blob: 110e83aad9bb440b5d4b81479839b5982a9fd843 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
* Author:
* Chris Zhong <zyw@rock-chips.com>
* Nickey Yang <nickey.yang@rock-chips.com>
*/
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/math64.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/phy/phy.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <video/mipi_display.h>
#include <drm/bridge/dw_mipi_dsi.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_simple_kms_helper.h>
#include "rockchip_drm_drv.h"
#include "rockchip_drm_vop.h"
#define DSI_PHY_RSTZ 0xa0
#define PHY_DISFORCEPLL 0
#define PHY_ENFORCEPLL BIT(3)
#define PHY_DISABLECLK 0
#define PHY_ENABLECLK BIT(2)
#define PHY_RSTZ 0
#define PHY_UNRSTZ BIT(1)
#define PHY_SHUTDOWNZ 0
#define PHY_UNSHUTDOWNZ BIT(0)
#define DSI_PHY_IF_CFG 0xa4
#define N_LANES(n) ((((n) - 1) & 0x3) << 0)
#define PHY_STOP_WAIT_TIME(cycle) (((cycle) & 0xff) << 8)
#define DSI_PHY_STATUS 0xb0
#define LOCK BIT(0)
#define STOP_STATE_CLK_LANE BIT(2)
#define DSI_PHY_TST_CTRL0 0xb4
#define PHY_TESTCLK BIT(1)
#define PHY_UNTESTCLK 0
#define PHY_TESTCLR BIT(0)
#define PHY_UNTESTCLR 0
#define DSI_PHY_TST_CTRL1 0xb8
#define PHY_TESTEN BIT(16)
#define PHY_UNTESTEN 0
#define PHY_TESTDOUT(n) (((n) & 0xff) << 8)
#define PHY_TESTDIN(n) (((n) & 0xff) << 0)
#define DSI_INT_ST0 0xbc
#define DSI_INT_ST1 0xc0
#define DSI_INT_MSK0 0xc4
#define DSI_INT_MSK1 0xc8
#define PHY_STATUS_TIMEOUT_US 10000
#define CMD_PKT_STATUS_TIMEOUT_US 20000
#define BYPASS_VCO_RANGE BIT(7)
#define VCO_RANGE_CON_SEL(val) (((val) & 0x7) << 3)
#define VCO_IN_CAP_CON_DEFAULT (0x0 << 1)
#define VCO_IN_CAP_CON_LOW (0x1 << 1)
#define VCO_IN_CAP_CON_HIGH (0x2 << 1)
#define REF_BIAS_CUR_SEL BIT(0)
#define CP_CURRENT_3UA 0x1
#define CP_CURRENT_4_5UA 0x2
#define CP_CURRENT_7_5UA 0x6
#define CP_CURRENT_6UA 0x9
#define CP_CURRENT_12UA 0xb
#define CP_CURRENT_SEL(val) ((val) & 0xf)
#define CP_PROGRAM_EN BIT(7)
#define LPF_RESISTORS_15_5KOHM 0x1
#define LPF_RESISTORS_13KOHM 0x2
#define LPF_RESISTORS_11_5KOHM 0x4
#define LPF_RESISTORS_10_5KOHM 0x8
#define LPF_RESISTORS_8KOHM 0x10
#define LPF_PROGRAM_EN BIT(6)
#define LPF_RESISTORS_SEL(val) ((val) & 0x3f)
#define HSFREQRANGE_SEL(val) (((val) & 0x3f) << 1)
#define INPUT_DIVIDER(val) (((val) - 1) & 0x7f)
#define LOW_PROGRAM_EN 0
#define HIGH_PROGRAM_EN BIT(7)
#define LOOP_DIV_LOW_SEL(val) (((val) - 1) & 0x1f)
#define LOOP_DIV_HIGH_SEL(val) ((((val) - 1) >> 5) & 0xf)
#define PLL_LOOP_DIV_EN BIT(5)
#define PLL_INPUT_DIV_EN BIT(4)
#define POWER_CONTROL BIT(6)
#define INTERNAL_REG_CURRENT BIT(3)
#define BIAS_BLOCK_ON BIT(2)
#define BANDGAP_ON BIT(0)
#define TER_RESISTOR_HIGH BIT(7)
#define TER_RESISTOR_LOW 0
#define LEVEL_SHIFTERS_ON BIT(6)
#define TER_CAL_DONE BIT(5)
#define SETRD_MAX (0x7 << 2)
#define POWER_MANAGE BIT(1)
#define TER_RESISTORS_ON BIT(0)
#define BIASEXTR_SEL(val) ((val) & 0x7)
#define BANDGAP_SEL(val) ((val) & 0x7)
#define TLP_PROGRAM_EN BIT(7)
#define THS_PRE_PROGRAM_EN BIT(7)
#define THS_ZERO_PROGRAM_EN BIT(6)
#define PLL_BIAS_CUR_SEL_CAP_VCO_CONTROL 0x10
#define PLL_CP_CONTROL_PLL_LOCK_BYPASS 0x11
#define PLL_LPF_AND_CP_CONTROL 0x12
#define PLL_INPUT_DIVIDER_RATIO 0x17
#define PLL_LOOP_DIVIDER_RATIO 0x18
#define PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL 0x19
#define BANDGAP_AND_BIAS_CONTROL 0x20
#define TERMINATION_RESISTER_CONTROL 0x21
#define AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY 0x22
#define HS_RX_CONTROL_OF_LANE_CLK 0x34
#define HS_RX_CONTROL_OF_LANE_0 0x44
#define HS_RX_CONTROL_OF_LANE_1 0x54
#define HS_TX_CLOCK_LANE_REQUEST_STATE_TIME_CONTROL 0x60
#define HS_TX_CLOCK_LANE_PREPARE_STATE_TIME_CONTROL 0x61
#define HS_TX_CLOCK_LANE_HS_ZERO_STATE_TIME_CONTROL 0x62
#define HS_TX_CLOCK_LANE_TRAIL_STATE_TIME_CONTROL 0x63
#define HS_TX_CLOCK_LANE_EXIT_STATE_TIME_CONTROL 0x64
#define HS_TX_CLOCK_LANE_POST_TIME_CONTROL 0x65
#define HS_TX_DATA_LANE_REQUEST_STATE_TIME_CONTROL 0x70
#define HS_TX_DATA_LANE_PREPARE_STATE_TIME_CONTROL 0x71
#define HS_TX_DATA_LANE_HS_ZERO_STATE_TIME_CONTROL 0x72
#define HS_TX_DATA_LANE_TRAIL_STATE_TIME_CONTROL 0x73
#define HS_TX_DATA_LANE_EXIT_STATE_TIME_CONTROL 0x74
#define HS_RX_DATA_LANE_THS_SETTLE_CONTROL 0x75
#define HS_RX_CONTROL_OF_LANE_2 0x84
#define HS_RX_CONTROL_OF_LANE_3 0x94
#define DW_MIPI_NEEDS_PHY_CFG_CLK BIT(0)
#define DW_MIPI_NEEDS_GRF_CLK BIT(1)
#define PX30_GRF_PD_VO_CON1 0x0438
#define PX30_DSI_FORCETXSTOPMODE (0xf << 7)
#define PX30_DSI_FORCERXMODE BIT(6)
#define PX30_DSI_TURNDISABLE BIT(5)
#define PX30_DSI_LCDC_SEL BIT(0)
#define RK3288_GRF_SOC_CON6 0x025c
#define RK3288_DSI0_LCDC_SEL BIT(6)
#define RK3288_DSI1_LCDC_SEL BIT(9)
#define RK3399_GRF_SOC_CON20 0x6250
#define RK3399_DSI0_LCDC_SEL BIT(0)
#define RK3399_DSI1_LCDC_SEL BIT(4)
#define RK3399_GRF_SOC_CON22 0x6258
#define RK3399_DSI0_TURNREQUEST (0xf << 12)
#define RK3399_DSI0_TURNDISABLE (0xf << 8)
#define RK3399_DSI0_FORCETXSTOPMODE (0xf << 4)
#define RK3399_DSI0_FORCERXMODE (0xf << 0)
#define RK3399_GRF_SOC_CON23 0x625c
#define RK3399_DSI1_TURNDISABLE (0xf << 12)
#define RK3399_DSI1_FORCETXSTOPMODE (0xf << 8)
#define RK3399_DSI1_FORCERXMODE (0xf << 4)
#define RK3399_DSI1_ENABLE (0xf << 0)
#define RK3399_GRF_SOC_CON24 0x6260
#define RK3399_TXRX_MASTERSLAVEZ BIT(7)
#define RK3399_TXRX_ENABLECLK BIT(6)
#define RK3399_TXRX_BASEDIR BIT(5)
#define RK3399_TXRX_SRC_SEL_ISP0 BIT(4)
#define RK3399_TXRX_TURNREQUEST GENMASK(3, 0)
