| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * TI Camera Access Layer (CAL) - CAMERARX |
| * |
| * Copyright (c) 2015-2020 Texas Instruments Inc. |
| * |
| * Authors: |
| * Benoit Parrot <bparrot@ti.com> |
| * Laurent Pinchart <laurent.pinchart@ideasonboard.com> |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/module.h> |
| #include <linux/of_graph.h> |
| #include <linux/platform_device.h> |
| #include <linux/regmap.h> |
| #include <linux/slab.h> |
| |
| #include <media/v4l2-ctrls.h> |
| #include <media/v4l2-fwnode.h> |
| #include <media/v4l2-subdev.h> |
| |
| #include "cal.h" |
| #include "cal_regs.h" |
| |
| /* ------------------------------------------------------------------ |
| * I/O Register Accessors |
| * ------------------------------------------------------------------ |
| */ |
| |
| static inline u32 camerarx_read(struct cal_camerarx *phy, u32 offset) |
| { |
| return ioread32(phy->base + offset); |
| } |
| |
| static inline void camerarx_write(struct cal_camerarx *phy, u32 offset, u32 val) |
| { |
| iowrite32(val, phy->base + offset); |
| } |
| |
| /* ------------------------------------------------------------------ |
| * CAMERARX Management |
| * ------------------------------------------------------------------ |
| */ |
| |
| static s64 cal_camerarx_get_ext_link_freq(struct cal_camerarx *phy) |
| { |
| struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 = &phy->endpoint.bus.mipi_csi2; |
| u32 num_lanes = mipi_csi2->num_data_lanes; |
| const struct cal_format_info *fmtinfo; |
| u32 bpp; |
| s64 freq; |
| |
| fmtinfo = cal_format_by_code(phy->formats[CAL_CAMERARX_PAD_SINK].code); |
| if (!fmtinfo) |
| return -EINVAL; |
| |
| bpp = fmtinfo->bpp; |
| |
| freq = v4l2_get_link_freq(phy->source->ctrl_handler, bpp, 2 * num_lanes); |
| if (freq < 0) { |
| phy_err(phy, "failed to get link freq for subdev '%s'\n", |
| phy->source->name); |
| return freq; |
| } |
| |
| phy_dbg(3, phy, "Source Link Freq: %llu\n", freq); |
| |
| return freq; |
| } |
| |
| static void cal_camerarx_lane_config(struct cal_camerarx *phy) |
| { |
| u32 val = cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)); |
| u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK; |
| u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK; |
| struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 = |
| &phy->endpoint.bus.mipi_csi2; |
| int lane; |
| |
| cal_set_field(&val, mipi_csi2->clock_lane + 1, lane_mask); |
| cal_set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask); |
| for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) { |
| /* |
| * Every lane are one nibble apart starting with the |
| * clock followed by the data lanes so shift masks by 4. |
| */ |
| lane_mask <<= 4; |
| polarity_mask <<= 4; |
| cal_set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask); |
| cal_set_field(&val, mipi_csi2->lane_polarities[lane + 1], |
| polarity_mask); |
| } |
| |
| cal_write(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), val); |
| phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n", |
| phy->instance, val); |
| } |
| |
| static void cal_camerarx_enable(struct cal_camerarx *phy) |
| { |
| u32 num_lanes = phy->cal->data->camerarx[phy->instance].num_lanes; |
| |
| regmap_field_write(phy->fields[F_CAMMODE], 0); |
| /* Always enable all lanes at the phy control level */ |
| regmap_field_write(phy->fields[F_LANEENABLE], (1 << num_lanes) - 1); |
| /* F_CSI_MODE is not present on every architecture */ |
