blob: 2b10b96b17b5bda2f31d259fdf8b64a77270bcf8 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include "i915_drv.h"
#include "intel_context.h"
#include "intel_gpu_commands.h"
#include "intel_gt.h"
#include "intel_gtt.h"
#include "intel_migrate.h"
#include "intel_ring.h"
struct insert_pte_data {
u64 offset;
};
#define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */
#define GET_CCS_BYTES(i915, size) (HAS_FLAT_CCS(i915) ? \
DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0)
static bool engine_supports_migration(struct intel_engine_cs *engine)
{
if (!engine)
return false;
/*
* We need the ability to prevent aribtration (MI_ARB_ON_OFF),
* the ability to write PTE using inline data (MI_STORE_DATA)
* and of course the ability to do the block transfer (blits).
*/
GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS);
return true;
}
static void xehpsdv_toggle_pdes(struct i915_address_space *vm,
struct i915_page_table *pt,
void *data)
{
struct insert_pte_data *d = data;
/*
* Insert a dummy PTE into every PT that will map to LMEM to ensure
* we have a correctly setup PDE structure for later use.
*/
vm->insert_page(vm, 0, d->offset, I915_CACHE_NONE, PTE_LM);
GEM_BUG_ON(!pt->is_compact);
d->offset += SZ_2M;
}
static void xehpsdv_insert_pte(struct i915_address_space *vm,
struct i915_page_table *pt,
void *data)
{
struct insert_pte_data *d = data;
/*
* We are playing tricks here, since the actual pt, from the hw
* pov, is only 256bytes with 32 entries, or 4096bytes with 512
* entries, but we are still guaranteed that the physical
* alignment is 64K underneath for the pt, and we are careful
* not to access the space in the void.
*/
vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE, PTE_LM);
d->offset += SZ_64K;
}
static void insert_pte(struct i915_address_space *vm,
struct i915_page_table *pt,
void *data)
{
struct insert_pte_data *d = data;
vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE,
i915_gem_object_is_lmem(pt->base) ? PTE_LM : 0);
d->offset += PAGE_SIZE;
}
static struct i915_address_space *migrate_vm(struct intel_gt *gt)
{
struct i915_vm_pt_stash stash = {};
struct i915_ppgtt *vm;
int err;
int i;
/*
* We construct a very special VM for use by all migration contexts,
* it is kept pinned so that it can be used at any time. As we need
* to pre-allocate the page directories for the migration VM, this
* limits us to only using a small number of prepared vma.
*
* To be able to pipeline and reschedule migration operations while
* avoiding unnecessary contention on the vm itself, the PTE updates
* are inline with the blits. All the blits use the same fixed
* addresses, with the backing store redirection being updated on the
* fly. Only 2 implicit vma are used for all migration operations.
*
* We lay the ppGTT out as:
*
* [0, CHUNK_SZ) -> first object
* [CHUNK_SZ, 2 * CHUNK_SZ) -> second object
* [2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE
*
* By exposing the dma addresses of the page directories themselves
* within the ppGTT, we are then able to rewrite the PTE prior to use.
* But the PTE update and subsequent migration operation must be atomic,
* i.e. within the same non-preemptible window so that we do not switch
* to another migration context that overwrites the PTE.
*
* This changes quite a bit on platforms with HAS_64K_PAGES support,
* where we instead have three windows, each CHUNK_SIZE in size. The
* first is reserved for mapping system-memory, and that just uses the
* 512 entry layout using 4K GTT pages. The other two windows just map
* lmem pages and must use the new compact 32 entry layout using 64K GTT
* pages, which ensures we can address any lmem object that the user
* throws at us. We then also use the xehpsdv_toggle_pdes as a way of
* just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the
* compact layout for each of these page-tables, that fall within the
* [CHUNK_SIZE, 3 * CHUNK_SIZE) range.
*
* We lay the ppGTT out as:
*
* [0, CHUNK_SZ) -> first window/object, maps smem
* [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src
* [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst
*
* For the PTE window it's also quite different, since each PTE must
* point to some 64K page, one for each PT(since it's in lmem), and yet
* each is only <= 4096bytes, but since the unused space within that PTE
* range is never touched, this should be fine.
