| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * KVM/MIPS: Instruction/Exception emulation |
| * |
| * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. |
| * Authors: Sanjay Lal <sanjayl@kymasys.com> |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/ktime.h> |
| #include <linux/kvm_host.h> |
| #include <linux/vmalloc.h> |
| #include <linux/fs.h> |
| #include <linux/memblock.h> |
| #include <linux/random.h> |
| #include <asm/page.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cacheops.h> |
| #include <asm/cpu-info.h> |
| #include <asm/mmu_context.h> |
| #include <asm/tlbflush.h> |
| #include <asm/inst.h> |
| |
| #undef CONFIG_MIPS_MT |
| #include <asm/r4kcache.h> |
| #define CONFIG_MIPS_MT |
| |
| #include "interrupt.h" |
| |
| #include "trace.h" |
| |
| /* |
| * Compute the return address and do emulate branch simulation, if required. |
| * This function should be called only in branch delay slot active. |
| */ |
| static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc, |
| unsigned long *out) |
| { |
| unsigned int dspcontrol; |
| union mips_instruction insn; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| long epc = instpc; |
| long nextpc; |
| int err; |
| |
| if (epc & 3) { |
| kvm_err("%s: unaligned epc\n", __func__); |
| return -EINVAL; |
| } |
| |
| /* Read the instruction */ |
| err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word); |
| if (err) |
| return err; |
| |
| switch (insn.i_format.opcode) { |
| /* jr and jalr are in r_format format. */ |
| case spec_op: |
| switch (insn.r_format.func) { |
| case jalr_op: |
| arch->gprs[insn.r_format.rd] = epc + 8; |
| fallthrough; |
| case jr_op: |
| nextpc = arch->gprs[insn.r_format.rs]; |
| break; |
| default: |
| return -EINVAL; |
| } |
| break; |
| |
| /* |
| * This group contains: |
| * bltz_op, bgez_op, bltzl_op, bgezl_op, |
| * bltzal_op, bgezal_op, bltzall_op, bgezall_op. |
| */ |
| case bcond_op: |
| switch (insn.i_format.rt) { |
| case bltz_op: |
| case bltzl_op: |
| if ((long)arch->gprs[insn.i_format.rs] < 0) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| |
| case bgez_op: |
| case bgezl_op: |
| if ((long)arch->gprs[insn.i_format.rs] >= 0) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| |
| case bltzal_op: |
| case bltzall_op: |
| arch->gprs[31] = epc + 8; |
| if ((long)arch->gprs[insn.i_format.rs] < 0) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| |
| case bgezal_op: |
| case bgezall_op: |
| arch->gprs[31] = epc + 8; |
| if ((long)arch->gprs[insn.i_format.rs] >= 0) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| case bposge32_op: |
| if (!cpu_has_dsp) { |
| kvm_err("%s: DSP branch but not DSP ASE\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| dspcontrol = rddsp(0x01); |
| |
| if (dspcontrol >= 32) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| default: |
| return -EINVAL; |
| } |
| break; |
| |
| /* These are unconditional and in j_format. */ |
| case jal_op: |
| arch->gprs[31] = instpc + 8; |
| fallthrough; |
| case j_op: |
| epc += 4; |
| epc >>= 28; |
| epc <<= 28; |
| epc |= (insn.j_format.target << 2); |
| nextpc = epc; |
| break; |
| |
| /* These are conditional and in i_format. */ |
| case beq_op: |
| case beql_op: |
| if (arch->gprs[insn.i_format.rs] == |
| arch->gprs[insn.i_format.rt]) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| |
| case bne_op: |
| case bnel_op: |
| if (arch->gprs[insn.i_format.rs] != |
| arch->gprs[insn.i_format.rt]) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| |
| case blez_op: /* POP06 */ |
| #ifndef CONFIG_CPU_MIPSR6 |
| case blezl_op: /* removed in R6 */ |
| #endif |
| if (insn.i_format.rt != 0) |
| goto compact_branch; |
| if ((long)arch->gprs[insn.i_format.rs] <= 0) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| |
| case bgtz_op: /* POP07 */ |
| #ifndef CONFIG_CPU_MIPSR6 |
| case bgtzl_op: /* removed in R6 */ |
| #endif |
| if (insn.i_format.rt != 0) |
| goto compact_branch; |
| if ((long)arch->gprs[insn.i_format.rs] > 0) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| |
| /* And now the FPA/cp1 branch instructions. */ |
| case cop1_op: |
| kvm_err("%s: unsupported cop1_op\n", __func__); |
| return -EINVAL; |
| |
| #ifdef CONFIG_CPU_MIPSR6 |
| /* R6 added the following compact branches with forbidden slots */ |
| case blezl_op: /* POP26 */ |
| case bgtzl_op: /* POP27 */ |
| /* only rt == 0 isn't compact branch */ |
| if (insn.i_format.rt != 0) |
| goto compact_branch; |
| return -EINVAL; |
| case pop10_op: |
| case pop30_op: |
| /* only rs == rt == 0 is reserved, rest are compact branches */ |
| if (insn.i_format.rs != 0 || insn.i_format.rt != 0) |
| goto compact_branch; |
| return -EINVAL; |
| case pop66_op: |
| case pop76_op: |
| /* only rs == 0 isn't compact branch */ |
