| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2020 Intel Corporation |
| */ |
| |
| #include "i915_drv.h" |
| #include "intel_context.h" |
| #include "intel_gpu_commands.h" |
| #include "intel_gt.h" |
| #include "intel_gtt.h" |
| #include "intel_migrate.h" |
| #include "intel_ring.h" |
| |
| struct insert_pte_data { |
| u64 offset; |
| }; |
| |
| #define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */ |
| |
| #define GET_CCS_BYTES(i915, size) (HAS_FLAT_CCS(i915) ? \ |
| DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0) |
| static bool engine_supports_migration(struct intel_engine_cs *engine) |
| { |
| if (!engine) |
| return false; |
| |
| /* |
| * We need the ability to prevent aribtration (MI_ARB_ON_OFF), |
| * the ability to write PTE using inline data (MI_STORE_DATA) |
| * and of course the ability to do the block transfer (blits). |
| */ |
| GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS); |
| |
| return true; |
| } |
| |
| static void xehpsdv_toggle_pdes(struct i915_address_space *vm, |
| struct i915_page_table *pt, |
| void *data) |
| { |
| struct insert_pte_data *d = data; |
| |
| /* |
| * Insert a dummy PTE into every PT that will map to LMEM to ensure |
| * we have a correctly setup PDE structure for later use. |
| */ |
| vm->insert_page(vm, 0, d->offset, I915_CACHE_NONE, PTE_LM); |
| GEM_BUG_ON(!pt->is_compact); |
| d->offset += SZ_2M; |
| } |
| |
| static void xehpsdv_insert_pte(struct i915_address_space *vm, |
| struct i915_page_table *pt, |
| void *data) |
| { |
| struct insert_pte_data *d = data; |
| |
| /* |
| * We are playing tricks here, since the actual pt, from the hw |
| * pov, is only 256bytes with 32 entries, or 4096bytes with 512 |
| * entries, but we are still guaranteed that the physical |
| * alignment is 64K underneath for the pt, and we are careful |
| * not to access the space in the void. |
| */ |
| vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE, PTE_LM); |
| d->offset += SZ_64K; |
| } |
| |
| static void insert_pte(struct i915_address_space *vm, |
| struct i915_page_table *pt, |
| void *data) |
| { |
| struct insert_pte_data *d = data; |
| |
| vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE, |
| i915_gem_object_is_lmem(pt->base) ? PTE_LM : 0); |
| d->offset += PAGE_SIZE; |
| } |
| |
| static struct i915_address_space *migrate_vm(struct intel_gt *gt) |
| { |
| struct i915_vm_pt_stash stash = {}; |
| struct i915_ppgtt *vm; |
| int err; |
| int i; |
| |
| /* |
| * We construct a very special VM for use by all migration contexts, |
| * it is kept pinned so that it can be used at any time. As we need |
| * to pre-allocate the page directories for the migration VM, this |
| * limits us to only using a small number of prepared vma. |
| * |
| * To be able to pipeline and reschedule migration operations while |
| * avoiding unnecessary contention on the vm itself, the PTE updates |
| * are inline with the blits. All the blits use the same fixed |
| * addresses, with the backing store redirection being updated on the |
| * fly. Only 2 implicit vma are used for all migration operations. |
| * |
| * We lay the ppGTT out as: |
| * |
| * [0, CHUNK_SZ) -> first object |
| * [CHUNK_SZ, 2 * CHUNK_SZ) -> second object |
| * [2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE |
| * |
| * By exposing the dma addresses of the page directories themselves |
| * within the ppGTT, we are then able to rewrite the PTE prior to use. |
| * But the PTE update and subsequent migration operation must be atomic, |
| * i.e. within the same non-preemptible window so that we do not switch |
| * to another migration context that overwrites the PTE. |
| * |
| * This changes quite a bit on platforms with HAS_64K_PAGES support, |
| * where we instead have three windows, each CHUNK_SIZE in size. The |
| * first is reserved for mapping system-memory, and that just uses the |
| * 512 entry layout using 4K GTT pages. The other two windows just map |