#define HIWORD_UPDATE(val, mask) (val | (mask) << 16)
enum {
DW_DSI_USAGE_IDLE,
DW_DSI_USAGE_DSI,
DW_DSI_USAGE_PHY,
};
enum {
BANDGAP_97_07,
BANDGAP_98_05,
BANDGAP_99_02,
BANDGAP_100_00,
BANDGAP_93_17,
BANDGAP_94_15,
BANDGAP_95_12,
BANDGAP_96_10,
};
enum {
BIASEXTR_87_1,
BIASEXTR_91_5,
BIASEXTR_95_9,
BIASEXTR_100,
BIASEXTR_105_94,
BIASEXTR_111_88,
BIASEXTR_118_8,
BIASEXTR_127_7,
};
struct rockchip_dw_dsi_chip_data {
u32 reg;
u32 lcdsel_grf_reg;
u32 lcdsel_big;
u32 lcdsel_lit;
u32 enable_grf_reg;
u32 enable;
u32 lanecfg1_grf_reg;
u32 lanecfg1;
u32 lanecfg2_grf_reg;
u32 lanecfg2;
int (*dphy_rx_init)(struct phy *phy);
int (*dphy_rx_power_on)(struct phy *phy);
int (*dphy_rx_power_off)(struct phy *phy);
unsigned int flags;
unsigned int max_data_lanes;
};
struct dw_mipi_dsi_rockchip {
struct device *dev;
struct rockchip_encoder encoder;
void __iomem *base;
struct regmap *grf_regmap;
struct clk *pclk;
struct clk *pllref_clk;
struct clk *grf_clk;
struct clk *phy_cfg_clk;
/* dual-channel */
bool is_slave;
struct dw_mipi_dsi_rockchip *slave;
/* optional external dphy */
struct phy *phy;
union phy_configure_opts phy_opts;
/* being a phy for other mipi hosts */
unsigned int usage_mode;
struct mutex usage_mutex;
struct phy *dphy;
struct phy_configure_opts_mipi_dphy dphy_config;
unsigned int lane_mbps; /* per lane */
u16 input_div;
u16 feedback_div;
u32 format;
struct dw_mipi_dsi *dmd;
const struct rockchip_dw_dsi_chip_data *cdata;
struct dw_mipi_dsi_plat_data pdata;
bool dsi_bound;
};
static struct dw_mipi_dsi_rockchip *to_dsi(struct drm_encoder *encoder)
{
struct rockchip_encoder *rkencoder = to_rockchip_encoder(encoder);
return container_of(rkencoder, struct dw_mipi_dsi_rockchip, encoder);
}
struct dphy_pll_parameter_map {
unsigned int max_mbps;
u8 hsfreqrange;
u8 icpctrl;
u8 lpfctrl;
};
/* The table is based on 27MHz DPHY pll reference clock. */
static const struct dphy_pll_parameter_map dppa_map[] = {
{ 89, 0x00, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM },
{ 99, 0x10, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM },
{ 109, 0x20, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM },
{ 129, 0x01, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM },
{ 139, 0x11, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM },
{ 149, 0x21, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM },
{ 169, 0x02, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM },
{ 179, 0x12, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM },
{ 199, 0x22, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM },
{ 219, 0x03, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM },
{ 239, 0x13, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM },
{ 249, 0x23, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM },
{ 269, 0x04, CP_CURRENT_6UA, LPF_RESISTORS_11_5KOHM },
{ 299, 0x14, CP_CURRENT_6UA, LPF_RESISTORS_11_5KOHM },
{ 329, 0x05, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM },
{ 359, 0x15, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM },
{ 399, 0x25, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM },
{ 449, 0x06, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 499, 0x16, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 549, 0x07, CP_CURRENT_7_5UA, LPF_RESISTORS_10_5KOHM },
{ 599, 0x17, CP_CURRENT_7_5UA, LPF_RESISTORS_10_5KOHM },
{ 649, 0x08, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 699, 0x18, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 749, 0x09, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 799, 0x19, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 849, 0x29, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 899, 0x39, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM },
{ 949, 0x0a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM },
{ 999, 0x1a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM },
{1049, 0x2a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM },
{1099, 0x3a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM },
{1149, 0x0b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM },
{1199, 0x1b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM },
{1249, 0x2b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM },
{1299, 0x3b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM },
{1349, 0x0c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM },
{1399, 0x1c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM },
{1449, 0x2c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM },
{1500, 0x3c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }
};
static int max_mbps_to_parameter(unsigned int max_mbps)
{
int i;
for (i = 0; i < ARRAY_SIZE(dppa_map); i++)
if (dppa_map[i].max_mbps >= max_mbps)
return i;
return -EINVAL;
}
static inline void dsi_write(struct dw_mipi_dsi_rockchip *dsi, u32 reg, u32 val)
{
writel(val, dsi->base + reg);
}
static inline u32 dsi_read(struct dw_mipi_dsi_rockchip *dsi, u32 reg)
{
return readl(dsi->base + reg);
}
static inline void dsi_update_bits(struct dw_mipi_dsi_rockchip *dsi, u32 reg,
u32 mask, u32 val)
{
dsi_write(dsi, reg, (dsi_read(dsi, reg) & ~mask) | val);
}
static void dw_mipi_dsi_phy_write(struct dw_mipi_dsi_rockchip *dsi,
u8 test_code,
u8 test_data)
{
/*
* With the falling edge on TESTCLK, the TESTDIN[7:0] signal content
* is latched internally as the current test code. Test data is
* programmed internally by rising edge on TESTCLK.
