blob: 27a7e0b5b3d51ed2c433435cfd0a17b0a70ce530 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
/*
* Copyright (C) 2003-2015, 2018-2024 Intel Corporation
* Copyright (C) 2013-2015 Intel Mobile Communications GmbH
* Copyright (C) 2016-2017 Intel Deutschland GmbH
*/
#ifndef __iwl_trans_int_pcie_h__
#define __iwl_trans_int_pcie_h__
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/skbuff.h>
#include <linux/wait.h>
#include <linux/pci.h>
#include <linux/timer.h>
#include <linux/cpu.h>
#include "iwl-fh.h"
#include "iwl-csr.h"
#include "iwl-trans.h"
#include "iwl-debug.h"
#include "iwl-io.h"
#include "iwl-op-mode.h"
#include "iwl-drv.h"
#include "iwl-context-info.h"
/*
* RX related structures and functions
*/
#define RX_NUM_QUEUES 1
#define RX_POST_REQ_ALLOC 2
#define RX_CLAIM_REQ_ALLOC 8
#define RX_PENDING_WATERMARK 16
#define FIRST_RX_QUEUE 512
struct iwl_host_cmd;
/*This file includes the declaration that are internal to the
* trans_pcie layer */
/**
* struct iwl_rx_mem_buffer
* @page_dma: bus address of rxb page
* @page: driver's pointer to the rxb page
* @list: list entry for the membuffer
* @invalid: rxb is in driver ownership - not owned by HW
* @vid: index of this rxb in the global table
* @offset: indicates which offset of the page (in bytes)
* this buffer uses (if multiple RBs fit into one page)
*/
struct iwl_rx_mem_buffer {
dma_addr_t page_dma;
struct page *page;
struct list_head list;
u32 offset;
u16 vid;
bool invalid;
};
/* interrupt statistics */
struct isr_statistics {
u32 hw;
u32 sw;
u32 err_code;
u32 sch;
u32 alive;
u32 rfkill;
u32 ctkill;
u32 wakeup;
u32 rx;
u32 tx;
u32 unhandled;
};
/**
* struct iwl_rx_transfer_desc - transfer descriptor
* @addr: ptr to free buffer start address
* @rbid: unique tag of the buffer
* @reserved: reserved
*/
struct iwl_rx_transfer_desc {
__le16 rbid;
__le16 reserved[3];
__le64 addr;
} __packed;
#define IWL_RX_CD_FLAGS_FRAGMENTED BIT(0)
/**
* struct iwl_rx_completion_desc - completion descriptor
* @reserved1: reserved
* @rbid: unique tag of the received buffer
* @flags: flags (0: fragmented, all others: reserved)
* @reserved2: reserved
*/
struct iwl_rx_completion_desc {
__le32 reserved1;
__le16 rbid;
u8 flags;
u8 reserved2[25];
} __packed;
/**
* struct iwl_rx_completion_desc_bz - Bz completion descriptor
* @rbid: unique tag of the received buffer
* @flags: flags (0: fragmented, all others: reserved)
* @reserved: reserved
*/
struct iwl_rx_completion_desc_bz {
__le16 rbid;
u8 flags;
u8 reserved[1];
} __packed;
/**
* struct iwl_rxq - Rx queue
* @id: queue index
* @bd: driver's pointer to buffer of receive buffer descriptors (rbd).
* Address size is 32 bit in pre-9000 devices and 64 bit in 9000 devices.
* In AX210 devices it is a pointer to a list of iwl_rx_transfer_desc's
* @bd_dma: bus address of buffer of receive buffer descriptors (rbd)
* @used_bd: driver's pointer to buffer of used receive buffer descriptors (rbd)
* @used_bd_dma: physical address of buffer of used receive buffer descriptors (rbd)
* @read: Shared index to newest available Rx buffer
* @write: Shared index to oldest written Rx packet
* @write_actual: actual write pointer written to device, since we update in
* blocks of 8 only
* @free_count: Number of pre-allocated buffers in rx_free
* @used_count: Number of RBDs handled to allocator to use for allocation
* @write_actual:
* @rx_free: list of RBDs with allocated RB ready for use
* @rx_used: list of RBDs with no RB attached
* @need_update: flag to indicate we need to update read/write index
* @rb_stts: driver's pointer to receive buffer status
* @rb_stts_dma: bus address of receive buffer status
* @lock: per-queue lock
* @queue: actual rx queue. Not used for multi-rx queue.
