blob: fff790a3f4ee9484606d4d6aa1614715fe01ad4e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* KVM Microsoft Hyper-V emulation
*
* derived from arch/x86/kvm/x86.c
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright (C) 2008 Qumranet, Inc.
* Copyright IBM Corporation, 2008
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
* Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
* Amit Shah <amit.shah@qumranet.com>
* Ben-Ami Yassour <benami@il.ibm.com>
* Andrey Smetanin <asmetanin@virtuozzo.com>
*/
#include "x86.h"
#include "lapic.h"
#include "ioapic.h"
#include "hyperv.h"
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/sched/cputime.h>
#include <linux/eventfd.h>
#include <asm/apicdef.h>
#include <trace/events/kvm.h>
#include "trace.h"
#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
bool vcpu_kick);
static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
{
return atomic64_read(&synic->sint[sint]);
}
static inline int synic_get_sint_vector(u64 sint_value)
{
if (sint_value & HV_SYNIC_SINT_MASKED)
return -1;
return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
}
static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
int vector)
{
int i;
for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
return true;
}
return false;
}
static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
int vector)
{
int i;
u64 sint_value;
for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
sint_value = synic_read_sint(synic, i);
if (synic_get_sint_vector(sint_value) == vector &&
sint_value & HV_SYNIC_SINT_AUTO_EOI)
return true;
}
return false;
}
static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
int vector)
{
if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
return;
if (synic_has_vector_connected(synic, vector))
__set_bit(vector, synic->vec_bitmap);
else
__clear_bit(vector, synic->vec_bitmap);
if (synic_has_vector_auto_eoi(synic, vector))
__set_bit(vector, synic->auto_eoi_bitmap);
else
__clear_bit(vector, synic->auto_eoi_bitmap);
}
static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
u64 data, bool host)
{
int vector, old_vector;
bool masked;
vector = data & HV_SYNIC_SINT_VECTOR_MASK;
masked = data & HV_SYNIC_SINT_MASKED;
/*
* Valid vectors are 16-255, however, nested Hyper-V attempts to write
* default '0x10000' value on boot and this should not #GP. We need to
* allow zero-initing the register from host as well.
*/
if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
return 1;
/*
* Guest may configure multiple SINTs to use the same vector, so
* we maintain a bitmap of vectors handled by synic, and a
* bitmap of vectors with auto-eoi behavior. The bitmaps are
* updated here, and atomically queried on fast paths.
*/
old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
atomic64_set(&synic->sint[sint], data);
synic_update_vector(synic, old_vector);
synic_update_vector(synic, vector);
/* Load SynIC vectors into EOI exit bitmap */
kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
return 0;
}
static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
{
struct kvm_vcpu *vcpu = NULL;
int i;
if (vpidx >= KVM_MAX_VCPUS)
return NULL;
vcpu = kvm_get_vcpu(kvm, vpidx);
if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
return vcpu;
kvm_for_each_vcpu(i, vcpu, kvm)
if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
return vcpu;
return NULL;
}
static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
{
struct kvm_vcpu *vcpu;
struct kvm_vcpu_hv_synic *synic;
vcpu = get_vcpu_by_vpidx(kvm, vpidx);
if (!vcpu)
return NULL;
synic = vcpu_to_synic(vcpu);
return (synic->active) ? synic : NULL;
}
static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
struct kvm_vcpu_hv_stimer *stimer;
int gsi, idx;
trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
/* Try to deliver pending Hyper-V SynIC timers messages */
for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
stimer = &hv_vcpu->stimer[idx];
if (stimer->msg_pending && stimer->config.enable &&
!stimer->config.direct_mode &&
stimer->config.sintx == sint)
stimer_mark_pending(stimer, false);
}
idx = srcu_read_lock(&kvm->irq_srcu);
gsi = atomic_read(&synic->sint_to_gsi[sint]);
if (gsi != -1)
kvm_notify_acked_gsi(kvm, gsi);
srcu_read_unlock(&kvm->irq_srcu, idx);
}
static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
{
struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
hv_vcpu->exit.u.synic.msr = msr;
hv_vcpu->exit.u.synic.control = synic->control;
hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
}
static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
u32 msr, u64 data, bool host)
{
struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
int ret;
if (!synic->active && !host)
return 1;
trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
ret = 0;
switch (msr) {
case HV_X64_MSR_SCONTROL:
synic->control = data;
if (!host)
synic_exit(synic, msr);
break;
case HV_X64_MSR_SVERSION:
if (!host) {
ret = 1;
break;
}
synic->version = data;
break;
case HV_X64_MSR_SIEFP:
if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
!synic->dont_zero_synic_pages)
if (kvm_clear_guest(vcpu->kvm,
data & PAGE_MASK, PAGE_SIZE)) {
ret = 1;
break;
}
synic->evt_page = data;
if (!host)
synic_exit(synic, msr);
break;
case HV_X64_MSR_SIMP:
