blob: ad1c1b703874e1fe38151d94ceda6d4e7c890a72 [file] [log] [blame]
/*
* Copyright 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "dcn30_mpc.h"
#include "dcn30_cm_common.h"
#include "basics/conversion.h"
#include "dcn10/dcn10_cm_common.h"
#include "dc.h"
#define REG(reg)\
mpc30->mpc_regs->reg
#define CTX \
mpc30->base.ctx
#undef FN
#define FN(reg_name, field_name) \
mpc30->mpc_shift->field_name, mpc30->mpc_mask->field_name
#define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0]))
bool mpc3_is_dwb_idle(
struct mpc *mpc,
int dwb_id)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
unsigned int status;
REG_GET(DWB_MUX[dwb_id], MPC_DWB0_MUX_STATUS, &status);
if (status == 0xf)
return true;
else
return false;
}
void mpc3_set_dwb_mux(
struct mpc *mpc,
int dwb_id,
int mpcc_id)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_SET(DWB_MUX[dwb_id], 0,
MPC_DWB0_MUX, mpcc_id);
}
void mpc3_disable_dwb_mux(
struct mpc *mpc,
int dwb_id)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_SET(DWB_MUX[dwb_id], 0,
MPC_DWB0_MUX, 0xf);
}
void mpc3_set_out_rate_control(
struct mpc *mpc,
int opp_id,
bool enable,
bool rate_2x_mode,
struct mpc_dwb_flow_control *flow_control)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_UPDATE_2(MUX[opp_id],
MPC_OUT_RATE_CONTROL_DISABLE, !enable,
MPC_OUT_RATE_CONTROL, rate_2x_mode);
if (flow_control)
REG_UPDATE_2(MUX[opp_id],
MPC_OUT_FLOW_CONTROL_MODE, flow_control->flow_ctrl_mode,
MPC_OUT_FLOW_CONTROL_COUNT, flow_control->flow_ctrl_cnt1);
}
enum dc_lut_mode mpc3_get_ogam_current(struct mpc *mpc, int mpcc_id)
{
/*Contrary to DCN2 and DCN1 wherein a single status register field holds this info;
*in DCN3/3AG, we need to read two separate fields to retrieve the same info
*/
enum dc_lut_mode mode;
uint32_t state_mode;
uint32_t state_ram_lut_in_use;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_GET_2(MPCC_OGAM_CONTROL[mpcc_id], MPCC_OGAM_MODE_CURRENT, &state_mode,
MPCC_OGAM_SELECT_CURRENT, &state_ram_lut_in_use);
switch (state_mode) {
case 0:
mode = LUT_BYPASS;
break;
case 2:
switch (state_ram_lut_in_use) {
case 0:
mode = LUT_RAM_A;
break;
case 1:
mode = LUT_RAM_B;
break;
default:
mode = LUT_BYPASS;
break;
}
break;
default:
mode = LUT_BYPASS;
break;
}
return mode;
}
void mpc3_power_on_ogam_lut(
struct mpc *mpc, int mpcc_id,
bool power_on)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
/*
* Powering on: force memory active so the LUT can be updated.
* Powering off: allow entering memory low power mode
*
* Memory low power mode is controlled during MPC OGAM LUT init.
*/
REG_UPDATE(MPCC_MEM_PWR_CTRL[mpcc_id],
MPCC_OGAM_MEM_PWR_DIS, power_on != 0);
/* Wait for memory to be powered on - we won't be able to write to it otherwise. */
if (power_on)
REG_WAIT(MPCC_MEM_PWR_CTRL[mpcc_id], MPCC_OGAM_MEM_PWR_STATE, 0, 10, 10);
}
static void mpc3_configure_ogam_lut(
struct mpc *mpc, int mpcc_id,
bool is_ram_a)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_UPDATE_2(MPCC_OGAM_LUT_CONTROL[mpcc_id],
MPCC_OGAM_LUT_WRITE_COLOR_MASK, 7,
MPCC_OGAM_LUT_HOST_SEL, is_ram_a == true ? 0:1);
REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0);
}
static void mpc3_ogam_get_reg_field(
struct mpc *mpc,
struct dcn3_xfer_func_reg *reg)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
reg->shifts.field_region_start_base = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_BASE_B;
reg->masks.field_region_start_base = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_BASE_B;
reg->shifts.field_offset = mpc30->mpc_shift->MPCC_OGAM_RAMA_OFFSET_B;
reg->masks.field_offset = mpc30->mpc_mask->MPCC_OGAM_RAMA_OFFSET_B;
reg->shifts.exp_region0_lut_offset = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET;
reg->masks.exp_region0_lut_offset = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET;
reg->shifts.exp_region0_num_segments = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
reg->masks.exp_region0_num_segments = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
reg->shifts.exp_region1_lut_offset = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET;
reg->masks.exp_region1_lut_offset = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET;
reg->shifts.exp_region1_num_segments = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
reg->masks.exp_region1_num_segments = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
reg->shifts.field_region_end = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_B;
reg->masks.field_region_end = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_B;
reg->shifts.field_region_end_slope = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B;
