflow_fully_established(msk, subflow, mp_opt); |
| bh_unlock_sock(nsk); |
| |
| /* note: the newly allocated socket refcount is 2 now */ |
| return nsk; |
| } |
| |
| void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) |
| { |
| const struct tcp_sock *tp = tcp_sk(ssk); |
| |
| msk->rcvspace_init = 1; |
| msk->rcvq_space.copied = 0; |
| msk->rcvq_space.rtt_us = 0; |
| |
| msk->rcvq_space.time = tp->tcp_mstamp; |
| |
| /* initial rcv_space offering made to peer */ |
| msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, |
| TCP_INIT_CWND * tp->advmss); |
| if (msk->rcvq_space.space == 0) |
| msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; |
| } |
| |
| void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) |
| { |
| struct mptcp_subflow_context *subflow, *tmp; |
| struct sock *sk = (struct sock *)msk; |
| |
| __mptcp_clear_xmit(sk); |
| |
| /* join list will be eventually flushed (with rst) at sock lock release time */ |
| mptcp_for_each_subflow_safe(msk, subflow, tmp) |
| __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); |
| |
| /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ |
| mptcp_data_lock(sk); |
| skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); |
| __skb_queue_purge(&sk->sk_receive_queue); |
| skb_rbtree_purge(&msk->out_of_order_queue); |
| mptcp_data_unlock(sk); |
| |
| /* move all the rx fwd alloc into the sk_mem_reclaim_final in |
| * inet_sock_destruct() will dispose it |
| */ |
| sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); |
| WRITE_ONCE(msk->rmem_fwd_alloc, 0); |
| mptcp_token_destroy(msk); |
| mptcp_pm_free_anno_list(msk); |
| mptcp_free_local_addr_list(msk); |
| } |
| |
| static void mptcp_destroy(struct sock *sk) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| /* allow the following to close even the initial subflow */ |
| msk->free_first = 1; |
| mptcp_destroy_common(msk, 0); |
| sk_sockets_allocated_dec(sk); |
| } |
| |
| void __mptcp_data_acked(struct sock *sk) |
| { |
| if (!sock_owned_by_user(sk)) |
| __mptcp_clean_una(sk); |
| else |
| __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); |
| } |
| |
| void __mptcp_check_push(struct sock *sk, struct sock *ssk) |
| { |
| if (!mptcp_send_head(sk)) |
| return; |
| |
| if (!sock_owned_by_user(sk)) |
| __mptcp_subflow_push_pending(sk, ssk, false); |
| else |
| __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); |
| } |
| |
| #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ |
| BIT(MPTCP_RETRANSMIT) | \ |
| BIT(MPTCP_FLUSH_JOIN_LIST)) |
| |
| /* processes deferred events and flush wmem */ |
| static void mptcp_release_cb(struct sock *sk) |
| __must_hold(&sk->sk_lock.slock) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| for (;;) { |
| unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); |
| struct list_head join_list; |
| |
| if (!flags) |
| break; |
| |
| INIT_LIST_HEAD(&join_list); |
| list_splice_init(&msk->join_list, &join_list); |
| |
| /* the following actions acquire the subflow socket lock |
| * |
| * 1) can't be invoked in atomic scope |
| * 2) must avoid ABBA deadlock with msk socket spinlock: the RX |
| * datapath acquires the msk socket spinlock while helding |
| * the subflow socket lock |
| */ |
| msk->cb_flags &= ~flags; |
| spin_unlock_bh(&sk->sk_lock.slock); |
| |
| if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) |
| __mptcp_flush_join_list(sk, &join_list); |
| if (flags & BIT(MPTCP_PUSH_PENDING)) |
| __mptcp_push_pending(sk, 0); |
