| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> |
| * Copyright 2012 Google, Inc. |
| */ |
| |
| #include "bcachefs.h" |
| #include "alloc_foreground.h" |
| #include "bkey_buf.h" |
| #include "bset.h" |
| #include "btree_update.h" |
| #include "buckets.h" |
| #include "checksum.h" |
| #include "clock.h" |
| #include "compress.h" |
| #include "debug.h" |
| #include "ec.h" |
| #include "error.h" |
| #include "extent_update.h" |
| #include "inode.h" |
| #include "io_write.h" |
| #include "journal.h" |
| #include "keylist.h" |
| #include "move.h" |
| #include "nocow_locking.h" |
| #include "rebalance.h" |
| #include "subvolume.h" |
| #include "super.h" |
| #include "super-io.h" |
| #include "trace.h" |
| |
| #include <linux/blkdev.h> |
| #include <linux/prefetch.h> |
| #include <linux/random.h> |
| #include <linux/sched/mm.h> |
| |
| #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT |
| |
| static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency, |
| u64 now, int rw) |
| { |
| u64 latency_capable = |
| ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m; |
| /* ideally we'd be taking into account the device's variance here: */ |
| u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3); |
| s64 latency_over = io_latency - latency_threshold; |
| |
| if (latency_threshold && latency_over > 0) { |
| /* |
| * bump up congested by approximately latency_over * 4 / |
| * latency_threshold - we don't need much accuracy here so don't |
| * bother with the divide: |
| */ |
| if (atomic_read(&ca->congested) < CONGESTED_MAX) |
| atomic_add(latency_over >> |
| max_t(int, ilog2(latency_threshold) - 2, 0), |
| &ca->congested); |
| |
| ca->congested_last = now; |
| } else if (atomic_read(&ca->congested) > 0) { |
| atomic_dec(&ca->congested); |
| } |
| } |
| |
| void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw) |
| { |
| atomic64_t *latency = &ca->cur_latency[rw]; |
| u64 now = local_clock(); |
| u64 io_latency = time_after64(now, submit_time) |
| ? now - submit_time |
| : 0; |
| u64 old, new, v = atomic64_read(latency); |
| |
| do { |
| old = v; |
| |
| /* |
| * If the io latency was reasonably close to the current |
| * latency, skip doing the update and atomic operation - most of |
| * the time: |
| */ |
| if (abs((int) (old - io_latency)) < (old >> 1) && |
| now & ~(~0U << 5)) |
| break; |
| |
| new = ewma_add(old, io_latency, 5); |
| } while ((v = atomic64_cmpxchg(latency, old, new)) != old); |
| |
| bch2_congested_acct(ca, io_latency, now, rw); |
| |
| __bch2_time_stats_update(&ca->io_latency[rw], submit_time, now); |
| } |
| |
| #endif |
| |
| /* Allocate, free from mempool: */ |
| |
| void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio) |
| { |
| struct bvec_iter_all iter; |
| struct bio_vec *bv; |
| |
| bio_for_each_segment_all(bv, bio, iter) |
| if (bv->bv_page != ZERO_PAGE(0)) |
| mempool_free(bv->bv_page, &c->bio_bounce_pages); |
| bio->bi_vcnt = 0; |
| } |
| |
| static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool) |
| { |
| struct page *page; |
| |
| if (likely(!*using_mempool)) { |
| page = alloc_page(GFP_NOFS); |
| if (unlikely(!page)) { |
| mutex_lock(&c->bio_bounce_pages_lock); |
| *using_mempool = true; |
| goto pool_alloc; |
| |
| } |
| } else { |
| pool_alloc: |
| page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS); |
| } |
| |
| return page; |
| } |
| |
| void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio, |
| size_t size) |
| { |
| bool using_mempool = false; |
| |
| while (size) { |
| struct page *page = __bio_alloc_page_pool(c, &using_mempool); |
| unsigned len = min_t(size_t, PAGE_SIZE, size); |
| |
| BUG_ON(!bio_add_page(bio, page, len, 0)); |
| size -= len; |
| } |
| |
| if (using_mempool) |
| mutex_unlock(&c->bio_bounce_pages_lock); |
| } |
| |
| /* Extent update path: */ |
| |
| int bch2_sum_sector_overwrites(struct btree_trans *trans, |
| struct btree_iter *extent_iter, |
| struct bkey_i *new, |
| bool *usage_increasing, |
| s64 *i_sectors_delta, |
| s64 *disk_sectors_delta) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_iter iter; |
| struct bkey_s_c old; |
| unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new)); |
| bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new)); |
| int ret = 0; |
| |
| *usage_increasing = false; |
| *i_sectors_delta = 0; |
| *disk_sectors_delta = 0; |
| |
| bch2_trans_copy_iter(&iter, extent_iter); |
| |
| for_each_btree_key_upto_continue_norestart(iter, |
| new->k.p, BTREE_ITER_SLOTS, old, ret) { |
| s64 sectors = min(new->k.p.offset, old.k->p.offset) - |
| max(bkey_start_offset(&new->k), |
| bkey_start_offset(old.k)); |
| |
| *i_sectors_delta += sectors * |
| (bkey_extent_is_allocation(&new->k) - |
| bkey_extent_is_allocation(old.k)); |
| |
| *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new)); |
| *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot |
| ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old) |
| : 0; |
| |
| if (!*usage_increasing && |
| (new->k.p.snapshot != old.k->p.snapshot || |
| new_replicas > bch2_bkey_replicas(c, old) || |
| (!new_compressed && bch2_bkey_sectors_compressed(old)))) |
| *usage_increasing = true; |
| |
| if (bkey_ge(old.k->p, new->k.p)) |
| break; |
| } |
| |
| bch2_trans_iter_exit(trans, &iter); |
| return ret; |
| } |
| |
| static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans, |
| struct btree_iter *extent_iter, |
| u64 new_i_size, |
| s64 i_sectors_delta) |
| { |
| struct btree_iter iter; |
| struct bkey_i *k; |
| struct bkey_i_inode_v3 *inode; |
| /* |
| * Crazy performance optimization: |
| * Every extent update needs to also update the inode: the inode trigger |
| * will set bi->journal_seq to the journal sequence number of this |
| * transaction - for fsync. |
| * |
