blob: 3c12b6edeac9121d98fd336fd767c9300a348abe [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for IMX296 CMOS Image Sensor from Sony
*
* Copyright 2019 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
*/
#include <linux/clk.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#define IMX296_PIXEL_ARRAY_WIDTH 1456
#define IMX296_PIXEL_ARRAY_HEIGHT 1088
#define IMX296_REG_8BIT(n) ((1 << 16) | (n))
#define IMX296_REG_16BIT(n) ((2 << 16) | (n))
#define IMX296_REG_24BIT(n) ((3 << 16) | (n))
#define IMX296_REG_SIZE_SHIFT 16
#define IMX296_REG_ADDR_MASK 0xffff
#define IMX296_CTRL00 IMX296_REG_8BIT(0x3000)
#define IMX296_CTRL00_STANDBY BIT(0)
#define IMX296_CTRL08 IMX296_REG_8BIT(0x3008)
#define IMX296_CTRL08_REGHOLD BIT(0)
#define IMX296_CTRL0A IMX296_REG_8BIT(0x300a)
#define IMX296_CTRL0A_XMSTA BIT(0)
#define IMX296_CTRL0B IMX296_REG_8BIT(0x300b)
#define IMX296_CTRL0B_TRIGEN BIT(0)
#define IMX296_CTRL0D IMX296_REG_8BIT(0x300d)
#define IMX296_CTRL0D_WINMODE_ALL (0 << 0)
#define IMX296_CTRL0D_WINMODE_FD_BINNING (2 << 0)
#define IMX296_CTRL0D_HADD_ON_BINNING BIT(5)
#define IMX296_CTRL0D_SAT_CNT BIT(6)
#define IMX296_CTRL0E IMX296_REG_8BIT(0x300e)
#define IMX296_CTRL0E_VREVERSE BIT(0)
#define IMX296_CTRL0E_HREVERSE BIT(1)
#define IMX296_VMAX IMX296_REG_24BIT(0x3010)
#define IMX296_HMAX IMX296_REG_16BIT(0x3014)
#define IMX296_TMDCTRL IMX296_REG_8BIT(0x301d)
#define IMX296_TMDCTRL_LATCH BIT(0)
#define IMX296_TMDOUT IMX296_REG_16BIT(0x301e)
#define IMX296_TMDOUT_MASK 0x3ff
#define IMX296_WDSEL IMX296_REG_8BIT(0x3021)
#define IMX296_WDSEL_NORMAL (0 << 0)
#define IMX296_WDSEL_MULTI_2 (1 << 0)
#define IMX296_WDSEL_MULTI_4 (3 << 0)
#define IMX296_BLKLEVELAUTO IMX296_REG_8BIT(0x3022)
#define IMX296_BLKLEVELAUTO_ON 0x01
#define IMX296_BLKLEVELAUTO_OFF 0xf0
#define IMX296_SST IMX296_REG_8BIT(0x3024)
#define IMX296_SST_EN BIT(0)
#define IMX296_CTRLTOUT IMX296_REG_8BIT(0x3026)
#define IMX296_CTRLTOUT_TOUT1SEL_LOW (0 << 0)
#define IMX296_CTRLTOUT_TOUT1SEL_PULSE (3 << 0)
#define IMX296_CTRLTOUT_TOUT2SEL_LOW (0 << 2)
#define IMX296_CTRLTOUT_TOUT2SEL_PULSE (3 << 2)
#define IMX296_CTRLTRIG IMX296_REG_8BIT(0x3029)
#define IMX296_CTRLTRIG_TOUT1_SEL_LOW (0 << 0)
#define IMX296_CTRLTRIG_TOUT1_SEL_PULSE1 (1 << 0)
#define IMX296_CTRLTRIG_TOUT2_SEL_LOW (0 << 4)
#define IMX296_CTRLTRIG_TOUT2_SEL_PULSE2 (2 << 4)
#define IMX296_SYNCSEL IMX296_REG_8BIT(0x3036)
#define IMX296_SYNCSEL_NORMAL 0xc0
#define IMX296_SYNCSEL_HIZ 0xf0
#define IMX296_PULSE1 IMX296_REG_8BIT(0x306d)
#define IMX296_PULSE1_EN_NOR BIT(0)
#define IMX296_PULSE1_EN_TRIG BIT(1)
#define IMX296_PULSE1_POL_HIGH (0 << 2)
#define IMX296_PULSE1_POL_LOW (1 << 2)
#define IMX296_PULSE1_UP IMX296_REG_24BIT(0x3070)
#define IMX296_PULSE1_DN IMX296_REG_24BIT(0x3074)
#define IMX296_PULSE2 IMX296_REG_8BIT(0x3079)
#define IMX296_PULSE2_EN_NOR BIT(0)
#define IMX296_PULSE2_EN_TRIG BIT(1)
#define IMX296_PULSE2_POL_HIGH (0 << 2)
#define IMX296_PULSE2_POL_LOW (1 << 2)
#define IMX296_PULSE2_UP IMX296_REG_24BIT(0x307c)
#define IMX296_PULSE2_DN IMX296_REG_24BIT(0x3080)
#define IMX296_INCKSEL(n) IMX296_REG_8BIT(0x3089 + (n))
#define IMX296_SHS1 IMX296_REG_24BIT(0x308d)
#define IMX296_SHS2 IMX296_REG_24BIT(0x3090)
#define IMX296_SHS3 IMX296_REG_24BIT(0x3094)
#define IMX296_SHS4 IMX296_REG_24BIT(0x3098)
#define IMX296_VBLANKLP IMX296_REG_8BIT(0x309c)
#define IMX296_VBLANKLP_NORMAL 0x04
#define IMX296_VBLANKLP_LOW_POWER 0x2c
#define IMX296_EXP_CNT IMX296_REG_8BIT(0x30a3)
#define IMX296_EXP_CNT_RESET BIT(0)
#define IMX296_EXP_MAX IMX296_REG_16BIT(0x30a6)
#define IMX296_VINT IMX296_REG_8BIT(0x30aa)
#define IMX296_VINT_EN BIT(0)
#define IMX296_LOWLAGTRG IMX296_REG_8BIT(0x30ae)
#define IMX296_LOWLAGTRG_FAST BIT(0)
#define IMX296_I2CCTRL IMX296_REG_8BIT(0x30ef)
#define IMX296_I2CCTRL_I2CACKEN BIT(0)
#define IMX296_SENSOR_INFO IMX296_REG_16BIT(0x3148)
#define IMX296_SENSOR_INFO_MONO BIT(15)
#define IMX296_SENSOR_INFO_IMX296LQ 0x4a00
#define IMX296_SENSOR_INFO_IMX296LL 0xca00
#define IMX296_S_SHSA IMX296_REG_16BIT(0x31ca)
#define IMX296_S_SHSB IMX296_REG_16BIT(0x31d2)
/*
* Registers 0x31c8 to 0x31cd, 0x31d0 to 0x31d5, 0x31e2, 0x31e3, 0x31ea and
* 0x31eb are related to exposure mode but otherwise not documented.