if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
!synic->dont_zero_synic_pages)
if (kvm_clear_guest(vcpu->kvm,
data & PAGE_MASK, PAGE_SIZE)) {
ret = 1;
break;
}
synic->msg_page = data;
if (!host)
synic_exit(synic, msr);
break;
case HV_X64_MSR_EOM: {
int i;
for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
kvm_hv_notify_acked_sint(vcpu, i);
break;
}
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
break;
default:
ret = 1;
break;
}
return ret;
}
static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
bool host)
{
int ret;
if (!synic->active && !host)
return 1;
ret = 0;
switch (msr) {
case HV_X64_MSR_SCONTROL:
*pdata = synic->control;
break;
case HV_X64_MSR_SVERSION:
*pdata = synic->version;
break;
case HV_X64_MSR_SIEFP:
*pdata = synic->evt_page;
break;
case HV_X64_MSR_SIMP:
*pdata = synic->msg_page;
break;
case HV_X64_MSR_EOM:
*pdata = 0;
break;
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
*pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
break;
default:
ret = 1;
break;
}
return ret;
}
static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
{
struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
struct kvm_lapic_irq irq;
int ret, vector;
if (sint >= ARRAY_SIZE(synic->sint))
return -EINVAL;
vector = synic_get_sint_vector(synic_read_sint(synic, sint));
if (vector < 0)
return -ENOENT;
memset(&irq, 0, sizeof(irq));
irq.shorthand = APIC_DEST_SELF;
irq.dest_mode = APIC_DEST_PHYSICAL;
irq.delivery_mode = APIC_DM_FIXED;
irq.vector = vector;
irq.level = 1;
ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
return ret;
}
int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
{
struct kvm_vcpu_hv_synic *synic;
synic = synic_get(kvm, vpidx);
if (!synic)
return -EINVAL;
return synic_set_irq(synic, sint);
}
void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
{
struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
int i;
trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
kvm_hv_notify_acked_sint(vcpu, i);
}
static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
{
struct kvm_vcpu_hv_synic *synic;
synic = synic_get(kvm, vpidx);
if (!synic)
return -EINVAL;
if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
return -EINVAL;
atomic_set(&synic->sint_to_gsi[sint], gsi);
return 0;
}
void kvm_hv_irq_routing_update(struct kvm *kvm)
{
struct kvm_irq_routing_table *irq_rt;
struct kvm_kernel_irq_routing_entry *e;
u32 gsi;
irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
lockdep_is_held(&kvm->irq_lock));
for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
if (e->type == KVM_IRQ_ROUTING_HV_SINT)
kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
e->hv_sint.sint, gsi);
}
}
}
static void synic_init(struct kvm_vcpu_hv_synic *synic)
{
int i;
memset(synic, 0, sizeof(*synic));
synic->version = HV_SYNIC_VERSION_1;
for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
atomic_set(&synic->sint_to_gsi[i], -1);
}
}
static u64 get_time_ref_counter(struct kvm *kvm)
{
struct kvm_hv *hv = &kvm->arch.hyperv;
struct kvm_vcpu *vcpu;
u64 tsc;
/*
* The guest has not set up the TSC page or the clock isn't
* stable, fall back to get_kvmclock_ns.
*/
if (!hv->tsc_ref.tsc_sequence)
return div_u64(get_kvmclock_ns(kvm), 100);
vcpu = kvm_get_vcpu(kvm, 0);
tsc = kvm_read_l1_tsc(vcpu, rdtsc());
return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
+ hv->tsc_ref.tsc_offset;
}
static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
bool vcpu_kick)
{
struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
set_bit(stimer->index,
vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
if (vcpu_kick)
kvm_vcpu_kick(vcpu);
}
static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
{
struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
stimer->index);
hrtimer_cancel(&stimer->timer);
clear_bit(stimer->index,
vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
stimer->msg_pending = false;
stimer->exp_time = 0;
}
static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
{
struct kvm_vcpu_hv_stimer *stimer;
stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
stimer->index);
stimer_mark_pending(stimer, true);
return HRTIMER_NORESTART;
}
/*
* stimer_start() assumptions:
* a) stimer->count is not equal to 0
* b) stimer->config has HV_STIMER_ENABLE flag
*/
static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
{
u64 time_now;
ktime_t ktime_now;
time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
ktime_now = ktime_get();
if (stimer->config.periodic) {
if (stimer->exp_time) {
if (time_now >= stimer->exp_time) {
u64 remainder;
div64_u64_rem(time_now - stimer->exp_time,
stimer->count, &remainder);
stimer->exp_time =
time_now + (stimer->count - remainder);
}
} else
stimer->exp_time = time_now + stimer->count;
trace_kvm_hv_stimer_start_periodic(
stimer_to_vcpu(stimer)->vcpu_id,
stimer->index,
time_now, stimer->exp_time);
hrtimer_start(&stimer->timer,
ktime_add_ns(ktime_now,
100 * (stimer->exp_time - time_now)),
HRTIMER_MODE_ABS);
return 0;
}
stimer->exp_time = stimer->count;
if (time_now >= stimer->count) {
/*
* Expire timer according to Hypervisor Top-Level Functional
* specification v4(15.3.1):
* "If a one shot is enabled and the specified count is in
* the past, it will expire immediately."
