| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * pptt.c - parsing of Processor Properties Topology Table (PPTT) |
| * |
| * Copyright (C) 2018, ARM |
| * |
| * This file implements parsing of the Processor Properties Topology Table |
| * which is optionally used to describe the processor and cache topology. |
| * Due to the relative pointers used throughout the table, this doesn't |
| * leverage the existing subtable parsing in the kernel. |
| * |
| * The PPTT structure is an inverted tree, with each node potentially |
| * holding one or two inverted tree data structures describing |
| * the caches available at that level. Each cache structure optionally |
| * contains properties describing the cache at a given level which can be |
| * used to override hardware probed values. |
| */ |
| #define pr_fmt(fmt) "ACPI PPTT: " fmt |
| |
| #include <linux/acpi.h> |
| #include <linux/cacheinfo.h> |
| #include <acpi/processor.h> |
| |
| static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr, |
| u32 pptt_ref) |
| { |
| struct acpi_subtable_header *entry; |
| |
| /* there isn't a subtable at reference 0 */ |
| if (pptt_ref < sizeof(struct acpi_subtable_header)) |
| return NULL; |
| |
| if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length) |
| return NULL; |
| |
| entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref); |
| |
| if (entry->length == 0) |
| return NULL; |
| |
| if (pptt_ref + entry->length > table_hdr->length) |
| return NULL; |
| |
| return entry; |
| } |
| |
| static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr, |
| u32 pptt_ref) |
| { |
| return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref); |
| } |
| |
| static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr, |
| u32 pptt_ref) |
| { |
| return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref); |
| } |
| |
| static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr, |
| struct acpi_pptt_processor *node, |
| int resource) |
| { |
| u32 *ref; |
| |
| if (resource >= node->number_of_priv_resources) |
| return NULL; |
| |
| ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor)); |
| ref += resource; |
| |
| return fetch_pptt_subtable(table_hdr, *ref); |
| } |
| |
| static inline bool acpi_pptt_match_type(int table_type, int type) |
| { |
| return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type || |
| table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type); |
| } |
| |
| /** |
| * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache |
| * @table_hdr: Pointer to the head of the PPTT table |
| * @local_level: passed res reflects this cache level |
| * @split_levels: Number of split cache levels (data/instruction). |
| * @res: cache resource in the PPTT we want to walk |
| * @found: returns a pointer to the requested level if found |
| * @level: the requested cache level |
| * @type: the requested cache type |
| * |
| * Attempt to find a given cache level, while counting the max number |
| * of cache levels for the cache node. |
| * |
| * Given a pptt resource, verify that it is a cache node, then walk |
| * down each level of caches, counting how many levels are found |
| * as well as checking the cache type (icache, dcache, unified). If a |
| * level & type match, then we set found, and continue the search. |
| * Once the entire cache branch has been walked return its max |
| * depth. |
| * |
| * Return: The cache structure and the level we terminated with. |
| */ |
| static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr, |
| unsigned int local_level, |
| unsigned int *split_levels, |
| struct acpi_subtable_header *res, |
| struct acpi_pptt_cache **found, |
| unsigned int level, int type) |
| { |
| struct acpi_pptt_cache *cache; |
| |
| if (res->type != ACPI_PPTT_TYPE_CACHE) |
| return 0; |
| |
| cache = (struct acpi_pptt_cache *) res; |
| while (cache) { |
| local_level++; |
| |
| if (!(cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)) { |
| cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache); |
| continue; |
| } |
| |
| if (split_levels && |
| (acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_DATA) || |
| acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_INSTR))) |
| *split_levels = local_level; |
| |
| if (local_level == level && |
| acpi_pptt_match_type(cache->attributes, type)) { |
| if (*found != NULL && cache != *found) |
| pr_warn("Found duplicate cache level/type unable to determine uniqueness\n"); |
| |
| pr_debug("Found cache @ level %u\n", level); |
| *found = cache; |
| /* |