| if (flags & BIT(MPTCP_RETRANSMIT)) |
| __mptcp_retrans(sk); |
| |
| cond_resched(); |
| spin_lock_bh(&sk->sk_lock.slock); |
| } |
| |
| if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) |
| __mptcp_clean_una_wakeup(sk); |
| if (unlikely(msk->cb_flags)) { |
| /* be sure to sync the msk state before taking actions |
| * depending on sk_state (MPTCP_ERROR_REPORT) |
| * On sk release avoid actions depending on the first subflow |
| */ |
| if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) |
| __mptcp_sync_state(sk, msk->pending_state); |
| if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) |
| __mptcp_error_report(sk); |
| if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) |
| __mptcp_sync_sndbuf(sk); |
| } |
| |
| __mptcp_update_rmem(sk); |
| } |
| |
| /* MP_JOIN client subflow must wait for 4th ack before sending any data: |
| * TCP can't schedule delack timer before the subflow is fully established. |
| * MPTCP uses the delack timer to do 3rd ack retransmissions |
| */ |
| static void schedule_3rdack_retransmission(struct sock *ssk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(ssk); |
| struct tcp_sock *tp = tcp_sk(ssk); |
| unsigned long timeout; |
| |
| if (mptcp_subflow_ctx(ssk)->fully_established) |
| return; |
| |
| /* reschedule with a timeout above RTT, as we must look only for drop */ |
| if (tp->srtt_us) |
| timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); |
| else |
| timeout = TCP_TIMEOUT_INIT; |
| timeout += jiffies; |
| |
| WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); |
| icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; |
| icsk->icsk_ack.timeout = timeout; |
| sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); |
| } |
| |
| void mptcp_subflow_process_delegated(struct sock *ssk, long status) |
| { |
| struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); |
| struct sock *sk = subflow->conn; |
| |
| if (status & BIT(MPTCP_DELEGATE_SEND)) { |
| mptcp_data_lock(sk); |
| if (!sock_owned_by_user(sk)) |
| __mptcp_subflow_push_pending(sk, ssk, true); |
| else |
| __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); |
| mptcp_data_unlock(sk); |
| } |
| if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { |
| mptcp_data_lock(sk); |
| if (!sock_owned_by_user(sk)) |
| __mptcp_sync_sndbuf(sk); |
| else |
| __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); |
| mptcp_data_unlock(sk); |
| } |
| if (status & BIT(MPTCP_DELEGATE_ACK)) |
| schedule_3rdack_retransmission(ssk); |
| } |
| |
| static int mptcp_hash(struct sock *sk) |
| { |
| /* should never be called, |
| * we hash the TCP subflows not the MPTCP socket |
| */ |
| WARN_ON_ONCE(1); |
| return 0; |
| } |
| |
| static void mptcp_unhash(struct sock *sk) |
| { |
| /* called from sk_common_release(), but nothing to do here */ |
| } |
| |
| static int mptcp_get_port(struct sock *sk, unsigned short snum) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| |
| pr_debug("msk=%p, ssk=%p\n", msk, msk->first); |
| if (WARN_ON_ONCE(!msk->first)) |
| return -EINVAL; |
| |
| return inet_csk_get_port(msk->first, snum); |
| } |
| |
| void mptcp_finish_connect(struct sock *ssk) |
| { |
| struct mptcp_subflow_context *subflow; |
| struct mptcp_sock *msk; |
| struct sock *sk; |
| |
| subflow = mptcp_subflow_ctx(ssk); |
| sk = subflow->conn; |
| msk = mptcp_sk(sk); |
| |
| pr_debug("msk=%p, token=%u\n", sk, subflow->token); |
| |
| subflow->map_seq = subflow->iasn; |
| subflow->map_subflow_seq = 1; |
