blob: 1dbbbd47dd501958dae58e4bc850422df87dcdff [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2020 ARM Limited
#define _GNU_SOURCE
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include "kselftest.h"
#include "mte_common_util.h"
#include "mte_def.h"
#define OVERFLOW_RANGE MT_GRANULE_SIZE
static int sizes[] = {
1, 555, 1033, MT_GRANULE_SIZE - 1, MT_GRANULE_SIZE,
/* page size - 1*/ 0, /* page_size */ 0, /* page size + 1 */ 0
};
enum mte_block_test_alloc {
UNTAGGED_TAGGED,
TAGGED_UNTAGGED,
TAGGED_TAGGED,
BLOCK_ALLOC_MAX,
};
static int check_buffer_by_byte(int mem_type, int mode)
{
char *ptr;
int i, j, item;
bool err;
mte_switch_mode(mode, MTE_ALLOW_NON_ZERO_TAG);
item = ARRAY_SIZE(sizes);
for (i = 0; i < item; i++) {
ptr = (char *)mte_allocate_memory(sizes[i], mem_type, 0, true);
if (check_allocated_memory(ptr, sizes[i], mem_type, true) != KSFT_PASS)
return KSFT_FAIL;
mte_initialize_current_context(mode, (uintptr_t)ptr, sizes[i]);
/* Set some value in tagged memory */
for (j = 0; j < sizes[i]; j++)
ptr[j] = '1';
mte_wait_after_trig();
err = cur_mte_cxt.fault_valid;
/* Check the buffer whether it is filled. */
for (j = 0; j < sizes[i] && !err; j++) {
if (ptr[j] != '1')
err = true;
}
mte_free_memory((void *)ptr, sizes[i], mem_type, true);
if (err)
break;
}
if (!err)
return KSFT_PASS;
else
return KSFT_FAIL;
}
static int check_buffer_underflow_by_byte(int mem_type, int mode,
int underflow_range)
{
char *ptr;
int i, j, item, last_index;
bool err;
char *und_ptr = NULL;
mte_switch_mode(mode, MTE_ALLOW_NON_ZERO_TAG);
item = ARRAY_SIZE(sizes);
for (i = 0; i < item; i++) {
ptr = (char *)mte_allocate_memory_tag_range(sizes[i], mem_type, 0,
underflow_range, 0);
if (check_allocated_memory_range(ptr, sizes[i], mem_type,
underflow_range, 0) != KSFT_PASS)
return KSFT_FAIL;
mte_initialize_current_context(mode, (uintptr_t)ptr, -underflow_range);
last_index = 0;
/* Set some value in tagged memory and make the buffer underflow */
for (j = sizes[i] - 1; (j >= -underflow_range) &&
(!cur_mte_cxt.fault_valid); j--) {
ptr[j] = '1';
last_index = j;
}
mte_wait_after_trig();
err = false;
/* Check whether the buffer is filled */
for (j = 0; j < sizes[i]; j++) {
if (ptr[j] != '1') {
err = true;
ksft_print_msg("Buffer is not filled at index:%d of ptr:0x%lx\n",
j, ptr);
break;
}
}
if (err)
goto check_buffer_underflow_by_byte_err;
switch (mode) {
case MTE_NONE_ERR:
if (cur_mte_cxt.fault_valid == true || last_index != -underflow_range) {
err = true;
break;
}
/* There were no fault so the underflow area should be filled */
und_ptr = (char *) MT_CLEAR_TAG((size_t) ptr - underflow_range);
for (j = 0 ; j < underflow_range; j++) {
if (und_ptr[j] != '1') {
err = true;
break;
}
}
break;
case MTE_ASYNC_ERR:
/* Imprecise fault should occur otherwise return error */
if (cur_mte_cxt.fault_valid == false) {
err = true;
break;
}
/*
* The imprecise fault is checked after the write to the buffer,
* so the underflow area before the fault should be filled.