| * But if that's the only reason we're updating the inode (we're not |
| * updating bi_size or bi_sectors), then we don't need the inode update |
| * to be journalled - if we crash, the bi_journal_seq update will be |
| * lost, but that's fine. |
| */ |
| unsigned inode_update_flags = BTREE_UPDATE_NOJOURNAL; |
| int ret; |
| |
| k = bch2_bkey_get_mut_noupdate(trans, &iter, BTREE_ID_inodes, |
| SPOS(0, |
| extent_iter->pos.inode, |
| extent_iter->snapshot), |
| BTREE_ITER_CACHED); |
| ret = PTR_ERR_OR_ZERO(k); |
| if (unlikely(ret)) |
| return ret; |
| |
| if (unlikely(k->k.type != KEY_TYPE_inode_v3)) { |
| k = bch2_inode_to_v3(trans, k); |
| ret = PTR_ERR_OR_ZERO(k); |
| if (unlikely(ret)) |
| goto err; |
| } |
| |
| inode = bkey_i_to_inode_v3(k); |
| |
| if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) && |
| new_i_size > le64_to_cpu(inode->v.bi_size)) { |
| inode->v.bi_size = cpu_to_le64(new_i_size); |
| inode_update_flags = 0; |
| } |
| |
| if (i_sectors_delta) { |
| le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta); |
| inode_update_flags = 0; |
| } |
| |
| if (inode->k.p.snapshot != iter.snapshot) { |
| inode->k.p.snapshot = iter.snapshot; |
| inode_update_flags = 0; |
| } |
| |
| ret = bch2_trans_update(trans, &iter, &inode->k_i, |
| BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE| |
| inode_update_flags); |
| err: |
| bch2_trans_iter_exit(trans, &iter); |
| return ret; |
| } |
| |
| int bch2_extent_update(struct btree_trans *trans, |
| subvol_inum inum, |
| struct btree_iter *iter, |
| struct bkey_i *k, |
| struct disk_reservation *disk_res, |
| u64 new_i_size, |
| s64 *i_sectors_delta_total, |
| bool check_enospc) |
| { |
| struct bpos next_pos; |
| bool usage_increasing; |
| s64 i_sectors_delta = 0, disk_sectors_delta = 0; |
| int ret; |
| |
| /* |
| * This traverses us the iterator without changing iter->path->pos to |
| * search_key() (which is pos + 1 for extents): we want there to be a |
| * path already traversed at iter->pos because |
| * bch2_trans_extent_update() will use it to attempt extent merging |
| */ |
| ret = __bch2_btree_iter_traverse(iter); |
| if (ret) |
| return ret; |
| |
| ret = bch2_extent_trim_atomic(trans, iter, k); |
| if (ret) |
| return ret; |
| |
| next_pos = k->k.p; |
| |
| ret = bch2_sum_sector_overwrites(trans, iter, k, |
| &usage_increasing, |
| &i_sectors_delta, |
| &disk_sectors_delta); |
| if (ret) |
| return ret; |
| |
| if (disk_res && |
| disk_sectors_delta > (s64) disk_res->sectors) { |
| ret = bch2_disk_reservation_add(trans->c, disk_res, |
| disk_sectors_delta - disk_res->sectors, |
| !check_enospc || !usage_increasing |
| ? BCH_DISK_RESERVATION_NOFAIL : 0); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Note: |
| * We always have to do an inode update - even when i_size/i_sectors |
| * aren't changing - for fsync to work properly; fsync relies on |
| * inode->bi_journal_seq which is updated by the trigger code: |
| */ |
| ret = bch2_extent_update_i_size_sectors(trans, iter, |
| min(k->k.p.offset << 9, new_i_size), |
| i_sectors_delta) ?: |
| bch2_trans_update(trans, iter, k, 0) ?: |
| bch2_trans_commit(trans, disk_res, NULL, |
| BTREE_INSERT_NOCHECK_RW| |
| BTREE_INSERT_NOFAIL); |
| if (unlikely(ret)) |
| return ret; |
| |
| if (i_sectors_delta_total) |
| *i_sectors_delta_total += i_sectors_delta; |
| bch2_btree_iter_set_pos(iter, next_pos); |
| return 0; |
| } |
| |
| static int bch2_write_index_default(struct bch_write_op *op) |
| { |
| struct bch_fs *c = op->c; |
| struct bkey_buf sk; |
| struct keylist *keys = &op->insert_keys; |
| struct bkey_i *k = bch2_keylist_front(keys); |
| struct btree_trans *trans = bch2_trans_get(c); |
| struct btree_iter iter; |
| subvol_inum inum = { |
| .subvol = op->subvol, |
| .inum = k->k.p.inode, |
| }; |
| int ret; |
| |
| BUG_ON(!inum.subvol); |
| |
| bch2_bkey_buf_init(&sk); |
| |
| do { |
| bch2_trans_begin(trans); |
| |
| k = bch2_keylist_front(keys); |
| bch2_bkey_buf_copy(&sk, c, k); |
| |
| ret = bch2_subvolume_get_snapshot(trans, inum.subvol, |
| &sk.k->k.p.snapshot); |
| if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) |
| continue; |
| if (ret) |
| break; |
| |
| bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, |
| bkey_start_pos(&sk.k->k), |
| BTREE_ITER_SLOTS|BTREE_ITER_INTENT); |
| |
| ret = bch2_bkey_set_needs_rebalance(c, sk.k, |
| op->opts.background_target, |
| op->opts.background_compression) ?: |
| bch2_extent_update(trans, inum, &iter, sk.k, |
| &op->res, |
| op->new_i_size, &op->i_sectors_delta, |
| op->flags & BCH_WRITE_CHECK_ENOSPC); |
| bch2_trans_iter_exit(trans, &iter); |
| |
| if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) |
| continue; |
| if (ret) |
| break; |
| |
| if (bkey_ge(iter.pos, k->k.p)) |
| bch2_keylist_pop_front(&op->insert_keys); |
| else |
| bch2_cut_front(iter.pos, k); |
| } while (!bch2_keylist_empty(keys)); |
| |
| bch2_trans_put(trans); |
| bch2_bkey_buf_exit(&sk, c); |
| |
| return ret; |
| } |
| |
| /* Writes */ |
| |
| void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c, |
| enum bch_data_type type, |
| const struct bkey_i *k, |
| bool nocow) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k)); |
| const struct bch_extent_ptr *ptr; |
| struct bch_write_bio *n; |
| struct bch_dev *ca; |
| |
| BUG_ON(c->opts.nochanges); |
| |
| bkey_for_each_ptr(ptrs, ptr) { |
| BUG_ON(ptr->dev >= BCH_SB_MEMBERS_MAX || |
| !c->devs[ptr->dev]); |
| |
| ca = bch_dev_bkey_exists(c, ptr->dev); |
| |
| if (to_entry(ptr + 1) < ptrs.end) { |
| n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, |
| GFP_NOFS, &ca->replica_set)); |
| |
| n->bio.bi_end_io = wbio->bio.bi_end_io; |
| n->bio.bi_private = wbio->bio.bi_private; |
| n->parent = wbio; |
| n->split = true; |
| n->bounce = false; |
