blob: f1804496b93508caad6174a635dbe91e98dfeedf [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Based on arch/arm/kernel/process.c
*
* Original Copyright (C) 1995 Linus Torvalds
* Copyright (C) 1996-2000 Russell King - Converted to ARM.
* Copyright (C) 2012 ARM Ltd.
*/
#include <stdarg.h>
#include <linux/compat.h>
#include <linux/efi.h>
#include <linux/elf.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/kernel.h>
#include <linux/lockdep.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/sysctl.h>
#include <linux/unistd.h>
#include <linux/user.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/elfcore.h>
#include <linux/pm.h>
#include <linux/tick.h>
#include <linux/utsname.h>
#include <linux/uaccess.h>
#include <linux/random.h>
#include <linux/hw_breakpoint.h>
#include <linux/personality.h>
#include <linux/notifier.h>
#include <trace/events/power.h>
#include <linux/percpu.h>
#include <linux/thread_info.h>
#include <linux/prctl.h>
#include <asm/alternative.h>
#include <asm/arch_gicv3.h>
#include <asm/compat.h>
#include <asm/cpufeature.h>
#include <asm/cacheflush.h>
#include <asm/exec.h>
#include <asm/fpsimd.h>
#include <asm/mmu_context.h>
#include <asm/processor.h>
#include <asm/pointer_auth.h>
#include <asm/stacktrace.h>
#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
#include <linux/stackprotector.h>
unsigned long __stack_chk_guard __read_mostly;
EXPORT_SYMBOL(__stack_chk_guard);
#endif
/*
* Function pointers to optional machine specific functions
*/
void (*pm_power_off)(void);
EXPORT_SYMBOL_GPL(pm_power_off);
void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
static void __cpu_do_idle(void)
{
dsb(sy);
wfi();
}
static void __cpu_do_idle_irqprio(void)
{
unsigned long pmr;
unsigned long daif_bits;
daif_bits = read_sysreg(daif);
write_sysreg(daif_bits | PSR_I_BIT, daif);
/*
* Unmask PMR before going idle to make sure interrupts can
* be raised.
*/
pmr = gic_read_pmr();
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
__cpu_do_idle();
gic_write_pmr(pmr);
write_sysreg(daif_bits, daif);
}
/*
* cpu_do_idle()
*
* Idle the processor (wait for interrupt).
*
* If the CPU supports priority masking we must do additional work to
* ensure that interrupts are not masked at the PMR (because the core will
* not wake up if we block the wake up signal in the interrupt controller).
*/
void cpu_do_idle(void)
{
if (system_uses_irq_prio_masking())
__cpu_do_idle_irqprio();
else
__cpu_do_idle();
}
/*
* This is our default idle handler.
*/
void arch_cpu_idle(void)
{
/*
* This should do all the clock switching and wait for interrupt
* tricks
*/
cpu_do_idle();
local_irq_enable();
}
#ifdef CONFIG_HOTPLUG_CPU
void arch_cpu_idle_dead(void)
{
cpu_die();
}
#endif
/*
* Called by kexec, immediately prior to machine_kexec().
*
* This must completely disable all secondary CPUs; simply causing those CPUs
* to execute e.g. a RAM-based pin loop is not sufficient. This allows the
* kexec'd kernel to use any and all RAM as it sees fit, without having to
* avoid any code or data used by any SW CPU pin loop. The CPU hotplug
* functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
*/
void machine_shutdown(void)
{
smp_shutdown_nonboot_cpus(reboot_cpu);
}
/*
* Halting simply requires that the secondary CPUs stop performing any
* activity (executing tasks, handling interrupts). smp_send_stop()
* achieves this.
*/
void machine_halt(void)
{
local_irq_disable();
smp_send_stop();
while (1);
}
/*
* Power-off simply requires that the secondary CPUs stop performing any
* activity (executing tasks, handling interrupts). smp_send_stop()
* achieves this. When the system power is turned off, it will take all CPUs
* with it.
*/
void machine_power_off(void)
{
local_irq_disable();
smp_send_stop();
if (pm_power_off)
pm_power_off();
}
/*
* Restart requires that the secondary CPUs stop performing any activity
* while the primary CPU resets the system. Systems with multiple CPUs must
* provide a HW restart implementation, to ensure that all CPUs reset at once.
* This is required so that any code running after reset on the primary CPU
* doesn't have to co-ordinate with other CPUs to ensure they aren't still
* executing pre-reset code, and using RAM that the primary CPU's code wishes
* to use. Implementing such co-ordination would be essentially impossible.