*
* So basically each PT now needs 64K of virtual memory, instead of 4K,
* which looks like:
*
* [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE
*/
vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY);
if (IS_ERR(vm))
return ERR_CAST(vm);
if (!vm->vm.allocate_va_range || !vm->vm.foreach) {
err = -ENODEV;
goto err_vm;
}
if (HAS_64K_PAGES(gt->i915))
stash.pt_sz = I915_GTT_PAGE_SIZE_64K;
/*
* Each engine instance is assigned its own chunk in the VM, so
* that we can run multiple instances concurrently
*/
for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
struct intel_engine_cs *engine;
u64 base = (u64)i << 32;
struct insert_pte_data d = {};
struct i915_gem_ww_ctx ww;
u64 sz;
engine = gt->engine_class[COPY_ENGINE_CLASS][i];
if (!engine_supports_migration(engine))
continue;
/*
* We copy in 8MiB chunks. Each PDE covers 2MiB, so we need
* 4x2 page directories for source/destination.
*/
if (HAS_64K_PAGES(gt->i915))
sz = 3 * CHUNK_SZ;
else
sz = 2 * CHUNK_SZ;
d.offset = base + sz;
/*
* We need another page directory setup so that we can write
* the 8x512 PTE in each chunk.
*/
if (HAS_64K_PAGES(gt->i915))
sz += (sz / SZ_2M) * SZ_64K;
else
sz += (sz >> 12) * sizeof(u64);
err = i915_vm_alloc_pt_stash(&vm->vm, &stash, sz);
if (err)
goto err_vm;
for_i915_gem_ww(&ww, err, true) {
err = i915_vm_lock_objects(&vm->vm, &ww);
if (err)
continue;
err = i915_vm_map_pt_stash(&vm->vm, &stash);
if (err)
continue;
vm->vm.allocate_va_range(&vm->vm, &stash, base, sz);
}
i915_vm_free_pt_stash(&vm->vm, &stash);
if (err)
goto err_vm;
/* Now allow the GPU to rewrite the PTE via its own ppGTT */
if (HAS_64K_PAGES(gt->i915)) {
vm->vm.foreach(&vm->vm, base, d.offset - base,
xehpsdv_insert_pte, &d);
d.offset = base + CHUNK_SZ;
vm->vm.foreach(&vm->vm,
d.offset,
2 * CHUNK_SZ,
xehpsdv_toggle_pdes, &d);
} else {
vm->vm.foreach(&vm->vm, base, d.offset - base,
insert_pte, &d);
}
}
return &vm->vm;
err_vm:
i915_vm_put(&vm->vm);
return ERR_PTR(err);
}
static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
int i;
for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
engine = gt->engine_class[COPY_ENGINE_CLASS][i];
if (engine_supports_migration(engine))
return engine;
}
return NULL;
}
static struct intel_context *pinned_context(struct intel_gt *gt)
{
static struct lock_class_key key;
struct intel_engine_cs *engine;
struct i915_address_space *vm;
struct intel_context *ce;
engine = first_copy_engine(gt);
if (!engine)
return ERR_PTR(-ENODEV);
vm = migrate_vm(gt);
if (IS_ERR(vm))
return ERR_CAST(vm);
ce = intel_engine_create_pinned_context(engine, vm, SZ_512K,
I915_GEM_HWS_MIGRATE,
&key, "migrate");
i915_vm_put(vm);
return ce;
}
int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt)
{
struct intel_context *ce;
memset(m, 0, sizeof(*m));
ce = pinned_context(gt);
if (IS_ERR(ce))
return PTR_ERR(ce);
m->context = ce;
return 0;
}
static int random_index(unsigned int max)
{
return upper_32_bits(mul_u32_u32(get_random_u32(), max));
}
static struct intel_context *__migrate_engines(struct intel_gt *gt)
{
struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE];
struct intel_engine_cs *engine;
unsigned int count, i;
count = 0;
for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
engine = gt->engine_class[COPY_ENGINE_CLASS][i];
if (engine_supports_migration(engine))
engines[count++] = engine;
}
return intel_context_create(engines[random_index(count)]);
}
struct intel_context *intel_migrate_create_context(struct intel_migrate *m)
{
struct intel_context *ce;
/*
* We randomly distribute contexts across the engines upon constrction,
* as they all share the same pinned vm, and so in order to allow
* multiple blits to run in parallel, we must construct each blit
* to use a different range of the vm for its GTT. This has to be
* known at construction, so we can not use the late greedy load
* balancing of the virtual-engine.