* @next_rb_is_fragment: indicates that the previous RB that we handled set
* the fragmented flag, so the next one is still another fragment
* @napi: NAPI struct for this queue
* @queue_size: size of this queue
*
* NOTE: rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers
*/
struct iwl_rxq {
int id;
void *bd;
dma_addr_t bd_dma;
void *used_bd;
dma_addr_t used_bd_dma;
u32 read;
u32 write;
u32 free_count;
u32 used_count;
u32 write_actual;
u32 queue_size;
struct list_head rx_free;
struct list_head rx_used;
bool need_update, next_rb_is_fragment;
void *rb_stts;
dma_addr_t rb_stts_dma;
spinlock_t lock;
struct napi_struct napi;
struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE];
};
/**
* struct iwl_rb_allocator - Rx allocator
* @req_pending: number of requests the allcator had not processed yet
* @req_ready: number of requests honored and ready for claiming
* @rbd_allocated: RBDs with pages allocated and ready to be handled to
* the queue. This is a list of &struct iwl_rx_mem_buffer
* @rbd_empty: RBDs with no page attached for allocator use. This is a list
* of &struct iwl_rx_mem_buffer
* @lock: protects the rbd_allocated and rbd_empty lists
* @alloc_wq: work queue for background calls
* @rx_alloc: work struct for background calls
*/
struct iwl_rb_allocator {
atomic_t req_pending;
atomic_t req_ready;
struct list_head rbd_allocated;
struct list_head rbd_empty;
spinlock_t lock;
struct workqueue_struct *alloc_wq;
struct work_struct rx_alloc;
};
/**
* iwl_get_closed_rb_stts - get closed rb stts from different structs
* @trans: transport pointer (for configuration)
* @rxq: the rxq to get the rb stts from
*/
static inline u16 iwl_get_closed_rb_stts(struct iwl_trans *trans,
struct iwl_rxq *rxq)
{
if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
__le16 *rb_stts = rxq->rb_stts;
return le16_to_cpu(READ_ONCE(*rb_stts));
} else {
struct iwl_rb_status *rb_stts = rxq->rb_stts;
return le16_to_cpu(READ_ONCE(rb_stts->closed_rb_num)) & 0xFFF;
}
}
#ifdef CONFIG_IWLWIFI_DEBUGFS
/**
* enum iwl_fw_mon_dbgfs_state - the different states of the monitor_data
* debugfs file
*
* @IWL_FW_MON_DBGFS_STATE_CLOSED: the file is closed.
* @IWL_FW_MON_DBGFS_STATE_OPEN: the file is open.
* @IWL_FW_MON_DBGFS_STATE_DISABLED: the file is disabled, once this state is
* set the file can no longer be used.
*/
enum iwl_fw_mon_dbgfs_state {
IWL_FW_MON_DBGFS_STATE_CLOSED,
IWL_FW_MON_DBGFS_STATE_OPEN,
IWL_FW_MON_DBGFS_STATE_DISABLED,
};
#endif
/**
* enum iwl_shared_irq_flags - level of sharing for irq
* @IWL_SHARED_IRQ_NON_RX: interrupt vector serves non rx causes.
* @IWL_SHARED_IRQ_FIRST_RSS: interrupt vector serves first RSS queue.
*/
enum iwl_shared_irq_flags {
IWL_SHARED_IRQ_NON_RX = BIT(0),
IWL_SHARED_IRQ_FIRST_RSS = BIT(1),
};
/**
* enum iwl_image_response_code - image response values
* @IWL_IMAGE_RESP_DEF: the default value of the register
* @IWL_IMAGE_RESP_SUCCESS: iml was read successfully
* @IWL_IMAGE_RESP_FAIL: iml reading failed
*/
enum iwl_image_response_code {
IWL_IMAGE_RESP_DEF = 0,
IWL_IMAGE_RESP_SUCCESS = 1,
IWL_IMAGE_RESP_FAIL = 2,
};
#ifdef CONFIG_IWLWIFI_DEBUGFS
/**
* struct cont_rec: continuous recording data structure
* @prev_wr_ptr: the last address that was read in monitor_data
* debugfs file
* @prev_wrap_cnt: the wrap count that was used during the last read in
* monitor_data debugfs file
* @state: the state of monitor_data debugfs file as described
* in &iwl_fw_mon_dbgfs_state enum
* @mutex: locked while reading from monitor_data debugfs file
*/
struct cont_rec {
u32 prev_wr_ptr;
u32 prev_wrap_cnt;
u8 state;
/* Used to sync monitor_data debugfs file with driver unload flow */
struct mutex mutex;
};
#endif
enum iwl_pcie_fw_reset_state {
FW_RESET_IDLE,
FW_RESET_REQUESTED,
FW_RESET_OK,
FW_RESET_ERROR,
};
/**
* enum iwl_pcie_imr_status - imr dma transfer state
* @IMR_D2S_IDLE: default value of the dma transfer
* @IMR_D2S_REQUESTED: dma transfer requested
* @IMR_D2S_COMPLETED: dma transfer completed
* @IMR_D2S_ERROR: dma transfer error
*/
enum iwl_pcie_imr_status {
IMR_D2S_IDLE,
IMR_D2S_REQUESTED,
IMR_D2S_COMPLETED,
IMR_D2S_ERROR,
};
/**
* struct iwl_pcie_txqs - TX queues data
*
* @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
* @page_offs: offset from skb->cb to mac header page pointer
* @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
* @queue_used: bit mask of used queues
* @queue_stopped: bit mask of stopped queues
* @txq: array of TXQ data structures representing the TXQs
* @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
* @queue_alloc_cmd_ver: queue allocation command version
* @bc_pool: bytecount DMA allocations pool
* @bc_tbl_size: bytecount table size