| if (phy->fields[F_CSI_MODE]) |
| regmap_field_write(phy->fields[F_CSI_MODE], 1); |
| regmap_field_write(phy->fields[F_CTRLCLKEN], 1); |
| } |
| |
| void cal_camerarx_disable(struct cal_camerarx *phy) |
| { |
| regmap_field_write(phy->fields[F_CTRLCLKEN], 0); |
| } |
| |
| /* |
| * TCLK values are OK at their reset values |
| */ |
| #define TCLK_TERM 0 |
| #define TCLK_MISS 1 |
| #define TCLK_SETTLE 14 |
| |
| static void cal_camerarx_config(struct cal_camerarx *phy, s64 link_freq) |
| { |
| unsigned int reg0, reg1; |
| unsigned int ths_term, ths_settle; |
| |
| /* DPHY timing configuration */ |
| |
| /* THS_TERM: Programmed value = floor(20 ns/DDRClk period) */ |
| ths_term = div_s64(20 * link_freq, 1000 * 1000 * 1000); |
| phy_dbg(1, phy, "ths_term: %d (0x%02x)\n", ths_term, ths_term); |
| |
| /* THS_SETTLE: Programmed value = floor(105 ns/DDRClk period) + 4 */ |
| ths_settle = div_s64(105 * link_freq, 1000 * 1000 * 1000) + 4; |
| phy_dbg(1, phy, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle); |
| |
| reg0 = camerarx_read(phy, CAL_CSI2_PHY_REG0); |
| cal_set_field(®0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE, |
| CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK); |
| cal_set_field(®0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK); |
| cal_set_field(®0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK); |
| |
| phy_dbg(1, phy, "CSI2_%d_REG0 = 0x%08x\n", phy->instance, reg0); |
| camerarx_write(phy, CAL_CSI2_PHY_REG0, reg0); |
| |
| reg1 = camerarx_read(phy, CAL_CSI2_PHY_REG1); |
| cal_set_field(®1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK); |
| cal_set_field(®1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK); |
| cal_set_field(®1, TCLK_MISS, |
| CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK); |
| cal_set_field(®1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK); |
| |
| phy_dbg(1, phy, "CSI2_%d_REG1 = 0x%08x\n", phy->instance, reg1); |
| camerarx_write(phy, CAL_CSI2_PHY_REG1, reg1); |
| } |
| |
| static void cal_camerarx_power(struct cal_camerarx *phy, bool enable) |
| { |
| u32 target_state; |
| unsigned int i; |
| |
| target_state = enable ? CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON : |
| CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_OFF; |
| |
| cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), |
| target_state, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK); |
| |
| for (i = 0; i < 10; i++) { |
| u32 current_state; |
| |
| current_state = cal_read_field(phy->cal, |
| CAL_CSI2_COMPLEXIO_CFG(phy->instance), |
| CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK); |
| |
| if (current_state == target_state) |
| break; |
| |
| usleep_range(1000, 1100); |
| } |
| |
| if (i == 10) |
| phy_err(phy, "Failed to power %s complexio\n", |
| enable ? "up" : "down"); |
| } |
| |
| static void cal_camerarx_wait_reset(struct cal_camerarx *phy) |
| { |
| unsigned long timeout; |
| |
| timeout = jiffies + msecs_to_jiffies(750); |
| while (time_before(jiffies, timeout)) { |
| if (cal_read_field(phy->cal, |
| CAL_CSI2_COMPLEXIO_CFG(phy->instance), |
| CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) == |
| CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED) |
| break; |
| usleep_range(500, 5000); |
| } |
| |
| if (cal_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), |
| CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) != |
| CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED) |
| phy_err(phy, "Timeout waiting for Complex IO reset done\n"); |