| * continue looking at this node's resource list |
| * to verify that we don't find a duplicate |
| * cache node. |
| */ |
| } |
| cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache); |
| } |
| return local_level; |
| } |
| |
| static struct acpi_pptt_cache * |
| acpi_find_cache_level(struct acpi_table_header *table_hdr, |
| struct acpi_pptt_processor *cpu_node, |
| unsigned int *starting_level, unsigned int *split_levels, |
| unsigned int level, int type) |
| { |
| struct acpi_subtable_header *res; |
| unsigned int number_of_levels = *starting_level; |
| int resource = 0; |
| struct acpi_pptt_cache *ret = NULL; |
| unsigned int local_level; |
| |
| /* walk down from processor node */ |
| while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) { |
| resource++; |
| |
| local_level = acpi_pptt_walk_cache(table_hdr, *starting_level, |
| split_levels, res, &ret, |
| level, type); |
| /* |
| * we are looking for the max depth. Since its potentially |
| * possible for a given node to have resources with differing |
| * depths verify that the depth we have found is the largest. |
| */ |
| if (number_of_levels < local_level) |
| number_of_levels = local_level; |
| } |
| if (number_of_levels > *starting_level) |
| *starting_level = number_of_levels; |
| |
| return ret; |
| } |
| |
| /** |
| * acpi_count_levels() - Given a PPTT table, and a CPU node, count the cache |
| * levels and split cache levels (data/instruction). |
| * @table_hdr: Pointer to the head of the PPTT table |
| * @cpu_node: processor node we wish to count caches for |
| * @levels: Number of levels if success. |
| * @split_levels: Number of split cache levels (data/instruction) if |
| * success. Can by NULL. |
| * |
| * Given a processor node containing a processing unit, walk into it and count |
| * how many levels exist solely for it, and then walk up each level until we hit |
| * the root node (ignore the package level because it may be possible to have |
| * caches that exist across packages). Count the number of cache levels and |
| * split cache levels (data/instruction) that exist at each level on the way |
| * up. |
| */ |
| static void acpi_count_levels(struct acpi_table_header *table_hdr, |
| struct acpi_pptt_processor *cpu_node, |
| unsigned int *levels, unsigned int *split_levels) |
| { |
| do { |
| acpi_find_cache_level(table_hdr, cpu_node, levels, split_levels, 0, 0); |
| cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); |
| } while (cpu_node); |
| } |
| |
| /** |
| * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf |
| * @table_hdr: Pointer to the head of the PPTT table |
| * @node: passed node is checked to see if its a leaf |
| * |
| * Determine if the *node parameter is a leaf node by iterating the |
| * PPTT table, looking for nodes which reference it. |
| * |
| * Return: 0 if we find a node referencing the passed node (or table error), |
| * or 1 if we don't. |
| */ |
| static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr, |
| struct acpi_pptt_processor *node) |
| { |
| struct acpi_subtable_header *entry; |
| unsigned long table_end; |
| u32 node_entry; |
| struct acpi_pptt_processor *cpu_node; |
| u32 proc_sz; |
| |
| if (table_hdr->revision > 1) |
| return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE); |
| |
| table_end = (unsigned long)table_hdr + table_hdr->length; |
| node_entry = ACPI_PTR_DIFF(node, table_hdr); |
| entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, |
| sizeof(struct acpi_table_pptt)); |
| proc_sz = sizeof(struct acpi_pptt_processor *); |
| |
| while ((unsigned long)entry + proc_sz < table_end) { |
| cpu_node = (struct acpi_pptt_processor *)entry; |
| if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && |
| cpu_node->parent == node_entry) |
| return 0; |
| if (entry->length == 0) |
| return 0; |
| entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, |
| entry->length); |
| |
| } |
| return 1; |
| } |
| |
| /** |
| * acpi_find_processor_node() - Given a PPTT table find the requested processor |
| * @table_hdr: Pointer to the head of the PPTT table |
| * @acpi_cpu_id: CPU we are searching for |
| * |
| * Find the subtable entry describing the provided processor. |
| * This is done by iterating the PPTT table looking for processor nodes |
| * which have an acpi_processor_id that matches the acpi_cpu_id parameter |
| * passed into the function. If we find a node that matches this criteria |
| * we verify that its a leaf node in the topology rather than depending |
| * on the valid flag, which doesn't need to be set for leaf nodes. |