* @tso_hdr_page: page allocated (per CPU) for A-MSDU headers when doing TSO
* (and similar usage)
* @cmd: command queue data
* @cmd.fifo: FIFO number
* @cmd.q_id: queue ID
* @cmd.wdg_timeout: watchdog timeout
* @tfd: TFD data
* @tfd.max_tbs: max number of buffers per TFD
* @tfd.size: TFD size
* @tfd.addr_size: TFD/TB address size
*/
struct iwl_pcie_txqs {
unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
struct dma_pool *bc_pool;
size_t bc_tbl_size;
bool bc_table_dword;
u8 page_offs;
u8 dev_cmd_offs;
struct iwl_tso_hdr_page __percpu *tso_hdr_page;
struct {
u8 fifo;
u8 q_id;
unsigned int wdg_timeout;
} cmd;
struct {
u8 max_tbs;
u16 size;
u8 addr_size;
} tfd;
struct iwl_dma_ptr scd_bc_tbls;
u8 queue_alloc_cmd_ver;
};
/**
* struct iwl_trans_pcie - PCIe transport specific data
* @rxq: all the RX queue data
* @rx_pool: initial pool of iwl_rx_mem_buffer for all the queues
* @global_table: table mapping received VID from hw to rxb
* @rba: allocator for RX replenishing
* @ctxt_info: context information for FW self init
* @ctxt_info_gen3: context information for gen3 devices
* @prph_info: prph info for self init
* @prph_scratch: prph scratch for self init
* @ctxt_info_dma_addr: dma addr of context information
* @prph_info_dma_addr: dma addr of prph info
* @prph_scratch_dma_addr: dma addr of prph scratch
* @ctxt_info_dma_addr: dma addr of context information
* @iml: image loader image virtual address
* @iml_dma_addr: image loader image DMA address
* @trans: pointer to the generic transport area
* @scd_base_addr: scheduler sram base address in SRAM
* @kw: keep warm address
* @pnvm_data: holds info about pnvm payloads allocated in DRAM
* @reduced_tables_data: holds info about power reduced tablse
* payloads allocated in DRAM
* @pci_dev: basic pci-network driver stuff
* @hw_base: pci hardware address support
* @ucode_write_complete: indicates that the ucode has been copied.
* @ucode_write_waitq: wait queue for uCode load
* @cmd_queue - command queue number
* @rx_buf_size: Rx buffer size
* @scd_set_active: should the transport configure the SCD for HCMD queue
* @rx_page_order: page order for receive buffer size
* @rx_buf_bytes: RX buffer (RB) size in bytes
* @reg_lock: protect hw register access
* @mutex: to protect stop_device / start_fw / start_hw
* @fw_mon_data: fw continuous recording data
* @cmd_hold_nic_awake: indicates NIC is held awake for APMG workaround
* during commands in flight
* @msix_entries: array of MSI-X entries
* @msix_enabled: true if managed to enable MSI-X
* @shared_vec_mask: the type of causes the shared vector handles
* (see iwl_shared_irq_flags).
* @alloc_vecs: the number of interrupt vectors allocated by the OS
* @def_irq: default irq for non rx causes
* @fh_init_mask: initial unmasked fh causes
* @hw_init_mask: initial unmasked hw causes
* @fh_mask: current unmasked fh causes
* @hw_mask: current unmasked hw causes
* @in_rescan: true if we have triggered a device rescan
* @base_rb_stts: base virtual address of receive buffer status for all queues
* @base_rb_stts_dma: base physical address of receive buffer status
* @supported_dma_mask: DMA mask to validate the actual address against,
* will be DMA_BIT_MASK(11) or DMA_BIT_MASK(12) depending on the device
* @alloc_page_lock: spinlock for the page allocator
* @alloc_page: allocated page to still use parts of
* @alloc_page_used: how much of the allocated page was already used (bytes)
* @imr_status: imr dma state machine
* @imr_waitq: imr wait queue for dma completion
* @rf_name: name/version of the CRF, if any
* @use_ict: whether or not ICT (interrupt table) is used
* @ict_index: current ICT read index
* @ict_tbl: ICT table pointer
* @ict_tbl_dma: ICT table DMA address
* @inta_mask: interrupt (INT-A) mask
* @irq_lock: lock to synchronize IRQ handling
* @txq_memory: TXQ allocation array
* @sx_waitq: waitqueue for Sx transitions
* @sx_complete: completion for Sx transitions
* @pcie_dbg_dumped_once: indicates PCIe regs were dumped already
* @opmode_down: indicates opmode went away
* @num_rx_bufs: number of RX buffers to allocate/use
* @no_reclaim_cmds: special commands not using reclaim flow
* (firmware workaround)
* @n_no_reclaim_cmds: number of special commands not using reclaim flow
* @affinity_mask: IRQ affinity mask for each RX queue
* @debug_rfkill: RF-kill debugging state, -1 for unset, 0/1 for radio
* enable/disable
* @fw_reset_handshake: indicates FW reset handshake is needed
* @fw_reset_state: state of FW reset handshake
* @fw_reset_waitq: waitqueue for FW reset handshake
* @is_down: indicates the NIC is down
* @isr_stats: interrupt statistics
* @napi_dev: (fake) netdev for NAPI registration
* @txqs: transport tx queues data.