| } |
| |
| static void cal_camerarx_wait_stop_state(struct cal_camerarx *phy) |
| { |
| unsigned long timeout; |
| |
| timeout = jiffies + msecs_to_jiffies(750); |
| while (time_before(jiffies, timeout)) { |
| if (cal_read_field(phy->cal, |
| CAL_CSI2_TIMING(phy->instance), |
| CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) == 0) |
| break; |
| usleep_range(500, 5000); |
| } |
| |
| if (cal_read_field(phy->cal, CAL_CSI2_TIMING(phy->instance), |
| CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) != 0) |
| phy_err(phy, "Timeout waiting for stop state\n"); |
| } |
| |
| static void cal_camerarx_enable_irqs(struct cal_camerarx *phy) |
| { |
| const u32 cio_err_mask = |
| CAL_CSI2_COMPLEXIO_IRQ_LANE_ERRORS_MASK | |
| CAL_CSI2_COMPLEXIO_IRQ_FIFO_OVR_MASK | |
| CAL_CSI2_COMPLEXIO_IRQ_SHORT_PACKET_MASK | |
| CAL_CSI2_COMPLEXIO_IRQ_ECC_NO_CORRECTION_MASK; |
| const u32 vc_err_mask = |
| CAL_CSI2_VC_IRQ_CS_IRQ_MASK(0) | |
| CAL_CSI2_VC_IRQ_CS_IRQ_MASK(1) | |
| CAL_CSI2_VC_IRQ_CS_IRQ_MASK(2) | |
| CAL_CSI2_VC_IRQ_CS_IRQ_MASK(3) | |
| CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(0) | |
| CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(1) | |
| CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(2) | |
| CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(3); |
| |
| /* Enable CIO & VC error IRQs. */ |
| cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0), |
| CAL_HL_IRQ_CIO_MASK(phy->instance) | |
| CAL_HL_IRQ_VC_MASK(phy->instance)); |
| cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), |
| cio_err_mask); |
| cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance), |
| vc_err_mask); |
| } |
| |
| static void cal_camerarx_disable_irqs(struct cal_camerarx *phy) |
| { |
| /* Disable CIO error irqs */ |
| cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(0), |
| CAL_HL_IRQ_CIO_MASK(phy->instance) | |
| CAL_HL_IRQ_VC_MASK(phy->instance)); |
| cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), 0); |
| cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance), 0); |
| } |
| |
| static void cal_camerarx_ppi_enable(struct cal_camerarx *phy) |
| { |
| cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), |
| 1, CAL_CSI2_PPI_CTRL_ECC_EN_MASK); |
| |
| cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), |
| 1, CAL_CSI2_PPI_CTRL_IF_EN_MASK); |
| } |
| |
| static void cal_camerarx_ppi_disable(struct cal_camerarx *phy) |
| { |
| cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), |
| 0, CAL_CSI2_PPI_CTRL_IF_EN_MASK); |
| } |
| |
| static int cal_camerarx_start(struct cal_camerarx *phy) |
| { |
| s64 link_freq; |
| u32 sscounter; |
| u32 val; |
| int ret; |
| |
| if (phy->enable_count > 0) { |
| phy->enable_count++; |
| return 0; |
| } |
| |
| link_freq = cal_camerarx_get_ext_link_freq(phy); |
| if (link_freq < 0) |
| return link_freq; |
| |
| ret = v4l2_subdev_call(phy->source, core, s_power, 1); |
| if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) { |
| phy_err(phy, "power on failed in subdev\n"); |
| return ret; |
| } |
| |
| cal_camerarx_enable_irqs(phy); |
| |
| /* |
| * CSI-2 PHY Link Initialization Sequence, according to the DRA74xP / |
| * DRA75xP / DRA76xP / DRA77xP TRM. The DRA71x / DRA72x and the AM65x / |
| * DRA80xM TRMs have a a slightly simplified sequence. |
| */ |
| |
| /* |
| * 1. Configure all CSI-2 low level protocol registers to be ready to |
| * receive signals/data from the CSI-2 PHY. |
| * |
| * i.-v. Configure the lanes position and polarity. |