*/
und_ptr = (char *) MT_CLEAR_TAG((size_t) ptr);
for (j = last_index ; j < 0 ; j++) {
if (und_ptr[j] != '1') {
err = true;
break;
}
}
break;
case MTE_SYNC_ERR:
/* Precise fault should occur otherwise return error */
if (!cur_mte_cxt.fault_valid || (last_index != (-1))) {
err = true;
break;
}
/* Underflow area should not be filled */
und_ptr = (char *) MT_CLEAR_TAG((size_t) ptr);
if (und_ptr[-1] == '1')
err = true;
break;
default:
err = true;
break;
}
check_buffer_underflow_by_byte_err:
mte_free_memory_tag_range((void *)ptr, sizes[i], mem_type, underflow_range, 0);
if (err)
break;
}
return (err ? KSFT_FAIL : KSFT_PASS);
}
static int check_buffer_overflow_by_byte(int mem_type, int mode,
int overflow_range)
{
char *ptr;
int i, j, item, last_index;
bool err;
size_t tagged_size, overflow_size;
char *over_ptr = NULL;
mte_switch_mode(mode, MTE_ALLOW_NON_ZERO_TAG);
item = ARRAY_SIZE(sizes);
for (i = 0; i < item; i++) {
ptr = (char *)mte_allocate_memory_tag_range(sizes[i], mem_type, 0,
0, overflow_range);
if (check_allocated_memory_range(ptr, sizes[i], mem_type,
0, overflow_range) != KSFT_PASS)
return KSFT_FAIL;
tagged_size = MT_ALIGN_UP(sizes[i]);
mte_initialize_current_context(mode, (uintptr_t)ptr, sizes[i] + overflow_range);
/* Set some value in tagged memory and make the buffer underflow */
for (j = 0, last_index = 0 ; (j < (sizes[i] + overflow_range)) &&
(cur_mte_cxt.fault_valid == false); j++) {
ptr[j] = '1';
last_index = j;
}
mte_wait_after_trig();
err = false;
/* Check whether the buffer is filled */
for (j = 0; j < sizes[i]; j++) {
if (ptr[j] != '1') {
err = true;
ksft_print_msg("Buffer is not filled at index:%d of ptr:0x%lx\n",
j, ptr);
break;
}
}
if (err)
goto check_buffer_overflow_by_byte_err;
overflow_size = overflow_range - (tagged_size - sizes[i]);
switch (mode) {
case MTE_NONE_ERR:
if ((cur_mte_cxt.fault_valid == true) ||
(last_index != (sizes[i] + overflow_range - 1))) {
err = true;
break;
}
/* There were no fault so the overflow area should be filled */
over_ptr = (char *) MT_CLEAR_TAG((size_t) ptr + tagged_size);
for (j = 0 ; j < overflow_size; j++) {
if (over_ptr[j] != '1') {
err = true;
break;
}
}
break;
case MTE_ASYNC_ERR:
/* Imprecise fault should occur otherwise return error */
if (cur_mte_cxt.fault_valid == false) {
err = true;
break;
}
/*
* The imprecise fault is checked after the write to the buffer,
* so the overflow area should be filled before the fault.
*/
over_ptr = (char *) MT_CLEAR_TAG((size_t) ptr);
for (j = tagged_size ; j < last_index; j++) {
if (over_ptr[j] != '1') {
err = true;
break;
}
}
break;
case MTE_SYNC_ERR:
/* Precise fault should occur otherwise return error */
if (!cur_mte_cxt.fault_valid || (last_index != tagged_size)) {
err = true;
break;
}
/* Underflow area should not be filled */
over_ptr = (char *) MT_CLEAR_TAG((size_t) ptr + tagged_size);
for (j = 0 ; j < overflow_size; j++) {
if (over_ptr[j] == '1')
err = true;
}
break;
default:
err = true;
break;
}
check_buffer_overflow_by_byte_err:
mte_free_memory_tag_range((void *)ptr, sizes[i], mem_type, 0, overflow_range);
if (err)
break;
}
return (err ? KSFT_FAIL : KSFT_PASS);
}
static int check_buffer_by_block_iterate(int mem_type, int mode, size_t size)
{
char *src, *dst;
int j, result = KSFT_PASS;
enum mte_block_test_alloc alloc_type = UNTAGGED_TAGGED;
for (alloc_type = UNTAGGED_TAGGED; alloc_type < (int) BLOCK_ALLOC_MAX; alloc_type++) {
switch (alloc_type) {
case UNTAGGED_TAGGED:
src = (char *)mte_allocate_memory(size, mem_type, 0, false);
if (check_allocated_memory(src, size, mem_type, false) != KSFT_PASS)
return KSFT_FAIL;
dst = (char *)mte_allocate_memory(size, mem_type, 0, true);