*/
void machine_restart(char *cmd)
{
/* Disable interrupts first */
local_irq_disable();
smp_send_stop();
/*
* UpdateCapsule() depends on the system being reset via
* ResetSystem().
*/
if (efi_enabled(EFI_RUNTIME_SERVICES))
efi_reboot(reboot_mode, NULL);
/* Now call the architecture specific reboot code. */
if (arm_pm_restart)
arm_pm_restart(reboot_mode, cmd);
else
do_kernel_restart(cmd);
/*
* Whoops - the architecture was unable to reboot.
*/
printk("Reboot failed -- System halted\n");
while (1);
}
#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
static const char *const btypes[] = {
bstr(NONE, "--"),
bstr( JC, "jc"),
bstr( C, "-c"),
bstr( J , "j-")
};
#undef bstr
static void print_pstate(struct pt_regs *regs)
{
u64 pstate = regs->pstate;
if (compat_user_mode(regs)) {
printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
pstate,
pstate & PSR_AA32_N_BIT ? 'N' : 'n',
pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
pstate & PSR_AA32_C_BIT ? 'C' : 'c',
pstate & PSR_AA32_V_BIT ? 'V' : 'v',
pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
pstate & PSR_AA32_T_BIT ? "T32" : "A32",
pstate & PSR_AA32_E_BIT ? "BE" : "LE",
pstate & PSR_AA32_A_BIT ? 'A' : 'a',
pstate & PSR_AA32_I_BIT ? 'I' : 'i',
pstate & PSR_AA32_F_BIT ? 'F' : 'f');
} else {
const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
PSR_BTYPE_SHIFT];
printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO BTYPE=%s)\n",
pstate,
pstate & PSR_N_BIT ? 'N' : 'n',
pstate & PSR_Z_BIT ? 'Z' : 'z',
pstate & PSR_C_BIT ? 'C' : 'c',
pstate & PSR_V_BIT ? 'V' : 'v',
pstate & PSR_D_BIT ? 'D' : 'd',
pstate & PSR_A_BIT ? 'A' : 'a',
pstate & PSR_I_BIT ? 'I' : 'i',
pstate & PSR_F_BIT ? 'F' : 'f',
pstate & PSR_PAN_BIT ? '+' : '-',
pstate & PSR_UAO_BIT ? '+' : '-',
btype_str);
}
}
void __show_regs(struct pt_regs *regs)
{
int i, top_reg;
u64 lr, sp;
if (compat_user_mode(regs)) {
lr = regs->compat_lr;
sp = regs->compat_sp;
top_reg = 12;
} else {
lr = regs->regs[30];
sp = regs->sp;
top_reg = 29;
}
show_regs_print_info(KERN_DEFAULT);
print_pstate(regs);
if (!user_mode(regs)) {
printk("pc : %pS\n", (void *)regs->pc);
printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
} else {
printk("pc : %016llx\n", regs->pc);
printk("lr : %016llx\n", lr);
}
printk("sp : %016llx\n", sp);
if (system_uses_irq_prio_masking())
printk("pmr_save: %08llx\n", regs->pmr_save);
i = top_reg;
while (i >= 0) {
printk("x%-2d: %016llx ", i, regs->regs[i]);
i--;
if (i % 2 == 0) {
pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
i--;
}
pr_cont("\n");
}
}
void show_regs(struct pt_regs * regs)
{
__show_regs(regs);
dump_backtrace(regs, NULL, KERN_DEFAULT);
}
static void tls_thread_flush(void)
{
write_sysreg(0, tpidr_el0);
if (is_compat_task()) {
current->thread.uw.tp_value = 0;
/*
* We need to ensure ordering between the shadow state and the
* hardware state, so that we don't corrupt the hardware state
* with a stale shadow state during context switch.
*/
barrier();
write_sysreg(0, tpidrro_el0);
}
}
static void flush_tagged_addr_state(void)
{
if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
clear_thread_flag(TIF_TAGGED_ADDR);
}
void flush_thread(void)
{
fpsimd_flush_thread();
tls_thread_flush();
flush_ptrace_hw_breakpoint(current);
flush_tagged_addr_state();
}
void release_thread(struct task_struct *dead_task)
{
}
void arch_release_task_struct(struct task_struct *tsk)
{
fpsimd_release_task(tsk);
}
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
if (current->mm)
fpsimd_preserve_current_state();
*dst = *src;
/* We rely on the above assignment to initialize dst's thread_flags: */
BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
/*
* Detach src's sve_state (if any) from dst so that it does not
* get erroneously used or freed prematurely. dst's sve_state
* will be allocated on demand later on if dst uses SVE.
