blob: a5a63b1c947eb1daaec72db4ba7c6ca6f5d5c6a4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Implementation of the IOMMU SVA API for the ARM SMMUv3
*/
#include <linux/mm.h>
#include <linux/mmu_context.h>
#include <linux/mmu_notifier.h>
#include <linux/sched/mm.h>
#include <linux/slab.h>
#include "arm-smmu-v3.h"
#include "../../iommu-sva.h"
#include "../../io-pgtable-arm.h"
struct arm_smmu_mmu_notifier {
struct mmu_notifier mn;
struct arm_smmu_ctx_desc *cd;
bool cleared;
refcount_t refs;
struct list_head list;
struct arm_smmu_domain *domain;
};
#define mn_to_smmu(mn) container_of(mn, struct arm_smmu_mmu_notifier, mn)
struct arm_smmu_bond {
struct iommu_sva sva;
struct mm_struct *mm;
struct arm_smmu_mmu_notifier *smmu_mn;
struct list_head list;
refcount_t refs;
};
#define sva_to_bond(handle) \
container_of(handle, struct arm_smmu_bond, sva)
static DEFINE_MUTEX(sva_lock);
/*
* Check if the CPU ASID is available on the SMMU side. If a private context
* descriptor is using it, try to replace it.
*/
static struct arm_smmu_ctx_desc *
arm_smmu_share_asid(struct mm_struct *mm, u16 asid)
{
int ret;
u32 new_asid;
struct arm_smmu_ctx_desc *cd;
struct arm_smmu_device *smmu;
struct arm_smmu_domain *smmu_domain;
cd = xa_load(&arm_smmu_asid_xa, asid);
if (!cd)
return NULL;
if (cd->mm) {
if (WARN_ON(cd->mm != mm))
return ERR_PTR(-EINVAL);
/* All devices bound to this mm use the same cd struct. */
refcount_inc(&cd->refs);
return cd;
}
smmu_domain = container_of(cd, struct arm_smmu_domain, s1_cfg.cd);
smmu = smmu_domain->smmu;
ret = xa_alloc(&arm_smmu_asid_xa, &new_asid, cd,
XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL);
if (ret)
return ERR_PTR(-ENOSPC);
/*
* Race with unmap: TLB invalidations will start targeting the new ASID,
* which isn't assigned yet. We'll do an invalidate-all on the old ASID
* later, so it doesn't matter.
*/
cd->asid = new_asid;
/*
* Update ASID and invalidate CD in all associated masters. There will
* be some overlap between use of both ASIDs, until we invalidate the
* TLB.
*/
arm_smmu_write_ctx_desc(smmu_domain, 0, cd);
/* Invalidate TLB entries previously associated with that context */
arm_smmu_tlb_inv_asid(smmu, asid);
xa_erase(&arm_smmu_asid_xa, asid);
return NULL;
}
static struct arm_smmu_ctx_desc *arm_smmu_alloc_shared_cd(struct mm_struct *mm)
{
u16 asid;
int err = 0;
u64 tcr, par, reg;
struct arm_smmu_ctx_desc *cd;
struct arm_smmu_ctx_desc *ret = NULL;
/* Don't free the mm until we release the ASID */
mmgrab(mm);
asid = arm64_mm_context_get(mm);
if (!asid) {
err = -ESRCH;
goto out_drop_mm;
}
cd = kzalloc(sizeof(*cd), GFP_KERNEL);
if (!cd) {
err = -ENOMEM;
goto out_put_context;
}
refcount_set(&cd->refs, 1);
mutex_lock(&arm_smmu_asid_lock);
ret = arm_smmu_share_asid(mm, asid);
if (ret) {
mutex_unlock(&arm_smmu_asid_lock);
goto out_free_cd;
}
err = xa_insert(&arm_smmu_asid_xa, asid, cd, GFP_KERNEL);
mutex_unlock(&arm_smmu_asid_lock);
if (err)
goto out_free_asid;
tcr = FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, 64ULL - vabits_actual) |
FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, ARM_LPAE_TCR_RGN_WBWA) |
FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, ARM_LPAE_TCR_RGN_WBWA) |
FIELD_PREP(CTXDESC_CD_0_TCR_SH0, ARM_LPAE_TCR_SH_IS) |
CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64;
switch (PAGE_SIZE) {
case SZ_4K:
tcr |= FIELD_PREP(CTXDESC_CD_0_TCR_TG0, ARM_LPAE_TCR_TG0_4K);
break;
case SZ_16K:
tcr |= FIELD_PREP(CTXDESC_CD_0_TCR_TG0, ARM_LPAE_TCR_TG0_16K);
break;
case SZ_64K:
tcr |= FIELD_PREP(CTXDESC_CD_0_TCR_TG0, ARM_LPAE_TCR_TG0_64K);
break;
default:
WARN_ON(1);
err = -EINVAL;
goto out_free_asid;
}
reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
par = cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
tcr |= FIELD_PREP(CTXDESC_CD_0_TCR_IPS, par);
cd->ttbr = virt_to_phys(mm->pgd);
cd->tcr = tcr;
/*
* MAIR value is pretty much constant and global, so we can just get it
* from the current CPU register
*/
cd->mair = read_sysreg(mair_el1);
cd->asid = asid;
cd->mm = mm;
return cd;
out_free_asid:
arm_smmu_free_asid(cd);
out_free_cd:
kfree(cd);
out_put_context:
arm64_mm_context_put(mm);
out_drop_mm:
mmdrop(mm);
return err < 0 ? ERR_PTR(err) : ret;
}
static void arm_smmu_free_shared_cd(struct arm_smmu_ctx_desc *cd)
{
if (arm_smmu_free_asid(cd)) {
/* Unpin ASID */
arm64_mm_context_put(cd->mm);
mmdrop(cd->mm);
kfree(cd);
}
}
static void arm_smmu_mm_invalidate_range(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start, unsigned long end)
{
struct arm_smmu_mmu_notifier *smmu_mn = mn_to_smmu(mn);
struct arm_smmu_domain *smmu_domain = smmu_mn->domain;
size_t size;
/*
* The mm_types defines vm_end as the first byte after the end address,
* different from IOMMU subsystem using the last address of an address
* range. So do a simple translation here by calculating size correctly.
*/
size = end - start;
if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_BTM))
arm_smmu_tlb_inv_range_asid(start, size, smmu_mn->cd->asid,
PAGE_SIZE, false, smmu_domain);
arm_smmu_atc_inv_domain(smmu_domain, mm->pasid, start, size);
}
static void arm_smmu_mm_release(struct mmu_notifier *mn, struct mm_struct *mm)
{
struct arm_smmu_mmu_notifier *smmu_mn = mn_to_smmu(mn);
struct arm_smmu_domain *smmu_domain = smmu_mn->domain;
mutex_lock(&sva_lock);
if (smmu_mn->cleared) {
mutex_unlock(&sva_lock);
return;
}
/*
* DMA may still be running. Keep the cd valid to avoid C_BAD_CD events,
* but disable translation.
*/
arm_smmu_write_ctx_desc(smmu_domain, mm->pasid, &quiet_cd);
arm_smmu_tlb_inv_asid(smmu_domain->smmu, smmu_mn->cd->asid);
arm_smmu_atc_inv_domain(smmu_domain, mm->pasid, 0, 0);
smmu_mn->cleared = true;
mutex_unlock(&sva_lock);
}
static void arm_smmu_mmu_notifier_free(struct mmu_notifier *mn)
{
kfree(mn_to_smmu(mn));
}
static const struct mmu_notifier_ops arm_smmu_mmu_notifier_ops = {
.invalidate_range = arm_smmu_mm_invalidate_range,
.release = arm_smmu_mm_release,
.free_notifier = arm_smmu_mmu_notifier_free,
};
/* Allocate or get existing MMU notifier for this {domain, mm} pair */
static struct arm_smmu_mmu_notifier *
arm_smmu_mmu_notifier_get(struct arm_smmu_domain *smmu_domain,
struct mm_struct *mm)
{
int ret;
struct arm_smmu_ctx_desc *cd;
struct arm_smmu_mmu_notifier *smmu_mn;
list_for_each_entry(smmu_mn, &smmu_domain->mmu_notifiers, list) {
if (smmu_mn->mn.mm == mm) {
refcount_inc(&smmu_mn->refs);
return smmu_mn;
}
}
cd = arm_smmu_alloc_shared_cd(mm);
if (IS_ERR(cd))
return ERR_CAST(cd);