| if (insn.i_format.rs != 0) |
| goto compact_branch; |
| return -EINVAL; |
| compact_branch: |
| /* |
| * If we've hit an exception on the forbidden slot, then |
| * the branch must not have been taken. |
| */ |
| epc += 8; |
| nextpc = epc; |
| break; |
| #else |
| compact_branch: |
| /* Fall through - Compact branches not supported before R6 */ |
| #endif |
| default: |
| return -EINVAL; |
| } |
| |
| *out = nextpc; |
| return 0; |
| } |
| |
| enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause) |
| { |
| int err; |
| |
| if (cause & CAUSEF_BD) { |
| err = kvm_compute_return_epc(vcpu, vcpu->arch.pc, |
| &vcpu->arch.pc); |
| if (err) |
| return EMULATE_FAIL; |
| } else { |
| vcpu->arch.pc += 4; |
| } |
| |
| kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc); |
| |
| return EMULATE_DONE; |
| } |
| |
| /** |
| * kvm_get_badinstr() - Get bad instruction encoding. |
| * @opc: Guest pointer to faulting instruction. |
| * @vcpu: KVM VCPU information. |
| * |
| * Gets the instruction encoding of the faulting instruction, using the saved |
| * BadInstr register value if it exists, otherwise falling back to reading guest |
| * memory at @opc. |
| * |
| * Returns: The instruction encoding of the faulting instruction. |
| */ |
| int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) |
| { |
| if (cpu_has_badinstr) { |
| *out = vcpu->arch.host_cp0_badinstr; |
| return 0; |
| } else { |
| WARN_ONCE(1, "CPU doesn't have BadInstr register\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /** |
| * kvm_get_badinstrp() - Get bad prior instruction encoding. |
| * @opc: Guest pointer to prior faulting instruction. |
| * @vcpu: KVM VCPU information. |
| * |
| * Gets the instruction encoding of the prior faulting instruction (the branch |
| * containing the delay slot which faulted), using the saved BadInstrP register |
| * value if it exists, otherwise falling back to reading guest memory at @opc. |
| * |
| * Returns: The instruction encoding of the prior faulting instruction. |
| */ |
| int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) |
| { |
| if (cpu_has_badinstrp) { |
| *out = vcpu->arch.host_cp0_badinstrp; |
| return 0; |
| } else { |
| WARN_ONCE(1, "CPU doesn't have BadInstrp register\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /** |
| * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled. |
| * @vcpu: Virtual CPU. |
| * |
| * Returns: 1 if the CP0_Count timer is disabled by either the guest |
| * CP0_Cause.DC bit or the count_ctl.DC bit. |
| * 0 otherwise (in which case CP0_Count timer is running). |
| */ |
| int kvm_mips_count_disabled(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| |
| return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) || |
| (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC); |
| } |
| |
| /** |
| * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count. |
| * |
| * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias. |
| * |
| * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). |
| */ |
| static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now) |
| { |
| s64 now_ns, periods; |
| u64 delta; |
| |
| now_ns = ktime_to_ns(now); |
| delta = now_ns + vcpu->arch.count_dyn_bias; |
| |
| if (delta >= vcpu->arch.count_period) { |
| /* If delta is out of safe range the bias needs adjusting */ |
| periods = div64_s64(now_ns, vcpu->arch.count_period); |
| vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period; |
| /* Recalculate delta with new bias */ |
| delta = now_ns + vcpu->arch.count_dyn_bias; |
| } |
| |
| /* |
| * We've ensured that: |
| * delta < count_period |
| * |
| * Therefore the intermediate delta*count_hz will never overflow since |
| * at the boundary condition: |
| * delta = count_period |
| * delta = NSEC_PER_SEC * 2^32 / count_hz |
| * delta * count_hz = NSEC_PER_SEC * 2^32 |
| */ |
| return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC); |
| } |
| |
| /** |
| * kvm_mips_count_time() - Get effective current time. |
| * @vcpu: Virtual CPU. |
| * |
| * Get effective monotonic ktime. This is usually a straightforward ktime_get(), |
| * except when the master disable bit is set in count_ctl, in which case it is |
| * count_resume, i.e. the time that the count was disabled. |
| * |
| * Returns: Effective monotonic ktime for CP0_Count. |
| */ |
| static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu) |
| { |
| if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) |
| return vcpu->arch.count_resume; |
| |
| return ktime_get(); |
| } |
| |
| /** |
| * kvm_mips_read_count_running() - Read the current count value as if running. |
| * @vcpu: Virtual CPU. |
| * @now: Kernel time to read CP0_Count at. |
| * |