| n->put_bio = true; |
| n->bio.bi_opf = wbio->bio.bi_opf; |
| bio_inc_remaining(&wbio->bio); |
| } else { |
| n = wbio; |
| n->split = false; |
| } |
| |
| n->c = c; |
| n->dev = ptr->dev; |
| n->have_ioref = nocow || bch2_dev_get_ioref(ca, |
| type == BCH_DATA_btree ? READ : WRITE); |
| n->nocow = nocow; |
| n->submit_time = local_clock(); |
| n->inode_offset = bkey_start_offset(&k->k); |
| n->bio.bi_iter.bi_sector = ptr->offset; |
| |
| if (likely(n->have_ioref)) { |
| this_cpu_add(ca->io_done->sectors[WRITE][type], |
| bio_sectors(&n->bio)); |
| |
| bio_set_dev(&n->bio, ca->disk_sb.bdev); |
| |
| if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) { |
| bio_endio(&n->bio); |
| continue; |
| } |
| |
| submit_bio(&n->bio); |
| } else { |
| n->bio.bi_status = BLK_STS_REMOVED; |
| bio_endio(&n->bio); |
| } |
| } |
| } |
| |
| static void __bch2_write(struct bch_write_op *); |
| |
| static void bch2_write_done(struct closure *cl) |
| { |
| struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); |
| struct bch_fs *c = op->c; |
| |
| EBUG_ON(op->open_buckets.nr); |
| |
| bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time); |
| bch2_disk_reservation_put(c, &op->res); |
| |
| if (!(op->flags & BCH_WRITE_MOVE)) |
| bch2_write_ref_put(c, BCH_WRITE_REF_write); |
| bch2_keylist_free(&op->insert_keys, op->inline_keys); |
| |
| EBUG_ON(cl->parent); |
| closure_debug_destroy(cl); |
| if (op->end_io) |
| op->end_io(op); |
| } |
| |
| static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op) |
| { |
| struct keylist *keys = &op->insert_keys; |
| struct bch_extent_ptr *ptr; |
| struct bkey_i *src, *dst = keys->keys, *n; |
| |
| for (src = keys->keys; src != keys->top; src = n) { |
| n = bkey_next(src); |
| |
| if (bkey_extent_is_direct_data(&src->k)) { |
| bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr, |
| test_bit(ptr->dev, op->failed.d)); |
| |
| if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src))) |
| return -EIO; |
| } |
| |
| if (dst != src) |
| memmove_u64s_down(dst, src, src->k.u64s); |
| dst = bkey_next(dst); |
| } |
| |
| keys->top = dst; |
| return 0; |
| } |
| |
| /** |
| * __bch2_write_index - after a write, update index to point to new data |
| * @op: bch_write_op to process |
| */ |
| static void __bch2_write_index(struct bch_write_op *op) |
| { |
| struct bch_fs *c = op->c; |
| struct keylist *keys = &op->insert_keys; |
| unsigned dev; |
| int ret = 0; |
| |
| if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) { |
| ret = bch2_write_drop_io_error_ptrs(op); |
| if (ret) |
| goto err; |
| } |
| |
| if (!bch2_keylist_empty(keys)) { |
| u64 sectors_start = keylist_sectors(keys); |
| |
| ret = !(op->flags & BCH_WRITE_MOVE) |
| ? bch2_write_index_default(op) |
| : bch2_data_update_index_update(op); |
| |
| BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart)); |
| BUG_ON(keylist_sectors(keys) && !ret); |
| |
| op->written += sectors_start - keylist_sectors(keys); |
| |
| if (ret && !bch2_err_matches(ret, EROFS)) { |
| struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); |
| |
| bch_err_inum_offset_ratelimited(c, |
| insert->k.p.inode, insert->k.p.offset << 9, |
| "write error while doing btree update: %s", |
| bch2_err_str(ret)); |
| } |
| |
| if (ret) |
| goto err; |
| } |
| out: |
| /* If some a bucket wasn't written, we can't erasure code it: */ |
| for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX) |
| bch2_open_bucket_write_error(c, &op->open_buckets, dev); |
| |
| bch2_open_buckets_put(c, &op->open_buckets); |
| return; |
| err: |
| keys->top = keys->keys; |
| op->error = ret; |
| op->flags |= BCH_WRITE_DONE; |
| goto out; |
| } |
| |
| static inline void __wp_update_state(struct write_point *wp, enum write_point_state state) |
| { |
| if (state != wp->state) { |
| u64 now = ktime_get_ns(); |
| |
| if (wp->last_state_change && |
| time_after64(now, wp->last_state_change)) |
| wp->time[wp->state] += now - wp->last_state_change; |
| wp->state = state; |
| wp->last_state_change = now; |
| } |
| } |
| |
| static inline void wp_update_state(struct write_point *wp, bool running) |
| { |
| enum write_point_state state; |
| |
| state = running ? WRITE_POINT_running : |
| !list_empty(&wp->writes) ? WRITE_POINT_waiting_io |
| : WRITE_POINT_stopped; |
| |
| __wp_update_state(wp, state); |
| } |
| |
| static void bch2_write_index(struct closure *cl) |
| { |
| struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); |
| struct write_point *wp = op->wp; |
| struct workqueue_struct *wq = index_update_wq(op); |
| unsigned long flags; |
| |
| if ((op->flags & BCH_WRITE_DONE) && |
| (op->flags & BCH_WRITE_MOVE)) |
| bch2_bio_free_pages_pool(op->c, &op->wbio.bio); |
| |
| spin_lock_irqsave(&wp->writes_lock, flags); |
| if (wp->state == WRITE_POINT_waiting_io) |
| __wp_update_state(wp, WRITE_POINT_waiting_work); |
| list_add_tail(&op->wp_list, &wp->writes); |
| spin_unlock_irqrestore (&wp->writes_lock, flags); |
| |
| queue_work(wq, &wp->index_update_work); |
| } |
| |
| static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp) |
| { |
| op->wp = wp; |
| |
| if (wp->state == WRITE_POINT_stopped) { |
| spin_lock_irq(&wp->writes_lock); |
| __wp_update_state(wp, WRITE_POINT_waiting_io); |
| spin_unlock_irq(&wp->writes_lock); |
| } |
| } |
| |
| void bch2_write_point_do_index_updates(struct work_struct *work) |
| { |
| struct write_point *wp = |
| container_of(work, struct write_point, index_update_work); |
| struct bch_write_op *op; |
| |
| while (1) { |
| spin_lock_irq(&wp->writes_lock); |
| op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list); |
| if (op) |
| list_del(&op->wp_list); |
| wp_update_state(wp, op != NULL); |
| spin_unlock_irq(&wp->writes_lock); |
| |
| if (!op) |
| break; |
| |