*/
#define IMX296_GAINCTRL IMX296_REG_8BIT(0x3200)
#define IMX296_GAINCTRL_WD_GAIN_MODE_NORMAL 0x01
#define IMX296_GAINCTRL_WD_GAIN_MODE_MULTI 0x41
#define IMX296_GAIN IMX296_REG_16BIT(0x3204)
#define IMX296_GAIN_MIN 0
#define IMX296_GAIN_MAX 480
#define IMX296_GAIN1 IMX296_REG_16BIT(0x3208)
#define IMX296_GAIN2 IMX296_REG_16BIT(0x320c)
#define IMX296_GAIN3 IMX296_REG_16BIT(0x3210)
#define IMX296_GAINDLY IMX296_REG_8BIT(0x3212)
#define IMX296_GAINDLY_NONE 0x08
#define IMX296_GAINDLY_1FRAME 0x09
#define IMX296_PGCTRL IMX296_REG_8BIT(0x3238)
#define IMX296_PGCTRL_REGEN BIT(0)
#define IMX296_PGCTRL_THRU BIT(1)
#define IMX296_PGCTRL_CLKEN BIT(2)
#define IMX296_PGCTRL_MODE(n) ((n) << 3)
#define IMX296_PGHPOS IMX296_REG_16BIT(0x3239)
#define IMX296_PGVPOS IMX296_REG_16BIT(0x323c)
#define IMX296_PGHPSTEP IMX296_REG_8BIT(0x323e)
#define IMX296_PGVPSTEP IMX296_REG_8BIT(0x323f)
#define IMX296_PGHPNUM IMX296_REG_8BIT(0x3240)
#define IMX296_PGVPNUM IMX296_REG_8BIT(0x3241)
#define IMX296_PGDATA1 IMX296_REG_16BIT(0x3244)
#define IMX296_PGDATA2 IMX296_REG_16BIT(0x3246)
#define IMX296_PGHGSTEP IMX296_REG_8BIT(0x3249)
#define IMX296_BLKLEVEL IMX296_REG_16BIT(0x3254)
#define IMX296_FID0_ROI IMX296_REG_8BIT(0x3300)
#define IMX296_FID0_ROIH1ON BIT(0)
#define IMX296_FID0_ROIV1ON BIT(1)
#define IMX296_FID0_ROIPH1 IMX296_REG_16BIT(0x3310)
#define IMX296_FID0_ROIPV1 IMX296_REG_16BIT(0x3312)
#define IMX296_FID0_ROIWH1 IMX296_REG_16BIT(0x3314)
#define IMX296_FID0_ROIWH1_MIN 80
#define IMX296_FID0_ROIWV1 IMX296_REG_16BIT(0x3316)
#define IMX296_FID0_ROIWV1_MIN 4
#define IMX296_CM_HSST_STARTTMG IMX296_REG_16BIT(0x4018)
#define IMX296_CM_HSST_ENDTMG IMX296_REG_16BIT(0x401a)
#define IMX296_DA_HSST_STARTTMG IMX296_REG_16BIT(0x404d)
#define IMX296_DA_HSST_ENDTMG IMX296_REG_16BIT(0x4050)
#define IMX296_LM_HSST_STARTTMG IMX296_REG_16BIT(0x4094)
#define IMX296_LM_HSST_ENDTMG IMX296_REG_16BIT(0x4096)
#define IMX296_SST_SIEASTA1_SET IMX296_REG_8BIT(0x40c9)
#define IMX296_SST_SIEASTA1PRE_1U IMX296_REG_16BIT(0x40cc)
#define IMX296_SST_SIEASTA1PRE_1D IMX296_REG_16BIT(0x40ce)
#define IMX296_SST_SIEASTA1PRE_2U IMX296_REG_16BIT(0x40d0)
#define IMX296_SST_SIEASTA1PRE_2D IMX296_REG_16BIT(0x40d2)
#define IMX296_HSST IMX296_REG_8BIT(0x40dc)
#define IMX296_HSST_EN BIT(2)
#define IMX296_CKREQSEL IMX296_REG_8BIT(0x4101)
#define IMX296_CKREQSEL_HS BIT(2)
#define IMX296_GTTABLENUM IMX296_REG_8BIT(0x4114)
#define IMX296_CTRL418C IMX296_REG_8BIT(0x418c)
struct imx296_clk_params {
unsigned int freq;
u8 incksel[4];
u8 ctrl418c;
};
static const struct imx296_clk_params imx296_clk_params[] = {
{ 37125000, { 0x80, 0x0b, 0x80, 0x08 }, 116 },
{ 54000000, { 0xb0, 0x0f, 0xb0, 0x0c }, 168 },
{ 74250000, { 0x80, 0x0f, 0x80, 0x0c }, 232 },
};
static const char * const imx296_supply_names[] = {
"dvdd",
"ovdd",
"avdd",
};
struct imx296 {
struct device *dev;
struct clk *clk;
struct regulator_bulk_data supplies[ARRAY_SIZE(imx296_supply_names)];
struct gpio_desc *reset;
struct regmap *regmap;
const struct imx296_clk_params *clk_params;
bool mono;
bool streaming;
struct v4l2_subdev subdev;
struct media_pad pad;
struct v4l2_ctrl_handler ctrls;
struct v4l2_ctrl *hblank;
struct v4l2_ctrl *vblank;
};