| * lmem pages and must use the new compact 32 entry layout using 64K GTT |
| * pages, which ensures we can address any lmem object that the user |
| * throws at us. We then also use the xehpsdv_toggle_pdes as a way of |
| * just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the |
| * compact layout for each of these page-tables, that fall within the |
| * [CHUNK_SIZE, 3 * CHUNK_SIZE) range. |
| * |
| * We lay the ppGTT out as: |
| * |
| * [0, CHUNK_SZ) -> first window/object, maps smem |
| * [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src |
| * [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst |
| * |
| * For the PTE window it's also quite different, since each PTE must |
| * point to some 64K page, one for each PT(since it's in lmem), and yet |
| * each is only <= 4096bytes, but since the unused space within that PTE |
| * range is never touched, this should be fine. |
| * |
| * So basically each PT now needs 64K of virtual memory, instead of 4K, |
| * which looks like: |
| * |
| * [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE |
| */ |
| |
| vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY); |
| if (IS_ERR(vm)) |
| return ERR_CAST(vm); |
| |
| if (!vm->vm.allocate_va_range || !vm->vm.foreach) { |
| err = -ENODEV; |
| goto err_vm; |
| } |
| |
| if (HAS_64K_PAGES(gt->i915)) |
| stash.pt_sz = I915_GTT_PAGE_SIZE_64K; |
| |
| /* |
| * Each engine instance is assigned its own chunk in the VM, so |
| * that we can run multiple instances concurrently |
| */ |
| for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { |
| struct intel_engine_cs *engine; |
| u64 base = (u64)i << 32; |
| struct insert_pte_data d = {}; |
| struct i915_gem_ww_ctx ww; |
| u64 sz; |
| |
| engine = gt->engine_class[COPY_ENGINE_CLASS][i]; |
| if (!engine_supports_migration(engine)) |
| continue; |
| |
| /* |
| * We copy in 8MiB chunks. Each PDE covers 2MiB, so we need |
| * 4x2 page directories for source/destination. |
| */ |
| if (HAS_64K_PAGES(gt->i915)) |
| sz = 3 * CHUNK_SZ; |
| else |
| sz = 2 * CHUNK_SZ; |
| d.offset = base + sz; |
| |
| /* |
| * We need another page directory setup so that we can write |
| * the 8x512 PTE in each chunk. |
| */ |
| if (HAS_64K_PAGES(gt->i915)) |
| sz += (sz / SZ_2M) * SZ_64K; |
| else |
| sz += (sz >> 12) * sizeof(u64); |
| |
| err = i915_vm_alloc_pt_stash(&vm->vm, &stash, sz); |
| if (err) |
| goto err_vm; |
| |
| for_i915_gem_ww(&ww, err, true) { |
| err = i915_vm_lock_objects(&vm->vm, &ww); |
| if (err) |
| continue; |
| err = i915_vm_map_pt_stash(&vm->vm, &stash); |
| if (err) |
| continue; |
| |
| vm->vm.allocate_va_range(&vm->vm, &stash, base, sz); |
| } |
| i915_vm_free_pt_stash(&vm->vm, &stash); |
| if (err) |
| goto err_vm; |
| |
| /* Now allow the GPU to rewrite the PTE via its own ppGTT */ |
| if (HAS_64K_PAGES(gt->i915)) { |
| vm->vm.foreach(&vm->vm, base, d.offset - base, |
| xehpsdv_insert_pte, &d); |
| d.offset = base + CHUNK_SZ; |
| vm->vm.foreach(&vm->vm, |
| d.offset, |
| 2 * CHUNK_SZ, |
| xehpsdv_toggle_pdes, &d); |
| } else { |
| vm->vm.foreach(&vm->vm, base, d.offset - base, |
| insert_pte, &d); |
| } |
| } |
| |
| return &vm->vm; |
| |
| err_vm: |
| i915_vm_put(&vm->vm); |
| return ERR_PTR(err); |
| } |
| |
| static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { |
| engine = gt->engine_class[COPY_ENGINE_CLASS][i]; |
| if (engine_supports_migration(engine)) |
| return engine; |
| } |
| |
| return NULL; |
| } |
| |
| static struct intel_context *pinned_context(struct intel_gt *gt) |
| { |
| static struct lock_class_key key; |
| struct intel_engine_cs *engine; |
| struct i915_address_space *vm; |
| struct intel_context *ce; |
| |
| engine = first_copy_engine(gt); |
| if (!engine) |
| return ERR_PTR(-ENODEV); |
| |
| vm = migrate_vm(gt); |
| if (IS_ERR(vm)) |
| return ERR_CAST(vm); |
| |
| ce = intel_engine_create_pinned_context(engine, vm, SZ_512K, |