* For consistency, also clear TIF_SVE here: this could be done
* later in copy_process(), but to avoid tripping up future
* maintainers it is best not to leave TIF_SVE and sve_state in
* an inconsistent state, even temporarily.
*/
dst->thread.sve_state = NULL;
clear_tsk_thread_flag(dst, TIF_SVE);
return 0;
}
asmlinkage void ret_from_fork(void) asm("ret_from_fork");
int copy_thread(unsigned long clone_flags, unsigned long stack_start,
unsigned long stk_sz, struct task_struct *p, unsigned long tls)
{
struct pt_regs *childregs = task_pt_regs(p);
memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
/*
* In case p was allocated the same task_struct pointer as some
* other recently-exited task, make sure p is disassociated from
* any cpu that may have run that now-exited task recently.
* Otherwise we could erroneously skip reloading the FPSIMD
* registers for p.
*/
fpsimd_flush_task_state(p);
ptrauth_thread_init_kernel(p);
if (likely(!(p->flags & PF_KTHREAD))) {
*childregs = *current_pt_regs();
childregs->regs[0] = 0;
/*
* Read the current TLS pointer from tpidr_el0 as it may be
* out-of-sync with the saved value.
*/
*task_user_tls(p) = read_sysreg(tpidr_el0);
if (stack_start) {
if (is_compat_thread(task_thread_info(p)))
childregs->compat_sp = stack_start;
else
childregs->sp = stack_start;
}
/*
* If a TLS pointer was passed to clone, use it for the new
* thread.
*/
if (clone_flags & CLONE_SETTLS)
p->thread.uw.tp_value = tls;
} else {
memset(childregs, 0, sizeof(struct pt_regs));
childregs->pstate = PSR_MODE_EL1h;
if (IS_ENABLED(CONFIG_ARM64_UAO) &&
cpus_have_const_cap(ARM64_HAS_UAO))
childregs->pstate |= PSR_UAO_BIT;
if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
set_ssbs_bit(childregs);
if (system_uses_irq_prio_masking())
childregs->pmr_save = GIC_PRIO_IRQON;
p->thread.cpu_context.x19 = stack_start;
p->thread.cpu_context.x20 = stk_sz;
}
p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
p->thread.cpu_context.sp = (unsigned long)childregs;
ptrace_hw_copy_thread(p);
return 0;
}
void tls_preserve_current_state(void)
{
*task_user_tls(current) = read_sysreg(tpidr_el0);
}
static void tls_thread_switch(struct task_struct *next)
{
tls_preserve_current_state();
if (is_compat_thread(task_thread_info(next)))
write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
else if (!arm64_kernel_unmapped_at_el0())
write_sysreg(0, tpidrro_el0);
write_sysreg(*task_user_tls(next), tpidr_el0);
}
/* Restore the UAO state depending on next's addr_limit */
void uao_thread_switch(struct task_struct *next)
{
if (IS_ENABLED(CONFIG_ARM64_UAO)) {
if (task_thread_info(next)->addr_limit == KERNEL_DS)
asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
else
asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
}
}
/*
* Force SSBS state on context-switch, since it may be lost after migrating
* from a CPU which treats the bit as RES0 in a heterogeneous system.
*/
static void ssbs_thread_switch(struct task_struct *next)
{
struct pt_regs *regs = task_pt_regs(next);
/*
* Nothing to do for kernel threads, but 'regs' may be junk
* (e.g. idle task) so check the flags and bail early.
*/
if (unlikely(next->flags & PF_KTHREAD))
return;
/*
* If all CPUs implement the SSBS extension, then we just need to
* context-switch the PSTATE field.
*/
if (cpu_have_feature(cpu_feature(SSBS)))
return;
/* If the mitigation is enabled, then we leave SSBS clear. */
if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
test_tsk_thread_flag(next, TIF_SSBD))
return;
if (compat_user_mode(regs))
set_compat_ssbs_bit(regs);
else if (user_mode(regs))
set_ssbs_bit(regs);
}
/*
* We store our current task in sp_el0, which is clobbered by userspace. Keep a
* shadow copy so that we can restore this upon entry from userspace.
*
* This is *only* for exception entry from EL0, and is not valid until we
* __switch_to() a user task.