*/
ce = __migrate_engines(m->context->engine->gt);
if (IS_ERR(ce))
return ce;
ce->ring = NULL;
ce->ring_size = SZ_256K;
i915_vm_put(ce->vm);
ce->vm = i915_vm_get(m->context->vm);
return ce;
}
static inline struct sgt_dma sg_sgt(struct scatterlist *sg)
{
dma_addr_t addr = sg_dma_address(sg);
return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) };
}
static int emit_no_arbitration(struct i915_request *rq)
{
u32 *cs;
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
/* Explicitly disable preemption for this request. */
*cs++ = MI_ARB_ON_OFF;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static int emit_pte(struct i915_request *rq,
struct sgt_dma *it,
enum i915_cache_level cache_level,
bool is_lmem,
u64 offset,
int length)
{
bool has_64K_pages = HAS_64K_PAGES(rq->engine->i915);
const u64 encode = rq->context->vm->pte_encode(0, cache_level,
is_lmem ? PTE_LM : 0);
struct intel_ring *ring = rq->ring;
int pkt, dword_length;
u32 total = 0;
u32 page_size;
u32 *hdr, *cs;
GEM_BUG_ON(GRAPHICS_VER(rq->engine->i915) < 8);
page_size = I915_GTT_PAGE_SIZE;
dword_length = 0x400;
/* Compute the page directory offset for the target address range */
if (has_64K_pages) {
GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M));
offset /= SZ_2M;
offset *= SZ_64K;
offset += 3 * CHUNK_SZ;
if (is_lmem) {
page_size = I915_GTT_PAGE_SIZE_64K;
dword_length = 0x40;
}
} else {
offset >>= 12;
offset *= sizeof(u64);
offset += 2 * CHUNK_SZ;
}
offset += (u64)rq->engine->instance << 32;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
/* Pack as many PTE updates as possible into a single MI command */
pkt = min_t(int, dword_length, ring->space / sizeof(u32) + 5);
pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5);
hdr = cs;
*cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
do {
if (cs - hdr >= pkt) {
int dword_rem;
*hdr += cs - hdr - 2;
*cs++ = MI_NOOP;
ring->emit = (void *)cs - ring->vaddr;
intel_ring_advance(rq, cs);
intel_ring_update_space(ring);
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
dword_rem = dword_length;
if (has_64K_pages) {
if (IS_ALIGNED(total, SZ_2M)) {
offset = round_up(offset, SZ_64K);
} else {
dword_rem = SZ_2M - (total & (SZ_2M - 1));
dword_rem /= page_size;
dword_rem *= 2;
}
}
pkt = min_t(int, dword_rem, ring->space / sizeof(u32) + 5);
pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5);
hdr = cs;
*cs++ = MI_STORE_DATA_IMM | REG_BIT(21);
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
}
GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size));
*cs++ = lower_32_bits(encode | it->dma);
*cs++ = upper_32_bits(encode | it->dma);
offset += 8;
total += page_size;
it->dma += page_size;
if (it->dma >= it->max) {
it->sg = __sg_next(it->sg);
if (!it->sg || sg_dma_len(it->sg) == 0)
break;
it->dma = sg_dma_address(it->sg);
it->max = it->dma + sg_dma_len(it->sg);
}
} while (total < length);
*hdr += cs - hdr - 2;
*cs++ = MI_NOOP;
ring->emit = (void *)cs - ring->vaddr;
intel_ring_advance(rq, cs);
intel_ring_update_space(ring);
return total;
}
static bool wa_1209644611_applies(int ver, u32 size)
{
u32 height = size >> PAGE_SHIFT;
if (ver != 11)
return false;
return height % 4 == 3 && height <= 8;
}
/**
* DOC: Flat-CCS - Memory compression for Local memory
*
* On Xe-HP and later devices, we use dedicated compression control state (CCS)
* stored in local memory for each surface, to support the 3D and media
* compression formats.
*
* The memory required for the CCS of the entire local memory is 1/256 of the
* local memory size. So before the kernel boot, the required memory is reserved
* for the CCS data and a secure register will be programmed with the CCS base
* address.