| * |
| * Return: NULL, or the processors acpi_pptt_processor* |
| */ |
| static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr, |
| u32 acpi_cpu_id) |
| { |
| struct acpi_subtable_header *entry; |
| unsigned long table_end; |
| struct acpi_pptt_processor *cpu_node; |
| u32 proc_sz; |
| |
| table_end = (unsigned long)table_hdr + table_hdr->length; |
| entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, |
| sizeof(struct acpi_table_pptt)); |
| proc_sz = sizeof(struct acpi_pptt_processor *); |
| |
| /* find the processor structure associated with this cpuid */ |
| while ((unsigned long)entry + proc_sz < table_end) { |
| cpu_node = (struct acpi_pptt_processor *)entry; |
| |
| if (entry->length == 0) { |
| pr_warn("Invalid zero length subtable\n"); |
| break; |
| } |
| if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && |
| acpi_cpu_id == cpu_node->acpi_processor_id && |
| acpi_pptt_leaf_node(table_hdr, cpu_node)) { |
| return (struct acpi_pptt_processor *)entry; |
| } |
| |
| entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, |
| entry->length); |
| } |
| |
| return NULL; |
| } |
| |
| static u8 acpi_cache_type(enum cache_type type) |
| { |
| switch (type) { |
| case CACHE_TYPE_DATA: |
| pr_debug("Looking for data cache\n"); |
| return ACPI_PPTT_CACHE_TYPE_DATA; |
| case CACHE_TYPE_INST: |
| pr_debug("Looking for instruction cache\n"); |
| return ACPI_PPTT_CACHE_TYPE_INSTR; |
| default: |
| case CACHE_TYPE_UNIFIED: |
| pr_debug("Looking for unified cache\n"); |
| /* |
| * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED |
| * contains the bit pattern that will match both |
| * ACPI unified bit patterns because we use it later |
| * to match both cases. |
| */ |
| return ACPI_PPTT_CACHE_TYPE_UNIFIED; |
| } |
| } |
| |
| static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr, |
| u32 acpi_cpu_id, |
| enum cache_type type, |
| unsigned int level, |
| struct acpi_pptt_processor **node) |
| { |
| unsigned int total_levels = 0; |
| struct acpi_pptt_cache *found = NULL; |
| struct acpi_pptt_processor *cpu_node; |
| u8 acpi_type = acpi_cache_type(type); |
| |
| pr_debug("Looking for CPU %d's level %u cache type %d\n", |
| acpi_cpu_id, level, acpi_type); |
| |
| cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id); |
| |
| while (cpu_node && !found) { |
| found = acpi_find_cache_level(table_hdr, cpu_node, |
| &total_levels, NULL, level, acpi_type); |
| *node = cpu_node; |
| cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); |
| } |
| |
| return found; |
| } |
| |
| /** |
| * update_cache_properties() - Update cacheinfo for the given processor |
| * @this_leaf: Kernel cache info structure being updated |
| * @found_cache: The PPTT node describing this cache instance |
| * @cpu_node: A unique reference to describe this cache instance |
| * @revision: The revision of the PPTT table |
| * |
| * The ACPI spec implies that the fields in the cache structures are used to |
| * extend and correct the information probed from the hardware. Lets only |
| * set fields that we determine are VALID. |
| * |
| * Return: nothing. Side effect of updating the global cacheinfo |
| */ |
| static void update_cache_properties(struct cacheinfo *this_leaf, |
| struct acpi_pptt_cache *found_cache, |
| struct acpi_pptt_processor *cpu_node, |
| u8 revision) |
| { |
| struct acpi_pptt_cache_v1* found_cache_v1; |
| |
| this_leaf->fw_token = cpu_node; |
| if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID) |
| this_leaf->size = found_cache->size; |
| if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID) |
| this_leaf->coherency_line_size = found_cache->line_size; |
| if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID) |
| this_leaf->number_of_sets = found_cache->number_of_sets; |
| if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID) |
| this_leaf->ways_of_associativity = found_cache->associativity; |
| if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) { |
| switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) { |
| case ACPI_PPTT_CACHE_POLICY_WT: |
| this_leaf->attributes = CACHE_WRITE_THROUGH; |
| break; |
| case ACPI_PPTT_CACHE_POLICY_WB: |
| this_leaf->attributes = CACHE_WRITE_BACK; |
| break; |
| } |
| } |
| if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) { |
| switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) { |
| case ACPI_PPTT_CACHE_READ_ALLOCATE: |
| this_leaf->attributes |= CACHE_READ_ALLOCATE; |
| break; |
| case ACPI_PPTT_CACHE_WRITE_ALLOCATE: |
| this_leaf->attributes |= CACHE_WRITE_ALLOCATE; |