| */ |
| cal_camerarx_lane_config(phy); |
| |
| /* |
| * vi.-vii. Configure D-PHY mode, enable the required lanes and |
| * enable the CAMERARX clock. |
| */ |
| cal_camerarx_enable(phy); |
| |
| /* |
| * 2. CSI PHY and link initialization sequence. |
| * |
| * a. Deassert the CSI-2 PHY reset. Do not wait for reset completion |
| * at this point, as it requires the external source to send the |
| * CSI-2 HS clock. |
| */ |
| cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), |
| CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL, |
| CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK); |
| phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x De-assert Complex IO Reset\n", |
| phy->instance, |
| cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance))); |
| |
| /* Dummy read to allow SCP reset to complete. */ |
| camerarx_read(phy, CAL_CSI2_PHY_REG0); |
| |
| /* Program the PHY timing parameters. */ |
| cal_camerarx_config(phy, link_freq); |
| |
| /* |
| * b. Assert the FORCERXMODE signal. |
| * |
| * The stop-state-counter is based on fclk cycles, and we always use |
| * the x16 and x4 settings, so stop-state-timeout = |
| * fclk-cycle * 16 * 4 * counter. |
| * |
| * Stop-state-timeout must be more than 100us as per CSI-2 spec, so we |
| * calculate a timeout that's 100us (rounding up). |
| */ |
| sscounter = DIV_ROUND_UP(clk_get_rate(phy->cal->fclk), 10000 * 16 * 4); |
| |
| val = cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)); |
| cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK); |
| cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK); |
| cal_set_field(&val, sscounter, |
| CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK); |
| cal_write(phy->cal, CAL_CSI2_TIMING(phy->instance), val); |
| phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Stop States\n", |
| phy->instance, |
| cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance))); |
| |
| /* Assert the FORCERXMODE signal. */ |
| cal_write_field(phy->cal, CAL_CSI2_TIMING(phy->instance), |
| 1, CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK); |
| phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Force RXMODE\n", |
| phy->instance, |
| cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance))); |
| |
| /* |
| * c. Connect pull-down on CSI-2 PHY link (using pad control). |
| * |
| * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not |
| * implemented. |
| */ |
| |
| /* |
| * d. Power up the CSI-2 PHY. |
| * e. Check whether the state status reaches the ON state. |
| */ |
| cal_camerarx_power(phy, true); |
| |
| /* |
| * Start the source to enable the CSI-2 HS clock. We can now wait for |
| * CSI-2 PHY reset to complete. |
| */ |
| ret = v4l2_subdev_call(phy->source, video, s_stream, 1); |
| if (ret) { |
| v4l2_subdev_call(phy->source, core, s_power, 0); |
| cal_camerarx_disable_irqs(phy); |
| phy_err(phy, "stream on failed in subdev\n"); |
| return ret; |
| } |
| |
| cal_camerarx_wait_reset(phy); |
| |
| /* f. Wait for STOPSTATE=1 for all enabled lane modules. */ |
| cal_camerarx_wait_stop_state(phy); |
| |
| phy_dbg(1, phy, "CSI2_%u_REG1 = 0x%08x (bits 31-28 should be set)\n", |
| phy->instance, camerarx_read(phy, CAL_CSI2_PHY_REG1)); |
| |
| /* |
| * g. Disable pull-down on CSI-2 PHY link (using pad control). |
| * |
| * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not |
| * implemented. |
| */ |
| |
| /* Finally, enable the PHY Protocol Interface (PPI). */ |