*/
stimer_mark_pending(stimer, false);
return 0;
}
trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
stimer->index,
time_now, stimer->count);
hrtimer_start(&stimer->timer,
ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
HRTIMER_MODE_ABS);
return 0;
}
static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
bool host)
{
union hv_stimer_config new_config = {.as_uint64 = config},
old_config = {.as_uint64 = stimer->config.as_uint64};
trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
stimer->index, config, host);
stimer_cleanup(stimer);
if (old_config.enable &&
!new_config.direct_mode && new_config.sintx == 0)
new_config.enable = 0;
stimer->config.as_uint64 = new_config.as_uint64;
if (stimer->config.enable)
stimer_mark_pending(stimer, false);
return 0;
}
static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
bool host)
{
trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
stimer->index, count, host);
stimer_cleanup(stimer);
stimer->count = count;
if (stimer->count == 0)
stimer->config.enable = 0;
else if (stimer->config.auto_enable)
stimer->config.enable = 1;
if (stimer->config.enable)
stimer_mark_pending(stimer, false);
return 0;
}
static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
{
*pconfig = stimer->config.as_uint64;
return 0;
}
static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
{
*pcount = stimer->count;
return 0;
}
static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
struct hv_message *src_msg, bool no_retry)
{
struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
gfn_t msg_page_gfn;
struct hv_message_header hv_hdr;
int r;
if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
return -ENOENT;
msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
/*
* Strictly following the spec-mandated ordering would assume setting
* .msg_pending before checking .message_type. However, this function
* is only called in vcpu context so the entire update is atomic from
* guest POV and thus the exact order here doesn't matter.
*/
r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
msg_off + offsetof(struct hv_message,
header.message_type),
sizeof(hv_hdr.message_type));
if (r < 0)
return r;
if (hv_hdr.message_type != HVMSG_NONE) {
if (no_retry)
return 0;
hv_hdr.message_flags.msg_pending = 1;
r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
&hv_hdr.message_flags,
msg_off +
offsetof(struct hv_message,
header.message_flags),
sizeof(hv_hdr.message_flags));
if (r < 0)
return r;
return -EAGAIN;
}
r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
sizeof(src_msg->header) +
src_msg->header.payload_size);
if (r < 0)
return r;
r = synic_set_irq(synic, sint);
if (r < 0)
return r;
if (r == 0)
return -EFAULT;
return 0;
}
static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
{
struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
struct hv_message *msg = &stimer->msg;
struct hv_timer_message_payload *payload =
(struct hv_timer_message_payload *)&msg->u.payload;
/*
* To avoid piling up periodic ticks, don't retry message
* delivery for them (within "lazy" lost ticks policy).
*/
bool no_retry = stimer->config.periodic;
payload->expiration_time = stimer->exp_time;
payload->delivery_time = get_time_ref_counter(vcpu->kvm);
return synic_deliver_msg(vcpu_to_synic(vcpu),
stimer->config.sintx, msg,
no_retry);
}
static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
{
struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
struct kvm_lapic_irq irq = {
.delivery_mode = APIC_DM_FIXED,
.vector = stimer->config.apic_vector
};
return !kvm_apic_set_irq(vcpu, &irq, NULL);
}
static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
{
int r, direct = stimer->config.direct_mode;
stimer->msg_pending = true;
if (!direct)
r = stimer_send_msg(stimer);
else
r = stimer_notify_direct(stimer);
trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
stimer->index, direct, r);
if (!r) {
stimer->msg_pending = false;
if (!(stimer->config.periodic))
stimer->config.enable = 0;
}
}
void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
struct kvm_vcpu_hv_stimer *stimer;
u64 time_now, exp_time;
int i;
for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
stimer = &hv_vcpu->stimer[i];
if (stimer->config.enable) {
exp_time = stimer->exp_time;
if (exp_time) {
time_now =
get_time_ref_counter(vcpu->kvm);
if (time_now >= exp_time)
stimer_expiration(stimer);
}
if ((stimer->config.enable) &&
stimer->count) {
if (!stimer->msg_pending)
stimer_start(stimer);
} else
stimer_cleanup(stimer);
}
}
}
void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
int i;
for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
stimer_cleanup(&hv_vcpu->stimer[i]);
}
bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
{
if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
return false;
return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
}
EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
struct hv_vp_assist_page *assist_page)
{
if (!kvm_hv_assist_page_enabled(vcpu))
return false;
return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
assist_page, sizeof(*assist_page));
}
EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
{
struct hv_message *msg = &stimer->msg;
struct hv_timer_message_payload *payload =
(struct hv_timer_message_payload *)&msg->u.payload;
memset(&msg->header, 0, sizeof(msg->header));
msg->header.message_type = HVMSG_TIMER_EXPIRED;
msg->header.payload_size = sizeof(*payload);
payload->timer_index = stimer->index;
payload->expiration_time = 0;
payload->delivery_time = 0;
}
static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