static inline struct imx296 *to_imx296(struct v4l2_subdev *sd)
{
return container_of(sd, struct imx296, subdev);
}
static int imx296_read(struct imx296 *sensor, u32 addr)
{
u8 data[3] = { 0, 0, 0 };
int ret;
ret = regmap_raw_read(sensor->regmap, addr & IMX296_REG_ADDR_MASK, data,
(addr >> IMX296_REG_SIZE_SHIFT) & 3);
if (ret < 0)
return ret;
return (data[2] << 16) | (data[1] << 8) | data[0];
}
static int imx296_write(struct imx296 *sensor, u32 addr, u32 value, int *err)
{
u8 data[3] = { value & 0xff, (value >> 8) & 0xff, value >> 16 };
int ret;
if (err && *err)
return *err;
ret = regmap_raw_write(sensor->regmap, addr & IMX296_REG_ADDR_MASK,
data, (addr >> IMX296_REG_SIZE_SHIFT) & 3);
if (ret < 0) {
dev_err(sensor->dev, "%u-bit write to 0x%04x failed: %d\n",
((addr >> IMX296_REG_SIZE_SHIFT) & 3) * 8,
addr & IMX296_REG_ADDR_MASK, ret);
if (err)
*err = ret;
}
return ret;
}
static int imx296_power_on(struct imx296 *sensor)
{
int ret;
ret = regulator_bulk_enable(ARRAY_SIZE(sensor->supplies),
sensor->supplies);
if (ret < 0)
return ret;
udelay(1);
ret = gpiod_direction_output(sensor->reset, 0);
if (ret < 0)
goto err_supply;
udelay(1);
ret = clk_prepare_enable(sensor->clk);
if (ret < 0)
goto err_reset;
/*
* The documentation doesn't explicitly say how much time is required
* after providing a clock and before starting I2C communication. It
* mentions a delay of 20µs in 4-wire mode, but tests showed that a
* delay of 100µs resulted in I2C communication failures, while 500µs
* seems to be enough. Be conservative.
*/
usleep_range(1000, 2000);
return 0;
err_reset:
gpiod_direction_output(sensor->reset, 1);
err_supply:
regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies);
return ret;
}
static void imx296_power_off(struct imx296 *sensor)
{
clk_disable_unprepare(sensor->clk);
gpiod_direction_output(sensor->reset, 1);
regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies);
}
/* -----------------------------------------------------------------------------
* Controls
*/
static const char * const imx296_test_pattern_menu[] = {
"Disabled",
"Multiple Pixels",
"Sequence 1",
"Sequence 2",
"Gradient",
"Row",
"Column",
"Cross",
"Stripe",
"Checks",
};
static int imx296_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct imx296 *sensor = container_of(ctrl->handler, struct imx296, ctrls);
const struct v4l2_mbus_framefmt *format;
struct v4l2_subdev_state *state;
unsigned int vmax;
int ret = 0;
if (!sensor->streaming)
return 0;
state = v4l2_subdev_get_locked_active_state(&sensor->subdev);
format = v4l2_subdev_get_pad_format(&sensor->subdev, state, 0);
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
/* Clamp the exposure value to VMAX. */
vmax = format->height + sensor->vblank->cur.val;
ctrl->val = min_t(int, ctrl->val, vmax);
imx296_write(sensor, IMX296_SHS1, vmax - ctrl->val, &ret);
break;
case V4L2_CID_ANALOGUE_GAIN:
imx296_write(sensor, IMX296_GAIN, ctrl->val, &ret);
break;
case V4L2_CID_VBLANK:
imx296_write(sensor, IMX296_VMAX, format->height + ctrl->val,
&ret);
break;
case V4L2_CID_TEST_PATTERN:
if (ctrl->val) {
imx296_write(sensor, IMX296_PGHPOS, 8, &ret);
imx296_write(sensor, IMX296_PGVPOS, 8, &ret);
imx296_write(sensor, IMX296_PGHPSTEP, 8, &ret);
imx296_write(sensor, IMX296_PGVPSTEP, 8, &ret);