reg->masks.field_region_end_slope = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B;
reg->shifts.field_region_end_base = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B;
reg->masks.field_region_end_base = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B;
reg->shifts.field_region_linear_slope = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_SLOPE_B;
reg->masks.field_region_linear_slope = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_SLOPE_B;
reg->shifts.exp_region_start = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_B;
reg->masks.exp_region_start = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_B;
reg->shifts.exp_resion_start_segment = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B;
reg->masks.exp_resion_start_segment = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B;
}
static void mpc3_program_luta(struct mpc *mpc, int mpcc_id,
const struct pwl_params *params)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
struct dcn3_xfer_func_reg gam_regs;
mpc3_ogam_get_reg_field(mpc, &gam_regs);
gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMA_START_CNTL_B[mpcc_id]);
gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMA_START_CNTL_G[mpcc_id]);
gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMA_START_CNTL_R[mpcc_id]);
gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMA_START_SLOPE_CNTL_B[mpcc_id]);
gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMA_START_SLOPE_CNTL_G[mpcc_id]);
gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMA_START_SLOPE_CNTL_R[mpcc_id]);
gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMA_END_CNTL1_B[mpcc_id]);
gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMA_END_CNTL2_B[mpcc_id]);
gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMA_END_CNTL1_G[mpcc_id]);
gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMA_END_CNTL2_G[mpcc_id]);
gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMA_END_CNTL1_R[mpcc_id]);
gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMA_END_CNTL2_R[mpcc_id]);
gam_regs.region_start = REG(MPCC_OGAM_RAMA_REGION_0_1[mpcc_id]);
gam_regs.region_end = REG(MPCC_OGAM_RAMA_REGION_32_33[mpcc_id]);
//New registers in DCN3AG/DCN OGAM block
gam_regs.offset_b = REG(MPCC_OGAM_RAMA_OFFSET_B[mpcc_id]);
gam_regs.offset_g = REG(MPCC_OGAM_RAMA_OFFSET_G[mpcc_id]);
gam_regs.offset_r = REG(MPCC_OGAM_RAMA_OFFSET_R[mpcc_id]);
gam_regs.start_base_cntl_b = REG(MPCC_OGAM_RAMA_START_BASE_CNTL_B[mpcc_id]);
gam_regs.start_base_cntl_g = REG(MPCC_OGAM_RAMA_START_BASE_CNTL_G[mpcc_id]);
gam_regs.start_base_cntl_r = REG(MPCC_OGAM_RAMA_START_BASE_CNTL_R[mpcc_id]);
cm_helper_program_gamcor_xfer_func(mpc30->base.ctx, params, &gam_regs);
}
static void mpc3_program_lutb(struct mpc *mpc, int mpcc_id,
const struct pwl_params *params)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
struct dcn3_xfer_func_reg gam_regs;
mpc3_ogam_get_reg_field(mpc, &gam_regs);
gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMB_START_CNTL_B[mpcc_id]);
gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMB_START_CNTL_G[mpcc_id]);
gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMB_START_CNTL_R[mpcc_id]);
gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMB_START_SLOPE_CNTL_B[mpcc_id]);
gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMB_START_SLOPE_CNTL_G[mpcc_id]);
gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMB_START_SLOPE_CNTL_R[mpcc_id]);
gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMB_END_CNTL1_B[mpcc_id]);
gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMB_END_CNTL2_B[mpcc_id]);
gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMB_END_CNTL1_G[mpcc_id]);
gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMB_END_CNTL2_G[mpcc_id]);
gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMB_END_CNTL1_R[mpcc_id]);
gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMB_END_CNTL2_R[mpcc_id]);
gam_regs.region_start = REG(MPCC_OGAM_RAMB_REGION_0_1[mpcc_id]);
gam_regs.region_end = REG(MPCC_OGAM_RAMB_REGION_32_33[mpcc_id]);
//New registers in DCN3AG/DCN OGAM block
gam_regs.offset_b = REG(MPCC_OGAM_RAMB_OFFSET_B[mpcc_id]);
gam_regs.offset_g = REG(MPCC_OGAM_RAMB_OFFSET_G[mpcc_id]);
gam_regs.offset_r = REG(MPCC_OGAM_RAMB_OFFSET_R[mpcc_id]);
gam_regs.start_base_cntl_b = REG(MPCC_OGAM_RAMB_START_BASE_CNTL_B[mpcc_id]);
gam_regs.start_base_cntl_g = REG(MPCC_OGAM_RAMB_START_BASE_CNTL_G[mpcc_id]);
gam_regs.start_base_cntl_r = REG(MPCC_OGAM_RAMB_START_BASE_CNTL_R[mpcc_id]);
cm_helper_program_gamcor_xfer_func(mpc30->base.ctx, params, &gam_regs);
}
static void mpc3_program_ogam_pwl(
struct mpc *mpc, int mpcc_id,