*
* Flat CCS data needs to be cleared when a lmem object is allocated.
* And CCS data can be copied in and out of CCS region through
* XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly.
*
* I915 supports Flat-CCS on lmem only objects. When an objects has smem in
* its preference list, on memory pressure, i915 needs to migrate the lmem
* content into smem. If the lmem object is Flat-CCS compressed by userspace,
* then i915 needs to decompress it. But I915 lack the required information
* for such decompression. Hence I915 supports Flat-CCS only on lmem only objects.
*
* When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can
* be temporarily evicted to smem, along with the auxiliary CCS state, where
* it can be potentially swapped-out at a later point, if required.
* If userspace later touches the evicted pages, then we always move
* the backing memory back to lmem, which includes restoring the saved CCS state,
* and potentially performing any required swap-in.
*
* For the migration of the lmem objects with smem in placement list, such as
* {lmem, smem}, objects are treated as non Flat-CCS capable objects.
*/
static inline u32 *i915_flush_dw(u32 *cmd, u32 flags)
{
*cmd++ = MI_FLUSH_DW | flags;
*cmd++ = 0;
*cmd++ = 0;
return cmd;
}
static u32 calc_ctrl_surf_instr_size(struct drm_i915_private *i915, int size)
{
u32 num_cmds, num_blks, total_size;
if (!GET_CCS_BYTES(i915, size))
return 0;
/*
* XY_CTRL_SURF_COPY_BLT transfers CCS in 256 byte
* blocks. one XY_CTRL_SURF_COPY_BLT command can
* transfer upto 1024 blocks.
*/
num_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size),
NUM_CCS_BYTES_PER_BLOCK);
num_cmds = DIV_ROUND_UP(num_blks, NUM_CCS_BLKS_PER_XFER);
total_size = XY_CTRL_SURF_INSTR_SIZE * num_cmds;
/*
* Adding a flush before and after XY_CTRL_SURF_COPY_BLT
*/
total_size += 2 * MI_FLUSH_DW_SIZE;
return total_size;
}
static int emit_copy_ccs(struct i915_request *rq,
u32 dst_offset, u8 dst_access,
u32 src_offset, u8 src_access, int size)
{
struct drm_i915_private *i915 = rq->engine->i915;
int mocs = rq->engine->gt->mocs.uc_index << 1;
u32 num_ccs_blks, ccs_ring_size;
u32 *cs;
ccs_ring_size = calc_ctrl_surf_instr_size(i915, size);
WARN_ON(!ccs_ring_size);
cs = intel_ring_begin(rq, round_up(ccs_ring_size, 2));
if (IS_ERR(cs))
return PTR_ERR(cs);
num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size),
NUM_CCS_BYTES_PER_BLOCK);
GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER);
cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
/*
* The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS
* data in and out of the CCS region.
*
* We can copy at most 1024 blocks of 256 bytes using one
* XY_CTRL_SURF_COPY_BLT instruction.
*
* In case we need to copy more than 1024 blocks, we need to add
* another instruction to the same batch buffer.
*
* 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS.
*
* 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM.