imx296_write(sensor, IMX296_PGHPNUM, 100, &ret);
imx296_write(sensor, IMX296_PGVPNUM, 100, &ret);
imx296_write(sensor, IMX296_PGDATA1, 0x300, &ret);
imx296_write(sensor, IMX296_PGDATA2, 0x100, &ret);
imx296_write(sensor, IMX296_PGHGSTEP, 0, &ret);
imx296_write(sensor, IMX296_BLKLEVEL, 0, &ret);
imx296_write(sensor, IMX296_BLKLEVELAUTO,
IMX296_BLKLEVELAUTO_OFF, &ret);
imx296_write(sensor, IMX296_PGCTRL,
IMX296_PGCTRL_REGEN |
IMX296_PGCTRL_CLKEN |
IMX296_PGCTRL_MODE(ctrl->val - 1), &ret);
} else {
imx296_write(sensor, IMX296_PGCTRL,
IMX296_PGCTRL_CLKEN, &ret);
imx296_write(sensor, IMX296_BLKLEVEL, 0x3c, &ret);
imx296_write(sensor, IMX296_BLKLEVELAUTO,
IMX296_BLKLEVELAUTO_ON, &ret);
}
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static const struct v4l2_ctrl_ops imx296_ctrl_ops = {
.s_ctrl = imx296_s_ctrl,
};
static int imx296_ctrls_init(struct imx296 *sensor)
{
struct v4l2_fwnode_device_properties props;
unsigned int hblank;
int ret;
ret = v4l2_fwnode_device_parse(sensor->dev, &props);
if (ret < 0)
return ret;
v4l2_ctrl_handler_init(&sensor->ctrls, 9);
v4l2_ctrl_new_std(&sensor->ctrls, &imx296_ctrl_ops,
V4L2_CID_EXPOSURE, 1, 1048575, 1, 1104);
v4l2_ctrl_new_std(&sensor->ctrls, &imx296_ctrl_ops,
V4L2_CID_ANALOGUE_GAIN, IMX296_GAIN_MIN,
IMX296_GAIN_MAX, 1, IMX296_GAIN_MIN);
/*
* Horizontal blanking is controlled through the HMAX register, which
* contains a line length in INCK clock units. The INCK frequency is
* fixed to 74.25 MHz. The HMAX value is currently fixed to 1100,
* convert it to a number of pixels based on the nominal pixel rate.
*/
hblank = 1100 * 1188000000ULL / 10 / 74250000
- IMX296_PIXEL_ARRAY_WIDTH;
sensor->hblank = v4l2_ctrl_new_std(&sensor->ctrls, &imx296_ctrl_ops,
V4L2_CID_HBLANK, hblank, hblank, 1,
hblank);
if (sensor->hblank)
sensor->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY;
sensor->vblank = v4l2_ctrl_new_std(&sensor->ctrls, &imx296_ctrl_ops,
V4L2_CID_VBLANK, 30,
1048575 - IMX296_PIXEL_ARRAY_HEIGHT,
1, 30);
/*
* The sensor calculates the MIPI timings internally to achieve a bit
* rate between 1122 and 1198 Mbps. The exact value is unfortunately not
* reported, at least according to the documentation. Report a nominal
* rate of 1188 Mbps as that is used by the datasheet in multiple
* examples.
*/
v4l2_ctrl_new_std(&sensor->ctrls, NULL, V4L2_CID_PIXEL_RATE,
1122000000 / 10, 1198000000 / 10, 1, 1188000000 / 10);
v4l2_ctrl_new_std_menu_items(&sensor->ctrls, &imx296_ctrl_ops,
V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(imx296_test_pattern_menu) - 1,
0, 0, imx296_test_pattern_menu);
v4l2_ctrl_new_fwnode_properties(&sensor->ctrls, &imx296_ctrl_ops,
&props);
if (sensor->ctrls.error) {
dev_err(sensor->dev, "failed to add controls (%d)\n",
sensor->ctrls.error);
v4l2_ctrl_handler_free(&sensor->ctrls);
return sensor->ctrls.error;
}
sensor->subdev.ctrl_handler = &sensor->ctrls;
return 0;
}
/* -----------------------------------------------------------------------------
* V4L2 Subdev Operations
*/
/*
* This table is extracted from vendor data that is entirely undocumented. The
* first register write is required to activate the CSI-2 output. The other
* entries may or may not be optional?