{
memset(stimer, 0, sizeof(*stimer));
stimer->index = timer_index;
hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
stimer->timer.function = stimer_timer_callback;
stimer_prepare_msg(stimer);
}
void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
int i;
synic_init(&hv_vcpu->synic);
bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
stimer_init(&hv_vcpu->stimer[i], i);
}
void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
}
int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
{
struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
/*
* Hyper-V SynIC auto EOI SINT's are
* not compatible with APICV, so deactivate APICV
*/
kvm_vcpu_deactivate_apicv(vcpu);
synic->active = true;
synic->dont_zero_synic_pages = dont_zero_synic_pages;
return 0;
}
static bool kvm_hv_msr_partition_wide(u32 msr)
{
bool r = false;
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
case HV_X64_MSR_HYPERCALL:
case HV_X64_MSR_REFERENCE_TSC:
case HV_X64_MSR_TIME_REF_COUNT:
case HV_X64_MSR_CRASH_CTL:
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
case HV_X64_MSR_RESET:
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
case HV_X64_MSR_TSC_EMULATION_CONTROL:
case HV_X64_MSR_TSC_EMULATION_STATUS:
r = true;
break;
}
return r;
}
static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
u32 index, u64 *pdata)
{
struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
return -EINVAL;
*pdata = hv->hv_crash_param[index];
return 0;
}
static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
{
struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
*pdata = hv->hv_crash_ctl;
return 0;
}
static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
{
struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
if (host)
hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
hv->hv_crash_param[0],
hv->hv_crash_param[1],
hv->hv_crash_param[2],
hv->hv_crash_param[3],
hv->hv_crash_param[4]);
/* Send notification about crash to user space */
kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
}
return 0;
}
static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
u32 index, u64 data)
{
struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
return -EINVAL;
hv->hv_crash_param[index] = data;
return 0;
}
/*
* The kvmclock and Hyper-V TSC page use similar formulas, and converting
* between them is possible:
*
* kvmclock formula:
* nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
* + system_time
*
* Hyper-V formula:
* nsec/100 = ticks * scale / 2^64 + offset
*
* When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
* By dividing the kvmclock formula by 100 and equating what's left we get:
* ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
* scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
* scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
*
* Now expand the kvmclock formula and divide by 100:
* nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
* - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
* + system_time
* nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
* - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
* + system_time / 100
*
* Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
* nsec/100 = ticks * scale / 2^64
* - tsc_timestamp * scale / 2^64
* + system_time / 100
*
* Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
* offset = system_time / 100 - tsc_timestamp * scale / 2^64
*
* These two equivalencies are implemented in this function.
*/
static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
HV_REFERENCE_TSC_PAGE *tsc_ref)
{
u64 max_mul;
if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
return false;
/*
* check if scale would overflow, if so we use the time ref counter
* tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
* tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
* tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
*/
max_mul = 100ull << (32 - hv_clock->tsc_shift);
if (hv_clock->tsc_to_system_mul >= max_mul)
return false;
/*
* Otherwise compute the scale and offset according to the formulas
* derived above.
*/
tsc_ref->tsc_scale =
mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
hv_clock->tsc_to_system_mul,
100);
tsc_ref->tsc_offset = hv_clock->system_time;
do_div(tsc_ref->tsc_offset, 100);
tsc_ref->tsc_offset -=
mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
return true;
}
void kvm_hv_setup_tsc_page(struct kvm *kvm,
struct pvclock_vcpu_time_info *hv_clock)
{
struct kvm_hv *hv = &kvm->arch.hyperv;
u32 tsc_seq;
u64 gfn;
BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0);
if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
return;
mutex_lock(&kvm->arch.hyperv.hv_lock);
if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
goto out_unlock;
gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
/*
* Because the TSC parameters only vary when there is a
* change in the master clock, do not bother with caching.
*/
if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
&tsc_seq, sizeof(tsc_seq))))
goto out_unlock;
/*
* While we're computing and writing the parameters, force the
* guest to use the time reference count MSR.
*/
hv->tsc_ref.tsc_sequence = 0;
if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
&hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
goto out_unlock;
if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
goto out_unlock;
/* Ensure sequence is zero before writing the rest of the struct. */
smp_wmb();
if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
goto out_unlock;
/*
* Now switch to the TSC page mechanism by writing the sequence.