| |
| /* the socket is not connected yet, no msk/subflow ops can access/race |
| * accessing the field below |
| */ |
| WRITE_ONCE(msk->local_key, subflow->local_key); |
| |
| mptcp_pm_new_connection(msk, ssk, 0); |
| } |
| |
| void mptcp_sock_graft(struct sock *sk, struct socket *parent) |
| { |
| write_lock_bh(&sk->sk_callback_lock); |
| rcu_assign_pointer(sk->sk_wq, &parent->wq); |
| sk_set_socket(sk, parent); |
| sk->sk_uid = SOCK_INODE(parent)->i_uid; |
| write_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| bool mptcp_finish_join(struct sock *ssk) |
| { |
| struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); |
| struct mptcp_sock *msk = mptcp_sk(subflow->conn); |
| struct sock *parent = (void *)msk; |
| bool ret = true; |
| |
| pr_debug("msk=%p, subflow=%p\n", msk, subflow); |
| |
| /* mptcp socket already closing? */ |
| if (!mptcp_is_fully_established(parent)) { |
| subflow->reset_reason = MPTCP_RST_EMPTCP; |
| return false; |
| } |
| |
| /* active subflow, already present inside the conn_list */ |
| if (!list_empty(&subflow->node)) { |
| mptcp_subflow_joined(msk, ssk); |
| mptcp_propagate_sndbuf(parent, ssk); |
| return true; |
| } |
| |
| if (!mptcp_pm_allow_new_subflow(msk)) |
| goto err_prohibited; |
| |
| /* If we can't acquire msk socket lock here, let the release callback |
| * handle it |
| */ |
| mptcp_data_lock(parent); |
| if (!sock_owned_by_user(parent)) { |
| ret = __mptcp_finish_join(msk, ssk); |
| if (ret) { |
| sock_hold(ssk); |
| list_add_tail(&subflow->node, &msk->conn_list); |
| } |
| } else { |
| sock_hold(ssk); |
| list_add_tail(&subflow->node, &msk->join_list); |
| __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); |
| } |
| mptcp_data_unlock(parent); |
| |
| if (!ret) { |
| err_prohibited: |
| subflow->reset_reason = MPTCP_RST_EPROHIBIT; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void mptcp_shutdown(struct sock *sk, int how) |
| { |
| pr_debug("sk=%p, how=%d\n", sk, how); |
| |
| if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) |
| __mptcp_wr_shutdown(sk); |
| } |
| |
| static int mptcp_forward_alloc_get(const struct sock *sk) |
| { |
| return READ_ONCE(sk->sk_forward_alloc) + |
| READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); |
| } |
| |
| static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) |
| { |
| const struct sock *sk = (void *)msk; |
| u64 delta; |
| |
| if (sk->sk_state == TCP_LISTEN) |
| return -EINVAL; |
| |
| if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) |
| return 0; |
| |
| delta = msk->write_seq - v; |
| if (__mptcp_check_fallback(msk) && msk->first) { |
| struct tcp_sock *tp = tcp_sk(msk->first); |
| |
| /* the first subflow is disconnected after close - see |
| * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq |
| * so ignore that status, too. |
| */ |
| if (!((1 << msk->first->sk_state) & |
| (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) |
| delta += READ_ONCE(tp->write_seq) - tp->snd_una; |
| } |
| if (delta > INT_MAX) |
| delta = INT_MAX; |
| |
| return (int)delta; |
| } |
| |
| static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| bool slow; |
| |
| switch (cmd) { |
| case SIOCINQ: |
| if (sk->sk_state == TCP_LISTEN) |
| return -EINVAL; |
| |
| lock_sock(sk); |
| __mptcp_move_skbs(msk); |
| *karg = mptcp_inq_hint(sk); |
| release_sock(sk); |
| break; |
| case SIOCOUTQ: |
| slow = lock_sock_fast(sk); |
| *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); |