*/
dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_UNTESTCLR);
dsi_write(dsi, DSI_PHY_TST_CTRL1, PHY_TESTEN | PHY_TESTDOUT(0) |
PHY_TESTDIN(test_code));
dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_UNTESTCLK | PHY_UNTESTCLR);
dsi_write(dsi, DSI_PHY_TST_CTRL1, PHY_UNTESTEN | PHY_TESTDOUT(0) |
PHY_TESTDIN(test_data));
dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_UNTESTCLR);
}
/*
* ns2bc - Nanoseconds to byte clock cycles
*/
static inline unsigned int ns2bc(struct dw_mipi_dsi_rockchip *dsi, int ns)
{
return DIV_ROUND_UP(ns * dsi->lane_mbps / 8, 1000);
}
/*
* ns2ui - Nanoseconds to UI time periods
*/
static inline unsigned int ns2ui(struct dw_mipi_dsi_rockchip *dsi, int ns)
{
return DIV_ROUND_UP(ns * dsi->lane_mbps, 1000);
}
static int dw_mipi_dsi_phy_init(void *priv_data)
{
struct dw_mipi_dsi_rockchip *dsi = priv_data;
int ret, i, vco;
if (dsi->phy)
return 0;
/*
* Get vco from frequency(lane_mbps)
* vco frequency table
* 000 - between 80 and 200 MHz
* 001 - between 200 and 300 MHz
* 010 - between 300 and 500 MHz
* 011 - between 500 and 700 MHz
* 100 - between 700 and 900 MHz
* 101 - between 900 and 1100 MHz
* 110 - between 1100 and 1300 MHz
* 111 - between 1300 and 1500 MHz
*/
vco = (dsi->lane_mbps < 200) ? 0 : (dsi->lane_mbps + 100) / 200;
i = max_mbps_to_parameter(dsi->lane_mbps);
if (i < 0) {
DRM_DEV_ERROR(dsi->dev,
"failed to get parameter for %dmbps clock\n",
dsi->lane_mbps);
return i;
}
ret = clk_prepare_enable(dsi->phy_cfg_clk);
if (ret) {
DRM_DEV_ERROR(dsi->dev, "Failed to enable phy_cfg_clk\n");
return ret;
}
dw_mipi_dsi_phy_write(dsi, PLL_BIAS_CUR_SEL_CAP_VCO_CONTROL,
BYPASS_VCO_RANGE |
VCO_RANGE_CON_SEL(vco) |
VCO_IN_CAP_CON_LOW |
REF_BIAS_CUR_SEL);
dw_mipi_dsi_phy_write(dsi, PLL_CP_CONTROL_PLL_LOCK_BYPASS,
CP_CURRENT_SEL(dppa_map[i].icpctrl));
dw_mipi_dsi_phy_write(dsi, PLL_LPF_AND_CP_CONTROL,
CP_PROGRAM_EN | LPF_PROGRAM_EN |
LPF_RESISTORS_SEL(dppa_map[i].lpfctrl));
dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_0,
HSFREQRANGE_SEL(dppa_map[i].hsfreqrange));
dw_mipi_dsi_phy_write(dsi, PLL_INPUT_DIVIDER_RATIO,
INPUT_DIVIDER(dsi->input_div));
dw_mipi_dsi_phy_write(dsi, PLL_LOOP_DIVIDER_RATIO,
LOOP_DIV_LOW_SEL(dsi->feedback_div) |
LOW_PROGRAM_EN);
/*
* We need set PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL immediately
* to make the configured LSB effective according to IP simulation
* and lab test results.
* Only in this way can we get correct mipi phy pll frequency.
*/
dw_mipi_dsi_phy_write(dsi, PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL,
PLL_LOOP_DIV_EN | PLL_INPUT_DIV_EN);
dw_mipi_dsi_phy_write(dsi, PLL_LOOP_DIVIDER_RATIO,
LOOP_DIV_HIGH_SEL(dsi->feedback_div) |
HIGH_PROGRAM_EN);
dw_mipi_dsi_phy_write(dsi, PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL,
PLL_LOOP_DIV_EN | PLL_INPUT_DIV_EN);
dw_mipi_dsi_phy_write(dsi, AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY,
LOW_PROGRAM_EN | BIASEXTR_SEL(BIASEXTR_127_7));
dw_mipi_dsi_phy_write(dsi, AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY,
HIGH_PROGRAM_EN | BANDGAP_SEL(BANDGAP_96_10));
dw_mipi_dsi_phy_write(dsi, BANDGAP_AND_BIAS_CONTROL,
POWER_CONTROL | INTERNAL_REG_CURRENT |
BIAS_BLOCK_ON | BANDGAP_ON);
dw_mipi_dsi_phy_write(dsi, TERMINATION_RESISTER_CONTROL,
TER_RESISTOR_LOW | TER_CAL_DONE |
SETRD_MAX | TER_RESISTORS_ON);
dw_mipi_dsi_phy_write(dsi, TERMINATION_RESISTER_CONTROL,
TER_RESISTOR_HIGH | LEVEL_SHIFTERS_ON |
SETRD_MAX | POWER_MANAGE |
TER_RESISTORS_ON);
dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_REQUEST_STATE_TIME_CONTROL,
TLP_PROGRAM_EN | ns2bc(dsi, 500));
dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_PREPARE_STATE_TIME_CONTROL,
THS_PRE_PROGRAM_EN | ns2ui(dsi, 40));
dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_HS_ZERO_STATE_TIME_CONTROL,
THS_ZERO_PROGRAM_EN | ns2bc(dsi, 300));
dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_TRAIL_STATE_TIME_CONTROL,
THS_PRE_PROGRAM_EN | ns2ui(dsi, 100));
dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_EXIT_STATE_TIME_CONTROL,
BIT(5) | ns2bc(dsi, 100));
dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_POST_TIME_CONTROL,
BIT(5) | (ns2bc(dsi, 60) + 7));
dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_REQUEST_STATE_TIME_CONTROL,
TLP_PROGRAM_EN | ns2bc(dsi, 500));
dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_PREPARE_STATE_TIME_CONTROL,
THS_PRE_PROGRAM_EN | (ns2ui(dsi, 50) + 20));
dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_HS_ZERO_STATE_TIME_CONTROL,
THS_ZERO_PROGRAM_EN | (ns2bc(dsi, 140) + 2));
dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_TRAIL_STATE_TIME_CONTROL,
THS_PRE_PROGRAM_EN | (ns2ui(dsi, 60) + 8));
dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_EXIT_STATE_TIME_CONTROL,
BIT(5) | ns2bc(dsi, 100));
clk_disable_unprepare(dsi->phy_cfg_clk);
return ret;
}
static void dw_mipi_dsi_phy_power_on(void *priv_data)
{
struct dw_mipi_dsi_rockchip *dsi = priv_data;
int ret;
ret = phy_set_mode(dsi->phy, PHY_MODE_MIPI_DPHY);
if (ret) {
DRM_DEV_ERROR(dsi->dev, "failed to set phy mode: %d\n", ret);
return;
}
phy_configure(dsi->phy, &dsi->phy_opts);
phy_power_on(dsi->phy);
}
static void dw_mipi_dsi_phy_power_off(void *priv_data)
{
struct dw_mipi_dsi_rockchip *dsi = priv_data;
phy_power_off(dsi->phy);
}
static int
dw_mipi_dsi_get_lane_mbps(void *priv_data, const struct drm_display_mode *mode,
unsigned long mode_flags, u32 lanes, u32 format,
unsigned int *lane_mbps)
{
struct dw_mipi_dsi_rockchip *dsi = priv_data;
int bpp;
unsigned long mpclk, tmp;
unsigned int target_mbps = 1000;
unsigned int max_mbps = dppa_map[ARRAY_SIZE(dppa_map) - 1].max_mbps;
unsigned long best_freq = 0;
unsigned long fvco_min, fvco_max, fin, fout;
unsigned int min_prediv, max_prediv;