| I915_GEM_HWS_MIGRATE, |
| &key, "migrate"); |
| i915_vm_put(vm); |
| return ce; |
| } |
| |
| int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt) |
| { |
| struct intel_context *ce; |
| |
| memset(m, 0, sizeof(*m)); |
| |
| ce = pinned_context(gt); |
| if (IS_ERR(ce)) |
| return PTR_ERR(ce); |
| |
| m->context = ce; |
| return 0; |
| } |
| |
| static int random_index(unsigned int max) |
| { |
| return upper_32_bits(mul_u32_u32(get_random_u32(), max)); |
| } |
| |
| static struct intel_context *__migrate_engines(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE]; |
| struct intel_engine_cs *engine; |
| unsigned int count, i; |
| |
| count = 0; |
| for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { |
| engine = gt->engine_class[COPY_ENGINE_CLASS][i]; |
| if (engine_supports_migration(engine)) |
| engines[count++] = engine; |
| } |
| |
| return intel_context_create(engines[random_index(count)]); |
| } |
| |
| struct intel_context *intel_migrate_create_context(struct intel_migrate *m) |
| { |
| struct intel_context *ce; |
| |
| /* |
| * We randomly distribute contexts across the engines upon constrction, |
| * as they all share the same pinned vm, and so in order to allow |
| * multiple blits to run in parallel, we must construct each blit |
| * to use a different range of the vm for its GTT. This has to be |
| * known at construction, so we can not use the late greedy load |
| * balancing of the virtual-engine. |
| */ |
| ce = __migrate_engines(m->context->engine->gt); |
| if (IS_ERR(ce)) |
| return ce; |
| |
| ce->ring = NULL; |
| ce->ring_size = SZ_256K; |
| |
| i915_vm_put(ce->vm); |
| ce->vm = i915_vm_get(m->context->vm); |
| |
| return ce; |
| } |
| |
| static inline struct sgt_dma sg_sgt(struct scatterlist *sg) |
| { |
| dma_addr_t addr = sg_dma_address(sg); |
| |
| return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) }; |
| } |
| |
| static int emit_no_arbitration(struct i915_request *rq) |
| { |
| u32 *cs; |
| |
| cs = intel_ring_begin(rq, 2); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| /* Explicitly disable preemption for this request. */ |
| *cs++ = MI_ARB_ON_OFF; |
| *cs++ = MI_NOOP; |
| intel_ring_advance(rq, cs); |
| |
| return 0; |
| } |
| |
| static int emit_pte(struct i915_request *rq, |
| struct sgt_dma *it, |
| enum i915_cache_level cache_level, |
| bool is_lmem, |
| u64 offset, |
| int length) |
| { |
| bool has_64K_pages = HAS_64K_PAGES(rq->engine->i915); |
| const u64 encode = rq->context->vm->pte_encode(0, cache_level, |
| is_lmem ? PTE_LM : 0); |
| struct intel_ring *ring = rq->ring; |
| int pkt, dword_length; |
| u32 total = 0; |
| u32 page_size; |
| u32 *hdr, *cs; |
| |
| GEM_BUG_ON(GRAPHICS_VER(rq->engine->i915) < 8); |
| |
| page_size = I915_GTT_PAGE_SIZE; |
| dword_length = 0x400; |
| |
| /* Compute the page directory offset for the target address range */ |
| if (has_64K_pages) { |
| GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M)); |
| |
| offset /= SZ_2M; |
| offset *= SZ_64K; |
| offset += 3 * CHUNK_SZ; |
| |
| if (is_lmem) { |
| page_size = I915_GTT_PAGE_SIZE_64K; |
| dword_length = 0x40; |
| } |
| } else { |
| offset >>= 12; |
| offset *= sizeof(u64); |
| offset += 2 * CHUNK_SZ; |
| } |
| |
| offset += (u64)rq->engine->instance << 32; |
| |
| cs = intel_ring_begin(rq, 6); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| /* Pack as many PTE updates as possible into a single MI command */ |
| pkt = min_t(int, dword_length, ring->space / sizeof(u32) + 5); |
| pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5); |
| |
| hdr = cs; |
| *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */ |
| *cs++ = lower_32_bits(offset); |
| *cs++ = upper_32_bits(offset); |
| |
| do { |
| if (cs - hdr >= pkt) { |
| int dword_rem; |
| |
| *hdr += cs - hdr - 2; |
| *cs++ = MI_NOOP; |
| |
| ring->emit = (void *)cs - ring->vaddr; |
| intel_ring_advance(rq, cs); |
| intel_ring_update_space(ring); |
| |