| cal_camerarx_ppi_enable(phy); |
| |
| phy->enable_count++; |
| |
| return 0; |
| } |
| |
| static void cal_camerarx_stop(struct cal_camerarx *phy) |
| { |
| int ret; |
| |
| if (--phy->enable_count > 0) |
| return; |
| |
| cal_camerarx_ppi_disable(phy); |
| |
| cal_camerarx_disable_irqs(phy); |
| |
| cal_camerarx_power(phy, false); |
| |
| /* Assert Complex IO Reset */ |
| cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), |
| CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL, |
| CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK); |
| |
| phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO in Reset\n", |
| phy->instance, |
| cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance))); |
| |
| /* Disable the phy */ |
| cal_camerarx_disable(phy); |
| |
| if (v4l2_subdev_call(phy->source, video, s_stream, 0)) |
| phy_err(phy, "stream off failed in subdev\n"); |
| |
| ret = v4l2_subdev_call(phy->source, core, s_power, 0); |
| if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) |
| phy_err(phy, "power off failed in subdev\n"); |
| } |
| |
| /* |
| * Errata i913: CSI2 LDO Needs to be disabled when module is powered on |
| * |
| * Enabling CSI2 LDO shorts it to core supply. It is crucial the 2 CSI2 |
| * LDOs on the device are disabled if CSI-2 module is powered on |
| * (0x4845 B304 | 0x4845 B384 [28:27] = 0x1) or in ULPS (0x4845 B304 |
| * | 0x4845 B384 [28:27] = 0x2) mode. Common concerns include: high |
| * current draw on the module supply in active mode. |
| * |
| * Errata does not apply when CSI-2 module is powered off |
| * (0x4845 B304 | 0x4845 B384 [28:27] = 0x0). |
| * |
| * SW Workaround: |
| * Set the following register bits to disable the LDO, |
| * which is essentially CSI2 REG10 bit 6: |
| * |
| * Core 0: 0x4845 B828 = 0x0000 0040 |
| * Core 1: 0x4845 B928 = 0x0000 0040 |
| */ |
| void cal_camerarx_i913_errata(struct cal_camerarx *phy) |
| { |
| u32 reg10 = camerarx_read(phy, CAL_CSI2_PHY_REG10); |
| |
| cal_set_field(®10, 1, CAL_CSI2_PHY_REG10_I933_LDO_DISABLE_MASK); |
| |
| phy_dbg(1, phy, "CSI2_%d_REG10 = 0x%08x\n", phy->instance, reg10); |
| camerarx_write(phy, CAL_CSI2_PHY_REG10, reg10); |
| } |
| |
| static int cal_camerarx_regmap_init(struct cal_dev *cal, |
| struct cal_camerarx *phy) |
| { |
| const struct cal_camerarx_data *phy_data; |
| unsigned int i; |
| |
| if (!cal->data) |
| return -EINVAL; |
| |
| phy_data = &cal->data->camerarx[phy->instance]; |
| |
| for (i = 0; i < F_MAX_FIELDS; i++) { |
| struct reg_field field = { |
| .reg = cal->syscon_camerrx_offset, |
| .lsb = phy_data->fields[i].lsb, |
| .msb = phy_data->fields[i].msb, |
| }; |
| |
| /* |
| * Here we update the reg offset with the |
| * value found in DT |
| */ |
| phy->fields[i] = devm_regmap_field_alloc(cal->dev, |
| cal->syscon_camerrx, |
| field); |
| if (IS_ERR(phy->fields[i])) { |
| cal_err(cal, "Unable to allocate regmap fields\n"); |
| return PTR_ERR(phy->fields[i]); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int cal_camerarx_parse_dt(struct cal_camerarx *phy) |
| { |
| struct v4l2_fwnode_endpoint *endpoint = &phy->endpoint; |
| char data_lanes[V4L2_FWNODE_CSI2_MAX_DATA_LANES * 2]; |
| struct device_node *ep_node; |
| unsigned int i; |
| int ret; |
| |
| /* |
| * Find the endpoint node for the port corresponding to the PHY |
| * instance, and parse its CSI-2-related properties. |
| */ |
| ep_node = of_graph_get_endpoint_by_regs(phy->cal->dev->of_node, |
| phy->instance, 0); |
| if (!ep_node) { |
| /* |