unsigned int _prediv, best_prediv;
unsigned long _fbdiv, best_fbdiv;
unsigned long min_delta = ULONG_MAX;
dsi->format = format;
bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
if (bpp < 0) {
DRM_DEV_ERROR(dsi->dev,
"failed to get bpp for pixel format %d\n",
dsi->format);
return bpp;
}
mpclk = DIV_ROUND_UP(mode->clock, MSEC_PER_SEC);
if (mpclk) {
/* take 1 / 0.8, since mbps must big than bandwidth of RGB */
tmp = mpclk * (bpp / lanes) * 10 / 8;
if (tmp < max_mbps)
target_mbps = tmp;
else
DRM_DEV_ERROR(dsi->dev,
"DPHY clock frequency is out of range\n");
}
/* for external phy only a the mipi_dphy_config is necessary */
if (dsi->phy) {
phy_mipi_dphy_get_default_config(mode->clock * 1000 * 10 / 8,
bpp, lanes,
&dsi->phy_opts.mipi_dphy);
dsi->lane_mbps = target_mbps;
*lane_mbps = dsi->lane_mbps;
return 0;
}
fin = clk_get_rate(dsi->pllref_clk);
fout = target_mbps * USEC_PER_SEC;
/* constraint: 5Mhz <= Fref / N <= 40MHz */
min_prediv = DIV_ROUND_UP(fin, 40 * USEC_PER_SEC);
max_prediv = fin / (5 * USEC_PER_SEC);
/* constraint: 80MHz <= Fvco <= 1500Mhz */
fvco_min = 80 * USEC_PER_SEC;
fvco_max = 1500 * USEC_PER_SEC;
for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
u64 tmp;
u32 delta;
/* Fvco = Fref * M / N */
tmp = (u64)fout * _prediv;
do_div(tmp, fin);
_fbdiv = tmp;
/*
* Due to the use of a "by 2 pre-scaler," the range of the
* feedback multiplication value M is limited to even division
* numbers, and m must be greater than 6, not bigger than 512.
*/
if (_fbdiv < 6 || _fbdiv > 512)
continue;
_fbdiv += _fbdiv % 2;
tmp = (u64)_fbdiv * fin;
do_div(tmp, _prediv);
if (tmp < fvco_min || tmp > fvco_max)
continue;
delta = abs(fout - tmp);
if (delta < min_delta) {
best_prediv = _prediv;
best_fbdiv = _fbdiv;
min_delta = delta;
best_freq = tmp;
}
}
if (best_freq) {
dsi->lane_mbps = DIV_ROUND_UP(best_freq, USEC_PER_SEC);
*lane_mbps = dsi->lane_mbps;
dsi->input_div = best_prediv;
dsi->feedback_div = best_fbdiv;
} else {
DRM_DEV_ERROR(dsi->dev, "Can not find best_freq for DPHY\n");
return -EINVAL;
}
return 0;
}
struct hstt {
unsigned int maxfreq;
struct dw_mipi_dsi_dphy_timing timing;
};
#define HSTT(_maxfreq, _c_lp2hs, _c_hs2lp, _d_lp2hs, _d_hs2lp) \
{ \
.maxfreq = _maxfreq, \
.timing = { \
.clk_lp2hs = _c_lp2hs, \
.clk_hs2lp = _c_hs2lp, \
.data_lp2hs = _d_lp2hs, \
.data_hs2lp = _d_hs2lp, \
} \
}
/* Table A-3 High-Speed Transition Times */
static struct hstt hstt_table[] = {
HSTT( 90, 32, 20, 26, 13),
HSTT( 100, 35, 23, 28, 14),
HSTT( 110, 32, 22, 26, 13),
HSTT( 130, 31, 20, 27, 13),
HSTT( 140, 33, 22, 26, 14),
HSTT( 150, 33, 21, 26, 14),
HSTT( 170, 32, 20, 27, 13),
HSTT( 180, 36, 23, 30, 15),
HSTT( 200, 40, 22, 33, 15),
HSTT( 220, 40, 22, 33, 15),
HSTT( 240, 44, 24, 36, 16),
HSTT( 250, 48, 24, 38, 17),
HSTT( 270, 48, 24, 38, 17),
HSTT( 300, 50, 27, 41, 18),
HSTT( 330, 56, 28, 45, 18),
HSTT( 360, 59, 28, 48, 19),
HSTT( 400, 61, 30, 50, 20),
HSTT( 450, 67, 31, 55, 21),
HSTT( 500, 73, 31, 59, 22),
HSTT( 550, 79, 36, 63, 24),
HSTT( 600, 83, 37, 68, 25),
HSTT( 650, 90, 38, 73, 27),
HSTT( 700, 95, 40, 77, 28),
HSTT( 750, 102, 40, 84, 28),
HSTT( 800, 106, 42, 87, 30),
HSTT( 850, 113, 44, 93, 31),
HSTT( 900, 118, 47, 98, 32),
HSTT( 950, 124, 47, 102, 34),
HSTT(1000, 130, 49, 107, 35),
HSTT(1050, 135, 51, 111, 37),
HSTT(1100, 139, 51, 114, 38),
HSTT(1150, 146, 54, 120, 40),
HSTT(1200, 153, 57, 125, 41),
HSTT(1250, 158, 58, 130, 42),
HSTT(1300, 163, 58, 135, 44),
HSTT(1350, 168, 60, 140, 45),
HSTT(1400, 172, 64, 144, 47),
HSTT(1450, 176, 65, 148, 48),
HSTT(1500, 181, 66, 153, 50)
};
static int
dw_mipi_dsi_phy_get_timing(void *priv_data, unsigned int lane_mbps,
struct dw_mipi_dsi_dphy_timing *timing)
{
int i;
for (i = 0; i < ARRAY_SIZE(hstt_table); i++)
if (lane_mbps < hstt_table[i].maxfreq)
break;
if (i == ARRAY_SIZE(hstt_table))
i--;
*timing = hstt_table[i].timing;
return 0;
}
static const struct dw_mipi_dsi_phy_ops dw_mipi_dsi_rockchip_phy_ops = {
.init = dw_mipi_dsi_phy_init,
.power_on = dw_mipi_dsi_phy_power_on,
.power_off = dw_mipi_dsi_phy_power_off,
.get_lane_mbps = dw_mipi_dsi_get_lane_mbps,
.get_timing = dw_mipi_dsi_phy_get_timing,
};
static void dw_mipi_dsi_rockchip_config(struct dw_mipi_dsi_rockchip *dsi)
{
if (dsi->cdata->lanecfg1_grf_reg)
regmap_write(dsi->grf_regmap, dsi->cdata->lanecfg1_grf_reg,
dsi->cdata->lanecfg1);
if (dsi->cdata->lanecfg2_grf_reg)
regmap_write(dsi->grf_regmap, dsi->cdata->lanecfg2_grf_reg,
dsi->cdata->lanecfg2);
if (dsi->cdata->enable_grf_reg)
regmap_write(dsi->grf_regmap, dsi->cdata->enable_grf_reg,
dsi->cdata->enable);
}
static void dw_mipi_dsi_rockchip_set_lcdsel(struct dw_mipi_dsi_rockchip *dsi,
int mux)
{
regmap_write(dsi->grf_regmap, dsi->cdata->lcdsel_grf_reg,
mux ? dsi->cdata->lcdsel_lit : dsi->cdata->lcdsel_big);
}
static int
dw_mipi_dsi_encoder_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc_state);
struct dw_mipi_dsi_rockchip *dsi = to_dsi(encoder);
switch (dsi->format) {
case MIPI_DSI_FMT_RGB888:
s->output_mode = ROCKCHIP_OUT_MODE_P888;
break;
case MIPI_DSI_FMT_RGB666:
s->output_mode = ROCKCHIP_OUT_MODE_P666;
break;
case MIPI_DSI_FMT_RGB565:
s->output_mode = ROCKCHIP_OUT_MODE_P565;
break;
default:
WARN_ON(1);
return -EINVAL;
}
s->output_type = DRM_MODE_CONNECTOR_DSI;
if (dsi->slave)
s->output_flags = ROCKCHIP_OUTPUT_DSI_DUAL;
return 0;
}
static void dw_mipi_dsi_encoder_enable(struct drm_encoder *encoder)
{
struct dw_mipi_dsi_rockchip *dsi = to_dsi(encoder);
int ret, mux;
mux = drm_of_encoder_active_endpoint_id(dsi->dev->of_node,
&dsi->encoder.encoder);
if (mux < 0)
return;
/*
* For the RK3399, the clk of grf must be enabled before writing grf
* register. And for RK3288 or other soc, this grf_clk must be NULL,
* the clk_prepare_enable return true directly.