*/
tsc_seq++;
if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
tsc_seq = 1;
/* Write the struct entirely before the non-zero sequence. */
smp_wmb();
hv->tsc_ref.tsc_sequence = tsc_seq;
kvm_write_guest(kvm, gfn_to_gpa(gfn),
&hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
out_unlock:
mutex_unlock(&kvm->arch.hyperv.hv_lock);
}
static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
bool host)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_hv *hv = &kvm->arch.hyperv;
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
hv->hv_guest_os_id = data;
/* setting guest os id to zero disables hypercall page */
if (!hv->hv_guest_os_id)
hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
break;
case HV_X64_MSR_HYPERCALL: {
u64 gfn;
unsigned long addr;
u8 instructions[4];
/* if guest os id is not set hypercall should remain disabled */
if (!hv->hv_guest_os_id)
break;
if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
hv->hv_hypercall = data;
break;
}
gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr))
return 1;
kvm_x86_ops->patch_hypercall(vcpu, instructions);
((unsigned char *)instructions)[3] = 0xc3; /* ret */
if (__copy_to_user((void __user *)addr, instructions, 4))
return 1;
hv->hv_hypercall = data;
mark_page_dirty(kvm, gfn);
break;
}
case HV_X64_MSR_REFERENCE_TSC:
hv->hv_tsc_page = data;
if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
break;
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
return kvm_hv_msr_set_crash_data(vcpu,
msr - HV_X64_MSR_CRASH_P0,
data);
case HV_X64_MSR_CRASH_CTL:
return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
case HV_X64_MSR_RESET:
if (data == 1) {
vcpu_debug(vcpu, "hyper-v reset requested\n");
kvm_make_request(KVM_REQ_HV_RESET, vcpu);
}
break;
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
hv->hv_reenlightenment_control = data;
break;
case HV_X64_MSR_TSC_EMULATION_CONTROL:
hv->hv_tsc_emulation_control = data;
break;
case HV_X64_MSR_TSC_EMULATION_STATUS:
hv->hv_tsc_emulation_status = data;
break;
case HV_X64_MSR_TIME_REF_COUNT:
/* read-only, but still ignore it if host-initiated */
if (!host)
return 1;
break;
default:
vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
msr, data);
return 1;
}
return 0;
}
/* Calculate cpu time spent by current task in 100ns units */
static u64 current_task_runtime_100ns(void)
{
u64 utime, stime;
task_cputime_adjusted(current, &utime, &stime);
return div_u64(utime + stime, 100);
}
static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
switch (msr) {
case HV_X64_MSR_VP_INDEX: {
struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
int vcpu_idx = kvm_vcpu_get_idx(vcpu);
u32 new_vp_index = (u32)data;
if (!host || new_vp_index >= KVM_MAX_VCPUS)
return 1;
if (new_vp_index == hv_vcpu->vp_index)
return 0;
/*
* The VP index is initialized to vcpu_index by
* kvm_hv_vcpu_postcreate so they initially match. Now the
* VP index is changing, adjust num_mismatched_vp_indexes if
* it now matches or no longer matches vcpu_idx.
*/
if (hv_vcpu->vp_index == vcpu_idx)
atomic_inc(&hv->num_mismatched_vp_indexes);
else if (new_vp_index == vcpu_idx)
atomic_dec(&hv->num_mismatched_vp_indexes);
hv_vcpu->vp_index = new_vp_index;
break;
}
case HV_X64_MSR_VP_ASSIST_PAGE: {
u64 gfn;
unsigned long addr;
if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
hv_vcpu->hv_vapic = data;
if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
return 1;
break;
}
gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
if (kvm_is_error_hva(addr))
return 1;
/*
* Clear apic_assist portion of f(struct hv_vp_assist_page
* only, there can be valuable data in the rest which needs
* to be preserved e.g. on migration.
*/
if (__clear_user((void __user *)addr, sizeof(u32)))
return 1;
hv_vcpu->hv_vapic = data;
kvm_vcpu_mark_page_dirty(vcpu, gfn);
if (kvm_lapic_enable_pv_eoi(vcpu,
gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
sizeof(struct hv_vp_assist_page)))
return 1;
break;
}
case HV_X64_MSR_EOI:
return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
case HV_X64_MSR_ICR:
return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
case HV_X64_MSR_TPR:
return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
case HV_X64_MSR_VP_RUNTIME:
if (!host)
return 1;
hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
break;
case HV_X64_MSR_SCONTROL:
case HV_X64_MSR_SVERSION:
case HV_X64_MSR_SIEFP:
case HV_X64_MSR_SIMP:
case HV_X64_MSR_EOM:
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
case HV_X64_MSR_STIMER0_CONFIG:
case HV_X64_MSR_STIMER1_CONFIG:
case HV_X64_MSR_STIMER2_CONFIG:
case HV_X64_MSR_STIMER3_CONFIG: {
int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
data, host);
}
case HV_X64_MSR_STIMER0_COUNT:
case HV_X64_MSR_STIMER1_COUNT:
case HV_X64_MSR_STIMER2_COUNT:
case HV_X64_MSR_STIMER3_COUNT: {
int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
data, host);
}
case HV_X64_MSR_TSC_FREQUENCY:
case HV_X64_MSR_APIC_FREQUENCY:
/* read-only, but still ignore it if host-initiated */
if (!host)
return 1;
break;
default:
vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
msr, data);
return 1;
}
return 0;
}
static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data = 0;
struct kvm *kvm = vcpu->kvm;
struct kvm_hv *hv = &kvm->arch.hyperv;
switch (msr) {
case HV_X64_MSR_GUEST_OS_ID:
data = hv->hv_guest_os_id;
break;
case HV_X64_MSR_HYPERCALL:
data = hv->hv_hypercall;
break;