| cs = intel_ring_begin(rq, 6); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| dword_rem = dword_length; |
| if (has_64K_pages) { |
| if (IS_ALIGNED(total, SZ_2M)) { |
| offset = round_up(offset, SZ_64K); |
| } else { |
| dword_rem = SZ_2M - (total & (SZ_2M - 1)); |
| dword_rem /= page_size; |
| dword_rem *= 2; |
| } |
| } |
| |
| pkt = min_t(int, dword_rem, ring->space / sizeof(u32) + 5); |
| pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5); |
| |
| hdr = cs; |
| *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); |
| *cs++ = lower_32_bits(offset); |
| *cs++ = upper_32_bits(offset); |
| } |
| |
| GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size)); |
| |
| *cs++ = lower_32_bits(encode | it->dma); |
| *cs++ = upper_32_bits(encode | it->dma); |
| |
| offset += 8; |
| total += page_size; |
| |
| it->dma += page_size; |
| if (it->dma >= it->max) { |
| it->sg = __sg_next(it->sg); |
| if (!it->sg || sg_dma_len(it->sg) == 0) |
| break; |
| |
| it->dma = sg_dma_address(it->sg); |
| it->max = it->dma + sg_dma_len(it->sg); |
| } |
| } while (total < length); |
| |
| *hdr += cs - hdr - 2; |
| *cs++ = MI_NOOP; |
| |
| ring->emit = (void *)cs - ring->vaddr; |
| intel_ring_advance(rq, cs); |
| intel_ring_update_space(ring); |
| |
| return total; |
| } |
| |
| static bool wa_1209644611_applies(int ver, u32 size) |
| { |
| u32 height = size >> PAGE_SHIFT; |
| |
| if (ver != 11) |
| return false; |
| |
| return height % 4 == 3 && height <= 8; |
| } |
| |
| /** |
| * DOC: Flat-CCS - Memory compression for Local memory |
| * |
| * On Xe-HP and later devices, we use dedicated compression control state (CCS) |
| * stored in local memory for each surface, to support the 3D and media |
| * compression formats. |
| * |
| * The memory required for the CCS of the entire local memory is 1/256 of the |
| * local memory size. So before the kernel boot, the required memory is reserved |
| * for the CCS data and a secure register will be programmed with the CCS base |
| * address. |
| * |
| * Flat CCS data needs to be cleared when a lmem object is allocated. |
| * And CCS data can be copied in and out of CCS region through |
| * XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly. |
| * |
| * I915 supports Flat-CCS on lmem only objects. When an objects has smem in |
| * its preference list, on memory pressure, i915 needs to migrate the lmem |
| * content into smem. If the lmem object is Flat-CCS compressed by userspace, |
| * then i915 needs to decompress it. But I915 lack the required information |
| * for such decompression. Hence I915 supports Flat-CCS only on lmem only objects. |
| * |
| * When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can |
| * be temporarily evicted to smem, along with the auxiliary CCS state, where |
| * it can be potentially swapped-out at a later point, if required. |
| * If userspace later touches the evicted pages, then we always move |
| * the backing memory back to lmem, which includes restoring the saved CCS state, |
| * and potentially performing any required swap-in. |
| * |
| * For the migration of the lmem objects with smem in placement list, such as |
| * {lmem, smem}, objects are treated as non Flat-CCS capable objects. |
| */ |
| |
| static inline u32 *i915_flush_dw(u32 *cmd, u32 flags) |
| { |
| *cmd++ = MI_FLUSH_DW | flags; |
| *cmd++ = 0; |
| *cmd++ = 0; |
| |
| return cmd; |
| } |
| |
| static u32 calc_ctrl_surf_instr_size(struct drm_i915_private *i915, int size) |
| { |
| u32 num_cmds, num_blks, total_size; |
| |
| if (!GET_CCS_BYTES(i915, size)) |
| return 0; |
| |
| /* |
| * XY_CTRL_SURF_COPY_BLT transfers CCS in 256 byte |
| * blocks. one XY_CTRL_SURF_COPY_BLT command can |
| * transfer upto 1024 blocks. |
| */ |
| num_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size), |
| NUM_CCS_BYTES_PER_BLOCK); |
| num_cmds = DIV_ROUND_UP(num_blks, NUM_CCS_BLKS_PER_XFER); |
| total_size = XY_CTRL_SURF_INSTR_SIZE * num_cmds; |