| unlock_sock_fast(sk, slow); |
| break; |
| case SIOCOUTQNSD: |
| slow = lock_sock_fast(sk); |
| *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); |
| unlock_sock_fast(sk, slow); |
| break; |
| default: |
| return -ENOIOCTLCMD; |
| } |
| |
| return 0; |
| } |
| |
| static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) |
| { |
| struct mptcp_subflow_context *subflow; |
| struct mptcp_sock *msk = mptcp_sk(sk); |
| int err = -EINVAL; |
| struct sock *ssk; |
| |
| ssk = __mptcp_nmpc_sk(msk); |
| if (IS_ERR(ssk)) |
| return PTR_ERR(ssk); |
| |
| mptcp_set_state(sk, TCP_SYN_SENT); |
| subflow = mptcp_subflow_ctx(ssk); |
| #ifdef CONFIG_TCP_MD5SIG |
| /* no MPTCP if MD5SIG is enabled on this socket or we may run out of |
| * TCP option space. |
| */ |
| if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) |
| mptcp_subflow_early_fallback(msk, subflow); |
| #endif |
| if (subflow->request_mptcp) { |
| if (mptcp_active_should_disable(sk)) { |
| MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED); |
| mptcp_subflow_early_fallback(msk, subflow); |
| } else if (mptcp_token_new_connect(ssk) < 0) { |
| MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); |
| mptcp_subflow_early_fallback(msk, subflow); |
| } |
| } |
| |
| WRITE_ONCE(msk->write_seq, subflow->idsn); |
| WRITE_ONCE(msk->snd_nxt, subflow->idsn); |
| WRITE_ONCE(msk->snd_una, subflow->idsn); |
| if (likely(!__mptcp_check_fallback(msk))) |
| MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); |
| |
| /* if reaching here via the fastopen/sendmsg path, the caller already |
| * acquired the subflow socket lock, too. |
| */ |
| if (!msk->fastopening) |
| lock_sock(ssk); |
| |
| /* the following mirrors closely a very small chunk of code from |
| * __inet_stream_connect() |
| */ |
| if (ssk->sk_state != TCP_CLOSE) |
| goto out; |
| |
| if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { |
| err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); |
| if (err) |
| goto out; |
| } |
| |
| err = ssk->sk_prot->connect(ssk, uaddr, addr_len); |
| if (err < 0) |
| goto out; |
| |
| inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); |
| |
| out: |
| if (!msk->fastopening) |
| release_sock(ssk); |
| |
| /* on successful connect, the msk state will be moved to established by |
| * subflow_finish_connect() |
| */ |
| if (unlikely(err)) { |
| /* avoid leaving a dangling token in an unconnected socket */ |
| mptcp_token_destroy(msk); |
| mptcp_set_state(sk, TCP_CLOSE); |
| return err; |
| } |
| |
| mptcp_copy_inaddrs(sk, ssk); |
| return 0; |
| } |
| |
| static struct proto mptcp_prot = { |
| .name = "MPTCP", |
| .owner = THIS_MODULE, |
| .init = mptcp_init_sock, |
| .connect = mptcp_connect, |
| .disconnect = mptcp_disconnect, |
| .close = mptcp_close, |
| .setsockopt = mptcp_setsockopt, |
| .getsockopt = mptcp_getsockopt, |
| .shutdown = mptcp_shutdown, |
| .destroy = mptcp_destroy, |
| .sendmsg = mptcp_sendmsg, |
| .ioctl = mptcp_ioctl, |
| .recvmsg = mptcp_recvmsg, |
| .release_cb = mptcp_release_cb, |
| .hash = mptcp_hash, |
| .unhash = mptcp_unhash, |
| .get_port = mptcp_get_port, |
| .forward_alloc_get = mptcp_forward_alloc_get, |
| .stream_memory_free = mptcp_stream_memory_free, |
| .sockets_allocated = &mptcp_sockets_allocated, |
| |
| .memory_allocated = &tcp_memory_allocated, |
| .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, |
| |
| .memory_pressure = &tcp_memory_pressure, |
| .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), |