if (check_allocated_memory(dst, size, mem_type, true) != KSFT_PASS) {
mte_free_memory((void *)src, size, mem_type, false);
return KSFT_FAIL;
}
break;
case TAGGED_UNTAGGED:
dst = (char *)mte_allocate_memory(size, mem_type, 0, false);
if (check_allocated_memory(dst, size, mem_type, false) != KSFT_PASS)
return KSFT_FAIL;
src = (char *)mte_allocate_memory(size, mem_type, 0, true);
if (check_allocated_memory(src, size, mem_type, true) != KSFT_PASS) {
mte_free_memory((void *)dst, size, mem_type, false);
return KSFT_FAIL;
}
break;
case TAGGED_TAGGED:
src = (char *)mte_allocate_memory(size, mem_type, 0, true);
if (check_allocated_memory(src, size, mem_type, true) != KSFT_PASS)
return KSFT_FAIL;
dst = (char *)mte_allocate_memory(size, mem_type, 0, true);
if (check_allocated_memory(dst, size, mem_type, true) != KSFT_PASS) {
mte_free_memory((void *)src, size, mem_type, true);
return KSFT_FAIL;
}
break;
default:
return KSFT_FAIL;
}
cur_mte_cxt.fault_valid = false;
result = KSFT_PASS;
mte_initialize_current_context(mode, (uintptr_t)dst, size);
/* Set some value in memory and copy*/
memset((void *)src, (int)'1', size);
memcpy((void *)dst, (void *)src, size);
mte_wait_after_trig();
if (cur_mte_cxt.fault_valid) {
result = KSFT_FAIL;
goto check_buffer_by_block_err;
}
/* Check the buffer whether it is filled. */
for (j = 0; j < size; j++) {
if (src[j] != dst[j] || src[j] != '1') {
result = KSFT_FAIL;
break;
}
}
check_buffer_by_block_err:
mte_free_memory((void *)src, size, mem_type,
MT_FETCH_TAG((uintptr_t)src) ? true : false);
mte_free_memory((void *)dst, size, mem_type,
MT_FETCH_TAG((uintptr_t)dst) ? true : false);
if (result != KSFT_PASS)
return result;
}
return result;
}
static int check_buffer_by_block(int mem_type, int mode)
{
int i, item, result = KSFT_PASS;
mte_switch_mode(mode, MTE_ALLOW_NON_ZERO_TAG);
item = ARRAY_SIZE(sizes);
cur_mte_cxt.fault_valid = false;
for (i = 0; i < item; i++) {
result = check_buffer_by_block_iterate(mem_type, mode, sizes[i]);
if (result != KSFT_PASS)
break;
}
return result;
}
static int compare_memory_tags(char *ptr, size_t size, int tag)
{
int i, new_tag;
for (i = 0 ; i < size ; i += MT_GRANULE_SIZE) {
new_tag = MT_FETCH_TAG((uintptr_t)(mte_get_tag_address(ptr + i)));
if (tag != new_tag) {
ksft_print_msg("FAIL: child mte tag mismatch\n");
return KSFT_FAIL;
}
}
return KSFT_PASS;
}
static int check_memory_initial_tags(int mem_type, int mode, int mapping)
{
char *ptr;
int run, fd;
int total = ARRAY_SIZE(sizes);
mte_switch_mode(mode, MTE_ALLOW_NON_ZERO_TAG);
for (run = 0; run < total; run++) {
/* check initial tags for anonymous mmap */
ptr = (char *)mte_allocate_memory(sizes[run], mem_type, mapping, false);
if (check_allocated_memory(ptr, sizes[run], mem_type, false) != KSFT_PASS)
return KSFT_FAIL;
if (compare_memory_tags(ptr, sizes[run], 0) != KSFT_PASS) {
mte_free_memory((void *)ptr, sizes[run], mem_type, false);
return KSFT_FAIL;
}
mte_free_memory((void *)ptr, sizes[run], mem_type, false);
/* check initial tags for file mmap */
fd = create_temp_file();
if (fd == -1)
return KSFT_FAIL;
ptr = (char *)mte_allocate_file_memory(sizes[run], mem_type, mapping, false, fd);
if (check_allocated_memory(ptr, sizes[run], mem_type, false) != KSFT_PASS) {
close(fd);
return KSFT_FAIL;
}
if (compare_memory_tags(ptr, sizes[run], 0) != KSFT_PASS) {
mte_free_memory((void *)ptr, sizes[run], mem_type, false);
close(fd);
return KSFT_FAIL;
}
mte_free_memory((void *)ptr, sizes[run], mem_type, false);
close(fd);
}
return KSFT_PASS;
}
int main(int argc, char *argv[])
{
int err;
size_t page_size = getpagesize();
int item = ARRAY_SIZE(sizes);
sizes[item - 3] = page_size - 1;
sizes[item - 2] = page_size;