const struct pwl_result_data *rgb,
uint32_t num)
{
uint32_t i;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
uint32_t last_base_value_red = rgb[num-1].red_reg + rgb[num-1].delta_red_reg;
uint32_t last_base_value_green = rgb[num-1].green_reg + rgb[num-1].delta_green_reg;
uint32_t last_base_value_blue = rgb[num-1].blue_reg + rgb[num-1].delta_blue_reg;
/*the entries of DCN3AG gamma LUTs take 18bit base values as opposed to
*38 base+delta values per entry in earlier DCN architectures
*last base value for our lut is compute by adding the last base value
*in our data + last delta
*/
if (is_rgb_equal(rgb, num)) {
for (i = 0 ; i < num; i++)
REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].red_reg);
REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, last_base_value_red);
} else {
REG_UPDATE(MPCC_OGAM_LUT_CONTROL[mpcc_id],
MPCC_OGAM_LUT_WRITE_COLOR_MASK, 4);
for (i = 0 ; i < num; i++)
REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].red_reg);
REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, last_base_value_red);
REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0);
REG_UPDATE(MPCC_OGAM_LUT_CONTROL[mpcc_id],
MPCC_OGAM_LUT_WRITE_COLOR_MASK, 2);
for (i = 0 ; i < num; i++)
REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].green_reg);
REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, last_base_value_green);
REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0);
REG_UPDATE(MPCC_OGAM_LUT_CONTROL[mpcc_id],
MPCC_OGAM_LUT_WRITE_COLOR_MASK, 1);
for (i = 0 ; i < num; i++)
REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].blue_reg);
REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, last_base_value_blue);
}
}
void mpc3_set_output_gamma(
struct mpc *mpc,
int mpcc_id,
const struct pwl_params *params)
{
enum dc_lut_mode current_mode;
enum dc_lut_mode next_mode;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
if (mpc->ctx->dc->debug.cm_in_bypass) {
REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0);
return;
}
if (params == NULL) { //disable OGAM
REG_SET(MPCC_OGAM_CONTROL[mpcc_id], 0, MPCC_OGAM_MODE, 0);
return;
}
//enable OGAM
REG_SET(MPCC_OGAM_CONTROL[mpcc_id], 0, MPCC_OGAM_MODE, 2);
current_mode = mpc3_get_ogam_current(mpc, mpcc_id);
if (current_mode == LUT_BYPASS)
next_mode = LUT_RAM_A;
else if (current_mode == LUT_RAM_A)
next_mode = LUT_RAM_B;
else
next_mode = LUT_RAM_A;
mpc3_power_on_ogam_lut(mpc, mpcc_id, true);
mpc3_configure_ogam_lut(mpc, mpcc_id, next_mode == LUT_RAM_A);
if (next_mode == LUT_RAM_A)
mpc3_program_luta(mpc, mpcc_id, params);
else
mpc3_program_lutb(mpc, mpcc_id, params);
mpc3_program_ogam_pwl(
mpc, mpcc_id, params->rgb_resulted, params->hw_points_num);
/*we need to program 2 fields here as apposed to 1*/
REG_UPDATE(MPCC_OGAM_CONTROL[mpcc_id],
MPCC_OGAM_SELECT, next_mode == LUT_RAM_A ? 0:1);
if (mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc)
mpc3_power_on_ogam_lut(mpc, mpcc_id, false);
}
void mpc3_set_denorm(
struct mpc *mpc,
int opp_id,
enum dc_color_depth output_depth)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
/* De-normalize Fixed U1.13 color data to different target bit depths. 0 is bypass*/
int denorm_mode = 0;
switch (output_depth) {
case COLOR_DEPTH_666:
denorm_mode = 1;
break;
case COLOR_DEPTH_888:
denorm_mode = 2;
break;
case COLOR_DEPTH_999:
denorm_mode = 3;
break;
case COLOR_DEPTH_101010:
denorm_mode = 4;
break;
case COLOR_DEPTH_111111:
denorm_mode = 5;
break;
case COLOR_DEPTH_121212:
denorm_mode = 6;
break;
case COLOR_DEPTH_141414:
case COLOR_DEPTH_161616:
default:
/* not valid used case! */
break;
}
REG_UPDATE(DENORM_CONTROL[opp_id],
MPC_OUT_DENORM_MODE, denorm_mode);
}
void mpc3_set_denorm_clamp(
struct mpc *mpc,
int opp_id,
struct mpc_denorm_clamp denorm_clamp)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
/*program min and max clamp values for the pixel components*/
REG_UPDATE_2(DENORM_CONTROL[opp_id],
MPC_OUT_DENORM_CLAMP_MAX_R_CR, denorm_clamp.clamp_max_r_cr,
MPC_OUT_DENORM_CLAMP_MIN_R_CR, denorm_clamp.clamp_min_r_cr);
REG_UPDATE_2(DENORM_CLAMP_G_Y[opp_id],
MPC_OUT_DENORM_CLAMP_MAX_G_Y, denorm_clamp.clamp_max_g_y,
MPC_OUT_DENORM_CLAMP_MIN_G_Y, denorm_clamp.clamp_min_g_y);
REG_UPDATE_2(DENORM_CLAMP_B_CB[opp_id],
MPC_OUT_DENORM_CLAMP_MAX_B_CB, denorm_clamp.clamp_max_b_cb,
MPC_OUT_DENORM_CLAMP_MIN_B_CB, denorm_clamp.clamp_min_b_cb);
}
static enum dc_lut_mode mpc3_get_shaper_current(struct mpc *mpc, uint32_t rmu_idx)
{
enum dc_lut_mode mode;
uint32_t state_mode;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_GET(SHAPER_CONTROL[rmu_idx], MPC_RMU_SHAPER_LUT_MODE_CURRENT, &state_mode);
switch (state_mode) {