| op->flags |= BCH_WRITE_IN_WORKER; |
| |
| __bch2_write_index(op); |
| |
| if (!(op->flags & BCH_WRITE_DONE)) |
| __bch2_write(op); |
| else |
| bch2_write_done(&op->cl); |
| } |
| } |
| |
| static void bch2_write_endio(struct bio *bio) |
| { |
| struct closure *cl = bio->bi_private; |
| struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); |
| struct bch_write_bio *wbio = to_wbio(bio); |
| struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; |
| struct bch_fs *c = wbio->c; |
| struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev); |
| |
| if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write, |
| op->pos.inode, |
| wbio->inode_offset << 9, |
| "data write error: %s", |
| bch2_blk_status_to_str(bio->bi_status))) { |
| set_bit(wbio->dev, op->failed.d); |
| op->flags |= BCH_WRITE_IO_ERROR; |
| } |
| |
| if (wbio->nocow) |
| set_bit(wbio->dev, op->devs_need_flush->d); |
| |
| if (wbio->have_ioref) { |
| bch2_latency_acct(ca, wbio->submit_time, WRITE); |
| percpu_ref_put(&ca->io_ref); |
| } |
| |
| if (wbio->bounce) |
| bch2_bio_free_pages_pool(c, bio); |
| |
| if (wbio->put_bio) |
| bio_put(bio); |
| |
| if (parent) |
| bio_endio(&parent->bio); |
| else |
| closure_put(cl); |
| } |
| |
| static void init_append_extent(struct bch_write_op *op, |
| struct write_point *wp, |
| struct bversion version, |
| struct bch_extent_crc_unpacked crc) |
| { |
| struct bkey_i_extent *e; |
| |
| op->pos.offset += crc.uncompressed_size; |
| |
| e = bkey_extent_init(op->insert_keys.top); |
| e->k.p = op->pos; |
| e->k.size = crc.uncompressed_size; |
| e->k.version = version; |
| |
| if (crc.csum_type || |
| crc.compression_type || |
| crc.nonce) |
| bch2_extent_crc_append(&e->k_i, crc); |
| |
| bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size, |
| op->flags & BCH_WRITE_CACHED); |
| |
| bch2_keylist_push(&op->insert_keys); |
| } |
| |
| static struct bio *bch2_write_bio_alloc(struct bch_fs *c, |
| struct write_point *wp, |
| struct bio *src, |
| bool *page_alloc_failed, |
| void *buf) |
| { |
| struct bch_write_bio *wbio; |
| struct bio *bio; |
| unsigned output_available = |
| min(wp->sectors_free << 9, src->bi_iter.bi_size); |
| unsigned pages = DIV_ROUND_UP(output_available + |
| (buf |
| ? ((unsigned long) buf & (PAGE_SIZE - 1)) |
| : 0), PAGE_SIZE); |
| |
| pages = min(pages, BIO_MAX_VECS); |
| |
| bio = bio_alloc_bioset(NULL, pages, 0, |
| GFP_NOFS, &c->bio_write); |
| wbio = wbio_init(bio); |
| wbio->put_bio = true; |
| /* copy WRITE_SYNC flag */ |
| wbio->bio.bi_opf = src->bi_opf; |
| |
| if (buf) { |
| bch2_bio_map(bio, buf, output_available); |
| return bio; |
| } |
| |
| wbio->bounce = true; |
| |
| /* |
| * We can't use mempool for more than c->sb.encoded_extent_max |
| * worth of pages, but we'd like to allocate more if we can: |
| */ |
| bch2_bio_alloc_pages_pool(c, bio, |
| min_t(unsigned, output_available, |
| c->opts.encoded_extent_max)); |
| |
| if (bio->bi_iter.bi_size < output_available) |
| *page_alloc_failed = |
| bch2_bio_alloc_pages(bio, |
| output_available - |
| bio->bi_iter.bi_size, |
| GFP_NOFS) != 0; |
| |
| return bio; |
| } |
| |
| static int bch2_write_rechecksum(struct bch_fs *c, |
| struct bch_write_op *op, |
| unsigned new_csum_type) |
| { |
| struct bio *bio = &op->wbio.bio; |
| struct bch_extent_crc_unpacked new_crc; |
| int ret; |
| |
| /* bch2_rechecksum_bio() can't encrypt or decrypt data: */ |
| |
| if (bch2_csum_type_is_encryption(op->crc.csum_type) != |
| bch2_csum_type_is_encryption(new_csum_type)) |
| new_csum_type = op->crc.csum_type; |
| |
| ret = bch2_rechecksum_bio(c, bio, op->version, op->crc, |
| NULL, &new_crc, |
| op->crc.offset, op->crc.live_size, |
| new_csum_type); |
| if (ret) |
| return ret; |
| |
| bio_advance(bio, op->crc.offset << 9); |
| bio->bi_iter.bi_size = op->crc.live_size << 9; |
| op->crc = new_crc; |
| return 0; |
| } |
| |
| static int bch2_write_decrypt(struct bch_write_op *op) |
| { |
| struct bch_fs *c = op->c; |
| struct nonce nonce = extent_nonce(op->version, op->crc); |
| struct bch_csum csum; |
| int ret; |
| |
| if (!bch2_csum_type_is_encryption(op->crc.csum_type)) |
| return 0; |
| |
| /* |
| * If we need to decrypt data in the write path, we'll no longer be able |
| * to verify the existing checksum (poly1305 mac, in this case) after |
| * it's decrypted - this is the last point we'll be able to reverify the |
| * checksum: |
| */ |
| csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio); |
| if (bch2_crc_cmp(op->crc.csum, csum)) |
| return -EIO; |
| |
| ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio); |
| op->crc.csum_type = 0; |
| op->crc.csum = (struct bch_csum) { 0, 0 }; |
| return ret; |
| } |
| |
| static enum prep_encoded_ret { |
| PREP_ENCODED_OK, |
| PREP_ENCODED_ERR, |
| PREP_ENCODED_CHECKSUM_ERR, |
| PREP_ENCODED_DO_WRITE, |
| } bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp) |
| { |
| struct bch_fs *c = op->c; |
| struct bio *bio = &op->wbio.bio; |
| |
| if (!(op->flags & BCH_WRITE_DATA_ENCODED)) |
| return PREP_ENCODED_OK; |
| |
| BUG_ON(bio_sectors(bio) != op->crc.compressed_size); |
| |
| /* Can we just write the entire extent as is? */ |
| if (op->crc.uncompressed_size == op->crc.live_size && |
| op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 && |
| op->crc.compressed_size <= wp->sectors_free && |
| (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) || |
| op->incompressible)) { |
| if (!crc_is_compressed(op->crc) && |
| op->csum_type != op->crc.csum_type && |
| bch2_write_rechecksum(c, op, op->csum_type) && |
| !c->opts.no_data_io) |
| return PREP_ENCODED_CHECKSUM_ERR; |
| |
| return PREP_ENCODED_DO_WRITE; |
| } |
| |
| /* |
| * If the data is compressed and we couldn't write the entire extent as |
| * is, we have to decompress it: |