| |
| /* |
| * Adding a flush before and after XY_CTRL_SURF_COPY_BLT |
| */ |
| total_size += 2 * MI_FLUSH_DW_SIZE; |
| |
| return total_size; |
| } |
| |
| static int emit_copy_ccs(struct i915_request *rq, |
| u32 dst_offset, u8 dst_access, |
| u32 src_offset, u8 src_access, int size) |
| { |
| struct drm_i915_private *i915 = rq->engine->i915; |
| int mocs = rq->engine->gt->mocs.uc_index << 1; |
| u32 num_ccs_blks, ccs_ring_size; |
| u32 *cs; |
| |
| ccs_ring_size = calc_ctrl_surf_instr_size(i915, size); |
| WARN_ON(!ccs_ring_size); |
| |
| cs = intel_ring_begin(rq, round_up(ccs_ring_size, 2)); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size), |
| NUM_CCS_BYTES_PER_BLOCK); |
| GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER); |
| cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS); |
| |
| /* |
| * The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS |
| * data in and out of the CCS region. |
| * |
| * We can copy at most 1024 blocks of 256 bytes using one |
| * XY_CTRL_SURF_COPY_BLT instruction. |
| * |
| * In case we need to copy more than 1024 blocks, we need to add |
| * another instruction to the same batch buffer. |
| * |
| * 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS. |
| * |
| * 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM. |
| */ |
| *cs++ = XY_CTRL_SURF_COPY_BLT | |
| src_access << SRC_ACCESS_TYPE_SHIFT | |
| dst_access << DST_ACCESS_TYPE_SHIFT | |
| ((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT; |
| *cs++ = src_offset; |
| *cs++ = rq->engine->instance | |
| FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs); |
| *cs++ = dst_offset; |
| *cs++ = rq->engine->instance | |
| FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs); |
| |
| cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS); |
| if (ccs_ring_size & 1) |
| *cs++ = MI_NOOP; |
| |
| intel_ring_advance(rq, cs); |
| |
| return 0; |
| } |
| |
| static int emit_copy(struct i915_request *rq, |
| u32 dst_offset, u32 src_offset, int size) |
| { |
| const int ver = GRAPHICS_VER(rq->engine->i915); |
| u32 instance = rq->engine->instance; |
| u32 *cs; |
| |
| cs = intel_ring_begin(rq, ver >= 8 ? 10 : 6); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| if (ver >= 9 && !wa_1209644611_applies(ver, size)) { |
| *cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2); |
| *cs++ = BLT_DEPTH_32 | PAGE_SIZE; |
| *cs++ = 0; |
| *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; |
| *cs++ = dst_offset; |
| *cs++ = instance; |
| *cs++ = 0; |
| *cs++ = PAGE_SIZE; |
| *cs++ = src_offset; |
| *cs++ = instance; |
| } else if (ver >= 8) { |
| *cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2); |
| *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE; |
| *cs++ = 0; |
| *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; |
| *cs++ = dst_offset; |
| *cs++ = instance; |
| *cs++ = 0; |
| *cs++ = PAGE_SIZE; |
| *cs++ = src_offset; |
| *cs++ = instance; |
| } else { |
| GEM_BUG_ON(instance); |
| *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2); |
| *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE; |
| *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE; |
| *cs++ = dst_offset; |
| *cs++ = PAGE_SIZE; |
| *cs++ = src_offset; |
| } |
| |
| intel_ring_advance(rq, cs); |
| return 0; |
| } |
| |
| static int scatter_list_length(struct scatterlist *sg) |
| { |
| int len = 0; |
| |
| while (sg && sg_dma_len(sg)) { |
| len += sg_dma_len(sg); |
| sg = sg_next(sg); |
| }; |
| |
| return len; |
| } |
| |
| static void |
| calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem, |
| int *src_sz, u32 bytes_to_cpy, u32 ccs_bytes_to_cpy) |
| { |
| if (ccs_bytes_to_cpy) { |
| if (!src_is_lmem) |
| /* |
| * When CHUNK_SZ is passed all the pages upto CHUNK_SZ |
| * will be taken for the blt. in Flat-ccs supported |
| * platform Smem obj will have more pages than required |
| * for main meory hence limit it to the required size |