case HV_X64_MSR_TIME_REF_COUNT:
data = get_time_ref_counter(kvm);
break;
case HV_X64_MSR_REFERENCE_TSC:
data = hv->hv_tsc_page;
break;
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
return kvm_hv_msr_get_crash_data(vcpu,
msr - HV_X64_MSR_CRASH_P0,
pdata);
case HV_X64_MSR_CRASH_CTL:
return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
case HV_X64_MSR_RESET:
data = 0;
break;
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
data = hv->hv_reenlightenment_control;
break;
case HV_X64_MSR_TSC_EMULATION_CONTROL:
data = hv->hv_tsc_emulation_control;
break;
case HV_X64_MSR_TSC_EMULATION_STATUS:
data = hv->hv_tsc_emulation_status;
break;
default:
vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
return 1;
}
*pdata = data;
return 0;
}
static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
bool host)
{
u64 data = 0;
struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
switch (msr) {
case HV_X64_MSR_VP_INDEX:
data = hv_vcpu->vp_index;
break;
case HV_X64_MSR_EOI:
return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
case HV_X64_MSR_ICR:
return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
case HV_X64_MSR_TPR:
return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
case HV_X64_MSR_VP_ASSIST_PAGE:
data = hv_vcpu->hv_vapic;
break;
case HV_X64_MSR_VP_RUNTIME:
data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
break;
case HV_X64_MSR_SCONTROL:
case HV_X64_MSR_SVERSION:
case HV_X64_MSR_SIEFP:
case HV_X64_MSR_SIMP:
case HV_X64_MSR_EOM:
case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
case HV_X64_MSR_STIMER0_CONFIG:
case HV_X64_MSR_STIMER1_CONFIG:
case HV_X64_MSR_STIMER2_CONFIG:
case HV_X64_MSR_STIMER3_CONFIG: {
int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
pdata);
}
case HV_X64_MSR_STIMER0_COUNT:
case HV_X64_MSR_STIMER1_COUNT:
case HV_X64_MSR_STIMER2_COUNT:
case HV_X64_MSR_STIMER3_COUNT: {
int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
pdata);
}
case HV_X64_MSR_TSC_FREQUENCY:
data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
break;
case HV_X64_MSR_APIC_FREQUENCY:
data = APIC_BUS_FREQUENCY;
break;
default:
vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
return 1;
}
*pdata = data;
return 0;
}
int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
if (kvm_hv_msr_partition_wide(msr)) {
int r;
mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
return r;
} else
return kvm_hv_set_msr(vcpu, msr, data, host);
}
int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
{
if (kvm_hv_msr_partition_wide(msr)) {
int r;
mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
r = kvm_hv_get_msr_pw(vcpu, msr, pdata);
mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
return r;
} else
return kvm_hv_get_msr(vcpu, msr, pdata, host);
}
static __always_inline unsigned long *sparse_set_to_vcpu_mask(
struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
u64 *vp_bitmap, unsigned long *vcpu_bitmap)
{
struct kvm_hv *hv = &kvm->arch.hyperv;
struct kvm_vcpu *vcpu;
int i, bank, sbank = 0;
memset(vp_bitmap, 0,
KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
vp_bitmap[bank] = sparse_banks[sbank++];
if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
/* for all vcpus vp_index == vcpu_idx */
return (unsigned long *)vp_bitmap;
}
bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
kvm_for_each_vcpu(i, vcpu, kvm) {
if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
(unsigned long *)vp_bitmap))
__set_bit(i, vcpu_bitmap);
}
return vcpu_bitmap;
}
static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
u16 rep_cnt, bool ex)
{
struct kvm *kvm = current_vcpu->kvm;
struct kvm_vcpu_hv *hv_vcpu = &current_vcpu->arch.hyperv;
struct hv_tlb_flush_ex flush_ex;
struct hv_tlb_flush flush;
u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
unsigned long *vcpu_mask;
u64 valid_bank_mask;
u64 sparse_banks[64];
int sparse_banks_len;
bool all_cpus;
if (!ex) {
if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
trace_kvm_hv_flush_tlb(flush.processor_mask,
flush.address_space, flush.flags);
valid_bank_mask = BIT_ULL(0);
sparse_banks[0] = flush.processor_mask;
/*
* Work around possible WS2012 bug: it sends hypercalls
* with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
* while also expecting us to flush something and crashing if
* we don't. Let's treat processor_mask == 0 same as
* HV_FLUSH_ALL_PROCESSORS.
*/
all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
flush.processor_mask == 0;
} else {
if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
sizeof(flush_ex))))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
flush_ex.hv_vp_set.format,
flush_ex.address_space,
flush_ex.flags);
valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
all_cpus = flush_ex.hv_vp_set.format !=
HV_GENERIC_SET_SPARSE_4K;
sparse_banks_len =
bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
sizeof(sparse_banks[0]);
if (!sparse_banks_len && !all_cpus)
goto ret_success;
if (!all_cpus &&
kvm_read_guest(kvm,
ingpa + offsetof(struct hv_tlb_flush_ex,
hv_vp_set.bank_contents),
sparse_banks,
sparse_banks_len))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
}
cpumask_clear(&hv_vcpu->tlb_flush);
vcpu_mask = all_cpus ? NULL :
sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
vp_bitmap, vcpu_bitmap);
/*
* vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
* analyze it here, flush TLB regardless of the specified address space.