| */ |
| if (crc_is_compressed(op->crc)) { |
| struct bch_csum csum; |
| |
| if (bch2_write_decrypt(op)) |
| return PREP_ENCODED_CHECKSUM_ERR; |
| |
| /* Last point we can still verify checksum: */ |
| csum = bch2_checksum_bio(c, op->crc.csum_type, |
| extent_nonce(op->version, op->crc), |
| bio); |
| if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io) |
| return PREP_ENCODED_CHECKSUM_ERR; |
| |
| if (bch2_bio_uncompress_inplace(c, bio, &op->crc)) |
| return PREP_ENCODED_ERR; |
| } |
| |
| /* |
| * No longer have compressed data after this point - data might be |
| * encrypted: |
| */ |
| |
| /* |
| * If the data is checksummed and we're only writing a subset, |
| * rechecksum and adjust bio to point to currently live data: |
| */ |
| if ((op->crc.live_size != op->crc.uncompressed_size || |
| op->crc.csum_type != op->csum_type) && |
| bch2_write_rechecksum(c, op, op->csum_type) && |
| !c->opts.no_data_io) |
| return PREP_ENCODED_CHECKSUM_ERR; |
| |
| /* |
| * If we want to compress the data, it has to be decrypted: |
| */ |
| if ((op->compression_opt || |
| bch2_csum_type_is_encryption(op->crc.csum_type) != |
| bch2_csum_type_is_encryption(op->csum_type)) && |
| bch2_write_decrypt(op)) |
| return PREP_ENCODED_CHECKSUM_ERR; |
| |
| return PREP_ENCODED_OK; |
| } |
| |
| static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp, |
| struct bio **_dst) |
| { |
| struct bch_fs *c = op->c; |
| struct bio *src = &op->wbio.bio, *dst = src; |
| struct bvec_iter saved_iter; |
| void *ec_buf; |
| unsigned total_output = 0, total_input = 0; |
| bool bounce = false; |
| bool page_alloc_failed = false; |
| int ret, more = 0; |
| |
| BUG_ON(!bio_sectors(src)); |
| |
| ec_buf = bch2_writepoint_ec_buf(c, wp); |
| |
| switch (bch2_write_prep_encoded_data(op, wp)) { |
| case PREP_ENCODED_OK: |
| break; |
| case PREP_ENCODED_ERR: |
| ret = -EIO; |
| goto err; |
| case PREP_ENCODED_CHECKSUM_ERR: |
| goto csum_err; |
| case PREP_ENCODED_DO_WRITE: |
| /* XXX look for bug here */ |
| if (ec_buf) { |
| dst = bch2_write_bio_alloc(c, wp, src, |
| &page_alloc_failed, |
| ec_buf); |
| bio_copy_data(dst, src); |
| bounce = true; |
| } |
| init_append_extent(op, wp, op->version, op->crc); |
| goto do_write; |
| } |
| |
| if (ec_buf || |
| op->compression_opt || |
| (op->csum_type && |
| !(op->flags & BCH_WRITE_PAGES_STABLE)) || |
| (bch2_csum_type_is_encryption(op->csum_type) && |
| !(op->flags & BCH_WRITE_PAGES_OWNED))) { |
| dst = bch2_write_bio_alloc(c, wp, src, |
| &page_alloc_failed, |
| ec_buf); |
| bounce = true; |
| } |
| |
| saved_iter = dst->bi_iter; |
| |
| do { |
| struct bch_extent_crc_unpacked crc = { 0 }; |
| struct bversion version = op->version; |
| size_t dst_len = 0, src_len = 0; |
| |
| if (page_alloc_failed && |
| dst->bi_iter.bi_size < (wp->sectors_free << 9) && |
| dst->bi_iter.bi_size < c->opts.encoded_extent_max) |
| break; |
| |
| BUG_ON(op->compression_opt && |
| (op->flags & BCH_WRITE_DATA_ENCODED) && |
| bch2_csum_type_is_encryption(op->crc.csum_type)); |
| BUG_ON(op->compression_opt && !bounce); |
| |
| crc.compression_type = op->incompressible |
| ? BCH_COMPRESSION_TYPE_incompressible |
| : op->compression_opt |
| ? bch2_bio_compress(c, dst, &dst_len, src, &src_len, |
| op->compression_opt) |
| : 0; |
| if (!crc_is_compressed(crc)) { |
| dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); |
| dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9); |
| |
| if (op->csum_type) |
| dst_len = min_t(unsigned, dst_len, |
| c->opts.encoded_extent_max); |
| |
| if (bounce) { |
| swap(dst->bi_iter.bi_size, dst_len); |
| bio_copy_data(dst, src); |
| swap(dst->bi_iter.bi_size, dst_len); |
| } |
| |
| src_len = dst_len; |
| } |
| |
| BUG_ON(!src_len || !dst_len); |
| |
| if (bch2_csum_type_is_encryption(op->csum_type)) { |
| if (bversion_zero(version)) { |
| version.lo = atomic64_inc_return(&c->key_version); |
| } else { |
| crc.nonce = op->nonce; |
| op->nonce += src_len >> 9; |
| } |
| } |
| |
| if ((op->flags & BCH_WRITE_DATA_ENCODED) && |
| !crc_is_compressed(crc) && |
| bch2_csum_type_is_encryption(op->crc.csum_type) == |
| bch2_csum_type_is_encryption(op->csum_type)) { |
| u8 compression_type = crc.compression_type; |
| u16 nonce = crc.nonce; |
| /* |
| * Note: when we're using rechecksum(), we need to be |
| * checksumming @src because it has all the data our |
| * existing checksum covers - if we bounced (because we |
| * were trying to compress), @dst will only have the |
| * part of the data the new checksum will cover. |
| * |
| * But normally we want to be checksumming post bounce, |
| * because part of the reason for bouncing is so the |
| * data can't be modified (by userspace) while it's in |
| * flight. |
| */ |
| if (bch2_rechecksum_bio(c, src, version, op->crc, |
| &crc, &op->crc, |
| src_len >> 9, |
| bio_sectors(src) - (src_len >> 9), |
| op->csum_type)) |
| goto csum_err; |
| /* |
| * rchecksum_bio sets compression_type on crc from op->crc, |
| * this isn't always correct as sometimes we're changing |
| * an extent from uncompressed to incompressible. |
| */ |
| crc.compression_type = compression_type; |
| crc.nonce = nonce; |
| } else { |
| if ((op->flags & BCH_WRITE_DATA_ENCODED) && |
| bch2_rechecksum_bio(c, src, version, op->crc, |
| NULL, &op->crc, |
| src_len >> 9, |
| bio_sectors(src) - (src_len >> 9), |
| op->crc.csum_type)) |
| goto csum_err; |
| |
| crc.compressed_size = dst_len >> 9; |
| crc.uncompressed_size = src_len >> 9; |
| crc.live_size = src_len >> 9; |
| |
| swap(dst->bi_iter.bi_size, dst_len); |
| ret = bch2_encrypt_bio(c, op->csum_type, |
| extent_nonce(version, crc), dst); |
| if (ret) |
| goto err; |
| |
| crc.csum = bch2_checksum_bio(c, op->csum_type, |
| extent_nonce(version, crc), dst); |