smmu_mn = kzalloc(sizeof(*smmu_mn), GFP_KERNEL);
if (!smmu_mn) {
ret = -ENOMEM;
goto err_free_cd;
}
refcount_set(&smmu_mn->refs, 1);
smmu_mn->cd = cd;
smmu_mn->domain = smmu_domain;
smmu_mn->mn.ops = &arm_smmu_mmu_notifier_ops;
ret = mmu_notifier_register(&smmu_mn->mn, mm);
if (ret) {
kfree(smmu_mn);
goto err_free_cd;
}
ret = arm_smmu_write_ctx_desc(smmu_domain, mm->pasid, cd);
if (ret)
goto err_put_notifier;
list_add(&smmu_mn->list, &smmu_domain->mmu_notifiers);
return smmu_mn;
err_put_notifier:
/* Frees smmu_mn */
mmu_notifier_put(&smmu_mn->mn);
err_free_cd:
arm_smmu_free_shared_cd(cd);
return ERR_PTR(ret);
}
static void arm_smmu_mmu_notifier_put(struct arm_smmu_mmu_notifier *smmu_mn)
{
struct mm_struct *mm = smmu_mn->mn.mm;
struct arm_smmu_ctx_desc *cd = smmu_mn->cd;
struct arm_smmu_domain *smmu_domain = smmu_mn->domain;
if (!refcount_dec_and_test(&smmu_mn->refs))
return;
list_del(&smmu_mn->list);
arm_smmu_write_ctx_desc(smmu_domain, mm->pasid, NULL);
/*
* If we went through clear(), we've already invalidated, and no
* new TLB entry can have been formed.
*/
if (!smmu_mn->cleared) {
arm_smmu_tlb_inv_asid(smmu_domain->smmu, cd->asid);
arm_smmu_atc_inv_domain(smmu_domain, mm->pasid, 0, 0);
}
/* Frees smmu_mn */
mmu_notifier_put(&smmu_mn->mn);
arm_smmu_free_shared_cd(cd);
}
static struct iommu_sva *
__arm_smmu_sva_bind(struct device *dev, struct mm_struct *mm)
{
int ret;
struct arm_smmu_bond *bond;
struct arm_smmu_master *master = dev_iommu_priv_get(dev);
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
if (!master || !master->sva_enabled)
return ERR_PTR(-ENODEV);
/* If bind() was already called for this {dev, mm} pair, reuse it. */
list_for_each_entry(bond, &master->bonds, list) {
if (bond->mm == mm) {
refcount_inc(&bond->refs);
return &bond->sva;
}
}
bond = kzalloc(sizeof(*bond), GFP_KERNEL);
if (!bond)
return ERR_PTR(-ENOMEM);
bond->mm = mm;
bond->sva.dev = dev;
refcount_set(&bond->refs, 1);
bond->smmu_mn = arm_smmu_mmu_notifier_get(smmu_domain, mm);
if (IS_ERR(bond->smmu_mn)) {
ret = PTR_ERR(bond->smmu_mn);
goto err_free_bond;
}
list_add(&bond->list, &master->bonds);
return &bond->sva;
err_free_bond:
kfree(bond);
return ERR_PTR(ret);
}
bool arm_smmu_sva_supported(struct arm_smmu_device *smmu)
{
unsigned long reg, fld;
unsigned long oas;
unsigned long asid_bits;
u32 feat_mask = ARM_SMMU_FEAT_COHERENCY;
if (vabits_actual == 52)
feat_mask |= ARM_SMMU_FEAT_VAX;
if ((smmu->features & feat_mask) != feat_mask)
return false;
if (!(smmu->pgsize_bitmap & PAGE_SIZE))
return false;
/*
* Get the smallest PA size of all CPUs (sanitized by cpufeature). We're
* not even pretending to support AArch32 here. Abort if the MMU outputs
* addresses larger than what we support.
*/
reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
fld = cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
oas = id_aa64mmfr0_parange_to_phys_shift(fld);
if (smmu->oas < oas)
return false;
/* We can support bigger ASIDs than the CPU, but not smaller */
fld = cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT);
asid_bits = fld ? 16 : 8;
if (smmu->asid_bits < asid_bits)
return false;
/*
* See max_pinned_asids in arch/arm64/mm/context.c. The following is
* generally the maximum number of bindable processes.