| * Returns the current guest CP0_Count register at time @now and handles if the |
| * timer interrupt is pending and hasn't been handled yet. |
| * |
| * Returns: The current value of the guest CP0_Count register. |
| */ |
| static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| ktime_t expires, threshold; |
| u32 count, compare; |
| int running; |
| |
| /* Calculate the biased and scaled guest CP0_Count */ |
| count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now); |
| compare = kvm_read_c0_guest_compare(cop0); |
| |
| /* |
| * Find whether CP0_Count has reached the closest timer interrupt. If |
| * not, we shouldn't inject it. |
| */ |
| if ((s32)(count - compare) < 0) |
| return count; |
| |
| /* |
| * The CP0_Count we're going to return has already reached the closest |
| * timer interrupt. Quickly check if it really is a new interrupt by |
| * looking at whether the interval until the hrtimer expiry time is |
| * less than 1/4 of the timer period. |
| */ |
| expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer); |
| threshold = ktime_add_ns(now, vcpu->arch.count_period / 4); |
| if (ktime_before(expires, threshold)) { |
| /* |
| * Cancel it while we handle it so there's no chance of |
| * interference with the timeout handler. |
| */ |
| running = hrtimer_cancel(&vcpu->arch.comparecount_timer); |
| |
| /* Nothing should be waiting on the timeout */ |
| kvm_mips_callbacks->queue_timer_int(vcpu); |
| |
| /* |
| * Restart the timer if it was running based on the expiry time |
| * we read, so that we don't push it back 2 periods. |
| */ |
| if (running) { |
| expires = ktime_add_ns(expires, |
| vcpu->arch.count_period); |
| hrtimer_start(&vcpu->arch.comparecount_timer, expires, |
| HRTIMER_MODE_ABS); |
| } |
| } |
| |
| return count; |
| } |
| |
| /** |
| * kvm_mips_read_count() - Read the current count value. |
| * @vcpu: Virtual CPU. |
| * |
| * Read the current guest CP0_Count value, taking into account whether the timer |
| * is stopped. |
| * |
| * Returns: The current guest CP0_Count value. |
| */ |
| u32 kvm_mips_read_count(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| |
| /* If count disabled just read static copy of count */ |
| if (kvm_mips_count_disabled(vcpu)) |
| return kvm_read_c0_guest_count(cop0); |
| |
| return kvm_mips_read_count_running(vcpu, ktime_get()); |
| } |
| |
| /** |
| * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer. |
| * @vcpu: Virtual CPU. |
| * @count: Output pointer for CP0_Count value at point of freeze. |
| * |
| * Freeze the hrtimer safely and return both the ktime and the CP0_Count value |
| * at the point it was frozen. It is guaranteed that any pending interrupts at |
| * the point it was frozen are handled, and none after that point. |
| * |
| * This is useful where the time/CP0_Count is needed in the calculation of the |
| * new parameters. |
| * |
| * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). |
| * |
| * Returns: The ktime at the point of freeze. |
| */ |
| ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count) |
| { |
| ktime_t now; |
| |
| /* stop hrtimer before finding time */ |
| hrtimer_cancel(&vcpu->arch.comparecount_timer); |
| now = ktime_get(); |
| |
| /* find count at this point and handle pending hrtimer */ |
| *count = kvm_mips_read_count_running(vcpu, now); |
| |
| return now; |
| } |
| |
| /** |
| * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry. |
| * @vcpu: Virtual CPU. |
| * @now: ktime at point of resume. |
| * @count: CP0_Count at point of resume. |
| * |
| * Resumes the timer and updates the timer expiry based on @now and @count. |
| * This can be used in conjunction with kvm_mips_freeze_timer() when timer |
| * parameters need to be changed. |
| * |
| * It is guaranteed that a timer interrupt immediately after resume will be |
| * handled, but not if CP_Compare is exactly at @count. That case is already |
| * handled by kvm_mips_freeze_timer(). |
| * |
| * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). |
| */ |
| static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu, |
| ktime_t now, u32 count) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| u32 compare; |
| u64 delta; |
| ktime_t expire; |
| |
| /* Calculate timeout (wrap 0 to 2^32) */ |
| compare = kvm_read_c0_guest_compare(cop0); |
| delta = (u64)(u32)(compare - count - 1) + 1; |
| delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); |
| expire = ktime_add_ns(now, delta); |
| |
| /* Update hrtimer to use new timeout */ |
| hrtimer_cancel(&vcpu->arch.comparecount_timer); |
| hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS); |
| } |
| |
| /** |
| * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry. |
| * @vcpu: Virtual CPU. |
| * @before: Time before Count was saved, lower bound of drift calculation. |