| crc.csum_type = op->csum_type; |
| swap(dst->bi_iter.bi_size, dst_len); |
| } |
| |
| init_append_extent(op, wp, version, crc); |
| |
| if (dst != src) |
| bio_advance(dst, dst_len); |
| bio_advance(src, src_len); |
| total_output += dst_len; |
| total_input += src_len; |
| } while (dst->bi_iter.bi_size && |
| src->bi_iter.bi_size && |
| wp->sectors_free && |
| !bch2_keylist_realloc(&op->insert_keys, |
| op->inline_keys, |
| ARRAY_SIZE(op->inline_keys), |
| BKEY_EXTENT_U64s_MAX)); |
| |
| more = src->bi_iter.bi_size != 0; |
| |
| dst->bi_iter = saved_iter; |
| |
| if (dst == src && more) { |
| BUG_ON(total_output != total_input); |
| |
| dst = bio_split(src, total_input >> 9, |
| GFP_NOFS, &c->bio_write); |
| wbio_init(dst)->put_bio = true; |
| /* copy WRITE_SYNC flag */ |
| dst->bi_opf = src->bi_opf; |
| } |
| |
| dst->bi_iter.bi_size = total_output; |
| do_write: |
| *_dst = dst; |
| return more; |
| csum_err: |
| bch_err(c, "error verifying existing checksum while rewriting existing data (memory corruption?)"); |
| ret = -EIO; |
| err: |
| if (to_wbio(dst)->bounce) |
| bch2_bio_free_pages_pool(c, dst); |
| if (to_wbio(dst)->put_bio) |
| bio_put(dst); |
| |
| return ret; |
| } |
| |
| static bool bch2_extent_is_writeable(struct bch_write_op *op, |
| struct bkey_s_c k) |
| { |
| struct bch_fs *c = op->c; |
| struct bkey_s_c_extent e; |
| struct extent_ptr_decoded p; |
| const union bch_extent_entry *entry; |
| unsigned replicas = 0; |
| |
| if (k.k->type != KEY_TYPE_extent) |
| return false; |
| |
| e = bkey_s_c_to_extent(k); |
| extent_for_each_ptr_decode(e, p, entry) { |
| if (crc_is_encoded(p.crc) || p.has_ec) |
| return false; |
| |
| replicas += bch2_extent_ptr_durability(c, &p); |
| } |
| |
| return replicas >= op->opts.data_replicas; |
| } |
| |
| static inline void bch2_nocow_write_unlock(struct bch_write_op *op) |
| { |
| struct bch_fs *c = op->c; |
| const struct bch_extent_ptr *ptr; |
| struct bkey_i *k; |
| |
| for_each_keylist_key(&op->insert_keys, k) { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k)); |
| |
| bkey_for_each_ptr(ptrs, ptr) |
| bch2_bucket_nocow_unlock(&c->nocow_locks, |
| PTR_BUCKET_POS(c, ptr), |
| BUCKET_NOCOW_LOCK_UPDATE); |
| } |
| } |
| |
| static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans, |
| struct btree_iter *iter, |
| struct bkey_i *orig, |
| struct bkey_s_c k, |
| u64 new_i_size) |
| { |
| struct bkey_i *new; |
| struct bkey_ptrs ptrs; |
| struct bch_extent_ptr *ptr; |
| int ret; |
| |
| if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) { |
| /* trace this */ |
| return 0; |
| } |
| |
| new = bch2_bkey_make_mut_noupdate(trans, k); |
| ret = PTR_ERR_OR_ZERO(new); |
| if (ret) |
| return ret; |
| |
| bch2_cut_front(bkey_start_pos(&orig->k), new); |
| bch2_cut_back(orig->k.p, new); |
| |
| ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); |
| bkey_for_each_ptr(ptrs, ptr) |
| ptr->unwritten = 0; |
| |
| /* |
| * Note that we're not calling bch2_subvol_get_snapshot() in this path - |
| * that was done when we kicked off the write, and here it's important |
| * that we update the extent that we wrote to - even if a snapshot has |
| * since been created. The write is still outstanding, so we're ok |
| * w.r.t. snapshot atomicity: |
| */ |
| return bch2_extent_update_i_size_sectors(trans, iter, |
| min(new->k.p.offset << 9, new_i_size), 0) ?: |
| bch2_trans_update(trans, iter, new, |
| BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); |
| } |
| |
| static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op) |
| { |
| struct bch_fs *c = op->c; |
| struct btree_trans *trans = bch2_trans_get(c); |
| struct btree_iter iter; |
| struct bkey_i *orig; |
| struct bkey_s_c k; |
| int ret; |
| |
| for_each_keylist_key(&op->insert_keys, orig) { |
| ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents, |
| bkey_start_pos(&orig->k), orig->k.p, |
| BTREE_ITER_INTENT, k, |
| NULL, NULL, BTREE_INSERT_NOFAIL, ({ |
| bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size); |
| })); |
| |
| if (ret && !bch2_err_matches(ret, EROFS)) { |
| struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); |
| |
| bch_err_inum_offset_ratelimited(c, |
| insert->k.p.inode, insert->k.p.offset << 9, |
| "write error while doing btree update: %s", |
| bch2_err_str(ret)); |
| } |
| |
| if (ret) { |
| op->error = ret; |
| break; |
| } |
| } |
| |
| bch2_trans_put(trans); |
| } |
| |
| static void __bch2_nocow_write_done(struct bch_write_op *op) |
| { |
| bch2_nocow_write_unlock(op); |
| |
| if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) { |
| op->error = -EIO; |
| } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN)) |
| bch2_nocow_write_convert_unwritten(op); |
| } |
| |
| static void bch2_nocow_write_done(struct closure *cl) |
| { |
| struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); |
| |
| __bch2_nocow_write_done(op); |
| bch2_write_done(cl); |
| } |
| |
| static void bch2_nocow_write(struct bch_write_op *op) |
| { |
| struct bch_fs *c = op->c; |
| struct btree_trans *trans; |
| struct btree_iter iter; |
| struct bkey_s_c k; |
| struct bkey_ptrs_c ptrs; |
| const struct bch_extent_ptr *ptr; |
| struct { |
| struct bpos b; |
| unsigned gen; |
| struct nocow_lock_bucket *l; |
| } buckets[BCH_REPLICAS_MAX]; |
| unsigned nr_buckets = 0; |
| u32 snapshot; |
| int ret, i; |
| |
| if (op->flags & BCH_WRITE_MOVE) |
| return; |
| |
| trans = bch2_trans_get(c); |
| retry: |
| bch2_trans_begin(trans); |
| |
| ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot); |
| if (unlikely(ret)) |
| goto err; |
| |
| bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, |
| SPOS(op->pos.inode, op->pos.offset, snapshot), |
| BTREE_ITER_SLOTS); |
| while (1) { |
| struct bio *bio = &op->wbio.bio; |
| |