case 0:
mode = LUT_BYPASS;
break;
case 1:
mode = LUT_RAM_A;
break;
case 2:
mode = LUT_RAM_B;
break;
default:
mode = LUT_BYPASS;
break;
}
return mode;
}
static void mpc3_configure_shaper_lut(
struct mpc *mpc,
bool is_ram_a,
uint32_t rmu_idx)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_UPDATE(SHAPER_LUT_WRITE_EN_MASK[rmu_idx],
MPC_RMU_SHAPER_LUT_WRITE_EN_MASK, 7);
REG_UPDATE(SHAPER_LUT_WRITE_EN_MASK[rmu_idx],
MPC_RMU_SHAPER_LUT_WRITE_SEL, is_ram_a == true ? 0:1);
REG_SET(SHAPER_LUT_INDEX[rmu_idx], 0, MPC_RMU_SHAPER_LUT_INDEX, 0);
}
static void mpc3_program_shaper_luta_settings(
struct mpc *mpc,
const struct pwl_params *params,
uint32_t rmu_idx)
{
const struct gamma_curve *curve;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_SET_2(SHAPER_RAMA_START_CNTL_B[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].blue.custom_float_x,
MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(SHAPER_RAMA_START_CNTL_G[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].green.custom_float_x,
MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(SHAPER_RAMA_START_CNTL_R[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].red.custom_float_x,
MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(SHAPER_RAMA_END_CNTL_B[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].blue.custom_float_x,
MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].blue.custom_float_y);
REG_SET_2(SHAPER_RAMA_END_CNTL_G[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].green.custom_float_x,
MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].green.custom_float_y);
REG_SET_2(SHAPER_RAMA_END_CNTL_R[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].red.custom_float_x,
MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].red.custom_float_y);
curve = params->arr_curve_points;
REG_SET_4(SHAPER_RAMA_REGION_0_1[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_2_3[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_4_5[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_6_7[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_8_9[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_10_11[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_12_13[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_14_15[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_16_17[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_18_19[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_20_21[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_22_23[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_24_25[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_26_27[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_28_29[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_30_31[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMA_REGION_32_33[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
}
static void mpc3_program_shaper_lutb_settings(
struct mpc *mpc,
const struct pwl_params *params,
uint32_t rmu_idx)
{
const struct gamma_curve *curve;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_SET_2(SHAPER_RAMB_START_CNTL_B[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].blue.custom_float_x,
MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(SHAPER_RAMB_START_CNTL_G[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].green.custom_float_x,
MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(SHAPER_RAMB_START_CNTL_R[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].red.custom_float_x,
MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(SHAPER_RAMB_END_CNTL_B[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].blue.custom_float_x,
MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].blue.custom_float_y);
REG_SET_2(SHAPER_RAMB_END_CNTL_G[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].green.custom_float_x,
MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].green.custom_float_y);
REG_SET_2(SHAPER_RAMB_END_CNTL_R[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].red.custom_float_x,
MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].red.custom_float_y);
curve = params->arr_curve_points;