| * for main memory |
| */ |
| *src_sz = min_t(int, bytes_to_cpy, CHUNK_SZ); |
| } else { /* ccs handling is not required */ |
| *src_sz = CHUNK_SZ; |
| } |
| } |
| |
| static void get_ccs_sg_sgt(struct sgt_dma *it, u32 bytes_to_cpy) |
| { |
| u32 len; |
| |
| do { |
| GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg)); |
| len = it->max - it->dma; |
| if (len > bytes_to_cpy) { |
| it->dma += bytes_to_cpy; |
| break; |
| } |
| |
| bytes_to_cpy -= len; |
| |
| it->sg = __sg_next(it->sg); |
| it->dma = sg_dma_address(it->sg); |
| it->max = it->dma + sg_dma_len(it->sg); |
| } while (bytes_to_cpy); |
| } |
| |
| int |
| intel_context_migrate_copy(struct intel_context *ce, |
| const struct i915_deps *deps, |
| struct scatterlist *src, |
| enum i915_cache_level src_cache_level, |
| bool src_is_lmem, |
| struct scatterlist *dst, |
| enum i915_cache_level dst_cache_level, |
| bool dst_is_lmem, |
| struct i915_request **out) |
| { |
| struct sgt_dma it_src = sg_sgt(src), it_dst = sg_sgt(dst), it_ccs; |
| struct drm_i915_private *i915 = ce->engine->i915; |
| u32 ccs_bytes_to_cpy = 0, bytes_to_cpy; |
| enum i915_cache_level ccs_cache_level; |
| u32 src_offset, dst_offset; |
| u8 src_access, dst_access; |
| struct i915_request *rq; |
| int src_sz, dst_sz; |
| bool ccs_is_src, overwrite_ccs; |
| int err; |
| |
| GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm); |
| GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem)); |
| *out = NULL; |
| |
| GEM_BUG_ON(ce->ring->size < SZ_64K); |
| |
| src_sz = scatter_list_length(src); |
| bytes_to_cpy = src_sz; |
| |
| if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) { |
| src_access = !src_is_lmem && dst_is_lmem; |
| dst_access = !src_access; |
| |
| dst_sz = scatter_list_length(dst); |
| if (src_is_lmem) { |
| it_ccs = it_dst; |
| ccs_cache_level = dst_cache_level; |
| ccs_is_src = false; |
| } else if (dst_is_lmem) { |
| bytes_to_cpy = dst_sz; |
| it_ccs = it_src; |
| ccs_cache_level = src_cache_level; |
| ccs_is_src = true; |
| } |
| |
| /* |
| * When there is a eviction of ccs needed smem will have the |
| * extra pages for the ccs data |
| * |
| * TO-DO: Want to move the size mismatch check to a WARN_ON, |
| * but still we have some requests of smem->lmem with same size. |
| * Need to fix it. |
| */ |
| ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0; |
| if (ccs_bytes_to_cpy) |
| get_ccs_sg_sgt(&it_ccs, bytes_to_cpy); |
| } |
| |
| overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem; |
| |
| src_offset = 0; |
| dst_offset = CHUNK_SZ; |
| if (HAS_64K_PAGES(ce->engine->i915)) { |
| src_offset = 0; |
| dst_offset = 0; |
| if (src_is_lmem) |
| src_offset = CHUNK_SZ; |
| if (dst_is_lmem) |
| dst_offset = 2 * CHUNK_SZ; |
| } |
| |
| do { |
| int len; |
| |
| rq = i915_request_create(ce); |
| if (IS_ERR(rq)) { |
| err = PTR_ERR(rq); |
| goto out_ce; |
| } |
| |
| if (deps) { |
| err = i915_request_await_deps(rq, deps); |
| if (err) |
| goto out_rq; |
| |
| if (rq->engine->emit_init_breadcrumb) { |
| err = rq->engine->emit_init_breadcrumb(rq); |
| if (err) |
| goto out_rq; |
| } |
| |
| deps = NULL; |
| } |
| |
| /* The PTE updates + copy must not be interrupted. */ |
| err = emit_no_arbitration(rq); |
| if (err) |
| goto out_rq; |
| |
| calculate_chunk_sz(i915, src_is_lmem, &src_sz, |
| bytes_to_cpy, ccs_bytes_to_cpy); |
| |
| len = emit_pte(rq, &it_src, src_cache_level, src_is_lmem, |
| src_offset, src_sz); |
| if (!len) { |
| err = -EINVAL; |
| goto out_rq; |
| } |
| if (len < 0) { |
| err = len; |
| goto out_rq; |
| } |
| |
| err = emit_pte(rq, &it_dst, dst_cache_level, dst_is_lmem, |
| dst_offset, len); |
| if (err < 0) |
| goto out_rq; |
| if (err < len) { |
| err = -EINVAL; |
| goto out_rq; |
| } |
| |
| err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); |
| if (err) |
| goto out_rq; |
| |
| err = emit_copy(rq, dst_offset, src_offset, len); |
| if (err) |
| goto out_rq; |