*/
DEFINE_PER_CPU(struct task_struct *, __entry_task);
static void entry_task_switch(struct task_struct *next)
{
__this_cpu_write(__entry_task, next);
}
/*
* ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
* Assuming the virtual counter is enabled at the beginning of times:
*
* - disable access when switching from a 64bit task to a 32bit task
* - enable access when switching from a 32bit task to a 64bit task
*/
static void erratum_1418040_thread_switch(struct task_struct *prev,
struct task_struct *next)
{
bool prev32, next32;
u64 val;
if (!(IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
cpus_have_const_cap(ARM64_WORKAROUND_1418040)))
return;
prev32 = is_compat_thread(task_thread_info(prev));
next32 = is_compat_thread(task_thread_info(next));
if (prev32 == next32)
return;
val = read_sysreg(cntkctl_el1);
if (!next32)
val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
else
val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
write_sysreg(val, cntkctl_el1);
}
/*
* Thread switching.
*/
__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
struct task_struct *next)
{
struct task_struct *last;
fpsimd_thread_switch(next);
tls_thread_switch(next);
hw_breakpoint_thread_switch(next);
contextidr_thread_switch(next);
entry_task_switch(next);
uao_thread_switch(next);
ssbs_thread_switch(next);
erratum_1418040_thread_switch(prev, next);
/*
* Complete any pending TLB or cache maintenance on this CPU in case
* the thread migrates to a different CPU.
* This full barrier is also required by the membarrier system
* call.
*/
dsb(ish);
/* the actual thread switch */
last = cpu_switch_to(prev, next);
return last;
}
unsigned long get_wchan(struct task_struct *p)
{
struct stackframe frame;
unsigned long stack_page, ret = 0;
int count = 0;
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
stack_page = (unsigned long)try_get_task_stack(p);
if (!stack_page)
return 0;
start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
do {
if (unwind_frame(p, &frame))
goto out;
if (!in_sched_functions(frame.pc)) {
ret = frame.pc;
goto out;
}
} while (count ++ < 16);
out:
put_task_stack(p);
return ret;
}
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_int() & ~PAGE_MASK;
return sp & ~0xf;
}
/*
* Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
*/
void arch_setup_new_exec(void)
{
current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
ptrauth_thread_init_user(current);
}
#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
/*
* Control the relaxed ABI allowing tagged user addresses into the kernel.
*/
static unsigned int tagged_addr_disabled;
long set_tagged_addr_ctrl(unsigned long arg)
{
if (is_compat_task())
return -EINVAL;
if (arg & ~PR_TAGGED_ADDR_ENABLE)
return -EINVAL;
/*
* Do not allow the enabling of the tagged address ABI if globally
* disabled via sysctl abi.tagged_addr_disabled.
*/
if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
return -EINVAL;
update_thread_flag(TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
return 0;
}
long get_tagged_addr_ctrl(void)
{
if (is_compat_task())
return -EINVAL;
if (test_thread_flag(TIF_TAGGED_ADDR))
return PR_TAGGED_ADDR_ENABLE;
return 0;
}
/*
* Global sysctl to disable the tagged user addresses support. This control
* only prevents the tagged address ABI enabling via prctl() and does not
* disable it for tasks that already opted in to the relaxed ABI.
*/
static struct ctl_table tagged_addr_sysctl_table[] = {
{
.procname = "tagged_addr_disabled",
.mode = 0644,
.data = &tagged_addr_disabled,
.maxlen = sizeof(int),
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{ }
};
static int __init tagged_addr_init(void)
{
if (!register_sysctl("abi", tagged_addr_sysctl_table))
return -EINVAL;
return 0;
}
core_initcall(tagged_addr_init);
#endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
asmlinkage void __sched arm64_preempt_schedule_irq(void)
{
lockdep_assert_irqs_disabled();
/*
* Preempting a task from an IRQ means we leave copies of PSTATE
* on the stack. cpufeature's enable calls may modify PSTATE, but
* resuming one of these preempted tasks would undo those changes.
*
* Only allow a task to be preempted once cpufeatures have been
* enabled.
*/
if (system_capabilities_finalized())
preempt_schedule_irq();
}
#ifdef CONFIG_BINFMT_ELF
int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
bool has_interp, bool is_interp)
{
/*
* For dynamically linked executables the interpreter is
* responsible for setting PROT_BTI on everything except
* itself.
*/
if (is_interp != has_interp)
return prot;
if (!(state->flags & ARM64_ELF_BTI))
return prot;
if (prot & PROT_EXEC)
prot |= PROT_BTI;
return prot;
}
#endif