REG_SET_4(SHAPER_RAMB_REGION_0_1[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_2_3[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_4_5[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_6_7[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_8_9[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_10_11[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_12_13[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_14_15[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_16_17[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_18_19[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_20_21[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_22_23[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_24_25[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_26_27[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_28_29[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_30_31[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(SHAPER_RAMB_REGION_32_33[rmu_idx], 0,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
}
static void mpc3_program_shaper_lut(
struct mpc *mpc,
const struct pwl_result_data *rgb,
uint32_t num,
uint32_t rmu_idx)
{
uint32_t i, red, green, blue;
uint32_t red_delta, green_delta, blue_delta;
uint32_t red_value, green_value, blue_value;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
for (i = 0 ; i < num; i++) {
red = rgb[i].red_reg;
green = rgb[i].green_reg;
blue = rgb[i].blue_reg;
red_delta = rgb[i].delta_red_reg;
green_delta = rgb[i].delta_green_reg;
blue_delta = rgb[i].delta_blue_reg;
red_value = ((red_delta & 0x3ff) << 14) | (red & 0x3fff);
green_value = ((green_delta & 0x3ff) << 14) | (green & 0x3fff);
blue_value = ((blue_delta & 0x3ff) << 14) | (blue & 0x3fff);
REG_SET(SHAPER_LUT_DATA[rmu_idx], 0, MPC_RMU_SHAPER_LUT_DATA, red_value);
REG_SET(SHAPER_LUT_DATA[rmu_idx], 0, MPC_RMU_SHAPER_LUT_DATA, green_value);
REG_SET(SHAPER_LUT_DATA[rmu_idx], 0, MPC_RMU_SHAPER_LUT_DATA, blue_value);
}
}
static void mpc3_power_on_shaper_3dlut(
struct mpc *mpc,
uint32_t rmu_idx,
bool power_on)
{
uint32_t power_status_shaper = 2;
uint32_t power_status_3dlut = 2;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
int max_retries = 10;
if (rmu_idx == 0) {
REG_SET(MPC_RMU_MEM_PWR_CTRL, 0,
MPC_RMU0_MEM_PWR_DIS, power_on == true ? 1:0);
/* wait for memory to fully power up */
if (power_on && mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc) {
REG_WAIT(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_SHAPER_MEM_PWR_STATE, 0, 1, max_retries);
REG_WAIT(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_3DLUT_MEM_PWR_STATE, 0, 1, max_retries);
}
/*read status is not mandatory, it is just for debugging*/
REG_GET(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_SHAPER_MEM_PWR_STATE, &power_status_shaper);
REG_GET(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_3DLUT_MEM_PWR_STATE, &power_status_3dlut);
} else if (rmu_idx == 1) {
REG_SET(MPC_RMU_MEM_PWR_CTRL, 0,
MPC_RMU1_MEM_PWR_DIS, power_on == true ? 1:0);
if (power_on && mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc) {
REG_WAIT(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_SHAPER_MEM_PWR_STATE, 0, 1, max_retries);
REG_WAIT(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_3DLUT_MEM_PWR_STATE, 0, 1, max_retries);
}
REG_GET(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_SHAPER_MEM_PWR_STATE, &power_status_shaper);
REG_GET(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_3DLUT_MEM_PWR_STATE, &power_status_3dlut);
}
/*TODO Add rmu_idx == 2 for SIENNA_CICHLID */
if (power_status_shaper != 0 && power_on == true)
BREAK_TO_DEBUGGER();
if (power_status_3dlut != 0 && power_on == true)
BREAK_TO_DEBUGGER();
}
bool mpc3_program_shaper(
struct mpc *mpc,
const struct pwl_params *params,
uint32_t rmu_idx)
{
enum dc_lut_mode current_mode;
enum dc_lut_mode next_mode;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
if (params == NULL) {
REG_SET(SHAPER_CONTROL[rmu_idx], 0, MPC_RMU_SHAPER_LUT_MODE, 0);
return false;
}
if (mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc)
mpc3_power_on_shaper_3dlut(mpc, rmu_idx, true);
current_mode = mpc3_get_shaper_current(mpc, rmu_idx);
if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A)
next_mode = LUT_RAM_B;
else
next_mode = LUT_RAM_A;
mpc3_configure_shaper_lut(mpc, next_mode == LUT_RAM_A, rmu_idx);
if (next_mode == LUT_RAM_A)
mpc3_program_shaper_luta_settings(mpc, params, rmu_idx);
else
mpc3_program_shaper_lutb_settings(mpc, params, rmu_idx);
mpc3_program_shaper_lut(
mpc, params->rgb_resulted, params->hw_points_num, rmu_idx);
REG_SET(SHAPER_CONTROL[rmu_idx], 0, MPC_RMU_SHAPER_LUT_MODE, next_mode == LUT_RAM_A ? 1:2);
mpc3_power_on_shaper_3dlut(mpc, rmu_idx, false);
return true;
}
static void mpc3_set_3dlut_mode(
struct mpc *mpc,
enum dc_lut_mode mode,
bool is_color_channel_12bits,
bool is_lut_size17x17x17,
uint32_t rmu_idx)
{
uint32_t lut_mode;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
if (mode == LUT_BYPASS)
lut_mode = 0;
else if (mode == LUT_RAM_A)
lut_mode = 1;
else
lut_mode = 2;
REG_UPDATE_2(RMU_3DLUT_MODE[rmu_idx],