| .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), |
| .sysctl_mem = sysctl_tcp_mem, |
| .obj_size = sizeof(struct mptcp_sock), |
| .slab_flags = SLAB_TYPESAFE_BY_RCU, |
| .no_autobind = true, |
| }; |
| |
| static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sock->sk); |
| struct sock *ssk, *sk = sock->sk; |
| int err = -EINVAL; |
| |
| lock_sock(sk); |
| ssk = __mptcp_nmpc_sk(msk); |
| if (IS_ERR(ssk)) { |
| err = PTR_ERR(ssk); |
| goto unlock; |
| } |
| |
| if (sk->sk_family == AF_INET) |
| err = inet_bind_sk(ssk, uaddr, addr_len); |
| #if IS_ENABLED(CONFIG_MPTCP_IPV6) |
| else if (sk->sk_family == AF_INET6) |
| err = inet6_bind_sk(ssk, uaddr, addr_len); |
| #endif |
| if (!err) |
| mptcp_copy_inaddrs(sk, ssk); |
| |
| unlock: |
| release_sock(sk); |
| return err; |
| } |
| |
| static int mptcp_listen(struct socket *sock, int backlog) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sock->sk); |
| struct sock *sk = sock->sk; |
| struct sock *ssk; |
| int err; |
| |
| pr_debug("msk=%p\n", msk); |
| |
| lock_sock(sk); |
| |
| err = -EINVAL; |
| if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) |
| goto unlock; |
| |
| ssk = __mptcp_nmpc_sk(msk); |
| if (IS_ERR(ssk)) { |
| err = PTR_ERR(ssk); |
| goto unlock; |
| } |
| |
| mptcp_set_state(sk, TCP_LISTEN); |
| sock_set_flag(sk, SOCK_RCU_FREE); |
| |
| lock_sock(ssk); |
| err = __inet_listen_sk(ssk, backlog); |
| release_sock(ssk); |
| mptcp_set_state(sk, inet_sk_state_load(ssk)); |
| |
| if (!err) { |
| sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); |
| mptcp_copy_inaddrs(sk, ssk); |
| mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); |
| } |
| |
| unlock: |
| release_sock(sk); |
| return err; |
| } |
| |
| static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, |
| struct proto_accept_arg *arg) |
| { |
| struct mptcp_sock *msk = mptcp_sk(sock->sk); |
| struct sock *ssk, *newsk; |
| |
| pr_debug("msk=%p\n", msk); |
| |
| /* Buggy applications can call accept on socket states other then LISTEN |
| * but no need to allocate the first subflow just to error out. |
| */ |
| ssk = READ_ONCE(msk->first); |
| if (!ssk) |
| return -EINVAL; |
| |
| pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); |
| newsk = inet_csk_accept(ssk, arg); |
| if (!newsk) |
| return arg->err; |
| |
| pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); |
| if (sk_is_mptcp(newsk)) { |
| struct mptcp_subflow_context *subflow; |
| struct sock *new_mptcp_sock; |
| |
| subflow = mptcp_subflow_ctx(newsk); |
| new_mptcp_sock = subflow->conn; |
| |
| /* is_mptcp should be false if subflow->conn is missing, see |
| * subflow_syn_recv_sock() |
| */ |
| if (WARN_ON_ONCE(!new_mptcp_sock)) { |
| tcp_sk(newsk)->is_mptcp = 0; |
| goto tcpfallback; |
| } |
| |
| newsk = new_mptcp_sock; |
| MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); |
| |
| newsk->sk_kern_sock = arg->kern; |
| lock_sock(newsk); |
| __inet_accept(sock, newsock, newsk); |
| |
| set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); |
| msk = mptcp_sk(newsk); |
| msk->in_accept_queue = 0; |
| |
| /* set ssk->sk_socket of accept()ed flows to mptcp socket. |
| * This is needed so NOSPACE flag can be set from tcp stack. |
| */ |
| mptcp_for_each_subflow(msk, subflow) { |
| struct sock *ssk = mptcp_subflow_tcp_sock(subflow); |
| |
| if (!ssk->sk_socket) |
| mptcp_sock_graft(ssk, newsock); |
| } |
| |
| /* Do late cleanup for the first subflow as necessary. Also |