*/
struct iwl_trans_pcie {
struct iwl_rxq *rxq;
struct iwl_rx_mem_buffer *rx_pool;
struct iwl_rx_mem_buffer **global_table;
struct iwl_rb_allocator rba;
union {
struct iwl_context_info *ctxt_info;
struct iwl_context_info_gen3 *ctxt_info_gen3;
};
struct iwl_prph_info *prph_info;
struct iwl_prph_scratch *prph_scratch;
void *iml;
dma_addr_t ctxt_info_dma_addr;
dma_addr_t prph_info_dma_addr;
dma_addr_t prph_scratch_dma_addr;
dma_addr_t iml_dma_addr;
struct iwl_trans *trans;
struct net_device *napi_dev;
/* INT ICT Table */
__le32 *ict_tbl;
dma_addr_t ict_tbl_dma;
int ict_index;
bool use_ict;
bool is_down, opmode_down;
s8 debug_rfkill;
struct isr_statistics isr_stats;
spinlock_t irq_lock;
struct mutex mutex;
u32 inta_mask;
u32 scd_base_addr;
struct iwl_dma_ptr kw;
/* pnvm data */
struct iwl_dram_regions pnvm_data;
struct iwl_dram_regions reduced_tables_data;
struct iwl_txq *txq_memory;
/* PCI bus related data */
struct pci_dev *pci_dev;
u8 __iomem *hw_base;
bool ucode_write_complete;
bool sx_complete;
wait_queue_head_t ucode_write_waitq;
wait_queue_head_t sx_waitq;
u8 n_no_reclaim_cmds;
u8 no_reclaim_cmds[MAX_NO_RECLAIM_CMDS];
u16 num_rx_bufs;
enum iwl_amsdu_size rx_buf_size;
bool scd_set_active;
bool pcie_dbg_dumped_once;
u32 rx_page_order;
u32 rx_buf_bytes;
u32 supported_dma_mask;
/* allocator lock for the two values below */
spinlock_t alloc_page_lock;
struct page *alloc_page;
u32 alloc_page_used;
/*protect hw register */
spinlock_t reg_lock;
bool cmd_hold_nic_awake;
#ifdef CONFIG_IWLWIFI_DEBUGFS
struct cont_rec fw_mon_data;
#endif
struct msix_entry msix_entries[IWL_MAX_RX_HW_QUEUES];
bool msix_enabled;
u8 shared_vec_mask;
u32 alloc_vecs;
u32 def_irq;
u32 fh_init_mask;
u32 hw_init_mask;
u32 fh_mask;
u32 hw_mask;
cpumask_t affinity_mask[IWL_MAX_RX_HW_QUEUES];
u16 tx_cmd_queue_size;
bool in_rescan;
void *base_rb_stts;
dma_addr_t base_rb_stts_dma;
bool fw_reset_handshake;
enum iwl_pcie_fw_reset_state fw_reset_state;
wait_queue_head_t fw_reset_waitq;
enum iwl_pcie_imr_status imr_status;
wait_queue_head_t imr_waitq;
char rf_name[32];
struct iwl_pcie_txqs txqs;
};
static inline struct iwl_trans_pcie *
IWL_TRANS_GET_PCIE_TRANS(struct iwl_trans *trans)
{
return (void *)trans->trans_specific;
}
static inline void iwl_pcie_clear_irq(struct iwl_trans *trans, int queue)
{
/*
* Before sending the interrupt the HW disables it to prevent
* a nested interrupt. This is done by writing 1 to the corresponding
* bit in the mask register. After handling the interrupt, it should be
* re-enabled by clearing this bit. This register is defined as
* write 1 clear (W1C) register, meaning that it's being clear
* by writing 1 to the bit.