| break; |
| case ACPI_PPTT_CACHE_RW_ALLOCATE: |
| case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT: |
| this_leaf->attributes |= |
| CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE; |
| break; |
| } |
| } |
| /* |
| * If cache type is NOCACHE, then the cache hasn't been specified |
| * via other mechanisms. Update the type if a cache type has been |
| * provided. |
| * |
| * Note, we assume such caches are unified based on conventional system |
| * design and known examples. Significant work is required elsewhere to |
| * fully support data/instruction only type caches which are only |
| * specified in PPTT. |
| */ |
| if (this_leaf->type == CACHE_TYPE_NOCACHE && |
| found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) |
| this_leaf->type = CACHE_TYPE_UNIFIED; |
| |
| if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) { |
| found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1, |
| found_cache, sizeof(struct acpi_pptt_cache)); |
| this_leaf->id = found_cache_v1->cache_id; |
| this_leaf->attributes |= CACHE_ID; |
| } |
| } |
| |
| static void cache_setup_acpi_cpu(struct acpi_table_header *table, |
| unsigned int cpu) |
| { |
| struct acpi_pptt_cache *found_cache; |
| struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); |
| u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); |
| struct cacheinfo *this_leaf; |
| unsigned int index = 0; |
| struct acpi_pptt_processor *cpu_node = NULL; |
| |
| while (index < get_cpu_cacheinfo(cpu)->num_leaves) { |
| this_leaf = this_cpu_ci->info_list + index; |
| found_cache = acpi_find_cache_node(table, acpi_cpu_id, |
| this_leaf->type, |
| this_leaf->level, |
| &cpu_node); |
| pr_debug("found = %p %p\n", found_cache, cpu_node); |
| if (found_cache) |
| update_cache_properties(this_leaf, found_cache, |
| ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table)), |
| table->revision); |
| |
| index++; |
| } |
| } |
| |
| static bool flag_identical(struct acpi_table_header *table_hdr, |
| struct acpi_pptt_processor *cpu) |
| { |
| struct acpi_pptt_processor *next; |
| |
| /* heterogeneous machines must use PPTT revision > 1 */ |
| if (table_hdr->revision < 2) |
| return false; |
| |
| /* Locate the last node in the tree with IDENTICAL set */ |
| if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) { |
| next = fetch_pptt_node(table_hdr, cpu->parent); |
| if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Passing level values greater than this will result in search termination */ |
| #define PPTT_ABORT_PACKAGE 0xFF |
| |
| static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr, |
| struct acpi_pptt_processor *cpu, |
| int level, int flag) |
| { |
| struct acpi_pptt_processor *prev_node; |
| |
| while (cpu && level) { |
| /* special case the identical flag to find last identical */ |
| if (flag == ACPI_PPTT_ACPI_IDENTICAL) { |
| if (flag_identical(table_hdr, cpu)) |
| break; |
| } else if (cpu->flags & flag) |
| break; |
| pr_debug("level %d\n", level); |
| prev_node = fetch_pptt_node(table_hdr, cpu->parent); |
| if (prev_node == NULL) |
| break; |
| cpu = prev_node; |
| level--; |
| } |
| return cpu; |
| } |
| |
| static void acpi_pptt_warn_missing(void) |
| { |
| pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n"); |
| } |
| |
| /** |
| * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature |
| * @table: Pointer to the head of the PPTT table |
| * @cpu: Kernel logical CPU number |
| * @level: A level that terminates the search |
| * @flag: A flag which terminates the search |
| * |
| * Get a unique value given a CPU, and a topology level, that can be |
| * matched to determine which cpus share common topological features |
| * at that level. |
| * |
| * Return: Unique value, or -ENOENT if unable to locate CPU |
| */ |
| static int topology_get_acpi_cpu_tag(struct acpi_table_header *table, |
| unsigned int cpu, int level, int flag) |
| { |
| struct acpi_pptt_processor *cpu_node; |
| u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); |
| |
| cpu_node = acpi_find_processor_node(table, acpi_cpu_id); |
| if (cpu_node) { |
| cpu_node = acpi_find_processor_tag(table, cpu_node, |
| level, flag); |
| /* |
| * As per specification if the processor structure represents |
| * an actual processor, then ACPI processor ID must be valid. |
| * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID |
| * should be set if the UID is valid |
| */ |
| if (level == 0 || |
| cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID) |
| return cpu_node->acpi_processor_id; |