*/
kvm_make_vcpus_request_mask(kvm,
KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP,
vcpu_mask, &hv_vcpu->tlb_flush);
ret_success:
/* We always do full TLB flush, set rep_done = rep_cnt. */
return (u64)HV_STATUS_SUCCESS |
((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
}
static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
unsigned long *vcpu_bitmap)
{
struct kvm_lapic_irq irq = {
.delivery_mode = APIC_DM_FIXED,
.vector = vector
};
struct kvm_vcpu *vcpu;
int i;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
continue;
/* We fail only when APIC is disabled */
kvm_apic_set_irq(vcpu, &irq, NULL);
}
}
static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
bool ex, bool fast)
{
struct kvm *kvm = current_vcpu->kvm;
struct hv_send_ipi_ex send_ipi_ex;
struct hv_send_ipi send_ipi;
u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
unsigned long *vcpu_mask;
unsigned long valid_bank_mask;
u64 sparse_banks[64];
int sparse_banks_len;
u32 vector;
bool all_cpus;
if (!ex) {
if (!fast) {
if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
sizeof(send_ipi))))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
sparse_banks[0] = send_ipi.cpu_mask;
vector = send_ipi.vector;
} else {
/* 'reserved' part of hv_send_ipi should be 0 */
if (unlikely(ingpa >> 32 != 0))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
sparse_banks[0] = outgpa;
vector = (u32)ingpa;
}
all_cpus = false;
valid_bank_mask = BIT_ULL(0);
trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
} else {
if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
sizeof(send_ipi_ex))))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
send_ipi_ex.vp_set.format,
send_ipi_ex.vp_set.valid_bank_mask);
vector = send_ipi_ex.vector;
valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
sizeof(sparse_banks[0]);
all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
if (!sparse_banks_len)
goto ret_success;
if (!all_cpus &&
kvm_read_guest(kvm,
ingpa + offsetof(struct hv_send_ipi_ex,
vp_set.bank_contents),
sparse_banks,
sparse_banks_len))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
}
if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
vcpu_mask = all_cpus ? NULL :
sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
vp_bitmap, vcpu_bitmap);
kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
ret_success:
return HV_STATUS_SUCCESS;
}
bool kvm_hv_hypercall_enabled(struct kvm *kvm)
{
return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
}
static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
{
bool longmode;
longmode = is_64_bit_mode(vcpu);
if (longmode)
kvm_rax_write(vcpu, result);
else {
kvm_rdx_write(vcpu, result >> 32);
kvm_rax_write(vcpu, result & 0xffffffff);
}
}
static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
{
kvm_hv_hypercall_set_result(vcpu, result);
++vcpu->stat.hypercalls;
return kvm_skip_emulated_instruction(vcpu);
}
static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
{
return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
}
static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
{
struct eventfd_ctx *eventfd;
if (unlikely(!fast)) {
int ret;
gpa_t gpa = param;
if ((gpa & (__alignof__(param) - 1)) ||
offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
return HV_STATUS_INVALID_ALIGNMENT;
ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
if (ret < 0)
return HV_STATUS_INVALID_ALIGNMENT;
}
/*
* Per spec, bits 32-47 contain the extra "flag number". However, we
* have no use for it, and in all known usecases it is zero, so just
* report lookup failure if it isn't.
*/
if (param & 0xffff00000000ULL)
return HV_STATUS_INVALID_PORT_ID;
/* remaining bits are reserved-zero */
if (param & ~KVM_HYPERV_CONN_ID_MASK)
return HV_STATUS_INVALID_HYPERCALL_INPUT;
/* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
rcu_read_lock();
eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
rcu_read_unlock();
if (!eventfd)
return HV_STATUS_INVALID_PORT_ID;
eventfd_signal(eventfd, 1);
return HV_STATUS_SUCCESS;
}
int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
{
u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
uint16_t code, rep_idx, rep_cnt;
bool fast, rep;
/*
* hypercall generates UD from non zero cpl and real mode
* per HYPER-V spec
*/
if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
#ifdef CONFIG_X86_64
if (is_64_bit_mode(vcpu)) {
param = kvm_rcx_read(vcpu);
ingpa = kvm_rdx_read(vcpu);
outgpa = kvm_r8_read(vcpu);
} else
#endif
{
param = ((u64)kvm_rdx_read(vcpu) << 32) |
(kvm_rax_read(vcpu) & 0xffffffff);
ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
(kvm_rcx_read(vcpu) & 0xffffffff);
outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
(kvm_rsi_read(vcpu) & 0xffffffff);
}
code = param & 0xffff;
fast = !!(param & HV_HYPERCALL_FAST_BIT);
rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
rep = !!(rep_cnt || rep_idx);
trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
switch (code) {
case HVCALL_NOTIFY_LONG_SPIN_WAIT:
if (unlikely(rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
kvm_vcpu_on_spin(vcpu, true);
break;
case HVCALL_SIGNAL_EVENT:
if (unlikely(rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
if (ret != HV_STATUS_INVALID_PORT_ID)
break;