*/
iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(queue));
}
static inline struct iwl_trans *
iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie)
{
return container_of((void *)trans_pcie, struct iwl_trans,
trans_specific);
}
/*
* Convention: trans API functions: iwl_trans_pcie_XXX
* Other functions: iwl_pcie_XXX
*/
struct iwl_trans
*iwl_trans_pcie_alloc(struct pci_dev *pdev,
const struct pci_device_id *ent,
const struct iwl_cfg_trans_params *cfg_trans);
void iwl_trans_pcie_free(struct iwl_trans *trans);
void iwl_trans_pcie_free_pnvm_dram_regions(struct iwl_dram_regions *dram_regions,
struct device *dev);
bool __iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans);
#define _iwl_trans_pcie_grab_nic_access(trans) \
__cond_lock(nic_access_nobh, \
likely(__iwl_trans_pcie_grab_nic_access(trans)))
/*****************************************************
* RX
******************************************************/
int iwl_pcie_rx_init(struct iwl_trans *trans);
int iwl_pcie_gen2_rx_init(struct iwl_trans *trans);
irqreturn_t iwl_pcie_msix_isr(int irq, void *data);
irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id);
irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id);
irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id);
int iwl_pcie_rx_stop(struct iwl_trans *trans);
void iwl_pcie_rx_free(struct iwl_trans *trans);
void iwl_pcie_free_rbs_pool(struct iwl_trans *trans);
void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq);
void iwl_pcie_rx_napi_sync(struct iwl_trans *trans);
void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
struct iwl_rxq *rxq);
/*****************************************************
* ICT - interrupt handling
******************************************************/
irqreturn_t iwl_pcie_isr(int irq, void *data);
int iwl_pcie_alloc_ict(struct iwl_trans *trans);
void iwl_pcie_free_ict(struct iwl_trans *trans);
void iwl_pcie_reset_ict(struct iwl_trans *trans);
void iwl_pcie_disable_ict(struct iwl_trans *trans);
/*****************************************************
* TX / HCMD
******************************************************/
/* We need 2 entries for the TX command and header, and another one might
* be needed for potential data in the SKB's head. The remaining ones can
* be used for frags.
*/
#define IWL_TRANS_PCIE_MAX_FRAGS(trans_pcie) ((trans_pcie)->txqs.tfd.max_tbs - 3)
struct iwl_tso_hdr_page {
struct page *page;
u8 *pos;
};
/*
* Note that we put this struct *last* in the page. By doing that, we ensure
* that no TB referencing this page can trigger the 32-bit boundary hardware
* bug.
*/
struct iwl_tso_page_info {
dma_addr_t dma_addr;
struct page *next;
refcount_t use_count;
};
#define IWL_TSO_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(struct iwl_tso_page_info))
#define IWL_TSO_PAGE_INFO(addr) \
((struct iwl_tso_page_info *)(((unsigned long)addr & PAGE_MASK) + \
IWL_TSO_PAGE_DATA_SIZE))
int iwl_pcie_tx_init(struct iwl_trans *trans);
void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr);
int iwl_pcie_tx_stop(struct iwl_trans *trans);
void iwl_pcie_tx_free(struct iwl_trans *trans);
bool iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int queue, u16 ssn,
const struct iwl_trans_txq_scd_cfg *cfg,
unsigned int wdg_timeout);
void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue,
bool configure_scd);
void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id,
bool shared_mode);
int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb,
struct iwl_device_tx_cmd *dev_cmd, int txq_id);
void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans);
void iwl_pcie_hcmd_complete(struct iwl_trans *trans,
struct iwl_rx_cmd_buffer *rxb);
void iwl_trans_pcie_tx_reset(struct iwl_trans *trans);
int iwl_pcie_txq_alloc(struct iwl_trans *trans, struct iwl_txq *txq,
int slots_num, bool cmd_queue);
dma_addr_t iwl_pcie_get_sgt_tb_phys(struct sg_table *sgt, unsigned int offset,
unsigned int len);
struct sg_table *iwl_pcie_prep_tso(struct iwl_trans *trans, struct sk_buff *skb,
struct iwl_cmd_meta *cmd_meta,
u8 **hdr, unsigned int hdr_room);
void iwl_pcie_free_tso_pages(struct iwl_trans *trans, struct sk_buff *skb,
struct iwl_cmd_meta *cmd_meta);
static inline dma_addr_t iwl_pcie_get_tso_page_phys(void *addr)
{
dma_addr_t res;
res = IWL_TSO_PAGE_INFO(addr)->dma_addr;
res += (unsigned long)addr & ~PAGE_MASK;
return res;
}
static inline dma_addr_t
iwl_txq_get_first_tb_dma(struct iwl_txq *txq, int idx)
{
return txq->first_tb_dma +
sizeof(struct iwl_pcie_first_tb_buf) * idx;
}
static inline u16 iwl_txq_get_cmd_index(const struct iwl_txq *q, u32 index)
{
return index & (q->n_window - 1);
}
static inline void *iwl_txq_get_tfd(struct iwl_trans *trans,
struct iwl_txq *txq, int idx)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
if (trans->trans_cfg->gen2)
idx = iwl_txq_get_cmd_index(txq, idx);
return (u8 *)txq->tfds + trans_pcie->txqs.tfd.size * idx;
}
/*
* We need this inline in case dma_addr_t is only 32-bits - since the
* hardware is always 64-bit, the issue can still occur in that case,
* so use u64 for 'phys' here to force the addition in 64-bit.