*/
ret = clk_prepare_enable(dsi->grf_clk);
if (ret) {
DRM_DEV_ERROR(dsi->dev, "Failed to enable grf_clk: %d\n", ret);
return;
}
dw_mipi_dsi_rockchip_set_lcdsel(dsi, mux);
if (dsi->slave)
dw_mipi_dsi_rockchip_set_lcdsel(dsi->slave, mux);
clk_disable_unprepare(dsi->grf_clk);
}
static const struct drm_encoder_helper_funcs
dw_mipi_dsi_encoder_helper_funcs = {
.atomic_check = dw_mipi_dsi_encoder_atomic_check,
.enable = dw_mipi_dsi_encoder_enable,
};
static int rockchip_dsi_drm_create_encoder(struct dw_mipi_dsi_rockchip *dsi,
struct drm_device *drm_dev)
{
struct drm_encoder *encoder = &dsi->encoder.encoder;
int ret;
encoder->possible_crtcs = drm_of_find_possible_crtcs(drm_dev,
dsi->dev->of_node);
ret = drm_simple_encoder_init(drm_dev, encoder, DRM_MODE_ENCODER_DSI);
if (ret) {
DRM_ERROR("Failed to initialize encoder with drm\n");
return ret;
}
drm_encoder_helper_add(encoder, &dw_mipi_dsi_encoder_helper_funcs);
return 0;
}
static struct device
*dw_mipi_dsi_rockchip_find_second(struct dw_mipi_dsi_rockchip *dsi)
{
const struct of_device_id *match;
struct device_node *node = NULL, *local;
match = of_match_device(dsi->dev->driver->of_match_table, dsi->dev);
local = of_graph_get_remote_node(dsi->dev->of_node, 1, 0);
if (!local)
return NULL;
while ((node = of_find_compatible_node(node, NULL,
match->compatible))) {
struct device_node *remote;
/* found ourself */
if (node == dsi->dev->of_node)
continue;
remote = of_graph_get_remote_node(node, 1, 0);
if (!remote)
continue;
/* same display device in port1-ep0 for both */
if (remote == local) {
struct dw_mipi_dsi_rockchip *dsi2;
struct platform_device *pdev;
pdev = of_find_device_by_node(node);
/*
* we have found the second, so will either return it
* or return with an error. In any case won't need the
* nodes anymore nor continue the loop.
*/
of_node_put(remote);
of_node_put(node);
of_node_put(local);
if (!pdev)
return ERR_PTR(-EPROBE_DEFER);
dsi2 = platform_get_drvdata(pdev);
if (!dsi2) {
platform_device_put(pdev);
return ERR_PTR(-EPROBE_DEFER);
}
return &pdev->dev;
}
of_node_put(remote);
}
of_node_put(local);
return NULL;
}
static int dw_mipi_dsi_rockchip_bind(struct device *dev,
struct device *master,
void *data)
{
struct dw_mipi_dsi_rockchip *dsi = dev_get_drvdata(dev);
struct drm_device *drm_dev = data;
struct device *second;
bool master1, master2;
int ret;
second = dw_mipi_dsi_rockchip_find_second(dsi);
if (IS_ERR(second))
return PTR_ERR(second);
if (second) {
master1 = of_property_read_bool(dsi->dev->of_node,
"clock-master");
master2 = of_property_read_bool(second->of_node,
"clock-master");
if (master1 && master2) {
DRM_DEV_ERROR(dsi->dev, "only one clock-master allowed\n");
return -EINVAL;
}
if (!master1 && !master2) {
DRM_DEV_ERROR(dsi->dev, "no clock-master defined\n");
return -EINVAL;
}
/* we are the slave in dual-DSI */
if (!master1) {
dsi->is_slave = true;
return 0;
}
dsi->slave = dev_get_drvdata(second);
if (!dsi->slave) {
DRM_DEV_ERROR(dev, "could not get slaves data\n");
return -ENODEV;
}
dsi->slave->is_slave = true;
dw_mipi_dsi_set_slave(dsi->dmd, dsi->slave->dmd);
put_device(second);
}
pm_runtime_get_sync(dsi->dev);
if (dsi->slave)
pm_runtime_get_sync(dsi->slave->dev);
ret = clk_prepare_enable(dsi->pllref_clk);
if (ret) {
DRM_DEV_ERROR(dev, "Failed to enable pllref_clk: %d\n", ret);
goto out_pm_runtime;
}
/*
* With the GRF clock running, write lane and dual-mode configurations
* that won't change immediately. If we waited until enable() to do
* this, things like panel preparation would not be able to send
* commands over DSI.