| * @count: CP0_Count at point of restore. |
| * @min_drift: Minimum amount of drift permitted before correction. |
| * Must be <= 0. |
| * |
| * Restores the timer from a particular @count, accounting for drift. This can |
| * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is |
| * to be used for a period of time, but the exact ktime corresponding to the |
| * final Count that must be restored is not known. |
| * |
| * It is gauranteed that a timer interrupt immediately after restore will be |
| * handled, but not if CP0_Compare is exactly at @count. That case should |
| * already be handled when the hardware timer state is saved. |
| * |
| * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not |
| * stopped). |
| * |
| * Returns: Amount of correction to count_bias due to drift. |
| */ |
| int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before, |
| u32 count, int min_drift) |
| { |
| ktime_t now, count_time; |
| u32 now_count, before_count; |
| u64 delta; |
| int drift, ret = 0; |
| |
| /* Calculate expected count at before */ |
| before_count = vcpu->arch.count_bias + |
| kvm_mips_ktime_to_count(vcpu, before); |
| |
| /* |
| * Detect significantly negative drift, where count is lower than |
| * expected. Some negative drift is expected when hardware counter is |
| * set after kvm_mips_freeze_timer(), and it is harmless to allow the |
| * time to jump forwards a little, within reason. If the drift is too |
| * significant, adjust the bias to avoid a big Guest.CP0_Count jump. |
| */ |
| drift = count - before_count; |
| if (drift < min_drift) { |
| count_time = before; |
| vcpu->arch.count_bias += drift; |
| ret = drift; |
| goto resume; |
| } |
| |
| /* Calculate expected count right now */ |
| now = ktime_get(); |
| now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now); |
| |
| /* |
| * Detect positive drift, where count is higher than expected, and |
| * adjust the bias to avoid guest time going backwards. |
| */ |
| drift = count - now_count; |
| if (drift > 0) { |
| count_time = now; |
| vcpu->arch.count_bias += drift; |
| ret = drift; |
| goto resume; |
| } |
| |
| /* Subtract nanosecond delta to find ktime when count was read */ |
| delta = (u64)(u32)(now_count - count); |
| delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); |
| count_time = ktime_sub_ns(now, delta); |
| |
| resume: |
| /* Resume using the calculated ktime */ |
| kvm_mips_resume_hrtimer(vcpu, count_time, count); |
| return ret; |
| } |
| |
| /** |
| * kvm_mips_write_count() - Modify the count and update timer. |
| * @vcpu: Virtual CPU. |
| * @count: Guest CP0_Count value to set. |
| * |
| * Sets the CP0_Count value and updates the timer accordingly. |
| */ |
| void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| ktime_t now; |
| |
| /* Calculate bias */ |
| now = kvm_mips_count_time(vcpu); |
| vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); |
| |
| if (kvm_mips_count_disabled(vcpu)) |
| /* The timer's disabled, adjust the static count */ |
| kvm_write_c0_guest_count(cop0, count); |
| else |
| /* Update timeout */ |
| kvm_mips_resume_hrtimer(vcpu, now, count); |
| } |
| |
| /** |
| * kvm_mips_init_count() - Initialise timer. |
| * @vcpu: Virtual CPU. |
| * @count_hz: Frequency of timer. |
| * |
| * Initialise the timer to the specified frequency, zero it, and set it going if |
| * it's enabled. |
| */ |
| void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz) |
| { |
| vcpu->arch.count_hz = count_hz; |
| vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz); |
| vcpu->arch.count_dyn_bias = 0; |
| |
| /* Starting at 0 */ |
| kvm_mips_write_count(vcpu, 0); |
| } |
| |
| /** |
| * kvm_mips_set_count_hz() - Update the frequency of the timer. |
| * @vcpu: Virtual CPU. |
| * @count_hz: Frequency of CP0_Count timer in Hz. |
| * |
| * Change the frequency of the CP0_Count timer. This is done atomically so that |
| * CP0_Count is continuous and no timer interrupt is lost. |
| * |
| * Returns: -EINVAL if @count_hz is out of range. |
| * 0 on success. |
| */ |
| int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| int dc; |
| ktime_t now; |
| u32 count; |
| |
| /* ensure the frequency is in a sensible range... */ |
| if (count_hz <= 0 || count_hz > NSEC_PER_SEC) |
| return -EINVAL; |
| /* ... and has actually changed */ |
| if (vcpu->arch.count_hz == count_hz) |
| return 0; |
| |
| /* Safely freeze timer so we can keep it continuous */ |
| dc = kvm_mips_count_disabled(vcpu); |
| if (dc) { |
| now = kvm_mips_count_time(vcpu); |
| count = kvm_read_c0_guest_count(cop0); |
| } else { |
| now = kvm_mips_freeze_hrtimer(vcpu, &count); |
| } |
| |
| /* Update the frequency */ |
| vcpu->arch.count_hz = count_hz; |
| vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz); |