*/
static inline bool iwl_txq_crosses_4g_boundary(u64 phys, u16 len)
{
return upper_32_bits(phys) != upper_32_bits(phys + len);
}
int iwl_txq_space(struct iwl_trans *trans, const struct iwl_txq *q);
static inline void iwl_txq_stop(struct iwl_trans *trans, struct iwl_txq *txq)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
if (!test_and_set_bit(txq->id, trans_pcie->txqs.queue_stopped)) {
iwl_op_mode_queue_full(trans->op_mode, txq->id);
IWL_DEBUG_TX_QUEUES(trans, "Stop hwq %d\n", txq->id);
} else {
IWL_DEBUG_TX_QUEUES(trans, "hwq %d already stopped\n",
txq->id);
}
}
/**
* iwl_txq_inc_wrap - increment queue index, wrap back to beginning
* @trans: the transport (for configuration data)
* @index: current index
*/
static inline int iwl_txq_inc_wrap(struct iwl_trans *trans, int index)
{
return ++index &
(trans->trans_cfg->base_params->max_tfd_queue_size - 1);
}
/**
* iwl_txq_dec_wrap - decrement queue index, wrap back to end
* @trans: the transport (for configuration data)
* @index: current index
*/
static inline int iwl_txq_dec_wrap(struct iwl_trans *trans, int index)
{
return --index &
(trans->trans_cfg->base_params->max_tfd_queue_size - 1);
}
void iwl_txq_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq);
static inline void
iwl_trans_pcie_wake_queue(struct iwl_trans *trans, struct iwl_txq *txq)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
if (test_and_clear_bit(txq->id, trans_pcie->txqs.queue_stopped)) {
IWL_DEBUG_TX_QUEUES(trans, "Wake hwq %d\n", txq->id);
iwl_op_mode_queue_not_full(trans->op_mode, txq->id);
}
}
int iwl_txq_gen2_set_tb(struct iwl_trans *trans,
struct iwl_tfh_tfd *tfd, dma_addr_t addr,
u16 len);
static inline void iwl_txq_set_tfd_invalid_gen2(struct iwl_trans *trans,
struct iwl_tfh_tfd *tfd)
{
tfd->num_tbs = 0;
iwl_txq_gen2_set_tb(trans, tfd, trans->invalid_tx_cmd.dma,
trans->invalid_tx_cmd.size);
}
void iwl_txq_gen2_tfd_unmap(struct iwl_trans *trans,
struct iwl_cmd_meta *meta,
struct iwl_tfh_tfd *tfd);
int iwl_txq_dyn_alloc(struct iwl_trans *trans, u32 flags,
u32 sta_mask, u8 tid,
int size, unsigned int timeout);
int iwl_txq_gen2_tx(struct iwl_trans *trans, struct sk_buff *skb,
struct iwl_device_tx_cmd *dev_cmd, int txq_id);
void iwl_txq_dyn_free(struct iwl_trans *trans, int queue);
void iwl_txq_gen2_tx_free(struct iwl_trans *trans);
int iwl_txq_init(struct iwl_trans *trans, struct iwl_txq *txq,
int slots_num, bool cmd_queue);
int iwl_txq_gen2_init(struct iwl_trans *trans, int txq_id,
int queue_size);
static inline u16 iwl_txq_gen1_tfd_tb_get_len(struct iwl_trans *trans,
void *_tfd, u8 idx)
{
struct iwl_tfd *tfd;
struct iwl_tfd_tb *tb;
if (trans->trans_cfg->gen2) {
struct iwl_tfh_tfd *tfh_tfd = _tfd;
struct iwl_tfh_tb *tfh_tb = &tfh_tfd->tbs[idx];
return le16_to_cpu(tfh_tb->tb_len);
}
tfd = (struct iwl_tfd *)_tfd;
tb = &tfd->tbs[idx];
return le16_to_cpu(tb->hi_n_len) >> 4;
}
void iwl_pcie_reclaim(struct iwl_trans *trans, int txq_id, int ssn,
struct sk_buff_head *skbs, bool is_flush);
void iwl_pcie_set_q_ptrs(struct iwl_trans *trans, int txq_id, int ptr);
void iwl_pcie_freeze_txq_timer(struct iwl_trans *trans,
unsigned long txqs, bool freeze);
int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, int txq_idx);
int iwl_trans_pcie_wait_txqs_empty(struct iwl_trans *trans, u32 txq_bm);
/*****************************************************
* Error handling
******************************************************/
void iwl_pcie_dump_csr(struct iwl_trans *trans);
/*****************************************************
* Helpers
******************************************************/
static inline void _iwl_disable_interrupts(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
clear_bit(STATUS_INT_ENABLED, &trans->status);
if (!trans_pcie->msix_enabled) {
/* disable interrupts from uCode/NIC to host */
iwl_write32(trans, CSR_INT_MASK, 0x00000000);
/* acknowledge/clear/reset any interrupts still pending
* from uCode or flow handler (Rx/Tx DMA) */
iwl_write32(trans, CSR_INT, 0xffffffff);
iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff);
} else {
/* disable all the interrupt we might use */
iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
trans_pcie->fh_init_mask);
iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
trans_pcie->hw_init_mask);
}
IWL_DEBUG_ISR(trans, "Disabled interrupts\n");
}
static inline int iwl_pcie_get_num_sections(const struct fw_img *fw,
int start)
{
int i = 0;
while (start < fw->num_sec &&
fw->sec[start].offset != CPU1_CPU2_SEPARATOR_SECTION &&
fw->sec[start].offset != PAGING_SEPARATOR_SECTION) {
start++;
i++;
}
return i;
}
static inline void iwl_pcie_ctxt_info_free_fw_img(struct iwl_trans *trans)
{
struct iwl_self_init_dram *dram = &trans->init_dram;
int i;
if (!dram->fw) {
WARN_ON(dram->fw_cnt);
return;
}
for (i = 0; i < dram->fw_cnt; i++)
dma_free_coherent(trans->dev, dram->fw[i].size,
dram->fw[i].block, dram->fw[i].physical);
kfree(dram->fw);
dram->fw_cnt = 0;
dram->fw = NULL;
}
static inline void iwl_disable_interrupts(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
spin_lock_bh(&trans_pcie->irq_lock);
_iwl_disable_interrupts(trans);
spin_unlock_bh(&trans_pcie->irq_lock);
}
static inline void _iwl_enable_interrupts(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
IWL_DEBUG_ISR(trans, "Enabling interrupts\n");
set_bit(STATUS_INT_ENABLED, &trans->status);
if (!trans_pcie->msix_enabled) {
trans_pcie->inta_mask = CSR_INI_SET_MASK;
iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
} else {
/*
* fh/hw_mask keeps all the unmasked causes.