*/
static const struct {
unsigned int reg;
unsigned int value;
} imx296_init_table[] = {
{ IMX296_REG_8BIT(0x3005), 0xf0 },
{ IMX296_REG_8BIT(0x309e), 0x04 },
{ IMX296_REG_8BIT(0x30a0), 0x04 },
{ IMX296_REG_8BIT(0x30a1), 0x3c },
{ IMX296_REG_8BIT(0x30a4), 0x5f },
{ IMX296_REG_8BIT(0x30a8), 0x91 },
{ IMX296_REG_8BIT(0x30ac), 0x28 },
{ IMX296_REG_8BIT(0x30af), 0x09 },
{ IMX296_REG_8BIT(0x30df), 0x00 },
{ IMX296_REG_8BIT(0x3165), 0x00 },
{ IMX296_REG_8BIT(0x3169), 0x10 },
{ IMX296_REG_8BIT(0x316a), 0x02 },
{ IMX296_REG_8BIT(0x31c8), 0xf3 }, /* Exposure-related */
{ IMX296_REG_8BIT(0x31d0), 0xf4 }, /* Exposure-related */
{ IMX296_REG_8BIT(0x321a), 0x00 },
{ IMX296_REG_8BIT(0x3226), 0x02 },
{ IMX296_REG_8BIT(0x3256), 0x01 },
{ IMX296_REG_8BIT(0x3541), 0x72 },
{ IMX296_REG_8BIT(0x3516), 0x77 },
{ IMX296_REG_8BIT(0x350b), 0x7f },
{ IMX296_REG_8BIT(0x3758), 0xa3 },
{ IMX296_REG_8BIT(0x3759), 0x00 },
{ IMX296_REG_8BIT(0x375a), 0x85 },
{ IMX296_REG_8BIT(0x375b), 0x00 },
{ IMX296_REG_8BIT(0x3832), 0xf5 },
{ IMX296_REG_8BIT(0x3833), 0x00 },
{ IMX296_REG_8BIT(0x38a2), 0xf6 },
{ IMX296_REG_8BIT(0x38a3), 0x00 },
{ IMX296_REG_8BIT(0x3a00), 0x80 },
{ IMX296_REG_8BIT(0x3d48), 0xa3 },
{ IMX296_REG_8BIT(0x3d49), 0x00 },
{ IMX296_REG_8BIT(0x3d4a), 0x85 },
{ IMX296_REG_8BIT(0x3d4b), 0x00 },
{ IMX296_REG_8BIT(0x400e), 0x58 },
{ IMX296_REG_8BIT(0x4014), 0x1c },
{ IMX296_REG_8BIT(0x4041), 0x2a },
{ IMX296_REG_8BIT(0x40a2), 0x06 },
{ IMX296_REG_8BIT(0x40c1), 0xf6 },
{ IMX296_REG_8BIT(0x40c7), 0x0f },
{ IMX296_REG_8BIT(0x40c8), 0x00 },
{ IMX296_REG_8BIT(0x4174), 0x00 },
};
static int imx296_setup(struct imx296 *sensor, struct v4l2_subdev_state *state)
{
const struct v4l2_mbus_framefmt *format;
const struct v4l2_rect *crop;
unsigned int i;
int ret = 0;
format = v4l2_subdev_get_pad_format(&sensor->subdev, state, 0);
crop = v4l2_subdev_get_pad_crop(&sensor->subdev, state, 0);
for (i = 0; i < ARRAY_SIZE(imx296_init_table); ++i)
imx296_write(sensor, imx296_init_table[i].reg,
imx296_init_table[i].value, &ret);
if (crop->width != IMX296_PIXEL_ARRAY_WIDTH ||
crop->height != IMX296_PIXEL_ARRAY_HEIGHT) {
imx296_write(sensor, IMX296_FID0_ROI,
IMX296_FID0_ROIH1ON | IMX296_FID0_ROIV1ON, &ret);
imx296_write(sensor, IMX296_FID0_ROIPH1, crop->left, &ret);
imx296_write(sensor, IMX296_FID0_ROIPV1, crop->top, &ret);
imx296_write(sensor, IMX296_FID0_ROIWH1, crop->width, &ret);
imx296_write(sensor, IMX296_FID0_ROIWV1, crop->height, &ret);
} else {
imx296_write(sensor, IMX296_FID0_ROI, 0, &ret);
}
imx296_write(sensor, IMX296_CTRL0D,
(crop->width != format->width ?
IMX296_CTRL0D_HADD_ON_BINNING : 0) |
(crop->height != format->height ?
IMX296_CTRL0D_WINMODE_FD_BINNING : 0),
&ret);
/*
* HMAX and VMAX configure horizontal and vertical blanking by
* specifying the total line time and frame time respectively. The line
* time is specified in operational clock units (which appears to be the
* output of an internal PLL, fixed at 74.25 MHz regardless of the
* exernal clock frequency), while the frame time is specified as a
* number of lines.
*
* In the vertical direction the sensor outputs the following:
*
* - one line for the FS packet
* - two lines of embedded data (DT 0x12)
* - six null lines (DT 0x10)
* - four lines of vertical effective optical black (DT 0x37)
* - 8 to 1088 lines of active image data (RAW10, DT 0x2b)
* - one line for the FE packet
* - 16 or more lines of vertical blanking
*/
imx296_write(sensor, IMX296_HMAX, 1100, &ret);
imx296_write(sensor, IMX296_VMAX,
format->height + sensor->vblank->cur.val, &ret);
for (i = 0; i < ARRAY_SIZE(sensor->clk_params->incksel); ++i)
imx296_write(sensor, IMX296_INCKSEL(i),
sensor->clk_params->incksel[i], &ret);
imx296_write(sensor, IMX296_GTTABLENUM, 0xc5, &ret);
imx296_write(sensor, IMX296_CTRL418C, sensor->clk_params->ctrl418c,
&ret);
imx296_write(sensor, IMX296_GAINDLY, IMX296_GAINDLY_NONE, &ret);
imx296_write(sensor, IMX296_BLKLEVEL, 0x03c, &ret);
return ret;
}
static int imx296_stream_on(struct imx296 *sensor)
{
int ret = 0;
imx296_write(sensor, IMX296_CTRL00, 0, &ret);
usleep_range(2000, 5000);
imx296_write(sensor, IMX296_CTRL0A, 0, &ret);
return ret;
}
static int imx296_stream_off(struct imx296 *sensor)
{
int ret = 0;
imx296_write(sensor, IMX296_CTRL0A, IMX296_CTRL0A_XMSTA, &ret);
imx296_write(sensor, IMX296_CTRL00, IMX296_CTRL00_STANDBY, &ret);
return ret;
}
static int imx296_s_stream(struct v4l2_subdev *sd, int enable)
{
struct imx296 *sensor = to_imx296(sd);
struct v4l2_subdev_state *state;
int ret;
state = v4l2_subdev_lock_and_get_active_state(sd);
if (!enable) {
ret = imx296_stream_off(sensor);
pm_runtime_mark_last_busy(sensor->dev);
pm_runtime_put_autosuspend(sensor->dev);
sensor->streaming = false;
goto unlock;
}
ret = pm_runtime_resume_and_get(sensor->dev);
if (ret < 0)
goto unlock;
ret = imx296_setup(sensor, state);
if (ret < 0)
goto err_pm;
/*
* Set streaming to true to ensure __v4l2_ctrl_handler_setup() will set
* the controls. The flag is reset to false further down if an error
* occurs.