| * The endpoint is not mandatory, not all PHY instances need to |
| * be connected in DT. |
| */ |
| phy_dbg(3, phy, "Port has no endpoint\n"); |
| return 0; |
| } |
| |
| endpoint->bus_type = V4L2_MBUS_CSI2_DPHY; |
| ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint); |
| if (ret < 0) { |
| phy_err(phy, "Failed to parse endpoint\n"); |
| goto done; |
| } |
| |
| for (i = 0; i < endpoint->bus.mipi_csi2.num_data_lanes; i++) { |
| unsigned int lane = endpoint->bus.mipi_csi2.data_lanes[i]; |
| |
| if (lane > 4) { |
| phy_err(phy, "Invalid position %u for data lane %u\n", |
| lane, i); |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| data_lanes[i*2] = '0' + lane; |
| data_lanes[i*2+1] = ' '; |
| } |
| |
| data_lanes[i*2-1] = '\0'; |
| |
| phy_dbg(3, phy, |
| "CSI-2 bus: clock lane <%u>, data lanes <%s>, flags 0x%08x\n", |
| endpoint->bus.mipi_csi2.clock_lane, data_lanes, |
| endpoint->bus.mipi_csi2.flags); |
| |
| /* Retrieve the connected device and store it for later use. */ |
| phy->source_ep_node = of_graph_get_remote_endpoint(ep_node); |
| phy->source_node = of_graph_get_port_parent(phy->source_ep_node); |
| if (!phy->source_node) { |
| phy_dbg(3, phy, "Can't get remote parent\n"); |
| of_node_put(phy->source_ep_node); |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| phy_dbg(1, phy, "Found connected device %pOFn\n", phy->source_node); |
| |
| done: |
| of_node_put(ep_node); |
| return ret; |
| } |
| |
| /* ------------------------------------------------------------------ |
| * V4L2 Subdev Operations |
| * ------------------------------------------------------------------ |
| */ |
| |
| static inline struct cal_camerarx *to_cal_camerarx(struct v4l2_subdev *sd) |
| { |
| return container_of(sd, struct cal_camerarx, subdev); |
| } |
| |
| static struct v4l2_mbus_framefmt * |
| cal_camerarx_get_pad_format(struct cal_camerarx *phy, |
| struct v4l2_subdev_state *sd_state, |
| unsigned int pad, u32 which) |
| { |
| switch (which) { |
| case V4L2_SUBDEV_FORMAT_TRY: |
| return v4l2_subdev_get_try_format(&phy->subdev, sd_state, pad); |
| case V4L2_SUBDEV_FORMAT_ACTIVE: |
| return &phy->formats[pad]; |
| default: |
| return NULL; |
| } |
| } |
| |
| static int cal_camerarx_sd_s_stream(struct v4l2_subdev *sd, int enable) |
| { |
| struct cal_camerarx *phy = to_cal_camerarx(sd); |
| int ret = 0; |
| |
| mutex_lock(&phy->mutex); |
| |
| if (enable) |
| ret = cal_camerarx_start(phy); |
| else |
| cal_camerarx_stop(phy); |
| |
| mutex_unlock(&phy->mutex); |
| |
| return ret; |
| } |
| |
| static int cal_camerarx_sd_enum_mbus_code(struct v4l2_subdev *sd, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_mbus_code_enum *code) |
| { |
| struct cal_camerarx *phy = to_cal_camerarx(sd); |
| int ret = 0; |
| |
| mutex_lock(&phy->mutex); |
| |
| /* No transcoding, source and sink codes must match. */ |
| if (cal_rx_pad_is_source(code->pad)) { |
| struct v4l2_mbus_framefmt *fmt; |
| |
| if (code->index > 0) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| fmt = cal_camerarx_get_pad_format(phy, sd_state, |
| CAL_CAMERARX_PAD_SINK, |
| code->which); |
| code->code = fmt->code; |
| } else { |
| if (code->index >= cal_num_formats) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| code->code = cal_formats[code->index].code; |
| } |
| |
| out: |
| mutex_unlock(&phy->mutex); |
| |
| return ret; |
| } |
| |
| static int cal_camerarx_sd_enum_frame_size(struct v4l2_subdev *sd, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_frame_size_enum *fse) |