* Unlike msi, in msix cause is enabled when it is unset.
*/
trans_pcie->hw_mask = trans_pcie->hw_init_mask;
trans_pcie->fh_mask = trans_pcie->fh_init_mask;
iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
~trans_pcie->fh_mask);
iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
~trans_pcie->hw_mask);
}
}
static inline void iwl_enable_interrupts(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
spin_lock_bh(&trans_pcie->irq_lock);
_iwl_enable_interrupts(trans);
spin_unlock_bh(&trans_pcie->irq_lock);
}
static inline void iwl_enable_hw_int_msk_msix(struct iwl_trans *trans, u32 msk)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~msk);
trans_pcie->hw_mask = msk;
}
static inline void iwl_enable_fh_int_msk_msix(struct iwl_trans *trans, u32 msk)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~msk);
trans_pcie->fh_mask = msk;
}
static inline void iwl_enable_fw_load_int(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
IWL_DEBUG_ISR(trans, "Enabling FW load interrupt\n");
if (!trans_pcie->msix_enabled) {
trans_pcie->inta_mask = CSR_INT_BIT_FH_TX;
iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
} else {
iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
trans_pcie->hw_init_mask);
iwl_enable_fh_int_msk_msix(trans,
MSIX_FH_INT_CAUSES_D2S_CH0_NUM);
}
}
static inline void iwl_enable_fw_load_int_ctx_info(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
IWL_DEBUG_ISR(trans, "Enabling ALIVE interrupt only\n");
if (!trans_pcie->msix_enabled) {
/*
* When we'll receive the ALIVE interrupt, the ISR will call
* iwl_enable_fw_load_int_ctx_info again to set the ALIVE
* interrupt (which is not really needed anymore) but also the
* RX interrupt which will allow us to receive the ALIVE
* notification (which is Rx) and continue the flow.
*/
trans_pcie->inta_mask = CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX;
iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
} else {
iwl_enable_hw_int_msk_msix(trans,
MSIX_HW_INT_CAUSES_REG_ALIVE);
/*
* Leave all the FH causes enabled to get the ALIVE
* notification.
*/
iwl_enable_fh_int_msk_msix(trans, trans_pcie->fh_init_mask);
}
}
static inline const char *queue_name(struct device *dev,
struct iwl_trans_pcie *trans_p, int i)
{
if (trans_p->shared_vec_mask) {
int vec = trans_p->shared_vec_mask &
IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0;
if (i == 0)
return DRV_NAME ":shared_IRQ";
return devm_kasprintf(dev, GFP_KERNEL,
DRV_NAME ":queue_%d", i + vec);
}
if (i == 0)
return DRV_NAME ":default_queue";
if (i == trans_p->alloc_vecs - 1)
return DRV_NAME ":exception";
return devm_kasprintf(dev, GFP_KERNEL,
DRV_NAME ":queue_%d", i);
}
static inline void iwl_enable_rfkill_int(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n");
if (!trans_pcie->msix_enabled) {
trans_pcie->inta_mask = CSR_INT_BIT_RF_KILL;
iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
} else {
iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
trans_pcie->fh_init_mask);
iwl_enable_hw_int_msk_msix(trans,
MSIX_HW_INT_CAUSES_REG_RF_KILL);
}
if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_9000) {
/*
* On 9000-series devices this bit isn't enabled by default, so
* when we power down the device we need set the bit to allow it
* to wake up the PCI-E bus for RF-kill interrupts.