| return ACPI_PTR_DIFF(cpu_node, table); |
| } |
| pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n", |
| cpu, acpi_cpu_id); |
| return -ENOENT; |
| } |
| |
| |
| static struct acpi_table_header *acpi_get_pptt(void) |
| { |
| static struct acpi_table_header *pptt; |
| acpi_status status; |
| |
| /* |
| * PPTT will be used at runtime on every CPU hotplug in path, so we |
| * don't need to call acpi_put_table() to release the table mapping. |
| */ |
| if (!pptt) { |
| status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt); |
| if (ACPI_FAILURE(status)) |
| acpi_pptt_warn_missing(); |
| } |
| |
| return pptt; |
| } |
| |
| static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag) |
| { |
| struct acpi_table_header *table; |
| int retval; |
| |
| table = acpi_get_pptt(); |
| if (!table) |
| return -ENOENT; |
| |
| retval = topology_get_acpi_cpu_tag(table, cpu, level, flag); |
| pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n", |
| cpu, level, retval); |
| |
| return retval; |
| } |
| |
| /** |
| * check_acpi_cpu_flag() - Determine if CPU node has a flag set |
| * @cpu: Kernel logical CPU number |
| * @rev: The minimum PPTT revision defining the flag |
| * @flag: The flag itself |
| * |
| * Check the node representing a CPU for a given flag. |
| * |
| * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or |
| * the table revision isn't new enough. |
| * 1, any passed flag set |
| * 0, flag unset |
| */ |
| static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag) |
| { |
| struct acpi_table_header *table; |
| u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); |
| struct acpi_pptt_processor *cpu_node = NULL; |
| int ret = -ENOENT; |
| |
| table = acpi_get_pptt(); |
| if (!table) |
| return -ENOENT; |
| |
| if (table->revision >= rev) |
| cpu_node = acpi_find_processor_node(table, acpi_cpu_id); |
| |
| if (cpu_node) |
| ret = (cpu_node->flags & flag) != 0; |
| |
| return ret; |
| } |
| |
| /** |
| * acpi_get_cache_info() - Determine the number of cache levels and |
| * split cache levels (data/instruction) and for a PE. |
| * @cpu: Kernel logical CPU number |
| * @levels: Number of levels if success. |
| * @split_levels: Number of levels being split (i.e. data/instruction) |
| * if success. Can by NULL. |
| * |
| * Given a logical CPU number, returns the number of levels of cache represented |
| * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0 |
| * indicating we didn't find any cache levels. |
| * |
| * Return: -ENOENT if no PPTT table or no PPTT processor struct found. |
| * 0 on success. |
| */ |
| int acpi_get_cache_info(unsigned int cpu, unsigned int *levels, |
| unsigned int *split_levels) |
| { |
| struct acpi_pptt_processor *cpu_node; |
| struct acpi_table_header *table; |
| u32 acpi_cpu_id; |
| |
| *levels = 0; |
| if (split_levels) |
| *split_levels = 0; |
| |
| table = acpi_get_pptt(); |
| if (!table) |
| return -ENOENT; |
| |
| pr_debug("Cache Setup: find cache levels for CPU=%d\n", cpu); |
| |
| acpi_cpu_id = get_acpi_id_for_cpu(cpu); |
| cpu_node = acpi_find_processor_node(table, acpi_cpu_id); |
| if (!cpu_node) |
| return -ENOENT; |
| |
| acpi_count_levels(table, cpu_node, levels, split_levels); |
| |
| pr_debug("Cache Setup: last_level=%d split_levels=%d\n", |
| *levels, split_levels ? *split_levels : -1); |
| |
| return 0; |
| } |
| |
| /** |
| * cache_setup_acpi() - Override CPU cache topology with data from the PPTT |
| * @cpu: Kernel logical CPU number |
| * |
| * Updates the global cache info provided by cpu_get_cacheinfo() |
| * when there are valid properties in the acpi_pptt_cache nodes. A |
| * successful parse may not result in any updates if none of the |
| * cache levels have any valid flags set. Further, a unique value is |
| * associated with each known CPU cache entry. This unique value |
| * can be used to determine whether caches are shared between CPUs. |
| * |
| * Return: -ENOENT on failure to find table, or 0 on success |
| */ |
| int cache_setup_acpi(unsigned int cpu) |
| { |
| struct acpi_table_header *table; |
| |
| table = acpi_get_pptt(); |
| if (!table) |
| return -ENOENT; |
| |
| pr_debug("Cache Setup ACPI CPU %d\n", cpu); |
| |
| cache_setup_acpi_cpu(table, cpu); |
| |
| return 0; |
| } |
| |
| /** |
| * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread |
| * @cpu: Kernel logical CPU number |
| * |
| * Return: 1, a thread |
| * 0, not a thread |
| * -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or |
| * the table revision isn't new enough. |
| */ |
| int acpi_pptt_cpu_is_thread(unsigned int cpu) |