| * deal with bad peers not doing a complete shutdown. |
| */ |
| if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { |
| __mptcp_close_ssk(newsk, msk->first, |
| mptcp_subflow_ctx(msk->first), 0); |
| if (unlikely(list_is_singular(&msk->conn_list))) |
| mptcp_set_state(newsk, TCP_CLOSE); |
| } |
| } else { |
| tcpfallback: |
| newsk->sk_kern_sock = arg->kern; |
| lock_sock(newsk); |
| __inet_accept(sock, newsock, newsk); |
| /* we are being invoked after accepting a non-mp-capable |
| * flow: sk is a tcp_sk, not an mptcp one. |
| * |
| * Hand the socket over to tcp so all further socket ops |
| * bypass mptcp. |
| */ |
| WRITE_ONCE(newsock->sk->sk_socket->ops, |
| mptcp_fallback_tcp_ops(newsock->sk)); |
| } |
| release_sock(newsk); |
| |
| return 0; |
| } |
| |
| static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) |
| { |
| struct sock *sk = (struct sock *)msk; |
| |
| if (__mptcp_stream_is_writeable(sk, 1)) |
| return EPOLLOUT | EPOLLWRNORM; |
| |
| set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ |
| if (__mptcp_stream_is_writeable(sk, 1)) |
| return EPOLLOUT | EPOLLWRNORM; |
| |
| return 0; |
| } |
| |
| static __poll_t mptcp_poll(struct file *file, struct socket *sock, |
| struct poll_table_struct *wait) |
| { |
| struct sock *sk = sock->sk; |
| struct mptcp_sock *msk; |
| __poll_t mask = 0; |
| u8 shutdown; |
| int state; |
| |
| msk = mptcp_sk(sk); |
| sock_poll_wait(file, sock, wait); |
| |
| state = inet_sk_state_load(sk); |
| pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); |
| if (state == TCP_LISTEN) { |
| struct sock *ssk = READ_ONCE(msk->first); |
| |
| if (WARN_ON_ONCE(!ssk)) |
| return 0; |
| |
| return inet_csk_listen_poll(ssk); |
| } |
| |
| shutdown = READ_ONCE(sk->sk_shutdown); |
| if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) |
| mask |= EPOLLHUP; |
| if (shutdown & RCV_SHUTDOWN) |
| mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; |
| |
| if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { |
| mask |= mptcp_check_readable(sk); |
| if (shutdown & SEND_SHUTDOWN) |
| mask |= EPOLLOUT | EPOLLWRNORM; |
| else |
| mask |= mptcp_check_writeable(msk); |
| } else if (state == TCP_SYN_SENT && |
| inet_test_bit(DEFER_CONNECT, sk)) { |
| /* cf tcp_poll() note about TFO */ |
| mask |= EPOLLOUT | EPOLLWRNORM; |
| } |
| |
| /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ |
| smp_rmb(); |
| if (READ_ONCE(sk->sk_err)) |
| mask |= EPOLLERR; |
| |
| return mask; |
| } |
| |
| static const struct proto_ops mptcp_stream_ops = { |
| .family = PF_INET, |
| .owner = THIS_MODULE, |
| .release = inet_release, |
| .bind = mptcp_bind, |
| .connect = inet_stream_connect, |
| .socketpair = sock_no_socketpair, |
| .accept = mptcp_stream_accept, |
| .getname = inet_getname, |
| .poll = mptcp_poll, |
| .ioctl = inet_ioctl, |
| .gettstamp = sock_gettstamp, |
| .listen = mptcp_listen, |
| .shutdown = inet_shutdown, |
| .setsockopt = sock_common_setsockopt, |
| .getsockopt = sock_common_getsockopt, |
| .sendmsg = inet_sendmsg, |
| .recvmsg = inet_recvmsg, |
| .mmap = sock_no_mmap, |
| .set_rcvlowat = mptcp_set_rcvlowat, |
| }; |
| |
| static struct inet_protosw mptcp_protosw = { |
| .type = SOCK_STREAM, |
| .protocol = IPPROTO_MPTCP, |
| .prot = &mptcp_prot, |
| .ops = &mptcp_stream_ops, |
| .flags = INET_PROTOSW_ICSK, |
| }; |
| |
| static int mptcp_napi_poll(struct napi_struct *napi, int budget) |
| { |
| struct mptcp_delegated_action *delegated; |