| nr_buckets = 0; |
| |
| k = bch2_btree_iter_peek_slot(&iter); |
| ret = bkey_err(k); |
| if (ret) |
| break; |
| |
| /* fall back to normal cow write path? */ |
| if (unlikely(k.k->p.snapshot != snapshot || |
| !bch2_extent_is_writeable(op, k))) |
| break; |
| |
| if (bch2_keylist_realloc(&op->insert_keys, |
| op->inline_keys, |
| ARRAY_SIZE(op->inline_keys), |
| k.k->u64s)) |
| break; |
| |
| /* Get iorefs before dropping btree locks: */ |
| ptrs = bch2_bkey_ptrs_c(k); |
| bkey_for_each_ptr(ptrs, ptr) { |
| buckets[nr_buckets].b = PTR_BUCKET_POS(c, ptr); |
| buckets[nr_buckets].gen = ptr->gen; |
| buckets[nr_buckets].l = |
| bucket_nocow_lock(&c->nocow_locks, |
| bucket_to_u64(buckets[nr_buckets].b)); |
| |
| prefetch(buckets[nr_buckets].l); |
| |
| if (unlikely(!bch2_dev_get_ioref(bch_dev_bkey_exists(c, ptr->dev), WRITE))) |
| goto err_get_ioref; |
| |
| nr_buckets++; |
| |
| if (ptr->unwritten) |
| op->flags |= BCH_WRITE_CONVERT_UNWRITTEN; |
| } |
| |
| /* Unlock before taking nocow locks, doing IO: */ |
| bkey_reassemble(op->insert_keys.top, k); |
| bch2_trans_unlock(trans); |
| |
| bch2_cut_front(op->pos, op->insert_keys.top); |
| if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN) |
| bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top); |
| |
| for (i = 0; i < nr_buckets; i++) { |
| struct bch_dev *ca = bch_dev_bkey_exists(c, buckets[i].b.inode); |
| struct nocow_lock_bucket *l = buckets[i].l; |
| bool stale; |
| |
| __bch2_bucket_nocow_lock(&c->nocow_locks, l, |
| bucket_to_u64(buckets[i].b), |
| BUCKET_NOCOW_LOCK_UPDATE); |
| |
| rcu_read_lock(); |
| stale = gen_after(*bucket_gen(ca, buckets[i].b.offset), buckets[i].gen); |
| rcu_read_unlock(); |
| |
| if (unlikely(stale)) |
| goto err_bucket_stale; |
| } |
| |
| bio = &op->wbio.bio; |
| if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) { |
| bio = bio_split(bio, k.k->p.offset - op->pos.offset, |
| GFP_KERNEL, &c->bio_write); |
| wbio_init(bio)->put_bio = true; |
| bio->bi_opf = op->wbio.bio.bi_opf; |
| } else { |
| op->flags |= BCH_WRITE_DONE; |
| } |
| |
| op->pos.offset += bio_sectors(bio); |
| op->written += bio_sectors(bio); |
| |
| bio->bi_end_io = bch2_write_endio; |
| bio->bi_private = &op->cl; |
| bio->bi_opf |= REQ_OP_WRITE; |
| closure_get(&op->cl); |
| bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, |
| op->insert_keys.top, true); |
| |
| bch2_keylist_push(&op->insert_keys); |
| if (op->flags & BCH_WRITE_DONE) |
| break; |
| bch2_btree_iter_advance(&iter); |
| } |
| out: |
| bch2_trans_iter_exit(trans, &iter); |
| err: |
| if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) |
| goto retry; |
| |
| if (ret) { |
| bch_err_inum_offset_ratelimited(c, |
| op->pos.inode, |
| op->pos.offset << 9, |
| "%s: btree lookup error %s", |
| __func__, bch2_err_str(ret)); |
| op->error = ret; |
| op->flags |= BCH_WRITE_DONE; |
| } |
| |
| bch2_trans_put(trans); |
| |
| /* fallback to cow write path? */ |
| if (!(op->flags & BCH_WRITE_DONE)) { |
| closure_sync(&op->cl); |
| __bch2_nocow_write_done(op); |
| op->insert_keys.top = op->insert_keys.keys; |
| } else if (op->flags & BCH_WRITE_SYNC) { |
| closure_sync(&op->cl); |
| bch2_nocow_write_done(&op->cl); |
| } else { |
| /* |
| * XXX |
| * needs to run out of process context because ei_quota_lock is |
| * a mutex |
| */ |
| continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op)); |
| } |
| return; |
| err_get_ioref: |
| for (i = 0; i < nr_buckets; i++) |
| percpu_ref_put(&bch_dev_bkey_exists(c, buckets[i].b.inode)->io_ref); |
| |
| /* Fall back to COW path: */ |
| goto out; |
| err_bucket_stale: |
| while (i >= 0) { |
| bch2_bucket_nocow_unlock(&c->nocow_locks, |
| buckets[i].b, |
| BUCKET_NOCOW_LOCK_UPDATE); |
| --i; |
| } |
| for (i = 0; i < nr_buckets; i++) |
| percpu_ref_put(&bch_dev_bkey_exists(c, buckets[i].b.inode)->io_ref); |
| |
| /* We can retry this: */ |
| ret = -BCH_ERR_transaction_restart; |
| goto out; |
| } |
| |
| static void __bch2_write(struct bch_write_op *op) |
| { |
| struct bch_fs *c = op->c; |
| struct write_point *wp = NULL; |
| struct bio *bio = NULL; |
| unsigned nofs_flags; |
| int ret; |
| |
| nofs_flags = memalloc_nofs_save(); |
| |
| if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) { |
| bch2_nocow_write(op); |
| if (op->flags & BCH_WRITE_DONE) |
| goto out_nofs_restore; |
| } |
| again: |
| memset(&op->failed, 0, sizeof(op->failed)); |
| |
| do { |
| struct bkey_i *key_to_write; |
| unsigned key_to_write_offset = op->insert_keys.top_p - |
| op->insert_keys.keys_p; |
| |
| /* +1 for possible cache device: */ |
| if (op->open_buckets.nr + op->nr_replicas + 1 > |
| ARRAY_SIZE(op->open_buckets.v)) |
| break; |
| |
| if (bch2_keylist_realloc(&op->insert_keys, |
| op->inline_keys, |
| ARRAY_SIZE(op->inline_keys), |
| BKEY_EXTENT_U64s_MAX)) |
| break; |
| |
| /* |
| * The copygc thread is now global, which means it's no longer |
| * freeing up space on specific disks, which means that |
| * allocations for specific disks may hang arbitrarily long: |
| */ |
| ret = bch2_trans_do(c, NULL, NULL, 0, |
| bch2_alloc_sectors_start_trans(trans, |
| op->target, |
| op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED), |
| op->write_point, |
| &op->devs_have, |
| op->nr_replicas, |
| op->nr_replicas_required, |
| op->watermark, |
| op->flags, |
| (op->flags & (BCH_WRITE_ALLOC_NOWAIT| |
| BCH_WRITE_ONLY_SPECIFIED_DEVS)) |
| ? NULL : &op->cl, &wp)); |
| if (unlikely(ret)) { |
| if (bch2_err_matches(ret, BCH_ERR_operation_blocked)) |
| break; |
| |
| goto err; |
| } |
| |
| EBUG_ON(!wp); |
| |
| bch2_open_bucket_get(c, wp, &op->open_buckets); |
| ret = bch2_write_extent(op, wp, &bio); |
| |
| bch2_alloc_sectors_done_inlined(c, wp); |
| err: |
| if (ret <= 0) { |
| op->flags |= BCH_WRITE_DONE; |