*/
ret = clk_prepare_enable(dsi->grf_clk);
if (ret) {
DRM_DEV_ERROR(dsi->dev, "Failed to enable grf_clk: %d\n", ret);
goto out_pll_clk;
}
dw_mipi_dsi_rockchip_config(dsi);
if (dsi->slave)
dw_mipi_dsi_rockchip_config(dsi->slave);
clk_disable_unprepare(dsi->grf_clk);
ret = rockchip_dsi_drm_create_encoder(dsi, drm_dev);
if (ret) {
DRM_DEV_ERROR(dev, "Failed to create drm encoder\n");
goto out_pll_clk;
}
ret = dw_mipi_dsi_bind(dsi->dmd, &dsi->encoder.encoder);
if (ret) {
DRM_DEV_ERROR(dev, "Failed to bind: %d\n", ret);
goto out_pll_clk;
}
dsi->dsi_bound = true;
return 0;
out_pll_clk:
clk_disable_unprepare(dsi->pllref_clk);
out_pm_runtime:
pm_runtime_put(dsi->dev);
if (dsi->slave)
pm_runtime_put(dsi->slave->dev);
return ret;
}
static void dw_mipi_dsi_rockchip_unbind(struct device *dev,
struct device *master,
void *data)
{
struct dw_mipi_dsi_rockchip *dsi = dev_get_drvdata(dev);
if (dsi->is_slave)
return;
dsi->dsi_bound = false;
dw_mipi_dsi_unbind(dsi->dmd);
clk_disable_unprepare(dsi->pllref_clk);
pm_runtime_put(dsi->dev);
if (dsi->slave)
pm_runtime_put(dsi->slave->dev);
}
static const struct component_ops dw_mipi_dsi_rockchip_ops = {
.bind = dw_mipi_dsi_rockchip_bind,
.unbind = dw_mipi_dsi_rockchip_unbind,
};
static int dw_mipi_dsi_rockchip_host_attach(void *priv_data,
struct mipi_dsi_device *device)
{
struct dw_mipi_dsi_rockchip *dsi = priv_data;
struct device *second;
int ret;
mutex_lock(&dsi->usage_mutex);
if (dsi->usage_mode != DW_DSI_USAGE_IDLE) {
DRM_DEV_ERROR(dsi->dev, "dsi controller already in use\n");
mutex_unlock(&dsi->usage_mutex);
return -EBUSY;
}
dsi->usage_mode = DW_DSI_USAGE_DSI;
mutex_unlock(&dsi->usage_mutex);
ret = component_add(dsi->dev, &dw_mipi_dsi_rockchip_ops);
if (ret) {
DRM_DEV_ERROR(dsi->dev, "Failed to register component: %d\n",
ret);
return ret;
}
second = dw_mipi_dsi_rockchip_find_second(dsi);
if (IS_ERR(second))
return PTR_ERR(second);
if (second) {
ret = component_add(second, &dw_mipi_dsi_rockchip_ops);
if (ret) {
DRM_DEV_ERROR(second,
"Failed to register component: %d\n",
ret);
return ret;
}
}
return 0;
}
static int dw_mipi_dsi_rockchip_host_detach(void *priv_data,
struct mipi_dsi_device *device)
{
struct dw_mipi_dsi_rockchip *dsi = priv_data;
struct device *second;
second = dw_mipi_dsi_rockchip_find_second(dsi);
if (second && !IS_ERR(second))
component_del(second, &dw_mipi_dsi_rockchip_ops);
component_del(dsi->dev, &dw_mipi_dsi_rockchip_ops);
mutex_lock(&dsi->usage_mutex);
dsi->usage_mode = DW_DSI_USAGE_IDLE;
mutex_unlock(&dsi->usage_mutex);
return 0;
}
static const struct dw_mipi_dsi_host_ops dw_mipi_dsi_rockchip_host_ops = {
.attach = dw_mipi_dsi_rockchip_host_attach,
.detach = dw_mipi_dsi_rockchip_host_detach,
};
static int dw_mipi_dsi_rockchip_dphy_bind(struct device *dev,
struct device *master,
void *data)
{
/*
* Nothing to do when used as a dphy.
* Just make the rest of Rockchip-DRM happy
* by being here.
*/
return 0;
}
static void dw_mipi_dsi_rockchip_dphy_unbind(struct device *dev,
struct device *master,
void *data)
{
/* Nothing to do when used as a dphy. */
}
static const struct component_ops dw_mipi_dsi_rockchip_dphy_ops = {
.bind = dw_mipi_dsi_rockchip_dphy_bind,
.unbind = dw_mipi_dsi_rockchip_dphy_unbind,
};
static int dw_mipi_dsi_dphy_init(struct phy *phy)
{
struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy);
int ret;
mutex_lock(&dsi->usage_mutex);
if (dsi->usage_mode != DW_DSI_USAGE_IDLE) {
DRM_DEV_ERROR(dsi->dev, "dsi controller already in use\n");
mutex_unlock(&dsi->usage_mutex);
return -EBUSY;
}
dsi->usage_mode = DW_DSI_USAGE_PHY;
mutex_unlock(&dsi->usage_mutex);
ret = component_add(dsi->dev, &dw_mipi_dsi_rockchip_dphy_ops);
if (ret < 0)
goto err_graph;
if (dsi->cdata->dphy_rx_init) {
ret = clk_prepare_enable(dsi->pclk);
if (ret < 0)
goto err_init;
ret = clk_prepare_enable(dsi->grf_clk);
if (ret) {
clk_disable_unprepare(dsi->pclk);
goto err_init;
}
ret = dsi->cdata->dphy_rx_init(phy);
clk_disable_unprepare(dsi->grf_clk);
clk_disable_unprepare(dsi->pclk);
if (ret < 0)
goto err_init;
}
return 0;
err_init:
component_del(dsi->dev, &dw_mipi_dsi_rockchip_dphy_ops);
err_graph:
mutex_lock(&dsi->usage_mutex);
dsi->usage_mode = DW_DSI_USAGE_IDLE;
mutex_unlock(&dsi->usage_mutex);
return ret;
}
static int dw_mipi_dsi_dphy_exit(struct phy *phy)
{
struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy);
component_del(dsi->dev, &dw_mipi_dsi_rockchip_dphy_ops);
mutex_lock(&dsi->usage_mutex);
dsi->usage_mode = DW_DSI_USAGE_IDLE;
mutex_unlock(&dsi->usage_mutex);
return 0;
}
static int dw_mipi_dsi_dphy_configure(struct phy *phy, union phy_configure_opts *opts)
{
struct phy_configure_opts_mipi_dphy *config = &opts->mipi_dphy;
struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy);
int ret;
ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
if (ret)
return ret;
dsi->dphy_config = *config;
dsi->lane_mbps = div_u64(config->hs_clk_rate, 1000 * 1000 * 1);
return 0;
}
static int dw_mipi_dsi_dphy_power_on(struct phy *phy)
{
struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy);
int i, ret;
DRM_DEV_DEBUG(dsi->dev, "lanes %d - data_rate_mbps %u\n",
dsi->dphy_config.lanes, dsi->lane_mbps);
i = max_mbps_to_parameter(dsi->lane_mbps);
if (i < 0) {
DRM_DEV_ERROR(dsi->dev, "failed to get parameter for %dmbps clock\n",
dsi->lane_mbps);
return i;
}
ret = pm_runtime_get_sync(dsi->dev);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "failed to enable device: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(dsi->pclk);
if (ret) {
DRM_DEV_ERROR(dsi->dev, "Failed to enable pclk: %d\n", ret);
goto err_pclk;
}
ret = clk_prepare_enable(dsi->grf_clk);
if (ret) {
DRM_DEV_ERROR(dsi->dev, "Failed to enable grf_clk: %d\n", ret);
goto err_grf_clk;
}
ret = clk_prepare_enable(dsi->phy_cfg_clk);
if (ret) {
DRM_DEV_ERROR(dsi->dev, "Failed to enable phy_cfg_clk: %d\n", ret);
goto err_phy_cfg_clk;
}
/* do soc-variant specific init */
if (dsi->cdata->dphy_rx_power_on) {
ret = dsi->cdata->dphy_rx_power_on(phy);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "hardware-specific phy bringup failed: %d\n", ret);
goto err_pwr_on;
}
}
/*
* Configure hsfreqrange according to frequency values
* Set clock lane and hsfreqrange by lane0(test code 0x44)
*/
dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_CLK, 0);
dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_0,
HSFREQRANGE_SEL(dppa_map[i].hsfreqrange));
dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_1, 0);
dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_2, 0);
dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_3, 0);
/* Normal operation */
dw_mipi_dsi_phy_write(dsi, 0x0, 0);
clk_disable_unprepare(dsi->phy_cfg_clk);
clk_disable_unprepare(dsi->grf_clk);
return ret;
err_pwr_on:
clk_disable_unprepare(dsi->phy_cfg_clk);
err_phy_cfg_clk:
clk_disable_unprepare(dsi->grf_clk);
err_grf_clk:
clk_disable_unprepare(dsi->pclk);
err_pclk:
pm_runtime_put(dsi->dev);
return ret;
}
static int dw_mipi_dsi_dphy_power_off(struct phy *phy)
{
struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy);
int ret;
ret = clk_prepare_enable(dsi->grf_clk);
if (ret) {
DRM_DEV_ERROR(dsi->dev, "Failed to enable grf_clk: %d\n", ret);
return ret;
}
if (dsi->cdata->dphy_rx_power_off) {
ret = dsi->cdata->dphy_rx_power_off(phy);
if (ret < 0)
DRM_DEV_ERROR(dsi->dev, "hardware-specific phy shutdown failed: %d\n", ret);
}
clk_disable_unprepare(dsi->grf_clk);
clk_disable_unprepare(dsi->pclk);
pm_runtime_put(dsi->dev);
return ret;
}
static const struct phy_ops dw_mipi_dsi_dphy_ops = {
.configure = dw_mipi_dsi_dphy_configure,
.power_on = dw_mipi_dsi_dphy_power_on,
.power_off = dw_mipi_dsi_dphy_power_off,
.init = dw_mipi_dsi_dphy_init,
.exit = dw_mipi_dsi_dphy_exit,
};
static int __maybe_unused dw_mipi_dsi_rockchip_resume(struct device *dev)
{
struct dw_mipi_dsi_rockchip *dsi = dev_get_drvdata(dev);
int ret;
/*
* Re-configure DSI state, if we were previously initialized. We need
* to do this before rockchip_drm_drv tries to re-enable() any panels.
*/
if (dsi->dsi_bound) {
ret = clk_prepare_enable(dsi->grf_clk);
if (ret) {
DRM_DEV_ERROR(dsi->dev, "Failed to enable grf_clk: %d\n", ret);
return ret;
}
dw_mipi_dsi_rockchip_config(dsi);
if (dsi->slave)
dw_mipi_dsi_rockchip_config(dsi->slave);
clk_disable_unprepare(dsi->grf_clk);
}
return 0;
}
static const struct dev_pm_ops dw_mipi_dsi_rockchip_pm_ops = {
SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL, dw_mipi_dsi_rockchip_resume)
};
static int dw_mipi_dsi_rockchip_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct dw_mipi_dsi_rockchip *dsi;
struct phy_provider *phy_provider;
struct resource *res;
const struct rockchip_dw_dsi_chip_data *cdata =
of_device_get_match_data(dev);
int ret, i;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dsi->base = devm_ioremap_resource(dev, res);
if (IS_ERR(dsi->base)) {
DRM_DEV_ERROR(dev, "Unable to get dsi registers\n");
return PTR_ERR(dsi->base);
}
i = 0;
while (cdata[i].reg) {
if (cdata[i].reg == res->start) {
dsi->cdata = &cdata[i];
break;
}
i++;
}
if (!dsi->cdata) {
DRM_DEV_ERROR(dev, "no dsi-config for %s node\n", np->name);
return -EINVAL;
}
/* try to get a possible external dphy */
dsi->phy = devm_phy_optional_get(dev, "dphy");
if (IS_ERR(dsi->phy)) {
ret = PTR_ERR(dsi->phy);
DRM_DEV_ERROR(dev, "failed to get mipi dphy: %d\n", ret);
return ret;
}
dsi->pclk = devm_clk_get(dev, "pclk");
if (IS_ERR(dsi->pclk)) {
ret = PTR_ERR(dsi->pclk);
DRM_DEV_ERROR(dev, "Unable to get pclk: %d\n", ret);
return ret;
}
dsi->pllref_clk = devm_clk_get(dev, "ref");
if (IS_ERR(dsi->pllref_clk)) {
if (dsi->phy) {
/*
* if external phy is present, pll will be
* generated there.
*/
dsi->pllref_clk = NULL;
} else {
ret = PTR_ERR(dsi->pllref_clk);
DRM_DEV_ERROR(dev,
"Unable to get pll reference clock: %d\n",
ret);
return ret;
}
}
if (dsi->cdata->flags & DW_MIPI_NEEDS_PHY_CFG_CLK) {
dsi->phy_cfg_clk = devm_clk_get(dev, "phy_cfg");
if (IS_ERR(dsi->phy_cfg_clk)) {
ret = PTR_ERR(dsi->phy_cfg_clk);
DRM_DEV_ERROR(dev,
"Unable to get phy_cfg_clk: %d\n", ret);
return ret;
}
}
if (dsi->cdata->flags & DW_MIPI_NEEDS_GRF_CLK) {
dsi->grf_clk = devm_clk_get(dev, "grf");
if (IS_ERR(dsi->grf_clk)) {
ret = PTR_ERR(dsi->grf_clk);
DRM_DEV_ERROR(dev, "Unable to get grf_clk: %d\n", ret);
return ret;
}
}
dsi->grf_regmap = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
if (IS_ERR(dsi->grf_regmap)) {
DRM_DEV_ERROR(dev, "Unable to get rockchip,grf\n");
return PTR_ERR(dsi->grf_regmap);
}
dsi->dev = dev;
dsi->pdata.base = dsi->base;
dsi->pdata.max_data_lanes = dsi->cdata->max_data_lanes;
dsi->pdata.phy_ops = &dw_mipi_dsi_rockchip_phy_ops;
dsi->pdata.host_ops = &dw_mipi_dsi_rockchip_host_ops;
dsi->pdata.priv_data = dsi;
platform_set_drvdata(pdev, dsi);
mutex_init(&dsi->usage_mutex);
dsi->dphy = devm_phy_create(dev, NULL, &dw_mipi_dsi_dphy_ops);
if (IS_ERR(dsi->dphy)) {
DRM_DEV_ERROR(&pdev->dev, "failed to create PHY\n");
return PTR_ERR(dsi->dphy);
}
phy_set_drvdata(dsi->dphy, dsi);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider))
return PTR_ERR(phy_provider);
dsi->dmd = dw_mipi_dsi_probe(pdev, &dsi->pdata);
if (IS_ERR(dsi->dmd)) {
ret = PTR_ERR(dsi->dmd);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dev,
"Failed to probe dw_mipi_dsi: %d\n", ret);
return ret;
}
return 0;
}
static int dw_mipi_dsi_rockchip_remove(struct platform_device *pdev)
{
struct dw_mipi_dsi_rockchip *dsi = platform_get_drvdata(pdev);
dw_mipi_dsi_remove(dsi->dmd);
return 0;
}
static const struct rockchip_dw_dsi_chip_data px30_chip_data[] = {
{
.reg = 0xff450000,
.lcdsel_grf_reg = PX30_GRF_PD_VO_CON1,
.lcdsel_big = HIWORD_UPDATE(0, PX30_DSI_LCDC_SEL),
.lcdsel_lit = HIWORD_UPDATE(PX30_DSI_LCDC_SEL,
PX30_DSI_LCDC_SEL),
.lanecfg1_grf_reg = PX30_GRF_PD_VO_CON1,
.lanecfg1 = HIWORD_UPDATE(0, PX30_DSI_TURNDISABLE |
PX30_DSI_FORCERXMODE |
PX30_DSI_FORCETXSTOPMODE),
.max_data_lanes = 4,
},
{ /* sentinel */ }
};
static const struct rockchip_dw_dsi_chip_data rk3288_chip_data[] = {
{
.reg = 0xff960000,
.lcdsel_grf_reg = RK3288_GRF_SOC_CON6,
.lcdsel_big = HIWORD_UPDATE(0, RK3288_DSI0_LCDC_SEL),
.lcdsel_lit = HIWORD_UPDATE(RK3288_DSI0_LCDC_SEL, RK3288_DSI0_LCDC_SEL),
.max_data_lanes = 4,
},
{
.reg = 0xff964000,
.lcdsel_grf_reg = RK3288_GRF_SOC_CON6,
.lcdsel_big = HIWORD_UPDATE(0, RK3288_DSI1_LCDC_SEL),
.lcdsel_lit = HIWORD_UPDATE(RK3288_DSI1_LCDC_SEL, RK3288_DSI1_LCDC_SEL),
.max_data_lanes = 4,
},
{ /* sentinel */ }
};
static int rk3399_dphy_tx1rx1_init(struct phy *phy)
{
struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy);
/*
* Set TX1RX1 source to isp1.