| |
| bytes_to_cpy -= len; |
| |
| if (ccs_bytes_to_cpy) { |
| int ccs_sz; |
| |
| err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); |
| if (err) |
| goto out_rq; |
| |
| ccs_sz = GET_CCS_BYTES(i915, len); |
| err = emit_pte(rq, &it_ccs, ccs_cache_level, false, |
| ccs_is_src ? src_offset : dst_offset, |
| ccs_sz); |
| if (err < 0) |
| goto out_rq; |
| if (err < ccs_sz) { |
| err = -EINVAL; |
| goto out_rq; |
| } |
| |
| err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); |
| if (err) |
| goto out_rq; |
| |
| err = emit_copy_ccs(rq, dst_offset, dst_access, |
| src_offset, src_access, len); |
| if (err) |
| goto out_rq; |
| |
| err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); |
| if (err) |
| goto out_rq; |
| ccs_bytes_to_cpy -= ccs_sz; |
| } else if (overwrite_ccs) { |
| err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); |
| if (err) |
| goto out_rq; |
| |
| /* |
| * While we can't always restore/manage the CCS state, |
| * we still need to ensure we don't leak the CCS state |
| * from the previous user, so make sure we overwrite it |
| * with something. |
| */ |
| err = emit_copy_ccs(rq, dst_offset, INDIRECT_ACCESS, |
| dst_offset, DIRECT_ACCESS, len); |
| if (err) |
| goto out_rq; |
| |
| err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); |
| if (err) |
| goto out_rq; |
| } |
| |
| /* Arbitration is re-enabled between requests. */ |
| out_rq: |
| if (*out) |
| i915_request_put(*out); |
| *out = i915_request_get(rq); |
| i915_request_add(rq); |
| |
| if (err) |
| break; |
| |
| if (!bytes_to_cpy && !ccs_bytes_to_cpy) { |
| if (src_is_lmem) |
| WARN_ON(it_src.sg && sg_dma_len(it_src.sg)); |
| else |
| WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg)); |
| break; |
| } |
| |
| if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) || |
| !it_dst.sg || !sg_dma_len(it_dst.sg) || |
| (ccs_bytes_to_cpy && (!it_ccs.sg || |
| !sg_dma_len(it_ccs.sg))))) { |
| err = -EINVAL; |
| break; |
| } |
| |
| cond_resched(); |
| } while (1); |
| |
| out_ce: |
| return err; |
| } |
| |
| static int emit_clear(struct i915_request *rq, u32 offset, int size, |
| u32 value, bool is_lmem) |
| { |
| struct drm_i915_private *i915 = rq->engine->i915; |
| int mocs = rq->engine->gt->mocs.uc_index << 1; |
| const int ver = GRAPHICS_VER(i915); |
| int ring_sz; |
| u32 *cs; |
| |
| GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX); |
| |
| if (HAS_FLAT_CCS(i915) && ver >= 12) |
| ring_sz = XY_FAST_COLOR_BLT_DW; |
| else if (ver >= 8) |
| ring_sz = 8; |
| else |
| ring_sz = 6; |
| |
| cs = intel_ring_begin(rq, ring_sz); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| if (HAS_FLAT_CCS(i915) && ver >= 12) { |
| *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 | |
| (XY_FAST_COLOR_BLT_DW - 2); |
| *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) | |
| (PAGE_SIZE - 1); |
| *cs++ = 0; |
| *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; |
| *cs++ = offset; |
| *cs++ = rq->engine->instance; |
| *cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT; |
| /* BG7 */ |
| *cs++ = value; |
| *cs++ = 0; |
| *cs++ = 0; |
| *cs++ = 0; |
| /* BG11 */ |
| *cs++ = 0; |
| *cs++ = 0; |
| /* BG13 */ |
| *cs++ = 0; |
| *cs++ = 0; |
| *cs++ = 0; |
| } else if (ver >= 8) { |
| *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2); |
| *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE; |
| *cs++ = 0; |
| *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; |
| *cs++ = offset; |
| *cs++ = rq->engine->instance; |
| *cs++ = value; |
| *cs++ = MI_NOOP; |
| } else { |
| *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2); |
| *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE; |
| *cs++ = 0; |
| *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; |
| *cs++ = offset; |
| *cs++ = value; |
| } |
| |
| intel_ring_advance(rq, cs); |
| return 0; |
| } |
| |
| int |
| intel_context_migrate_clear(struct intel_context *ce, |