sizes[item - 1] = page_size + 1;
err = mte_default_setup();
if (err)
return err;
/* Register SIGSEGV handler */
mte_register_signal(SIGSEGV, mte_default_handler);
/* Set test plan */
ksft_set_plan(20);
/* Buffer by byte tests */
evaluate_test(check_buffer_by_byte(USE_MMAP, MTE_SYNC_ERR),
"Check buffer correctness by byte with sync err mode and mmap memory\n");
evaluate_test(check_buffer_by_byte(USE_MMAP, MTE_ASYNC_ERR),
"Check buffer correctness by byte with async err mode and mmap memory\n");
evaluate_test(check_buffer_by_byte(USE_MPROTECT, MTE_SYNC_ERR),
"Check buffer correctness by byte with sync err mode and mmap/mprotect memory\n");
evaluate_test(check_buffer_by_byte(USE_MPROTECT, MTE_ASYNC_ERR),
"Check buffer correctness by byte with async err mode and mmap/mprotect memory\n");
/* Check buffer underflow with underflow size as 16 */
evaluate_test(check_buffer_underflow_by_byte(USE_MMAP, MTE_SYNC_ERR, MT_GRANULE_SIZE),
"Check buffer write underflow by byte with sync mode and mmap memory\n");
evaluate_test(check_buffer_underflow_by_byte(USE_MMAP, MTE_ASYNC_ERR, MT_GRANULE_SIZE),
"Check buffer write underflow by byte with async mode and mmap memory\n");
evaluate_test(check_buffer_underflow_by_byte(USE_MMAP, MTE_NONE_ERR, MT_GRANULE_SIZE),
"Check buffer write underflow by byte with tag check fault ignore and mmap memory\n");
/* Check buffer underflow with underflow size as page size */
evaluate_test(check_buffer_underflow_by_byte(USE_MMAP, MTE_SYNC_ERR, page_size),
"Check buffer write underflow by byte with sync mode and mmap memory\n");
evaluate_test(check_buffer_underflow_by_byte(USE_MMAP, MTE_ASYNC_ERR, page_size),
"Check buffer write underflow by byte with async mode and mmap memory\n");
evaluate_test(check_buffer_underflow_by_byte(USE_MMAP, MTE_NONE_ERR, page_size),
"Check buffer write underflow by byte with tag check fault ignore and mmap memory\n");
/* Check buffer overflow with overflow size as 16 */
evaluate_test(check_buffer_overflow_by_byte(USE_MMAP, MTE_SYNC_ERR, MT_GRANULE_SIZE),
"Check buffer write overflow by byte with sync mode and mmap memory\n");
evaluate_test(check_buffer_overflow_by_byte(USE_MMAP, MTE_ASYNC_ERR, MT_GRANULE_SIZE),
"Check buffer write overflow by byte with async mode and mmap memory\n");
evaluate_test(check_buffer_overflow_by_byte(USE_MMAP, MTE_NONE_ERR, MT_GRANULE_SIZE),
"Check buffer write overflow by byte with tag fault ignore mode and mmap memory\n");
/* Buffer by block tests */
evaluate_test(check_buffer_by_block(USE_MMAP, MTE_SYNC_ERR),
"Check buffer write correctness by block with sync mode and mmap memory\n");
evaluate_test(check_buffer_by_block(USE_MMAP, MTE_ASYNC_ERR),
"Check buffer write correctness by block with async mode and mmap memory\n");
evaluate_test(check_buffer_by_block(USE_MMAP, MTE_NONE_ERR),
"Check buffer write correctness by block with tag fault ignore and mmap memory\n");
/* Initial tags are supposed to be 0 */
evaluate_test(check_memory_initial_tags(USE_MMAP, MTE_SYNC_ERR, MAP_PRIVATE),
"Check initial tags with private mapping, sync error mode and mmap memory\n");
evaluate_test(check_memory_initial_tags(USE_MPROTECT, MTE_SYNC_ERR, MAP_PRIVATE),
"Check initial tags with private mapping, sync error mode and mmap/mprotect memory\n");
evaluate_test(check_memory_initial_tags(USE_MMAP, MTE_SYNC_ERR, MAP_SHARED),
"Check initial tags with shared mapping, sync error mode and mmap memory\n");
evaluate_test(check_memory_initial_tags(USE_MPROTECT, MTE_SYNC_ERR, MAP_SHARED),
"Check initial tags with shared mapping, sync error mode and mmap/mprotect memory\n");
mte_restore_setup();
ksft_print_cnts();
return ksft_get_fail_cnt() == 0 ? KSFT_PASS : KSFT_FAIL;
}