| |
| if (ret < 0) { |
| op->error = ret; |
| break; |
| } |
| } |
| |
| bio->bi_end_io = bch2_write_endio; |
| bio->bi_private = &op->cl; |
| bio->bi_opf |= REQ_OP_WRITE; |
| |
| closure_get(bio->bi_private); |
| |
| key_to_write = (void *) (op->insert_keys.keys_p + |
| key_to_write_offset); |
| |
| bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, |
| key_to_write, false); |
| } while (ret); |
| |
| /* |
| * Sync or no? |
| * |
| * If we're running asynchronously, wne may still want to block |
| * synchronously here if we weren't able to submit all of the IO at |
| * once, as that signals backpressure to the caller. |
| */ |
| if ((op->flags & BCH_WRITE_SYNC) || |
| (!(op->flags & BCH_WRITE_DONE) && |
| !(op->flags & BCH_WRITE_IN_WORKER))) { |
| closure_sync(&op->cl); |
| __bch2_write_index(op); |
| |
| if (!(op->flags & BCH_WRITE_DONE)) |
| goto again; |
| bch2_write_done(&op->cl); |
| } else { |
| bch2_write_queue(op, wp); |
| continue_at(&op->cl, bch2_write_index, NULL); |
| } |
| out_nofs_restore: |
| memalloc_nofs_restore(nofs_flags); |
| } |
| |
| static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len) |
| { |
| struct bio *bio = &op->wbio.bio; |
| struct bvec_iter iter; |
| struct bkey_i_inline_data *id; |
| unsigned sectors; |
| int ret; |
| |
| op->flags |= BCH_WRITE_WROTE_DATA_INLINE; |
| op->flags |= BCH_WRITE_DONE; |
| |
| bch2_check_set_feature(op->c, BCH_FEATURE_inline_data); |
| |
| ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys, |
| ARRAY_SIZE(op->inline_keys), |
| BKEY_U64s + DIV_ROUND_UP(data_len, 8)); |
| if (ret) { |
| op->error = ret; |
| goto err; |
| } |
| |
| sectors = bio_sectors(bio); |
| op->pos.offset += sectors; |
| |
| id = bkey_inline_data_init(op->insert_keys.top); |
| id->k.p = op->pos; |
| id->k.version = op->version; |
| id->k.size = sectors; |
| |
| iter = bio->bi_iter; |
| iter.bi_size = data_len; |
| memcpy_from_bio(id->v.data, bio, iter); |
| |
| while (data_len & 7) |
| id->v.data[data_len++] = '\0'; |
| set_bkey_val_bytes(&id->k, data_len); |
| bch2_keylist_push(&op->insert_keys); |
| |
| __bch2_write_index(op); |
| err: |
| bch2_write_done(&op->cl); |
| } |
| |
| /** |
| * bch2_write() - handle a write to a cache device or flash only volume |
| * @cl: &bch_write_op->cl |
| * |
| * This is the starting point for any data to end up in a cache device; it could |
| * be from a normal write, or a writeback write, or a write to a flash only |
| * volume - it's also used by the moving garbage collector to compact data in |
| * mostly empty buckets. |
| * |
| * It first writes the data to the cache, creating a list of keys to be inserted |
| * (if the data won't fit in a single open bucket, there will be multiple keys); |
| * after the data is written it calls bch_journal, and after the keys have been |
| * added to the next journal write they're inserted into the btree. |
| * |
| * If op->discard is true, instead of inserting the data it invalidates the |
| * region of the cache represented by op->bio and op->inode. |
| */ |
| void bch2_write(struct closure *cl) |
| { |
| struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); |
| struct bio *bio = &op->wbio.bio; |
| struct bch_fs *c = op->c; |
| unsigned data_len; |
| |
| EBUG_ON(op->cl.parent); |
| BUG_ON(!op->nr_replicas); |
| BUG_ON(!op->write_point.v); |
| BUG_ON(bkey_eq(op->pos, POS_MAX)); |
| |
| op->start_time = local_clock(); |
| bch2_keylist_init(&op->insert_keys, op->inline_keys); |
| wbio_init(bio)->put_bio = false; |
| |
| if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) { |
| bch_err_inum_offset_ratelimited(c, |
| op->pos.inode, |
| op->pos.offset << 9, |
| "misaligned write"); |
| op->error = -EIO; |
| goto err; |
| } |
| |
| if (c->opts.nochanges) { |
| op->error = -BCH_ERR_erofs_no_writes; |
| goto err; |
| } |
| |
| if (!(op->flags & BCH_WRITE_MOVE) && |
| !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) { |
| op->error = -BCH_ERR_erofs_no_writes; |
| goto err; |
| } |
| |
| this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio)); |
| bch2_increment_clock(c, bio_sectors(bio), WRITE); |
| |
| data_len = min_t(u64, bio->bi_iter.bi_size, |
| op->new_i_size - (op->pos.offset << 9)); |
| |
| if (c->opts.inline_data && |
| data_len <= min(block_bytes(c) / 2, 1024U)) { |
| bch2_write_data_inline(op, data_len); |
| return; |
| } |
| |
| __bch2_write(op); |
| return; |
| err: |
| bch2_disk_reservation_put(c, &op->res); |
| |
| closure_debug_destroy(&op->cl); |
| if (op->end_io) |
| op->end_io(op); |
| } |
| |
| static const char * const bch2_write_flags[] = { |
| #define x(f) #f, |
| BCH_WRITE_FLAGS() |
| #undef x |
| NULL |
| }; |
| |
| void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op) |
| { |
| prt_str(out, "pos: "); |
| bch2_bpos_to_text(out, op->pos); |
| prt_newline(out); |
| printbuf_indent_add(out, 2); |
| |
| prt_str(out, "started: "); |
| bch2_pr_time_units(out, local_clock() - op->start_time); |
| prt_newline(out); |
| |
| prt_str(out, "flags: "); |
| prt_bitflags(out, bch2_write_flags, op->flags); |
| prt_newline(out); |
| |
| prt_printf(out, "ref: %u", closure_nr_remaining(&op->cl)); |
| prt_newline(out); |
| |
| printbuf_indent_sub(out, 2); |
| } |
| |
| void bch2_fs_io_write_exit(struct bch_fs *c) |
| { |
| mempool_exit(&c->bio_bounce_pages); |
| bioset_exit(&c->bio_write); |
| } |
| |
| int bch2_fs_io_write_init(struct bch_fs *c) |
| { |
| if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio), |
| BIOSET_NEED_BVECS)) |
| return -BCH_ERR_ENOMEM_bio_write_init; |
| |
| if (mempool_init_page_pool(&c->bio_bounce_pages, |
| max_t(unsigned, |
| c->opts.btree_node_size, |
| c->opts.encoded_extent_max) / |
| PAGE_SIZE, 0)) |
| return -BCH_ERR_ENOMEM_bio_bounce_pages_init; |
| |
| return 0; |
| } |