MPC_RMU_3DLUT_MODE, lut_mode,
MPC_RMU_3DLUT_SIZE, is_lut_size17x17x17 == true ? 0 : 1);
}
static enum dc_lut_mode get3dlut_config(
struct mpc *mpc,
bool *is_17x17x17,
bool *is_12bits_color_channel,
int rmu_idx)
{
uint32_t i_mode, i_enable_10bits, lut_size;
enum dc_lut_mode mode;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_GET(RMU_3DLUT_MODE[rmu_idx],
MPC_RMU_3DLUT_MODE_CURRENT, &i_mode);
REG_GET(RMU_3DLUT_READ_WRITE_CONTROL[rmu_idx],
MPC_RMU_3DLUT_30BIT_EN, &i_enable_10bits);
switch (i_mode) {
case 0:
mode = LUT_BYPASS;
break;
case 1:
mode = LUT_RAM_A;
break;
case 2:
mode = LUT_RAM_B;
break;
default:
mode = LUT_BYPASS;
break;
}
if (i_enable_10bits > 0)
*is_12bits_color_channel = false;
else
*is_12bits_color_channel = true;
REG_GET(RMU_3DLUT_MODE[rmu_idx], MPC_RMU_3DLUT_SIZE, &lut_size);
if (lut_size == 0)
*is_17x17x17 = true;
else
*is_17x17x17 = false;
return mode;
}
static void mpc3_select_3dlut_ram(
struct mpc *mpc,
enum dc_lut_mode mode,
bool is_color_channel_12bits,
uint32_t rmu_idx)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_UPDATE_2(RMU_3DLUT_READ_WRITE_CONTROL[rmu_idx],
MPC_RMU_3DLUT_RAM_SEL, mode == LUT_RAM_A ? 0 : 1,
MPC_RMU_3DLUT_30BIT_EN, is_color_channel_12bits == true ? 0:1);
}
static void mpc3_select_3dlut_ram_mask(
struct mpc *mpc,
uint32_t ram_selection_mask,
uint32_t rmu_idx)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
REG_UPDATE(RMU_3DLUT_READ_WRITE_CONTROL[rmu_idx], MPC_RMU_3DLUT_WRITE_EN_MASK,
ram_selection_mask);
REG_SET(RMU_3DLUT_INDEX[rmu_idx], 0, MPC_RMU_3DLUT_INDEX, 0);
}
static void mpc3_set3dlut_ram12(
struct mpc *mpc,
const struct dc_rgb *lut,
uint32_t entries,
uint32_t rmu_idx)
{
uint32_t i, red, green, blue, red1, green1, blue1;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
for (i = 0 ; i < entries; i += 2) {
red = lut[i].red<<4;
green = lut[i].green<<4;
blue = lut[i].blue<<4;
red1 = lut[i+1].red<<4;
green1 = lut[i+1].green<<4;
blue1 = lut[i+1].blue<<4;
REG_SET_2(RMU_3DLUT_DATA[rmu_idx], 0,
MPC_RMU_3DLUT_DATA0, red,
MPC_RMU_3DLUT_DATA1, red1);
REG_SET_2(RMU_3DLUT_DATA[rmu_idx], 0,
MPC_RMU_3DLUT_DATA0, green,
MPC_RMU_3DLUT_DATA1, green1);
REG_SET_2(RMU_3DLUT_DATA[rmu_idx], 0,
MPC_RMU_3DLUT_DATA0, blue,
MPC_RMU_3DLUT_DATA1, blue1);
}
}
static void mpc3_set3dlut_ram10(
struct mpc *mpc,
const struct dc_rgb *lut,
uint32_t entries,
uint32_t rmu_idx)
{
uint32_t i, red, green, blue, value;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
for (i = 0; i < entries; i++) {
red = lut[i].red;
green = lut[i].green;
blue = lut[i].blue;
//should we shift red 22bit and green 12? ask Nvenko
value = (red<<20) | (green<<10) | blue;
REG_SET(RMU_3DLUT_DATA_30BIT[rmu_idx], 0, MPC_RMU_3DLUT_DATA_30BIT, value);
}
}
void mpc3_init_mpcc(struct mpcc *mpcc, int mpcc_inst)
{
mpcc->mpcc_id = mpcc_inst;
mpcc->dpp_id = 0xf;
mpcc->mpcc_bot = NULL;
mpcc->blnd_cfg.overlap_only = false;
mpcc->blnd_cfg.global_alpha = 0xff;
mpcc->blnd_cfg.global_gain = 0xff;
mpcc->blnd_cfg.background_color_bpc = 4;
mpcc->blnd_cfg.bottom_gain_mode = 0;
mpcc->blnd_cfg.top_gain = 0x1f000;
mpcc->blnd_cfg.bottom_inside_gain = 0x1f000;
mpcc->blnd_cfg.bottom_outside_gain = 0x1f000;
mpcc->sm_cfg.enable = false;
mpcc->shared_bottom = false;
}
static void program_gamut_remap(
struct dcn30_mpc *mpc30,
int mpcc_id,
const uint16_t *regval,
int select)
{
uint16_t selection = 0;
struct color_matrices_reg gam_regs;
if (regval == NULL || select == GAMUT_REMAP_BYPASS) {
REG_SET(MPCC_GAMUT_REMAP_MODE[mpcc_id], 0,
MPCC_GAMUT_REMAP_MODE, GAMUT_REMAP_BYPASS);
return;
}
switch (select) {
case GAMUT_REMAP_COEFF:
selection = 1;
break;
/*this corresponds to GAMUT_REMAP coefficients set B
* we don't have common coefficient sets in dcn3ag/dcn3
*/
case GAMUT_REMAP_COMA_COEFF:
selection = 2;
break;
default:
break;
}
gam_regs.shifts.csc_c11 = mpc30->mpc_shift->MPCC_GAMUT_REMAP_C11_A;
gam_regs.masks.csc_c11 = mpc30->mpc_mask->MPCC_GAMUT_REMAP_C11_A;
gam_regs.shifts.csc_c12 = mpc30->mpc_shift->MPCC_GAMUT_REMAP_C12_A;
gam_regs.masks.csc_c12 = mpc30->mpc_mask->MPCC_GAMUT_REMAP_C12_A;
if (select == GAMUT_REMAP_COEFF) {
gam_regs.csc_c11_c12 = REG(MPC_GAMUT_REMAP_C11_C12_A[mpcc_id]);
gam_regs.csc_c33_c34 = REG(MPC_GAMUT_REMAP_C33_C34_A[mpcc_id]);
cm_helper_program_color_matrices(
mpc30->base.ctx,
regval,
&gam_regs);
} else if (select == GAMUT_REMAP_COMA_COEFF) {
gam_regs.csc_c11_c12 = REG(MPC_GAMUT_REMAP_C11_C12_B[mpcc_id]);
gam_regs.csc_c33_c34 = REG(MPC_GAMUT_REMAP_C33_C34_B[mpcc_id]);
cm_helper_program_color_matrices(
mpc30->base.ctx,
regval,
&gam_regs);
}
//select coefficient set to use
REG_SET(MPCC_GAMUT_REMAP_MODE[mpcc_id], 0,