*/
if (arm64_kernel_unmapped_at_el0())
asid_bits--;
dev_dbg(smmu->dev, "%d shared contexts\n", (1 << asid_bits) -
num_possible_cpus() - 2);
return true;
}
bool arm_smmu_master_iopf_supported(struct arm_smmu_master *master)
{
/* We're not keeping track of SIDs in fault events */
if (master->num_streams != 1)
return false;
return master->stall_enabled;
}
bool arm_smmu_master_sva_supported(struct arm_smmu_master *master)
{
if (!(master->smmu->features & ARM_SMMU_FEAT_SVA))
return false;
/* SSID support is mandatory for the moment */
return master->ssid_bits;
}
bool arm_smmu_master_sva_enabled(struct arm_smmu_master *master)
{
bool enabled;
mutex_lock(&sva_lock);
enabled = master->sva_enabled;
mutex_unlock(&sva_lock);
return enabled;
}
static int arm_smmu_master_sva_enable_iopf(struct arm_smmu_master *master)
{
int ret;
struct device *dev = master->dev;
/*
* Drivers for devices supporting PRI or stall should enable IOPF first.
* Others have device-specific fault handlers and don't need IOPF.
*/
if (!arm_smmu_master_iopf_supported(master))
return 0;
if (!master->iopf_enabled)
return -EINVAL;
ret = iopf_queue_add_device(master->smmu->evtq.iopf, dev);
if (ret)
return ret;
ret = iommu_register_device_fault_handler(dev, iommu_queue_iopf, dev);
if (ret) {
iopf_queue_remove_device(master->smmu->evtq.iopf, dev);
return ret;
}
return 0;
}
static void arm_smmu_master_sva_disable_iopf(struct arm_smmu_master *master)
{
struct device *dev = master->dev;
if (!master->iopf_enabled)
return;
iommu_unregister_device_fault_handler(dev);
iopf_queue_remove_device(master->smmu->evtq.iopf, dev);
}
int arm_smmu_master_enable_sva(struct arm_smmu_master *master)
{
int ret;
mutex_lock(&sva_lock);
ret = arm_smmu_master_sva_enable_iopf(master);
if (!ret)
master->sva_enabled = true;
mutex_unlock(&sva_lock);
return ret;
}
int arm_smmu_master_disable_sva(struct arm_smmu_master *master)
{
mutex_lock(&sva_lock);
if (!list_empty(&master->bonds)) {
dev_err(master->dev, "cannot disable SVA, device is bound\n");
mutex_unlock(&sva_lock);
return -EBUSY;
}
arm_smmu_master_sva_disable_iopf(master);
master->sva_enabled = false;
mutex_unlock(&sva_lock);
return 0;
}
void arm_smmu_sva_notifier_synchronize(void)
{
/*
* Some MMU notifiers may still be waiting to be freed, using
* arm_smmu_mmu_notifier_free(). Wait for them.
*/
mmu_notifier_synchronize();
}
void arm_smmu_sva_remove_dev_pasid(struct iommu_domain *domain,
struct device *dev, ioasid_t id)
{
struct mm_struct *mm = domain->mm;
struct arm_smmu_bond *bond = NULL, *t;
struct arm_smmu_master *master = dev_iommu_priv_get(dev);
mutex_lock(&sva_lock);
list_for_each_entry(t, &master->bonds, list) {
if (t->mm == mm) {
bond = t;
break;
}
}
if (!WARN_ON(!bond) && refcount_dec_and_test(&bond->refs)) {
list_del(&bond->list);
arm_smmu_mmu_notifier_put(bond->smmu_mn);
kfree(bond);
}
mutex_unlock(&sva_lock);
}
static int arm_smmu_sva_set_dev_pasid(struct iommu_domain *domain,
struct device *dev, ioasid_t id)
{
int ret = 0;
struct iommu_sva *handle;
struct mm_struct *mm = domain->mm;
mutex_lock(&sva_lock);
handle = __arm_smmu_sva_bind(dev, mm);
if (IS_ERR(handle))
ret = PTR_ERR(handle);
mutex_unlock(&sva_lock);
return ret;
}
static void arm_smmu_sva_domain_free(struct iommu_domain *domain)
{
kfree(domain);
}
static const struct iommu_domain_ops arm_smmu_sva_domain_ops = {
.set_dev_pasid = arm_smmu_sva_set_dev_pasid,
.free = arm_smmu_sva_domain_free
};
struct iommu_domain *arm_smmu_sva_domain_alloc(void)
{
struct iommu_domain *domain;
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
if (!domain)
return NULL;
domain->ops = &arm_smmu_sva_domain_ops;
return domain;
}