/* fall through - maybe userspace knows this conn_id. */
case HVCALL_POST_MESSAGE:
/* don't bother userspace if it has no way to handle it */
if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
vcpu->run->exit_reason = KVM_EXIT_HYPERV;
vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
vcpu->run->hyperv.u.hcall.input = param;
vcpu->run->hyperv.u.hcall.params[0] = ingpa;
vcpu->run->hyperv.u.hcall.params[1] = outgpa;
vcpu->arch.complete_userspace_io =
kvm_hv_hypercall_complete_userspace;
return 0;
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
if (unlikely(fast || !rep_cnt || rep_idx)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
break;
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
if (unlikely(fast || rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
break;
case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
if (unlikely(fast || !rep_cnt || rep_idx)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
break;
case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
if (unlikely(fast || rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
break;
case HVCALL_SEND_IPI:
if (unlikely(rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
break;
case HVCALL_SEND_IPI_EX:
if (unlikely(fast || rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
break;
default:
ret = HV_STATUS_INVALID_HYPERCALL_CODE;
break;
}
return kvm_hv_hypercall_complete(vcpu, ret);
}
void kvm_hv_init_vm(struct kvm *kvm)
{
mutex_init(&kvm->arch.hyperv.hv_lock);
idr_init(&kvm->arch.hyperv.conn_to_evt);
}
void kvm_hv_destroy_vm(struct kvm *kvm)
{
struct eventfd_ctx *eventfd;
int i;
idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
eventfd_ctx_put(eventfd);
idr_destroy(&kvm->arch.hyperv.conn_to_evt);
}
static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
{
struct kvm_hv *hv = &kvm->arch.hyperv;
struct eventfd_ctx *eventfd;
int ret;
eventfd = eventfd_ctx_fdget(fd);
if (IS_ERR(eventfd))
return PTR_ERR(eventfd);
mutex_lock(&hv->hv_lock);
ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
GFP_KERNEL_ACCOUNT);
mutex_unlock(&hv->hv_lock);
if (ret >= 0)
return 0;
if (ret == -ENOSPC)
ret = -EEXIST;
eventfd_ctx_put(eventfd);
return ret;
}
static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
{
struct kvm_hv *hv = &kvm->arch.hyperv;
struct eventfd_ctx *eventfd;
mutex_lock(&hv->hv_lock);
eventfd = idr_remove(&hv->conn_to_evt, conn_id);
mutex_unlock(&hv->hv_lock);
if (!eventfd)
return -ENOENT;
synchronize_srcu(&kvm->srcu);
eventfd_ctx_put(eventfd);
return 0;
}
int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
{
if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
(args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
return -EINVAL;
if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
return kvm_hv_eventfd_deassign(kvm, args->conn_id);
return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
}
int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
uint16_t evmcs_ver = 0;
struct kvm_cpuid_entry2 cpuid_entries[] = {
{ .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
{ .function = HYPERV_CPUID_INTERFACE },
{ .function = HYPERV_CPUID_VERSION },
{ .function = HYPERV_CPUID_FEATURES },
{ .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
{ .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
{ .function = HYPERV_CPUID_NESTED_FEATURES },
};
int i, nent = ARRAY_SIZE(cpuid_entries);
if (kvm_x86_ops->nested_get_evmcs_version)
evmcs_ver = kvm_x86_ops->nested_get_evmcs_version(vcpu);
/* Skip NESTED_FEATURES if eVMCS is not supported */
if (!evmcs_ver)
--nent;
if (cpuid->nent < nent)
return -E2BIG;
if (cpuid->nent > nent)
cpuid->nent = nent;
for (i = 0; i < nent; i++) {
struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
u32 signature[3];
switch (ent->function) {
case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
memcpy(signature, "Linux KVM Hv", 12);
ent->eax = HYPERV_CPUID_NESTED_FEATURES;
ent->ebx = signature[0];
ent->ecx = signature[1];
ent->edx = signature[2];
break;
case HYPERV_CPUID_INTERFACE:
memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
ent->eax = signature[0];
break;
case HYPERV_CPUID_VERSION:
/*
* We implement some Hyper-V 2016 functions so let's use
* this version.
*/
ent->eax = 0x00003839;
ent->ebx = 0x000A0000;
break;
case HYPERV_CPUID_FEATURES:
ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
ent->eax |= HV_X64_MSR_RESET_AVAILABLE;
ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS;
ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT;
ent->ebx |= HV_X64_POST_MESSAGES;
ent->ebx |= HV_X64_SIGNAL_EVENTS;
ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
break;
case HYPERV_CPUID_ENLIGHTMENT_INFO:
ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
if (evmcs_ver)
ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
/*
* Default number of spinlock retry attempts, matches
* HyperV 2016.
*/
ent->ebx = 0x00000FFF;
break;
case HYPERV_CPUID_IMPLEMENT_LIMITS:
/* Maximum number of virtual processors */
ent->eax = KVM_MAX_VCPUS;
/*
* Maximum number of logical processors, matches
* HyperV 2016.
*/
ent->ebx = 64;
break;
case HYPERV_CPUID_NESTED_FEATURES:
ent->eax = evmcs_ver;
break;
default:
break;
}
}
if (copy_to_user(entries, cpuid_entries,
nent * sizeof(struct kvm_cpuid_entry2)))
return -EFAULT;
return 0;
}