*/
*cs++ = XY_CTRL_SURF_COPY_BLT |
src_access << SRC_ACCESS_TYPE_SHIFT |
dst_access << DST_ACCESS_TYPE_SHIFT |
((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT;
*cs++ = src_offset;
*cs++ = rq->engine->instance |
FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
*cs++ = dst_offset;
*cs++ = rq->engine->instance |
FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
if (ccs_ring_size & 1)
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static int emit_copy(struct i915_request *rq,
u32 dst_offset, u32 src_offset, int size)
{
const int ver = GRAPHICS_VER(rq->engine->i915);
u32 instance = rq->engine->instance;
u32 *cs;
cs = intel_ring_begin(rq, ver >= 8 ? 10 : 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
if (ver >= 9 && !wa_1209644611_applies(ver, size)) {
*cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2);
*cs++ = BLT_DEPTH_32 | PAGE_SIZE;
*cs++ = 0;
*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
*cs++ = dst_offset;
*cs++ = instance;
*cs++ = 0;
*cs++ = PAGE_SIZE;
*cs++ = src_offset;
*cs++ = instance;
} else if (ver >= 8) {
*cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2);
*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
*cs++ = 0;
*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
*cs++ = dst_offset;
*cs++ = instance;
*cs++ = 0;
*cs++ = PAGE_SIZE;
*cs++ = src_offset;
*cs++ = instance;
} else {
GEM_BUG_ON(instance);
*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE;
*cs++ = dst_offset;
*cs++ = PAGE_SIZE;
*cs++ = src_offset;
}
intel_ring_advance(rq, cs);
return 0;
}
static int scatter_list_length(struct scatterlist *sg)
{
int len = 0;
while (sg && sg_dma_len(sg)) {
len += sg_dma_len(sg);
sg = sg_next(sg);
};
return len;
}
static void
calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem,
int *src_sz, u32 bytes_to_cpy, u32 ccs_bytes_to_cpy)
{
if (ccs_bytes_to_cpy) {
if (!src_is_lmem)
/*
* When CHUNK_SZ is passed all the pages upto CHUNK_SZ
* will be taken for the blt. in Flat-ccs supported
* platform Smem obj will have more pages than required
* for main meory hence limit it to the required size
* for main memory
*/
*src_sz = min_t(int, bytes_to_cpy, CHUNK_SZ);
} else { /* ccs handling is not required */
*src_sz = CHUNK_SZ;
}
}
static void get_ccs_sg_sgt(struct sgt_dma *it, u32 bytes_to_cpy)
{
u32 len;
do {
GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg));
len = it->max - it->dma;
if (len > bytes_to_cpy) {
it->dma += bytes_to_cpy;
break;
}
bytes_to_cpy -= len;
it->sg = __sg_next(it->sg);
it->dma = sg_dma_address(it->sg);
it->max = it->dma + sg_dma_len(it->sg);
} while (bytes_to_cpy);
}
int
intel_context_migrate_copy(struct intel_context *ce,
const struct i915_deps *deps,
struct scatterlist *src,
enum i915_cache_level src_cache_level,
bool src_is_lmem,
struct scatterlist *dst,
enum i915_cache_level dst_cache_level,
bool dst_is_lmem,
struct i915_request **out)
{
struct sgt_dma it_src = sg_sgt(src), it_dst = sg_sgt(dst), it_ccs;
struct drm_i915_private *i915 = ce->engine->i915;
u32 ccs_bytes_to_cpy = 0, bytes_to_cpy;
enum i915_cache_level ccs_cache_level;
u32 src_offset, dst_offset;
u8 src_access, dst_access;
struct i915_request *rq;
int src_sz, dst_sz;
bool ccs_is_src, overwrite_ccs;
int err;
GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem));
*out = NULL;
GEM_BUG_ON(ce->ring->size < SZ_64K);
src_sz = scatter_list_length(src);
bytes_to_cpy = src_sz;
if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) {
src_access = !src_is_lmem && dst_is_lmem;
dst_access = !src_access;
dst_sz = scatter_list_length(dst);
if (src_is_lmem) {
it_ccs = it_dst;
ccs_cache_level = dst_cache_level;
ccs_is_src = false;
} else if (dst_is_lmem) {
bytes_to_cpy = dst_sz;
it_ccs = it_src;
ccs_cache_level = src_cache_level;
ccs_is_src = true;
}
/*
* When there is a eviction of ccs needed smem will have the
* extra pages for the ccs data
*
* TO-DO: Want to move the size mismatch check to a WARN_ON,
* but still we have some requests of smem->lmem with same size.
* Need to fix it.