| { |
| struct cal_camerarx *phy = to_cal_camerarx(sd); |
| const struct cal_format_info *fmtinfo; |
| int ret = 0; |
| |
| if (fse->index > 0) |
| return -EINVAL; |
| |
| mutex_lock(&phy->mutex); |
| |
| /* No transcoding, source and sink formats must match. */ |
| if (cal_rx_pad_is_source(fse->pad)) { |
| struct v4l2_mbus_framefmt *fmt; |
| |
| fmt = cal_camerarx_get_pad_format(phy, sd_state, |
| CAL_CAMERARX_PAD_SINK, |
| fse->which); |
| if (fse->code != fmt->code) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| fse->min_width = fmt->width; |
| fse->max_width = fmt->width; |
| fse->min_height = fmt->height; |
| fse->max_height = fmt->height; |
| } else { |
| fmtinfo = cal_format_by_code(fse->code); |
| if (!fmtinfo) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| fse->min_width = CAL_MIN_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8); |
| fse->max_width = CAL_MAX_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8); |
| fse->min_height = CAL_MIN_HEIGHT_LINES; |
| fse->max_height = CAL_MAX_HEIGHT_LINES; |
| } |
| |
| out: |
| mutex_unlock(&phy->mutex); |
| |
| return ret; |
| } |
| |
| static int cal_camerarx_sd_get_fmt(struct v4l2_subdev *sd, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_format *format) |
| { |
| struct cal_camerarx *phy = to_cal_camerarx(sd); |
| struct v4l2_mbus_framefmt *fmt; |
| |
| mutex_lock(&phy->mutex); |
| |
| fmt = cal_camerarx_get_pad_format(phy, sd_state, format->pad, |
| format->which); |
| format->format = *fmt; |
| |
| mutex_unlock(&phy->mutex); |
| |
| return 0; |
| } |
| |
| static int cal_camerarx_sd_set_fmt(struct v4l2_subdev *sd, |
| struct v4l2_subdev_state *sd_state, |
| struct v4l2_subdev_format *format) |
| { |
| struct cal_camerarx *phy = to_cal_camerarx(sd); |
| const struct cal_format_info *fmtinfo; |
| struct v4l2_mbus_framefmt *fmt; |
| unsigned int bpp; |
| |
| /* No transcoding, source and sink formats must match. */ |
| if (cal_rx_pad_is_source(format->pad)) |
| return cal_camerarx_sd_get_fmt(sd, sd_state, format); |
| |
| /* |
| * Default to the first format if the requested media bus code isn't |
| * supported. |
| */ |
| fmtinfo = cal_format_by_code(format->format.code); |
| if (!fmtinfo) |
| fmtinfo = &cal_formats[0]; |
| |
| /* Clamp the size, update the code. The colorspace is accepted as-is. */ |
| bpp = ALIGN(fmtinfo->bpp, 8); |
| |
| format->format.width = clamp_t(unsigned int, format->format.width, |
| CAL_MIN_WIDTH_BYTES * 8 / bpp, |
| CAL_MAX_WIDTH_BYTES * 8 / bpp); |
| format->format.height = clamp_t(unsigned int, format->format.height, |
| CAL_MIN_HEIGHT_LINES, |
| CAL_MAX_HEIGHT_LINES); |
| format->format.code = fmtinfo->code; |
| format->format.field = V4L2_FIELD_NONE; |
| |
| /* Store the format and propagate it to the source pad. */ |
| |
| mutex_lock(&phy->mutex); |
| |
| fmt = cal_camerarx_get_pad_format(phy, sd_state, |
| CAL_CAMERARX_PAD_SINK, |
| format->which); |
| *fmt = format->format; |
| |
| fmt = cal_camerarx_get_pad_format(phy, sd_state, |
| CAL_CAMERARX_PAD_FIRST_SOURCE, |
| format->which); |
| *fmt = format->format; |
| |
| mutex_unlock(&phy->mutex); |
| |
| return 0; |
| } |
| |
| static int cal_camerarx_sd_init_cfg(struct v4l2_subdev *sd, |
| struct v4l2_subdev_state *sd_state) |
| { |
| struct v4l2_subdev_format format = { |
| .which = sd_state ? V4L2_SUBDEV_FORMAT_TRY |
| : V4L2_SUBDEV_FORMAT_ACTIVE, |
| .pad = CAL_CAMERARX_PAD_SINK, |
| .format = { |
| .width = 640, |
| .height = 480, |
| .code = MEDIA_BUS_FMT_UYVY8_2X8, |