| { |
| return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD); |
| } |
| |
| /** |
| * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU |
| * @cpu: Kernel logical CPU number |
| * @level: The topological level for which we would like a unique ID |
| * |
| * Determine a topology unique ID for each thread/core/cluster/mc_grouping |
| * /socket/etc. This ID can then be used to group peers, which will have |
| * matching ids. |
| * |
| * The search terminates when either the requested level is found or |
| * we reach a root node. Levels beyond the termination point will return the |
| * same unique ID. The unique id for level 0 is the acpi processor id. All |
| * other levels beyond this use a generated value to uniquely identify |
| * a topological feature. |
| * |
| * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. |
| * Otherwise returns a value which represents a unique topological feature. |
| */ |
| int find_acpi_cpu_topology(unsigned int cpu, int level) |
| { |
| return find_acpi_cpu_topology_tag(cpu, level, 0); |
| } |
| |
| /** |
| * find_acpi_cpu_topology_package() - Determine a unique CPU package value |
| * @cpu: Kernel logical CPU number |
| * |
| * Determine a topology unique package ID for the given CPU. |
| * This ID can then be used to group peers, which will have matching ids. |
| * |
| * The search terminates when either a level is found with the PHYSICAL_PACKAGE |
| * flag set or we reach a root node. |
| * |
| * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. |
| * Otherwise returns a value which represents the package for this CPU. |
| */ |
| int find_acpi_cpu_topology_package(unsigned int cpu) |
| { |
| return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE, |
| ACPI_PPTT_PHYSICAL_PACKAGE); |
| } |
| |
| /** |
| * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value |
| * @cpu: Kernel logical CPU number |
| * |
| * Determine a topology unique cluster ID for the given CPU/thread. |
| * This ID can then be used to group peers, which will have matching ids. |
| * |
| * The cluster, if present is the level of topology above CPUs. In a |
| * multi-thread CPU, it will be the level above the CPU, not the thread. |
| * It may not exist in single CPU systems. In simple multi-CPU systems, |
| * it may be equal to the package topology level. |
| * |
| * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found |
| * or there is no toplogy level above the CPU.. |
| * Otherwise returns a value which represents the package for this CPU. |
| */ |
| |
| int find_acpi_cpu_topology_cluster(unsigned int cpu) |
| { |
| struct acpi_table_header *table; |
| struct acpi_pptt_processor *cpu_node, *cluster_node; |
| u32 acpi_cpu_id; |
| int retval; |
| int is_thread; |
| |
| table = acpi_get_pptt(); |
| if (!table) |
| return -ENOENT; |
| |
| acpi_cpu_id = get_acpi_id_for_cpu(cpu); |
| cpu_node = acpi_find_processor_node(table, acpi_cpu_id); |
| if (!cpu_node || !cpu_node->parent) |
| return -ENOENT; |
| |
| is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD; |
| cluster_node = fetch_pptt_node(table, cpu_node->parent); |
| if (!cluster_node) |
| return -ENOENT; |
| |
| if (is_thread) { |
| if (!cluster_node->parent) |
| return -ENOENT; |
| |
| cluster_node = fetch_pptt_node(table, cluster_node->parent); |
| if (!cluster_node) |
| return -ENOENT; |
| } |
| if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID) |
| retval = cluster_node->acpi_processor_id; |
| else |
| retval = ACPI_PTR_DIFF(cluster_node, table); |
| |
| return retval; |
| } |
| |
| /** |
| * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag |
| * @cpu: Kernel logical CPU number |
| * |
| * Determine a unique heterogeneous tag for the given CPU. CPUs with the same |
| * implementation should have matching tags. |
| * |
| * The returned tag can be used to group peers with identical implementation. |
| * |
| * The search terminates when a level is found with the identical implementation |
| * flag set or we reach a root node. |
| * |
| * Due to limitations in the PPTT data structure, there may be rare situations |
| * where two cores in a heterogeneous machine may be identical, but won't have |
| * the same tag. |
| * |
| * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. |
| * Otherwise returns a value which represents a group of identical cores |
| * similar to this CPU. |
| */ |
| int find_acpi_cpu_topology_hetero_id(unsigned int cpu) |
| { |
| return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE, |
| ACPI_PPTT_ACPI_IDENTICAL); |
| } |