*/
ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0;
if (ccs_bytes_to_cpy)
get_ccs_sg_sgt(&it_ccs, bytes_to_cpy);
}
overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem;
src_offset = 0;
dst_offset = CHUNK_SZ;
if (HAS_64K_PAGES(ce->engine->i915)) {
src_offset = 0;
dst_offset = 0;
if (src_is_lmem)
src_offset = CHUNK_SZ;
if (dst_is_lmem)
dst_offset = 2 * CHUNK_SZ;
}
do {
int len;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_ce;
}
if (deps) {
err = i915_request_await_deps(rq, deps);
if (err)
goto out_rq;
if (rq->engine->emit_init_breadcrumb) {
err = rq->engine->emit_init_breadcrumb(rq);
if (err)
goto out_rq;
}
deps = NULL;
}
/* The PTE updates + copy must not be interrupted. */
err = emit_no_arbitration(rq);
if (err)
goto out_rq;
calculate_chunk_sz(i915, src_is_lmem, &src_sz,
bytes_to_cpy, ccs_bytes_to_cpy);
len = emit_pte(rq, &it_src, src_cache_level, src_is_lmem,
src_offset, src_sz);
if (!len) {
err = -EINVAL;
goto out_rq;
}
if (len < 0) {
err = len;
goto out_rq;
}
err = emit_pte(rq, &it_dst, dst_cache_level, dst_is_lmem,
dst_offset, len);
if (err < 0)
goto out_rq;
if (err < len) {
err = -EINVAL;
goto out_rq;
}
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
if (err)
goto out_rq;
err = emit_copy(rq, dst_offset, src_offset, len);
if (err)
goto out_rq;
bytes_to_cpy -= len;
if (ccs_bytes_to_cpy) {
int ccs_sz;
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
if (err)
goto out_rq;
ccs_sz = GET_CCS_BYTES(i915, len);
err = emit_pte(rq, &it_ccs, ccs_cache_level, false,
ccs_is_src ? src_offset : dst_offset,
ccs_sz);
if (err < 0)
goto out_rq;
if (err < ccs_sz) {
err = -EINVAL;
goto out_rq;
}
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
if (err)
goto out_rq;
err = emit_copy_ccs(rq, dst_offset, dst_access,
src_offset, src_access, len);
if (err)
goto out_rq;
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
if (err)
goto out_rq;
ccs_bytes_to_cpy -= ccs_sz;
} else if (overwrite_ccs) {
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
if (err)
goto out_rq;
/*
* While we can't always restore/manage the CCS state,
* we still need to ensure we don't leak the CCS state
* from the previous user, so make sure we overwrite it
* with something.
*/
err = emit_copy_ccs(rq, dst_offset, INDIRECT_ACCESS,
dst_offset, DIRECT_ACCESS, len);
if (err)
goto out_rq;
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
if (err)
goto out_rq;
}
/* Arbitration is re-enabled between requests. */
out_rq:
if (*out)
i915_request_put(*out);
*out = i915_request_get(rq);
i915_request_add(rq);
if (err)
break;
if (!bytes_to_cpy && !ccs_bytes_to_cpy) {
if (src_is_lmem)
WARN_ON(it_src.sg && sg_dma_len(it_src.sg));
else
WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg));
break;
}
if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) ||
!it_dst.sg || !sg_dma_len(it_dst.sg) ||
(ccs_bytes_to_cpy && (!it_ccs.sg ||
!sg_dma_len(it_ccs.sg))))) {
err = -EINVAL;
break;
}
cond_resched();
} while (1);
out_ce:
return err;
}
static int emit_clear(struct i915_request *rq, u32 offset, int size,
u32 value, bool is_lmem)
{
struct drm_i915_private *i915 = rq->engine->i915;
int mocs = rq->engine->gt->mocs.uc_index << 1;
const int ver = GRAPHICS_VER(i915);
int ring_sz;
u32 *cs;
GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX);
if (HAS_FLAT_CCS(i915) && ver >= 12)
ring_sz = XY_FAST_COLOR_BLT_DW;
else if (ver >= 8)
ring_sz = 8;
else
ring_sz = 6;
cs = intel_ring_begin(rq, ring_sz);
if (IS_ERR(cs))
return PTR_ERR(cs);
if (HAS_FLAT_CCS(i915) && ver >= 12) {
*cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
(XY_FAST_COLOR_BLT_DW - 2);
*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) |
(PAGE_SIZE - 1);
*cs++ = 0;
*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
*cs++ = offset;
*cs++ = rq->engine->instance;
*cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
/* BG7 */