MPCC_GAMUT_REMAP_MODE, selection);
}
void mpc3_set_gamut_remap(
struct mpc *mpc,
int mpcc_id,
const struct mpc_grph_gamut_adjustment *adjust)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
int i = 0;
int gamut_mode;
if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW)
program_gamut_remap(mpc30, mpcc_id, NULL, GAMUT_REMAP_BYPASS);
else {
struct fixed31_32 arr_matrix[12];
uint16_t arr_reg_val[12];
for (i = 0; i < 12; i++)
arr_matrix[i] = adjust->temperature_matrix[i];
convert_float_matrix(
arr_reg_val, arr_matrix, 12);
//current coefficient set in use
REG_GET(MPCC_GAMUT_REMAP_MODE[mpcc_id], MPCC_GAMUT_REMAP_MODE_CURRENT, &gamut_mode);
if (gamut_mode == 0)
gamut_mode = 1; //use coefficient set A
else if (gamut_mode == 1)
gamut_mode = 2;
else
gamut_mode = 1;
program_gamut_remap(mpc30, mpcc_id, arr_reg_val, gamut_mode);
}
}
bool mpc3_program_3dlut(
struct mpc *mpc,
const struct tetrahedral_params *params,
int rmu_idx)
{
enum dc_lut_mode mode;
bool is_17x17x17;
bool is_12bits_color_channel;
const struct dc_rgb *lut0;
const struct dc_rgb *lut1;
const struct dc_rgb *lut2;
const struct dc_rgb *lut3;
int lut_size0;
int lut_size;
if (params == NULL) {
mpc3_set_3dlut_mode(mpc, LUT_BYPASS, false, false, rmu_idx);
return false;
}
mpc3_power_on_shaper_3dlut(mpc, rmu_idx, true);
mode = get3dlut_config(mpc, &is_17x17x17, &is_12bits_color_channel, rmu_idx);
if (mode == LUT_BYPASS || mode == LUT_RAM_B)
mode = LUT_RAM_A;
else
mode = LUT_RAM_B;
is_17x17x17 = !params->use_tetrahedral_9;
is_12bits_color_channel = params->use_12bits;
if (is_17x17x17) {
lut0 = params->tetrahedral_17.lut0;
lut1 = params->tetrahedral_17.lut1;
lut2 = params->tetrahedral_17.lut2;
lut3 = params->tetrahedral_17.lut3;
lut_size0 = sizeof(params->tetrahedral_17.lut0)/
sizeof(params->tetrahedral_17.lut0[0]);
lut_size = sizeof(params->tetrahedral_17.lut1)/
sizeof(params->tetrahedral_17.lut1[0]);
} else {
lut0 = params->tetrahedral_9.lut0;
lut1 = params->tetrahedral_9.lut1;
lut2 = params->tetrahedral_9.lut2;
lut3 = params->tetrahedral_9.lut3;
lut_size0 = sizeof(params->tetrahedral_9.lut0)/
sizeof(params->tetrahedral_9.lut0[0]);
lut_size = sizeof(params->tetrahedral_9.lut1)/
sizeof(params->tetrahedral_9.lut1[0]);
}
mpc3_select_3dlut_ram(mpc, mode,
is_12bits_color_channel, rmu_idx);
mpc3_select_3dlut_ram_mask(mpc, 0x1, rmu_idx);
if (is_12bits_color_channel)
mpc3_set3dlut_ram12(mpc, lut0, lut_size0, rmu_idx);
else
mpc3_set3dlut_ram10(mpc, lut0, lut_size0, rmu_idx);
mpc3_select_3dlut_ram_mask(mpc, 0x2, rmu_idx);
if (is_12bits_color_channel)
mpc3_set3dlut_ram12(mpc, lut1, lut_size, rmu_idx);
else
mpc3_set3dlut_ram10(mpc, lut1, lut_size, rmu_idx);
mpc3_select_3dlut_ram_mask(mpc, 0x4, rmu_idx);
if (is_12bits_color_channel)
mpc3_set3dlut_ram12(mpc, lut2, lut_size, rmu_idx);
else
mpc3_set3dlut_ram10(mpc, lut2, lut_size, rmu_idx);
mpc3_select_3dlut_ram_mask(mpc, 0x8, rmu_idx);
if (is_12bits_color_channel)
mpc3_set3dlut_ram12(mpc, lut3, lut_size, rmu_idx);
else
mpc3_set3dlut_ram10(mpc, lut3, lut_size, rmu_idx);
mpc3_set_3dlut_mode(mpc, mode, is_12bits_color_channel,
is_17x17x17, rmu_idx);
if (mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc)
mpc3_power_on_shaper_3dlut(mpc, rmu_idx, false);
return true;
}
void mpc3_set_output_csc(
struct mpc *mpc,
int opp_id,
const uint16_t *regval,
enum mpc_output_csc_mode ocsc_mode)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
struct color_matrices_reg ocsc_regs;
REG_WRITE(MPC_OUT_CSC_COEF_FORMAT, 0);
REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE)
return;
if (regval == NULL) {
BREAK_TO_DEBUGGER();
return;
}
ocsc_regs.shifts.csc_c11 = mpc30->mpc_shift->MPC_OCSC_C11_A;
ocsc_regs.masks.csc_c11 = mpc30->mpc_mask->MPC_OCSC_C11_A;
ocsc_regs.shifts.csc_c12 = mpc30->mpc_shift->MPC_OCSC_C12_A;
ocsc_regs.masks.csc_c12 = mpc30->mpc_mask->MPC_OCSC_C12_A;
if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) {
ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]);
ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]);
} else {
ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]);
ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]);
}
cm_helper_program_color_matrices(
mpc30->base.ctx,
regval,
&ocsc_regs);
}
void mpc3_set_ocsc_default(
struct mpc *mpc,
int opp_id,
enum dc_color_space color_space,
enum mpc_output_csc_mode ocsc_mode)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
uint32_t arr_size;
struct color_matrices_reg ocsc_regs;
const uint16_t *regval = NULL;
REG_WRITE(MPC_OUT_CSC_COEF_FORMAT, 0);
REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE)
return;
regval = find_color_matrix(color_space, &arr_size);