*/
sensor->streaming = true;
ret = __v4l2_ctrl_handler_setup(&sensor->ctrls);
if (ret < 0)
goto err_pm;
ret = imx296_stream_on(sensor);
if (ret)
goto err_pm;
unlock:
v4l2_subdev_unlock_state(state);
return ret;
err_pm:
/*
* In case of error, turn the power off synchronously as the device
* likely has no other chance to recover.
*/
pm_runtime_put_sync(sensor->dev);
sensor->streaming = false;
goto unlock;
}
static int imx296_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_mbus_code_enum *code)
{
struct imx296 *sensor = to_imx296(sd);
if (code->index != 0)
return -EINVAL;
code->code = sensor->mono ? MEDIA_BUS_FMT_Y10_1X10
: MEDIA_BUS_FMT_SBGGR10_1X10;
return 0;
}
static int imx296_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_frame_size_enum *fse)
{
const struct v4l2_mbus_framefmt *format;
format = v4l2_subdev_get_pad_format(sd, state, fse->pad);
if (fse->index >= 2 || fse->code != format->code)
return -EINVAL;
fse->min_width = IMX296_PIXEL_ARRAY_WIDTH / (fse->index + 1);
fse->max_width = fse->min_width;
fse->min_height = IMX296_PIXEL_ARRAY_HEIGHT / (fse->index + 1);
fse->max_height = fse->min_height;
return 0;
}
static int imx296_get_format(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *fmt)
{
fmt->format = *v4l2_subdev_get_pad_format(sd, state, fmt->pad);
return 0;
}
static int imx296_set_format(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *fmt)
{
struct imx296 *sensor = to_imx296(sd);
struct v4l2_mbus_framefmt *format;
struct v4l2_rect *crop;
crop = v4l2_subdev_get_pad_crop(sd, state, fmt->pad);
format = v4l2_subdev_get_pad_format(sd, state, fmt->pad);
/*
* Binning is only allowed when cropping is disabled according to the
* documentation. This should be double-checked.
*/
if (crop->width == IMX296_PIXEL_ARRAY_WIDTH &&
crop->height == IMX296_PIXEL_ARRAY_HEIGHT) {
unsigned int width;
unsigned int height;
unsigned int hratio;
unsigned int vratio;
/* Clamp the width and height to avoid dividing by zero. */
width = clamp_t(unsigned int, fmt->format.width,
crop->width / 2, crop->width);
height = clamp_t(unsigned int, fmt->format.height,
crop->height / 2, crop->height);
hratio = DIV_ROUND_CLOSEST(crop->width, width);
vratio = DIV_ROUND_CLOSEST(crop->height, height);
format->width = crop->width / hratio;
format->height = crop->height / vratio;
} else {
format->width = crop->width;
format->height = crop->height;
}
format->code = sensor->mono ? MEDIA_BUS_FMT_Y10_1X10
: MEDIA_BUS_FMT_SBGGR10_1X10;
format->field = V4L2_FIELD_NONE;
format->colorspace = V4L2_COLORSPACE_RAW;
format->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
format->quantization = V4L2_QUANTIZATION_FULL_RANGE;
format->xfer_func = V4L2_XFER_FUNC_NONE;
fmt->format = *format;
return 0;
}
static int imx296_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_selection *sel)
{
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
sel->r = *v4l2_subdev_get_pad_crop(sd, state, sel->pad);
break;
case V4L2_SEL_TGT_CROP_DEFAULT:
case V4L2_SEL_TGT_CROP_BOUNDS:
case V4L2_SEL_TGT_NATIVE_SIZE:
sel->r.left = 0;
sel->r.top = 0;
sel->r.width = IMX296_PIXEL_ARRAY_WIDTH;
sel->r.height = IMX296_PIXEL_ARRAY_HEIGHT;
break;
default:
return -EINVAL;
}
return 0;
}
static int imx296_set_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_selection *sel)
{
struct v4l2_mbus_framefmt *format;
struct v4l2_rect *crop;
struct v4l2_rect rect;
if (sel->target != V4L2_SEL_TGT_CROP)
return -EINVAL;
/*
* Clamp the crop rectangle boundaries and align them to a multiple of 4
* pixels to satisfy hardware requirements.