*cs++ = value;
*cs++ = 0;
*cs++ = 0;
*cs++ = 0;
/* BG11 */
*cs++ = 0;
*cs++ = 0;
/* BG13 */
*cs++ = 0;
*cs++ = 0;
*cs++ = 0;
} else if (ver >= 8) {
*cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2);
*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
*cs++ = 0;
*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
*cs++ = offset;
*cs++ = rq->engine->instance;
*cs++ = value;
*cs++ = MI_NOOP;
} else {
*cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
*cs++ = 0;
*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
*cs++ = offset;
*cs++ = value;
}
intel_ring_advance(rq, cs);
return 0;
}
int
intel_context_migrate_clear(struct intel_context *ce,
const struct i915_deps *deps,
struct scatterlist *sg,
enum i915_cache_level cache_level,
bool is_lmem,
u32 value,
struct i915_request **out)
{
struct drm_i915_private *i915 = ce->engine->i915;
struct sgt_dma it = sg_sgt(sg);
struct i915_request *rq;
u32 offset;
int err;
GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
*out = NULL;
GEM_BUG_ON(ce->ring->size < SZ_64K);
offset = 0;
if (HAS_64K_PAGES(i915) && is_lmem)
offset = CHUNK_SZ;
do {
int len;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_ce;
}
if (deps) {
err = i915_request_await_deps(rq, deps);
if (err)
goto out_rq;
if (rq->engine->emit_init_breadcrumb) {
err = rq->engine->emit_init_breadcrumb(rq);
if (err)
goto out_rq;
}
deps = NULL;
}
/* The PTE updates + clear must not be interrupted. */
err = emit_no_arbitration(rq);
if (err)
goto out_rq;
len = emit_pte(rq, &it, cache_level, is_lmem, offset, CHUNK_SZ);
if (len <= 0) {
err = len;
goto out_rq;
}
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
if (err)
goto out_rq;
err = emit_clear(rq, offset, len, value, is_lmem);
if (err)
goto out_rq;
if (HAS_FLAT_CCS(i915) && is_lmem && !value) {
/*
* copy the content of memory into corresponding
* ccs surface
*/
err = emit_copy_ccs(rq, offset, INDIRECT_ACCESS, offset,
DIRECT_ACCESS, len);
if (err)
goto out_rq;
}
err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
/* Arbitration is re-enabled between requests. */
out_rq:
if (*out)
i915_request_put(*out);
*out = i915_request_get(rq);
i915_request_add(rq);
if (err || !it.sg || !sg_dma_len(it.sg))
break;
cond_resched();
} while (1);
out_ce:
return err;
}
int intel_migrate_copy(struct intel_migrate *m,
struct i915_gem_ww_ctx *ww,
const struct i915_deps *deps,
struct scatterlist *src,
enum i915_cache_level src_cache_level,
bool src_is_lmem,
struct scatterlist *dst,
enum i915_cache_level dst_cache_level,
bool dst_is_lmem,
struct i915_request **out)
{
struct intel_context *ce;
int err;
*out = NULL;
if (!m->context)
return -ENODEV;
ce = intel_migrate_create_context(m);
if (IS_ERR(ce))
ce = intel_context_get(m->context);
GEM_BUG_ON(IS_ERR(ce));
err = intel_context_pin_ww(ce, ww);
if (err)
goto out;
err = intel_context_migrate_copy(ce, deps,
src, src_cache_level, src_is_lmem,
dst, dst_cache_level, dst_is_lmem,
out);
intel_context_unpin(ce);
out:
intel_context_put(ce);
return err;
}
int
intel_migrate_clear(struct intel_migrate *m,
struct i915_gem_ww_ctx *ww,
const struct i915_deps *deps,
struct scatterlist *sg,
enum i915_cache_level cache_level,
bool is_lmem,
u32 value,
struct i915_request **out)
{
struct intel_context *ce;
int err;
*out = NULL;
if (!m->context)
return -ENODEV;
ce = intel_migrate_create_context(m);
if (IS_ERR(ce))
ce = intel_context_get(m->context);
GEM_BUG_ON(IS_ERR(ce));
err = intel_context_pin_ww(ce, ww);
if (err)
goto out;
err = intel_context_migrate_clear(ce, deps, sg, cache_level,
is_lmem, value, out);
intel_context_unpin(ce);
out:
intel_context_put(ce);
return err;
}
void intel_migrate_fini(struct intel_migrate *m)
{
struct intel_context *ce;
ce = fetch_and_zero(&m->context);
if (!ce)
return;
intel_engine_destroy_pinned_context(ce);
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftest_migrate.c"
#endif