| struct mptcp_subflow_context *subflow; |
| int work_done = 0; |
| |
| delegated = container_of(napi, struct mptcp_delegated_action, napi); |
| while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { |
| struct sock *ssk = mptcp_subflow_tcp_sock(subflow); |
| |
| bh_lock_sock_nested(ssk); |
| if (!sock_owned_by_user(ssk)) { |
| mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); |
| } else { |
| /* tcp_release_cb_override already processed |
| * the action or will do at next release_sock(). |
| * In both case must dequeue the subflow here - on the same |
| * CPU that scheduled it. |
| */ |
| smp_wmb(); |
| clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); |
| } |
| bh_unlock_sock(ssk); |
| sock_put(ssk); |
| |
| if (++work_done == budget) |
| return budget; |
| } |
| |
| /* always provide a 0 'work_done' argument, so that napi_complete_done |
| * will not try accessing the NULL napi->dev ptr |
| */ |
| napi_complete_done(napi, 0); |
| return work_done; |
| } |
| |
| void __init mptcp_proto_init(void) |
| { |
| struct mptcp_delegated_action *delegated; |
| int cpu; |
| |
| mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; |
| |
| if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) |
| panic("Failed to allocate MPTCP pcpu counter\n"); |
| |
| init_dummy_netdev(&mptcp_napi_dev); |
| for_each_possible_cpu(cpu) { |
| delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); |
| INIT_LIST_HEAD(&delegated->head); |
| netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, |
| mptcp_napi_poll); |
| napi_enable(&delegated->napi); |
| } |
| |
| mptcp_subflow_init(); |
| mptcp_pm_init(); |
| mptcp_sched_init(); |
| mptcp_token_init(); |
| |
| if (proto_register(&mptcp_prot, 1) != 0) |
| panic("Failed to register MPTCP proto.\n"); |
| |
| inet_register_protosw(&mptcp_protosw); |
| |
| BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); |
| } |
| |
| #if IS_ENABLED(CONFIG_MPTCP_IPV6) |
| static const struct proto_ops mptcp_v6_stream_ops = { |
| .family = PF_INET6, |
| .owner = THIS_MODULE, |
| .release = inet6_release, |
| .bind = mptcp_bind, |
| .connect = inet_stream_connect, |
| .socketpair = sock_no_socketpair, |
| .accept = mptcp_stream_accept, |
| .getname = inet6_getname, |
| .poll = mptcp_poll, |
| .ioctl = inet6_ioctl, |
| .gettstamp = sock_gettstamp, |
| .listen = mptcp_listen, |
| .shutdown = inet_shutdown, |
| .setsockopt = sock_common_setsockopt, |
| .getsockopt = sock_common_getsockopt, |
| .sendmsg = inet6_sendmsg, |
| .recvmsg = inet6_recvmsg, |
| .mmap = sock_no_mmap, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = inet6_compat_ioctl, |
| #endif |
| .set_rcvlowat = mptcp_set_rcvlowat, |
| }; |
| |
| static struct proto mptcp_v6_prot; |
| |
| static struct inet_protosw mptcp_v6_protosw = { |
| .type = SOCK_STREAM, |
| .protocol = IPPROTO_MPTCP, |
| .prot = &mptcp_v6_prot, |
| .ops = &mptcp_v6_stream_ops, |
| .flags = INET_PROTOSW_ICSK, |
| }; |
| |
| int __init mptcp_proto_v6_init(void) |
| { |
| int err; |
| |
| mptcp_v6_prot = mptcp_prot; |
| strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); |
| mptcp_v6_prot.slab = NULL; |
| mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); |
| mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); |
| |
| err = proto_register(&mptcp_v6_prot, 1); |
| if (err) |
| return err; |
| |
| err = inet6_register_protosw(&mptcp_v6_protosw); |
| if (err) |
| proto_unregister(&mptcp_v6_prot); |
| |
| return err; |
| } |
| #endif |