| .field = V4L2_FIELD_NONE, |
| .colorspace = V4L2_COLORSPACE_SRGB, |
| .ycbcr_enc = V4L2_YCBCR_ENC_601, |
| .quantization = V4L2_QUANTIZATION_LIM_RANGE, |
| .xfer_func = V4L2_XFER_FUNC_SRGB, |
| }, |
| }; |
| |
| return cal_camerarx_sd_set_fmt(sd, sd_state, &format); |
| } |
| |
| static const struct v4l2_subdev_video_ops cal_camerarx_video_ops = { |
| .s_stream = cal_camerarx_sd_s_stream, |
| }; |
| |
| static const struct v4l2_subdev_pad_ops cal_camerarx_pad_ops = { |
| .init_cfg = cal_camerarx_sd_init_cfg, |
| .enum_mbus_code = cal_camerarx_sd_enum_mbus_code, |
| .enum_frame_size = cal_camerarx_sd_enum_frame_size, |
| .get_fmt = cal_camerarx_sd_get_fmt, |
| .set_fmt = cal_camerarx_sd_set_fmt, |
| }; |
| |
| static const struct v4l2_subdev_ops cal_camerarx_subdev_ops = { |
| .video = &cal_camerarx_video_ops, |
| .pad = &cal_camerarx_pad_ops, |
| }; |
| |
| static struct media_entity_operations cal_camerarx_media_ops = { |
| .link_validate = v4l2_subdev_link_validate, |
| }; |
| |
| /* ------------------------------------------------------------------ |
| * Create and Destroy |
| * ------------------------------------------------------------------ |
| */ |
| |
| struct cal_camerarx *cal_camerarx_create(struct cal_dev *cal, |
| unsigned int instance) |
| { |
| struct platform_device *pdev = to_platform_device(cal->dev); |
| struct cal_camerarx *phy; |
| struct v4l2_subdev *sd; |
| unsigned int i; |
| int ret; |
| |
| phy = kzalloc(sizeof(*phy), GFP_KERNEL); |
| if (!phy) |
| return ERR_PTR(-ENOMEM); |
| |
| phy->cal = cal; |
| phy->instance = instance; |
| |
| mutex_init(&phy->mutex); |
| |
| phy->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| (instance == 0) ? |
| "cal_rx_core0" : |
| "cal_rx_core1"); |
| phy->base = devm_ioremap_resource(cal->dev, phy->res); |
| if (IS_ERR(phy->base)) { |
| cal_err(cal, "failed to ioremap\n"); |
| ret = PTR_ERR(phy->base); |
| goto error; |
| } |
| |
| cal_dbg(1, cal, "ioresource %s at %pa - %pa\n", |
| phy->res->name, &phy->res->start, &phy->res->end); |
| |
| ret = cal_camerarx_regmap_init(cal, phy); |
| if (ret) |
| goto error; |
| |
| ret = cal_camerarx_parse_dt(phy); |
| if (ret) |
| goto error; |
| |
| /* Initialize the V4L2 subdev and media entity. */ |
| sd = &phy->subdev; |
| v4l2_subdev_init(sd, &cal_camerarx_subdev_ops); |
| sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE; |
| sd->flags = V4L2_SUBDEV_FL_HAS_DEVNODE; |
| snprintf(sd->name, sizeof(sd->name), "CAMERARX%u", instance); |
| sd->dev = cal->dev; |
| |
| phy->pads[CAL_CAMERARX_PAD_SINK].flags = MEDIA_PAD_FL_SINK; |
| for (i = CAL_CAMERARX_PAD_FIRST_SOURCE; i < CAL_CAMERARX_NUM_PADS; ++i) |
| phy->pads[i].flags = MEDIA_PAD_FL_SOURCE; |
| sd->entity.ops = &cal_camerarx_media_ops; |
| ret = media_entity_pads_init(&sd->entity, ARRAY_SIZE(phy->pads), |
| phy->pads); |
| if (ret) |
| goto error; |
| |
| ret = cal_camerarx_sd_init_cfg(sd, NULL); |
| if (ret) |
| goto error; |
| |
| ret = v4l2_device_register_subdev(&cal->v4l2_dev, sd); |
| if (ret) |
| goto error; |
| |
| return phy; |
| |
| error: |
| media_entity_cleanup(&phy->subdev.entity); |
| kfree(phy); |
| return ERR_PTR(ret); |
| } |
| |
| void cal_camerarx_destroy(struct cal_camerarx *phy) |
| { |
| if (!phy) |
| return; |
| |
| v4l2_device_unregister_subdev(&phy->subdev); |
| media_entity_cleanup(&phy->subdev.entity); |
| of_node_put(phy->source_ep_node); |
| of_node_put(phy->source_node); |
| mutex_destroy(&phy->mutex); |
| kfree(phy); |
| } |