| vcpu->arch.count_dyn_bias = 0; |
| |
| /* Calculate adjusted bias so dynamic count is unchanged */ |
| vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); |
| |
| /* Update and resume hrtimer */ |
| if (!dc) |
| kvm_mips_resume_hrtimer(vcpu, now, count); |
| return 0; |
| } |
| |
| /** |
| * kvm_mips_write_compare() - Modify compare and update timer. |
| * @vcpu: Virtual CPU. |
| * @compare: New CP0_Compare value. |
| * @ack: Whether to acknowledge timer interrupt. |
| * |
| * Update CP0_Compare to a new value and update the timeout. |
| * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure |
| * any pending timer interrupt is preserved. |
| */ |
| void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| int dc; |
| u32 old_compare = kvm_read_c0_guest_compare(cop0); |
| s32 delta = compare - old_compare; |
| u32 cause; |
| ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */ |
| u32 count; |
| |
| /* if unchanged, must just be an ack */ |
| if (old_compare == compare) { |
| if (!ack) |
| return; |
| kvm_mips_callbacks->dequeue_timer_int(vcpu); |
| kvm_write_c0_guest_compare(cop0, compare); |
| return; |
| } |
| |
| /* |
| * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted |
| * too to prevent guest CP0_Count hitting guest CP0_Compare. |
| * |
| * The new GTOffset corresponds to the new value of CP0_Compare, and is |
| * set prior to it being written into the guest context. We disable |
| * preemption until the new value is written to prevent restore of a |
| * GTOffset corresponding to the old CP0_Compare value. |
| */ |
| if (delta > 0) { |
| preempt_disable(); |
| write_c0_gtoffset(compare - read_c0_count()); |
| back_to_back_c0_hazard(); |
| } |
| |
| /* freeze_hrtimer() takes care of timer interrupts <= count */ |
| dc = kvm_mips_count_disabled(vcpu); |
| if (!dc) |
| now = kvm_mips_freeze_hrtimer(vcpu, &count); |
| |
| if (ack) |
| kvm_mips_callbacks->dequeue_timer_int(vcpu); |
| else |
| /* |
| * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so |
| * preserve guest CP0_Cause.TI if we don't want to ack it. |
| */ |
| cause = kvm_read_c0_guest_cause(cop0); |
| |
| kvm_write_c0_guest_compare(cop0, compare); |
| |
| if (delta > 0) |
| preempt_enable(); |
| |
| back_to_back_c0_hazard(); |
| |
| if (!ack && cause & CAUSEF_TI) |
| kvm_write_c0_guest_cause(cop0, cause); |
| |
| /* resume_hrtimer() takes care of timer interrupts > count */ |
| if (!dc) |
| kvm_mips_resume_hrtimer(vcpu, now, count); |
| |
| /* |
| * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change |
| * until after the new CP0_Compare is written, otherwise new guest |
| * CP0_Count could hit new guest CP0_Compare. |
| */ |
| if (delta <= 0) |
| write_c0_gtoffset(compare - read_c0_count()); |
| } |
| |
| /** |
| * kvm_mips_count_disable() - Disable count. |
| * @vcpu: Virtual CPU. |
| * |
| * Disable the CP0_Count timer. A timer interrupt on or before the final stop |
| * time will be handled but not after. |
| * |
| * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or |
| * count_ctl.DC has been set (count disabled). |
| * |
| * Returns: The time that the timer was stopped. |
| */ |
| static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| u32 count; |
| ktime_t now; |
| |
| /* Stop hrtimer */ |
| hrtimer_cancel(&vcpu->arch.comparecount_timer); |
| |
| /* Set the static count from the dynamic count, handling pending TI */ |
| now = ktime_get(); |
| count = kvm_mips_read_count_running(vcpu, now); |
| kvm_write_c0_guest_count(cop0, count); |
| |
| return now; |
| } |
| |
| /** |
| * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC. |
| * @vcpu: Virtual CPU. |
| * |
| * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or |
| * before the final stop time will be handled if the timer isn't disabled by |
| * count_ctl.DC, but not after. |
| * |
| * Assumes CP0_Cause.DC is clear (count enabled). |
| */ |
| void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| |
| kvm_set_c0_guest_cause(cop0, CAUSEF_DC); |
| if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) |
| kvm_mips_count_disable(vcpu); |
| } |
| |
| /** |
| * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC. |
| * @vcpu: Virtual CPU. |
| * |
| * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after |
| * the start time will be handled if the timer isn't disabled by count_ctl.DC, |
| * potentially before even returning, so the caller should be careful with |
| * ordering of CP0_Cause modifications so as not to lose it. |
| * |
| * Assumes CP0_Cause.DC is set (count disabled). |
| */ |
| void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| u32 count; |
| |
| kvm_clear_c0_guest_cause(cop0, CAUSEF_DC); |
| |
| /* |
| * Set the dynamic count to match the static count. |