*/
rect.left = clamp(ALIGN(sel->r.left, 4), 0,
IMX296_PIXEL_ARRAY_WIDTH - IMX296_FID0_ROIWH1_MIN);
rect.top = clamp(ALIGN(sel->r.top, 4), 0,
IMX296_PIXEL_ARRAY_HEIGHT - IMX296_FID0_ROIWV1_MIN);
rect.width = clamp_t(unsigned int, ALIGN(sel->r.width, 4),
IMX296_FID0_ROIWH1_MIN, IMX296_PIXEL_ARRAY_WIDTH);
rect.height = clamp_t(unsigned int, ALIGN(sel->r.height, 4),
IMX296_FID0_ROIWV1_MIN, IMX296_PIXEL_ARRAY_HEIGHT);
rect.width = min_t(unsigned int, rect.width,
IMX296_PIXEL_ARRAY_WIDTH - rect.left);
rect.height = min_t(unsigned int, rect.height,
IMX296_PIXEL_ARRAY_HEIGHT - rect.top);
crop = v4l2_subdev_get_pad_crop(sd, state, sel->pad);
if (rect.width != crop->width || rect.height != crop->height) {
/*
* Reset the output image size if the crop rectangle size has
* been modified.
*/
format = v4l2_subdev_get_pad_format(sd, state, sel->pad);
format->width = rect.width;
format->height = rect.height;
}
*crop = rect;
sel->r = rect;
return 0;
}
static int imx296_init_cfg(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state)
{
struct v4l2_subdev_selection sel = {
.target = V4L2_SEL_TGT_CROP,
.r.width = IMX296_PIXEL_ARRAY_WIDTH,
.r.height = IMX296_PIXEL_ARRAY_HEIGHT,
};
struct v4l2_subdev_format format = {
.format = {
.width = IMX296_PIXEL_ARRAY_WIDTH,
.height = IMX296_PIXEL_ARRAY_HEIGHT,
},
};
imx296_set_selection(sd, state, &sel);
imx296_set_format(sd, state, &format);
return 0;
}
static const struct v4l2_subdev_video_ops imx296_subdev_video_ops = {
.s_stream = imx296_s_stream,
};
static const struct v4l2_subdev_pad_ops imx296_subdev_pad_ops = {
.enum_mbus_code = imx296_enum_mbus_code,
.enum_frame_size = imx296_enum_frame_size,
.get_fmt = imx296_get_format,
.set_fmt = imx296_set_format,
.get_selection = imx296_get_selection,
.set_selection = imx296_set_selection,
.init_cfg = imx296_init_cfg,
};
static const struct v4l2_subdev_ops imx296_subdev_ops = {
.video = &imx296_subdev_video_ops,
.pad = &imx296_subdev_pad_ops,
};
static int imx296_subdev_init(struct imx296 *sensor)
{
struct i2c_client *client = to_i2c_client(sensor->dev);
int ret;
v4l2_i2c_subdev_init(&sensor->subdev, client, &imx296_subdev_ops);
ret = imx296_ctrls_init(sensor);
if (ret < 0)
return ret;
sensor->subdev.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
sensor->subdev.entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&sensor->subdev.entity, 1, &sensor->pad);
if (ret < 0) {
v4l2_ctrl_handler_free(&sensor->ctrls);
return ret;
}
sensor->subdev.state_lock = sensor->subdev.ctrl_handler->lock;
v4l2_subdev_init_finalize(&sensor->subdev);
return ret;
}
static void imx296_subdev_cleanup(struct imx296 *sensor)
{
media_entity_cleanup(&sensor->subdev.entity);
v4l2_ctrl_handler_free(&sensor->ctrls);
}
/* -----------------------------------------------------------------------------
* Power management
*/
static int __maybe_unused imx296_runtime_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct imx296 *sensor = to_imx296(subdev);
return imx296_power_on(sensor);
}
static int __maybe_unused imx296_runtime_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct imx296 *sensor = to_imx296(subdev);
imx296_power_off(sensor);
return 0;
}
static const struct dev_pm_ops imx296_pm_ops = {
SET_RUNTIME_PM_OPS(imx296_runtime_suspend, imx296_runtime_resume, NULL)
};
/* -----------------------------------------------------------------------------
* Probe & Remove
*/
static int imx296_read_temperature(struct imx296 *sensor, int *temp)
{
int tmdout;
int ret;
ret = imx296_write(sensor, IMX296_TMDCTRL, IMX296_TMDCTRL_LATCH, NULL);
if (ret < 0)
return ret;
tmdout = imx296_read(sensor, IMX296_TMDOUT) & IMX296_TMDOUT_MASK;
if (tmdout < 0)
return tmdout;
/* T(°C) = 246.312 - 0.304 * TMDOUT */;
*temp = 246312 - 304 * tmdout;
return imx296_write(sensor, IMX296_TMDCTRL, 0, NULL);
}
static int imx296_identify_model(struct imx296 *sensor)
{
unsigned int model;
int temp = 0;
int ret;
model = (uintptr_t)of_device_get_match_data(sensor->dev);
if (model) {
dev_dbg(sensor->dev,
"sensor model auto-detection disabled, forcing 0x%04x\n",
model);
sensor->mono = model & IMX296_SENSOR_INFO_MONO;
return 0;
}
/*
* While most registers can be read when the sensor is in standby, this
* is not the case of the sensor info register :-(
*/
ret = imx296_write(sensor, IMX296_CTRL00, 0, NULL);
if (ret < 0) {
dev_err(sensor->dev,
"failed to get sensor out of standby (%d)\n", ret);
return ret;
}
ret = imx296_read(sensor, IMX296_SENSOR_INFO);
if (ret < 0) {
dev_err(sensor->dev, "failed to read sensor information (%d)\n",
ret);
goto done;
}
model = (ret >> 6) & 0x1ff;
switch (model) {
case 296:
sensor->mono = ret & IMX296_SENSOR_INFO_MONO;
break;
/*
* The IMX297 seems to share features with the IMX296, it may be
* possible to support it in the same driver.