| const struct i915_deps *deps, |
| struct scatterlist *sg, |
| enum i915_cache_level cache_level, |
| bool is_lmem, |
| u32 value, |
| struct i915_request **out) |
| { |
| struct drm_i915_private *i915 = ce->engine->i915; |
| struct sgt_dma it = sg_sgt(sg); |
| struct i915_request *rq; |
| u32 offset; |
| int err; |
| |
| GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm); |
| *out = NULL; |
| |
| GEM_BUG_ON(ce->ring->size < SZ_64K); |
| |
| offset = 0; |
| if (HAS_64K_PAGES(i915) && is_lmem) |
| offset = CHUNK_SZ; |
| |
| do { |
| int len; |
| |
| rq = i915_request_create(ce); |
| if (IS_ERR(rq)) { |
| err = PTR_ERR(rq); |
| goto out_ce; |
| } |
| |
| if (deps) { |
| err = i915_request_await_deps(rq, deps); |
| if (err) |
| goto out_rq; |
| |
| if (rq->engine->emit_init_breadcrumb) { |
| err = rq->engine->emit_init_breadcrumb(rq); |
| if (err) |
| goto out_rq; |
| } |
| |
| deps = NULL; |
| } |
| |
| /* The PTE updates + clear must not be interrupted. */ |
| err = emit_no_arbitration(rq); |
| if (err) |
| goto out_rq; |
| |
| len = emit_pte(rq, &it, cache_level, is_lmem, offset, CHUNK_SZ); |
| if (len <= 0) { |
| err = len; |
| goto out_rq; |
| } |
| |
| err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); |
| if (err) |
| goto out_rq; |
| |
| err = emit_clear(rq, offset, len, value, is_lmem); |
| if (err) |
| goto out_rq; |
| |
| if (HAS_FLAT_CCS(i915) && is_lmem && !value) { |
| /* |
| * copy the content of memory into corresponding |
| * ccs surface |
| */ |
| err = emit_copy_ccs(rq, offset, INDIRECT_ACCESS, offset, |
| DIRECT_ACCESS, len); |
| if (err) |
| goto out_rq; |
| } |
| |
| err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); |
| |
| /* Arbitration is re-enabled between requests. */ |
| out_rq: |
| if (*out) |
| i915_request_put(*out); |
| *out = i915_request_get(rq); |
| i915_request_add(rq); |
| if (err || !it.sg || !sg_dma_len(it.sg)) |
| break; |
| |
| cond_resched(); |
| } while (1); |
| |
| out_ce: |
| return err; |
| } |
| |
| int intel_migrate_copy(struct intel_migrate *m, |
| struct i915_gem_ww_ctx *ww, |
| const struct i915_deps *deps, |
| struct scatterlist *src, |
| enum i915_cache_level src_cache_level, |
| bool src_is_lmem, |
| struct scatterlist *dst, |
| enum i915_cache_level dst_cache_level, |
| bool dst_is_lmem, |
| struct i915_request **out) |
| { |
| struct intel_context *ce; |
| int err; |
| |
| *out = NULL; |
| if (!m->context) |
| return -ENODEV; |
| |
| ce = intel_migrate_create_context(m); |
| if (IS_ERR(ce)) |
| ce = intel_context_get(m->context); |
| GEM_BUG_ON(IS_ERR(ce)); |
| |
| err = intel_context_pin_ww(ce, ww); |
| if (err) |
| goto out; |
| |
| err = intel_context_migrate_copy(ce, deps, |
| src, src_cache_level, src_is_lmem, |
| dst, dst_cache_level, dst_is_lmem, |
| out); |
| |
| intel_context_unpin(ce); |
| out: |
| intel_context_put(ce); |
| return err; |
| } |
| |
| int |
| intel_migrate_clear(struct intel_migrate *m, |
| struct i915_gem_ww_ctx *ww, |
| const struct i915_deps *deps, |
| struct scatterlist *sg, |
| enum i915_cache_level cache_level, |
| bool is_lmem, |
| u32 value, |
| struct i915_request **out) |
| { |
| struct intel_context *ce; |
| int err; |
| |
| *out = NULL; |
| if (!m->context) |
| return -ENODEV; |
| |
| ce = intel_migrate_create_context(m); |
| if (IS_ERR(ce)) |
| ce = intel_context_get(m->context); |
| GEM_BUG_ON(IS_ERR(ce)); |
| |
| err = intel_context_pin_ww(ce, ww); |
| if (err) |
| goto out; |
| |
| err = intel_context_migrate_clear(ce, deps, sg, cache_level, |
| is_lmem, value, out); |
| |
| intel_context_unpin(ce); |
| out: |
| intel_context_put(ce); |
| return err; |
| } |
| |
| void intel_migrate_fini(struct intel_migrate *m) |
| { |
| struct intel_context *ce; |
| |
| ce = fetch_and_zero(&m->context); |
| if (!ce) |
| return; |
| |
| intel_engine_destroy_pinned_context(ce); |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftest_migrate.c" |
| #endif |