| * This starts the hrtimer if count_ctl.DC allows it. |
| * Otherwise it conveniently updates the biases. |
| */ |
| count = kvm_read_c0_guest_count(cop0); |
| kvm_mips_write_count(vcpu, count); |
| } |
| |
| /** |
| * kvm_mips_set_count_ctl() - Update the count control KVM register. |
| * @vcpu: Virtual CPU. |
| * @count_ctl: Count control register new value. |
| * |
| * Set the count control KVM register. The timer is updated accordingly. |
| * |
| * Returns: -EINVAL if reserved bits are set. |
| * 0 on success. |
| */ |
| int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| s64 changed = count_ctl ^ vcpu->arch.count_ctl; |
| s64 delta; |
| ktime_t expire, now; |
| u32 count, compare; |
| |
| /* Only allow defined bits to be changed */ |
| if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC)) |
| return -EINVAL; |
| |
| /* Apply new value */ |
| vcpu->arch.count_ctl = count_ctl; |
| |
| /* Master CP0_Count disable */ |
| if (changed & KVM_REG_MIPS_COUNT_CTL_DC) { |
| /* Is CP0_Cause.DC already disabling CP0_Count? */ |
| if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) { |
| if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) |
| /* Just record the current time */ |
| vcpu->arch.count_resume = ktime_get(); |
| } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) { |
| /* disable timer and record current time */ |
| vcpu->arch.count_resume = kvm_mips_count_disable(vcpu); |
| } else { |
| /* |
| * Calculate timeout relative to static count at resume |
| * time (wrap 0 to 2^32). |
| */ |
| count = kvm_read_c0_guest_count(cop0); |
| compare = kvm_read_c0_guest_compare(cop0); |
| delta = (u64)(u32)(compare - count - 1) + 1; |
| delta = div_u64(delta * NSEC_PER_SEC, |
| vcpu->arch.count_hz); |
| expire = ktime_add_ns(vcpu->arch.count_resume, delta); |
| |
| /* Handle pending interrupt */ |
| now = ktime_get(); |
| if (ktime_compare(now, expire) >= 0) |
| /* Nothing should be waiting on the timeout */ |
| kvm_mips_callbacks->queue_timer_int(vcpu); |
| |
| /* Resume hrtimer without changing bias */ |
| count = kvm_mips_read_count_running(vcpu, now); |
| kvm_mips_resume_hrtimer(vcpu, now, count); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * kvm_mips_set_count_resume() - Update the count resume KVM register. |
| * @vcpu: Virtual CPU. |
| * @count_resume: Count resume register new value. |
| * |
| * Set the count resume KVM register. |
| * |
| * Returns: -EINVAL if out of valid range (0..now). |
| * 0 on success. |
| */ |
| int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume) |
| { |
| /* |
| * It doesn't make sense for the resume time to be in the future, as it |
| * would be possible for the next interrupt to be more than a full |
| * period in the future. |
| */ |
| if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get())) |
| return -EINVAL; |
| |
| vcpu->arch.count_resume = ns_to_ktime(count_resume); |
| return 0; |
| } |
| |
| /** |
| * kvm_mips_count_timeout() - Push timer forward on timeout. |
| * @vcpu: Virtual CPU. |
| * |
| * Handle an hrtimer event by push the hrtimer forward a period. |
| * |
| * Returns: The hrtimer_restart value to return to the hrtimer subsystem. |
| */ |
| enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu) |
| { |
| /* Add the Count period to the current expiry time */ |
| hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer, |
| vcpu->arch.count_period); |
| return HRTIMER_RESTART; |
| } |
| |
| enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu) |
| { |
| kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc, |
| vcpu->arch.pending_exceptions); |
| |
| ++vcpu->stat.wait_exits; |
| trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT); |
| if (!vcpu->arch.pending_exceptions) { |
| kvm_vz_lose_htimer(vcpu); |
| vcpu->arch.wait = 1; |
| kvm_vcpu_halt(vcpu); |
| |
| /* |
| * We we are runnable, then definitely go off to user space to |
| * check if any I/O interrupts are pending. |
| */ |
| if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { |
| kvm_clear_request(KVM_REQ_UNHALT, vcpu); |
| vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; |
| } |
| } |
| |
| return EMULATE_DONE; |
| } |
| |
| enum emulation_result kvm_mips_emulate_store(union mips_instruction inst, |
| u32 cause, |
| struct kvm_vcpu *vcpu) |
| { |
| int r; |
| enum emulation_result er; |
| u32 rt; |
| struct kvm_run *run = vcpu->run; |
| void *data = run->mmio.data; |
| unsigned int imme; |
| unsigned long curr_pc; |
| |
| /* |
| * Update PC and hold onto current PC in case there is |
| * an error and we want to rollback the PC |
| */ |
| curr_pc = vcpu->arch.pc; |
| er = update_pc(vcpu, cause); |
| if (er == EMULATE_FAIL) |
| return er; |
| |
| rt = inst.i_format.rt; |
| |