*/
case 297:
default:
dev_err(sensor->dev, "invalid device model 0x%04x\n", ret);
ret = -ENODEV;
goto done;
}
ret = imx296_read_temperature(sensor, &temp);
if (ret < 0)
goto done;
dev_info(sensor->dev, "found IMX%u%s (%u.%uC)\n", model,
sensor->mono ? "LL" : "LQ", temp / 1000, (temp / 100) % 10);
done:
imx296_write(sensor, IMX296_CTRL00, IMX296_CTRL00_STANDBY, NULL);
return ret;
}
static const struct regmap_config imx296_regmap_config = {
.reg_bits = 16,
.val_bits = 8,
.wr_table = &(const struct regmap_access_table) {
.no_ranges = (const struct regmap_range[]) {
{
.range_min = IMX296_SENSOR_INFO & 0xffff,
.range_max = (IMX296_SENSOR_INFO & 0xffff) + 1,
},
},
.n_no_ranges = 1,
},
};
static int imx296_probe(struct i2c_client *client)
{
struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
unsigned long clk_rate;
struct imx296 *sensor;
unsigned int i;
int ret;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_warn(&adapter->dev,
"I2C-Adapter doesn't support I2C_FUNC_SMBUS_BYTE\n");
return -EIO;
}
sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
if (!sensor)
return -ENOMEM;
sensor->dev = &client->dev;
/* Acquire resources. */
for (i = 0; i < ARRAY_SIZE(sensor->supplies); ++i)
sensor->supplies[i].supply = imx296_supply_names[i];
ret = devm_regulator_bulk_get(sensor->dev, ARRAY_SIZE(sensor->supplies),
sensor->supplies);
if (ret) {
dev_err_probe(sensor->dev, ret, "failed to get supplies\n");
return ret;
}
sensor->reset = devm_gpiod_get_optional(sensor->dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(sensor->reset))
return dev_err_probe(sensor->dev, PTR_ERR(sensor->reset),
"failed to get reset GPIO\n");
sensor->clk = devm_clk_get(sensor->dev, "inck");
if (IS_ERR(sensor->clk))
return dev_err_probe(sensor->dev, PTR_ERR(sensor->clk),
"failed to get clock\n");
clk_rate = clk_get_rate(sensor->clk);
for (i = 0; i < ARRAY_SIZE(imx296_clk_params); ++i) {
if (clk_rate == imx296_clk_params[i].freq) {
sensor->clk_params = &imx296_clk_params[i];
break;
}
}
if (!sensor->clk_params) {
dev_err(sensor->dev, "unsupported clock rate %lu\n", clk_rate);
return -EINVAL;
}
sensor->regmap = devm_regmap_init_i2c(client, &imx296_regmap_config);
if (IS_ERR(sensor->regmap))
return PTR_ERR(sensor->regmap);
/*
* Enable power management. The driver supports runtime PM, but needs to
* work when runtime PM is disabled in the kernel. To that end, power
* the sensor on manually here, identify it, and fully initialize it.
*/
ret = imx296_power_on(sensor);
if (ret < 0)
return ret;
ret = imx296_identify_model(sensor);
if (ret < 0)
goto err_power;
/* Initialize the V4L2 subdev. */
ret = imx296_subdev_init(sensor);
if (ret < 0)
goto err_power;
/*
* Enable runtime PM. As the device has been powered manually, mark it
* as active, and increase the usage count without resuming the device.
*/
pm_runtime_set_active(sensor->dev);
pm_runtime_get_noresume(sensor->dev);
pm_runtime_enable(sensor->dev);
/* Register the V4L2 subdev. */
ret = v4l2_async_register_subdev(&sensor->subdev);
if (ret < 0)
goto err_pm;
/*
* Finally, enable autosuspend and decrease the usage count. The device
* will get suspended after the autosuspend delay, turning the power
* off.
*/
pm_runtime_set_autosuspend_delay(sensor->dev, 1000);
pm_runtime_use_autosuspend(sensor->dev);
pm_runtime_put_autosuspend(sensor->dev);
return 0;
err_pm:
pm_runtime_disable(sensor->dev);
pm_runtime_put_noidle(sensor->dev);
imx296_subdev_cleanup(sensor);
err_power:
imx296_power_off(sensor);
return ret;
}
static void imx296_remove(struct i2c_client *client)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct imx296 *sensor = to_imx296(subdev);
v4l2_async_unregister_subdev(subdev);
imx296_subdev_cleanup(sensor);
/*
* Disable runtime PM. In case runtime PM is disabled in the kernel,
* make sure to turn power off manually.
*/
pm_runtime_disable(sensor->dev);
if (!pm_runtime_status_suspended(sensor->dev))
imx296_power_off(sensor);
pm_runtime_set_suspended(sensor->dev);
}
static const struct of_device_id imx296_of_match[] = {
{ .compatible = "sony,imx296", .data = NULL },
{ .compatible = "sony,imx296ll", .data = (void *)IMX296_SENSOR_INFO_IMX296LL },
{ .compatible = "sony,imx296lq", .data = (void *)IMX296_SENSOR_INFO_IMX296LQ },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, imx296_of_match);
static struct i2c_driver imx296_i2c_driver = {
.driver = {
.of_match_table = imx296_of_match,
.name = "imx296",
.pm = &imx296_pm_ops
},
.probe_new = imx296_probe,
.remove = imx296_remove,
};
module_i2c_driver(imx296_i2c_driver);
MODULE_DESCRIPTION("Sony IMX296 Camera driver");
MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
MODULE_LICENSE("GPL");