*/
iwl_set_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN);
}
}
void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq);
static inline bool iwl_is_rfkill_set(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
lockdep_assert_held(&trans_pcie->mutex);
if (trans_pcie->debug_rfkill == 1)
return true;
return !(iwl_read32(trans, CSR_GP_CNTRL) &
CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW);
}
static inline void __iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans,
u32 reg, u32 mask, u32 value)
{
u32 v;
#ifdef CONFIG_IWLWIFI_DEBUG
WARN_ON_ONCE(value & ~mask);
#endif
v = iwl_read32(trans, reg);
v &= ~mask;
v |= value;
iwl_write32(trans, reg, v);
}
static inline void __iwl_trans_pcie_clear_bit(struct iwl_trans *trans,
u32 reg, u32 mask)
{
__iwl_trans_pcie_set_bits_mask(trans, reg, mask, 0);
}
static inline void __iwl_trans_pcie_set_bit(struct iwl_trans *trans,
u32 reg, u32 mask)
{
__iwl_trans_pcie_set_bits_mask(trans, reg, mask, mask);
}
static inline bool iwl_pcie_dbg_on(struct iwl_trans *trans)
{
return (trans->dbg.dest_tlv || iwl_trans_dbg_ini_valid(trans));
}
void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state, bool from_irq);
void iwl_trans_pcie_dump_regs(struct iwl_trans *trans);
#ifdef CONFIG_IWLWIFI_DEBUGFS
void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans);
void iwl_trans_pcie_debugfs_cleanup(struct iwl_trans *trans);
#else
static inline void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans) { }
#endif
void iwl_pcie_rx_allocator_work(struct work_struct *data);
/* common trans ops for all generations transports */
void iwl_trans_pcie_configure(struct iwl_trans *trans,
const struct iwl_trans_config *trans_cfg);
int iwl_trans_pcie_start_hw(struct iwl_trans *trans);
void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans);
void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val);
void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val);
u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs);
u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg);
void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr, u32 val);
int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr,
void *buf, int dwords);
int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr,
const void *buf, int dwords);
int iwl_trans_pcie_sw_reset(struct iwl_trans *trans, bool retake_ownership);
struct iwl_trans_dump_data *
iwl_trans_pcie_dump_data(struct iwl_trans *trans, u32 dump_mask,
const struct iwl_dump_sanitize_ops *sanitize_ops,
void *sanitize_ctx);
int iwl_trans_pcie_d3_resume(struct iwl_trans *trans,
enum iwl_d3_status *status,
bool test, bool reset);
int iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test, bool reset);
void iwl_trans_pci_interrupts(struct iwl_trans *trans, bool enable);
void iwl_trans_pcie_sync_nmi(struct iwl_trans *trans);
void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg,
u32 mask, u32 value);
int iwl_trans_pcie_read_config32(struct iwl_trans *trans, u32 ofs,
u32 *val);
bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans);
void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans);
/* transport gen 1 exported functions */
void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr);
int iwl_trans_pcie_start_fw(struct iwl_trans *trans,
const struct fw_img *fw, bool run_in_rfkill);
void iwl_trans_pcie_stop_device(struct iwl_trans *trans);
/* common functions that are used by gen2 transport */
int iwl_pcie_gen2_apm_init(struct iwl_trans *trans);
void iwl_pcie_apm_config(struct iwl_trans *trans);
int iwl_pcie_prepare_card_hw(struct iwl_trans *trans);
void iwl_pcie_synchronize_irqs(struct iwl_trans *trans);
bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans);
void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans,
bool was_in_rfkill);
void iwl_pcie_apm_stop_master(struct iwl_trans *trans);
void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie);
int iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans,
struct iwl_dma_ptr *ptr, size_t size);
void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr);
void iwl_pcie_apply_destination(struct iwl_trans *trans);
/* common functions that are used by gen3 transport */
void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power);
/* transport gen 2 exported functions */
int iwl_trans_pcie_gen2_start_fw(struct iwl_trans *trans,
const struct fw_img *fw, bool run_in_rfkill);
void iwl_trans_pcie_gen2_fw_alive(struct iwl_trans *trans);
int iwl_trans_pcie_gen2_send_hcmd(struct iwl_trans *trans,
struct iwl_host_cmd *cmd);
void iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans);
void _iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans);
void iwl_pcie_d3_complete_suspend(struct iwl_trans *trans,
bool test, bool reset);
int iwl_pcie_gen2_enqueue_hcmd(struct iwl_trans *trans,
struct iwl_host_cmd *cmd);
int iwl_pcie_enqueue_hcmd(struct iwl_trans *trans,
struct iwl_host_cmd *cmd);
void iwl_trans_pcie_copy_imr_fh(struct iwl_trans *trans,
u32 dst_addr, u64 src_addr, u32 byte_cnt);
int iwl_trans_pcie_copy_imr(struct iwl_trans *trans,
u32 dst_addr, u64 src_addr, u32 byte_cnt);
int iwl_trans_pcie_rxq_dma_data(struct iwl_trans *trans, int queue,
struct iwl_trans_rxq_dma_data *data);
#endif /* __iwl_trans_int_pcie_h__ */