if (regval == NULL) {
BREAK_TO_DEBUGGER();
return;
}
ocsc_regs.shifts.csc_c11 = mpc30->mpc_shift->MPC_OCSC_C11_A;
ocsc_regs.masks.csc_c11 = mpc30->mpc_mask->MPC_OCSC_C11_A;
ocsc_regs.shifts.csc_c12 = mpc30->mpc_shift->MPC_OCSC_C12_A;
ocsc_regs.masks.csc_c12 = mpc30->mpc_mask->MPC_OCSC_C12_A;
if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) {
ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]);
ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]);
} else {
ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]);
ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]);
}
cm_helper_program_color_matrices(
mpc30->base.ctx,
regval,
&ocsc_regs);
}
void mpc3_set_rmu_mux(
struct mpc *mpc,
int rmu_idx,
int value)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
if (rmu_idx == 0)
REG_UPDATE(MPC_RMU_CONTROL, MPC_RMU0_MUX, value);
else if (rmu_idx == 1)
REG_UPDATE(MPC_RMU_CONTROL, MPC_RMU1_MUX, value);
}
uint32_t mpc3_get_rmu_mux_status(
struct mpc *mpc,
int rmu_idx)
{
uint32_t status = 0xf;
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
if (rmu_idx == 0)
REG_GET(MPC_RMU_CONTROL, MPC_RMU0_MUX_STATUS, &status);
else if (rmu_idx == 1)
REG_GET(MPC_RMU_CONTROL, MPC_RMU1_MUX_STATUS, &status);
return status;
}
uint32_t mpcc3_acquire_rmu(struct mpc *mpc, int mpcc_id, int rmu_idx)
{
uint32_t rmu_status;
//determine if this mpcc is already multiplexed to an RMU unit
rmu_status = mpc3_get_rmu_mux_status(mpc, rmu_idx);
if (rmu_status == mpcc_id)
//return rmu_idx of pre_acquired rmu unit
return rmu_idx;
if (rmu_status == 0xf) {//rmu unit is disabled
mpc3_set_rmu_mux(mpc, rmu_idx, mpcc_id);
return rmu_idx;
}
//no vacant RMU units or invalid parameters acquire_post_bldn_3dlut
return -1;
}
static int mpcc3_release_rmu(struct mpc *mpc, int mpcc_id)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
int rmu_idx;
uint32_t rmu_status;
int released_rmu = -1;
for (rmu_idx = 0; rmu_idx < mpc30->num_rmu; rmu_idx++) {
rmu_status = mpc3_get_rmu_mux_status(mpc, rmu_idx);
if (rmu_status == mpcc_id) {
mpc3_set_rmu_mux(mpc, rmu_idx, 0xf);
released_rmu = rmu_idx;
break;
}
}
return released_rmu;
}
static void mpc3_set_mpc_mem_lp_mode(struct mpc *mpc)
{
struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc);
int mpcc_id;
if (mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc) {
if (mpc30->mpc_mask->MPC_RMU0_MEM_LOW_PWR_MODE && mpc30->mpc_mask->MPC_RMU1_MEM_LOW_PWR_MODE) {
REG_UPDATE(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_MEM_LOW_PWR_MODE, 3);
REG_UPDATE(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_MEM_LOW_PWR_MODE, 3);
}
if (mpc30->mpc_mask->MPCC_OGAM_MEM_LOW_PWR_MODE) {
for (mpcc_id = 0; mpcc_id < mpc30->num_mpcc; mpcc_id++)
REG_UPDATE(MPCC_MEM_PWR_CTRL[mpcc_id], MPCC_OGAM_MEM_LOW_PWR_MODE, 3);
}
}
}
const struct mpc_funcs dcn30_mpc_funcs = {
.read_mpcc_state = mpc1_read_mpcc_state,
.insert_plane = mpc1_insert_plane,
.remove_mpcc = mpc1_remove_mpcc,
.mpc_init = mpc1_mpc_init,
.mpc_init_single_inst = mpc1_mpc_init_single_inst,
.update_blending = mpc2_update_blending,
.cursor_lock = mpc1_cursor_lock,
.get_mpcc_for_dpp = mpc1_get_mpcc_for_dpp,
.wait_for_idle = mpc2_assert_idle_mpcc,
.assert_mpcc_idle_before_connect = mpc2_assert_mpcc_idle_before_connect,
.init_mpcc_list_from_hw = mpc1_init_mpcc_list_from_hw,
.set_denorm = mpc3_set_denorm,
.set_denorm_clamp = mpc3_set_denorm_clamp,
.set_output_csc = mpc3_set_output_csc,
.set_ocsc_default = mpc3_set_ocsc_default,
.set_output_gamma = mpc3_set_output_gamma,
.insert_plane_to_secondary = NULL,
.remove_mpcc_from_secondary = NULL,
.set_dwb_mux = mpc3_set_dwb_mux,
.disable_dwb_mux = mpc3_disable_dwb_mux,
.is_dwb_idle = mpc3_is_dwb_idle,
.set_out_rate_control = mpc3_set_out_rate_control,
.set_gamut_remap = mpc3_set_gamut_remap,
.program_shaper = mpc3_program_shaper,
.acquire_rmu = mpcc3_acquire_rmu,
.program_3dlut = mpc3_program_3dlut,
.release_rmu = mpcc3_release_rmu,
.power_on_mpc_mem_pwr = mpc3_power_on_ogam_lut,
.get_mpc_out_mux = mpc1_get_mpc_out_mux,
.set_bg_color = mpc1_set_bg_color,
.set_mpc_mem_lp_mode = mpc3_set_mpc_mem_lp_mode,
};
void dcn30_mpc_construct(struct dcn30_mpc *mpc30,
struct dc_context *ctx,
const struct dcn30_mpc_registers *mpc_regs,
const struct dcn30_mpc_shift *mpc_shift,
const struct dcn30_mpc_mask *mpc_mask,
int num_mpcc,
int num_rmu)
{
int i;
mpc30->base.ctx = ctx;
mpc30->base.funcs = &dcn30_mpc_funcs;
mpc30->mpc_regs = mpc_regs;
mpc30->mpc_shift = mpc_shift;
mpc30->mpc_mask = mpc_mask;
mpc30->mpcc_in_use_mask = 0;
mpc30->num_mpcc = num_mpcc;
mpc30->num_rmu = num_rmu;
for (i = 0; i < MAX_MPCC; i++)
mpc3_init_mpcc(&mpc30->base.mpcc_array[i], i);
}