* Assume ISP0 is supplied by the RX0 dphy.
*/
regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON24,
HIWORD_UPDATE(0, RK3399_TXRX_SRC_SEL_ISP0));
regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON24,
HIWORD_UPDATE(0, RK3399_TXRX_MASTERSLAVEZ));
regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON24,
HIWORD_UPDATE(0, RK3399_TXRX_BASEDIR));
regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON23,
HIWORD_UPDATE(0, RK3399_DSI1_ENABLE));
return 0;
}
static int rk3399_dphy_tx1rx1_power_on(struct phy *phy)
{
struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy);
/* tester reset pulse */
dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_TESTCLR);
usleep_range(100, 150);
regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON24,
HIWORD_UPDATE(0, RK3399_TXRX_MASTERSLAVEZ));
regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON24,
HIWORD_UPDATE(RK3399_TXRX_BASEDIR, RK3399_TXRX_BASEDIR));
regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON23,
HIWORD_UPDATE(0, RK3399_DSI1_FORCERXMODE));
regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON23,
HIWORD_UPDATE(0, RK3399_DSI1_FORCETXSTOPMODE));
/* Disable lane turn around, which is ignored in receive mode */
regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON24,
HIWORD_UPDATE(0, RK3399_TXRX_TURNREQUEST));
regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON23,
HIWORD_UPDATE(RK3399_DSI1_TURNDISABLE,
RK3399_DSI1_TURNDISABLE));
usleep_range(100, 150);
dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_UNTESTCLR);
usleep_range(100, 150);
/* Enable dphy lanes */
regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON23,
HIWORD_UPDATE(GENMASK(dsi->dphy_config.lanes - 1, 0),
RK3399_DSI1_ENABLE));
usleep_range(100, 150);
return 0;
}
static int rk3399_dphy_tx1rx1_power_off(struct phy *phy)
{
struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy);
regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON23,
HIWORD_UPDATE(0, RK3399_DSI1_ENABLE));
return 0;
}
static const struct rockchip_dw_dsi_chip_data rk3399_chip_data[] = {
{
.reg = 0xff960000,
.lcdsel_grf_reg = RK3399_GRF_SOC_CON20,
.lcdsel_big = HIWORD_UPDATE(0, RK3399_DSI0_LCDC_SEL),
.lcdsel_lit = HIWORD_UPDATE(RK3399_DSI0_LCDC_SEL,
RK3399_DSI0_LCDC_SEL),
.lanecfg1_grf_reg = RK3399_GRF_SOC_CON22,
.lanecfg1 = HIWORD_UPDATE(0, RK3399_DSI0_TURNREQUEST |
RK3399_DSI0_TURNDISABLE |
RK3399_DSI0_FORCETXSTOPMODE |
RK3399_DSI0_FORCERXMODE),
.flags = DW_MIPI_NEEDS_PHY_CFG_CLK | DW_MIPI_NEEDS_GRF_CLK,
.max_data_lanes = 4,
},
{
.reg = 0xff968000,
.lcdsel_grf_reg = RK3399_GRF_SOC_CON20,
.lcdsel_big = HIWORD_UPDATE(0, RK3399_DSI1_LCDC_SEL),
.lcdsel_lit = HIWORD_UPDATE(RK3399_DSI1_LCDC_SEL,
RK3399_DSI1_LCDC_SEL),
.lanecfg1_grf_reg = RK3399_GRF_SOC_CON23,
.lanecfg1 = HIWORD_UPDATE(0, RK3399_DSI1_TURNDISABLE |
RK3399_DSI1_FORCETXSTOPMODE |
RK3399_DSI1_FORCERXMODE |
RK3399_DSI1_ENABLE),
.lanecfg2_grf_reg = RK3399_GRF_SOC_CON24,
.lanecfg2 = HIWORD_UPDATE(RK3399_TXRX_MASTERSLAVEZ |
RK3399_TXRX_ENABLECLK,
RK3399_TXRX_MASTERSLAVEZ |
RK3399_TXRX_ENABLECLK |
RK3399_TXRX_BASEDIR),
.enable_grf_reg = RK3399_GRF_SOC_CON23,
.enable = HIWORD_UPDATE(RK3399_DSI1_ENABLE, RK3399_DSI1_ENABLE),
.flags = DW_MIPI_NEEDS_PHY_CFG_CLK | DW_MIPI_NEEDS_GRF_CLK,
.max_data_lanes = 4,
.dphy_rx_init = rk3399_dphy_tx1rx1_init,
.dphy_rx_power_on = rk3399_dphy_tx1rx1_power_on,
.dphy_rx_power_off = rk3399_dphy_tx1rx1_power_off,
},
{ /* sentinel */ }
};
static const struct of_device_id dw_mipi_dsi_rockchip_dt_ids[] = {
{
.compatible = "rockchip,px30-mipi-dsi",
.data = &px30_chip_data,
}, {
.compatible = "rockchip,rk3288-mipi-dsi",
.data = &rk3288_chip_data,
}, {
.compatible = "rockchip,rk3399-mipi-dsi",
.data = &rk3399_chip_data,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, dw_mipi_dsi_rockchip_dt_ids);
struct platform_driver dw_mipi_dsi_rockchip_driver = {
.probe = dw_mipi_dsi_rockchip_probe,
.remove = dw_mipi_dsi_rockchip_remove,
.driver = {
.of_match_table = dw_mipi_dsi_rockchip_dt_ids,
.pm = &dw_mipi_dsi_rockchip_pm_ops,
.name = "dw-mipi-dsi-rockchip",
},
};