| run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| vcpu->arch.host_cp0_badvaddr); |
| if (run->mmio.phys_addr == KVM_INVALID_ADDR) |
| goto out_fail; |
| |
| switch (inst.i_format.opcode) { |
| #if defined(CONFIG_64BIT) |
| case sd_op: |
| run->mmio.len = 8; |
| *(u64 *)data = vcpu->arch.gprs[rt]; |
| |
| kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n", |
| vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| vcpu->arch.gprs[rt], *(u64 *)data); |
| break; |
| #endif |
| |
| case sw_op: |
| run->mmio.len = 4; |
| *(u32 *)data = vcpu->arch.gprs[rt]; |
| |
| kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| vcpu->arch.gprs[rt], *(u32 *)data); |
| break; |
| |
| case sh_op: |
| run->mmio.len = 2; |
| *(u16 *)data = vcpu->arch.gprs[rt]; |
| |
| kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| vcpu->arch.gprs[rt], *(u16 *)data); |
| break; |
| |
| case sb_op: |
| run->mmio.len = 1; |
| *(u8 *)data = vcpu->arch.gprs[rt]; |
| |
| kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| vcpu->arch.gprs[rt], *(u8 *)data); |
| break; |
| |
| case swl_op: |
| run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| vcpu->arch.host_cp0_badvaddr) & (~0x3); |
| run->mmio.len = 4; |
| imme = vcpu->arch.host_cp0_badvaddr & 0x3; |
| switch (imme) { |
| case 0: |
| *(u32 *)data = ((*(u32 *)data) & 0xffffff00) | |
| (vcpu->arch.gprs[rt] >> 24); |
| break; |
| case 1: |
| *(u32 *)data = ((*(u32 *)data) & 0xffff0000) | |
| (vcpu->arch.gprs[rt] >> 16); |
| break; |
| case 2: |
| *(u32 *)data = ((*(u32 *)data) & 0xff000000) | |
| (vcpu->arch.gprs[rt] >> 8); |
| break; |
| case 3: |
| *(u32 *)data = vcpu->arch.gprs[rt]; |
| break; |
| default: |
| break; |
| } |
| |
| kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| vcpu->arch.gprs[rt], *(u32 *)data); |
| break; |
| |
| case swr_op: |
| run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| vcpu->arch.host_cp0_badvaddr) & (~0x3); |
| run->mmio.len = 4; |
| imme = vcpu->arch.host_cp0_badvaddr & 0x3; |
| switch (imme) { |
| case 0: |
| *(u32 *)data = vcpu->arch.gprs[rt]; |
| break; |
| case 1: |
| *(u32 *)data = ((*(u32 *)data) & 0xff) | |
| (vcpu->arch.gprs[rt] << 8); |
| break; |
| case 2: |
| *(u32 *)data = ((*(u32 *)data) & 0xffff) | |
| (vcpu->arch.gprs[rt] << 16); |
| break; |
| case 3: |
| *(u32 *)data = ((*(u32 *)data) & 0xffffff) | |
| (vcpu->arch.gprs[rt] << 24); |
| break; |
| default: |
| break; |
| } |
| |
| kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| vcpu->arch.gprs[rt], *(u32 *)data); |
| break; |
| |
| #if defined(CONFIG_64BIT) |
| case sdl_op: |
| run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| vcpu->arch.host_cp0_badvaddr) & (~0x7); |
| |
| run->mmio.len = 8; |
| imme = vcpu->arch.host_cp0_badvaddr & 0x7; |
| switch (imme) { |
| case 0: |
| *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) | |
| ((vcpu->arch.gprs[rt] >> 56) & 0xff); |
| break; |
| case 1: |
| *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) | |
| ((vcpu->arch.gprs[rt] >> 48) & 0xffff); |
| break; |
| case 2: |
| *(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) | |
| ((vcpu->arch.gprs[rt] >> 40) & 0xffffff); |
| break; |
| case 3: |
| *(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) | |
| ((vcpu->arch.gprs[rt] >> 32) & 0xffffffff); |
| break; |
| case 4: |
| *(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) | |
| ((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff); |
| break; |
| case 5: |
| *(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) | |
| ((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff); |
| break; |
| case 6: |
| *(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) | |
| ((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff); |
| break; |
| case 7: |
| *(u64 *)data = vcpu->arch.gprs[rt]; |
| break; |
| default: |
| break; |
| } |
| |
| kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n", |
| vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| vcpu->arch.gprs[rt], *(u64 *)data); |
| break; |
| |
| case sdr_op: |
| run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| vcpu->arch.host_cp0_badvaddr) & (~0x7); |
| |
| run->mmio.len = 8; |
| imme = vcpu->arch.host_cp0_badvaddr & 0x7; |
| switch (imme) { |
| case 0: |
| *(u64 *)data = vcpu->arch.gprs[rt]; |
| break; |
| case 1: |
| *(u64 *)data = ((*(u64 *)data) & 0xff) | |
| (vcpu->arch.gprs[rt] << 8); |
| break; |
| case 2: |
| *(u64 *)data = ((*(u64 *)data) & 0xffff) | |
| (vcpu->arch.gprs[rt] << 16); |
| break; |
| case 3: |
| *(u64 *)data = ((*(u64 *)data) & 0xffffff) | |
| (vcpu->arch.gprs[rt] << 24); |
| break; |
| case 4: |
| *(u64 *)data = ((*(u64 *)data) & 0xffffffff) | |
| (vcpu->arch.gprs[rt] << 32); |
| break; |
| case 5: |
| *(u64 *)data = ((*(u64 *)data) & 0xffffffffff) | |
| (vcpu->arch.gprs[rt] << 40); |
| break; |
| case 6: |
| *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) | |
| (vcpu->arch.gprs[rt] << 48); |
| break; |
| case 7: |
| *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) | |
| (vcpu->arch.gprs[rt] << 56); |
| break; |
| default: |
| break; |
| } |
| |
| kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n", |
| vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| vcpu->arch.gprs[rt], *(u64 *)data); |
| break; |
| #endif |
| |
| #ifdef CONFIG_CPU_LOONGSON64 |
| case sdc2_op: |
| rt = inst.loongson3_lsdc2_format.rt; |
| switch (inst.loongson3_lsdc2_format.opcode1) { |
| /* |
| * Loongson-3 overridden sdc2 instructions. |
| * opcode1 instruction |
| * 0x0 gssbx: store 1 bytes from GPR |
| * 0x1 gsshx: store 2 bytes from GPR |
| * 0x2 gsswx: store 4 bytes from GPR |
| * 0x3 gssdx: store 8 bytes from GPR |
| */ |
| case 0x0: |
| run->mmio.len = 1; |
| *(u8 *)data = vcpu->arch.gprs[rt]; |
| |
| kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| vcpu->arch.gprs[rt], *(u8 *)data); |
| break; |
| case 0x1: |
| run->mmio.len = 2; |
| *(u16 *)data = vcpu->arch.gprs[rt]; |
| |
| kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| vcpu->arch.gprs[rt], *(u16 *)data); |
| break; |
| case 0x2: |
| run->mmio.len = 4; |
| *(u32 *)data = vcpu->arch.gprs[rt]; |
| |
| kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| vcpu->arch.gprs[rt], *(u32 *)data); |
| break; |
| case 0x3: |
| run->mmio.len = 8; |
| *(u64 *)data = vcpu->arch.gprs[rt]; |
| |
| kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n", |
| vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| vcpu->arch.gprs[rt], *(u64 *)data); |
| break; |
| default: |
| kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n", |
| inst.word); |
| break; |
| } |
| break; |
| #endif |
| default: |
| kvm_err("Store not yet supported (inst=0x%08x)\n", |
| inst.word); |
| goto out_fail; |
| } |
| |
| vcpu->mmio_needed = 1; |
| run->mmio.is_write = 1; |
| vcpu->mmio_is_write = 1; |
| |
| r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, |
| run->mmio.phys_addr, run->mmio.len, data); |
| |
| if (!r) { |
| vcpu->mmio_needed = 0; |
| return EMULATE_DONE; |
| } |
| |
| return EMULATE_DO_MMIO; |
| |
| out_fail: |
| /* Rollback PC if emulation was unsuccessful */ |
| vcpu->arch.pc = curr_pc; |
| return EMULATE_FAIL; |
| } |
| |
| enum emulation_result kvm_mips_emulate_load(union mips_instruction inst, |
| u32 cause, struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| int r; |
| enum emulation_result er; |
| unsigned long curr_pc; |
| u32 op, rt; |
| unsigned int imme; |
| |
| rt = inst.i_format.rt; |
| op = inst.i_format.opcode; |
| |
| /* |
| * Find the resume PC now while we have safe and easy access to the |
| * prior branch instruction, and save it for |
| * kvm_mips_complete_mmio_load() to restore later. |
| */ |
| curr_pc = vcpu->arch.pc; |
| er = update_pc(vcpu, cause); |
| if (er == EMULATE_FAIL) |
| return er; |
| vcpu->arch.io_pc = vcpu->arch.pc; |
| vcpu->arch.pc = curr_pc; |
| |
| vcpu->arch.io_gpr = rt; |
| |
| run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| vcpu->arch.host_cp0_badvaddr); |
| if (run->mmio.phys_addr == KVM_INVALID_ADDR) |
| return EMULATE_FAIL; |
| |
| vcpu->mmio_needed = 2; /* signed */ |
| switch (op) { |
| #if defined(CONFIG_64BIT) |
| case ld_op: |
| run->mmio.len = 8; |
| break; |
| |
| case lwu_op: |
| vcpu->mmio_needed = 1; /* unsigned */ |
| fallthrough; |
| #endif |
| case lw_op: |
| run->mmio.len = 4; |
| break; |
| |
| case lhu_op: |
| vcpu->mmio_needed = 1; /* unsigned */ |
| fallthrough; |
| case lh_op: |
| run->mmio.len = 2; |
| break; |
| |
| case lbu_op: |
| vcpu->mmio_needed = 1; /* unsigned */ |
| fallthrough; |
| case lb_op: |
| run->mmio.len = 1; |
| break; |
| |
| case lwl_op: |
| run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| vcpu->arch.host_cp0_badvaddr) & (~0x3); |
| |
| run->mmio.len = 4; |
| imme = vcpu->arch.host_cp0_badvaddr & 0x3; |
| switch (imme) { |
| case 0: |
| vcpu->mmio_needed = 3; /* 1 byte */ |
| break; |
| case 1: |
| vcpu->mmio_needed = 4; /* 2 bytes */ |
| break; |
| case 2: |
| vcpu->mmio_needed = 5; /* 3 bytes */ |
| break; |
| case 3: |
| vcpu->mmio_needed = 6; /* 4 bytes */ |
| break; |
| default: |
| break; |
| } |
| break; |
| |
| case lwr_op: |
| run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| vcpu->arch.host_cp0_badvaddr) & (~0x3); |
| |
| run->mmio.len = 4; |
| imme = vcpu->arch.host_cp0_badvaddr & 0x3; |
| switch (imme) { |
| case 0: |
| vcpu->mmio_needed = 7; /* 4 bytes */ |
| break; |
| case 1: |
| vcpu->mmio_needed = 8; /* 3 bytes */ |
| break; |
| case 2: |
| vcpu->mmio_needed = 9; /* 2 bytes */ |
| break; |
| case 3: |
| vcpu->mmio_needed = 10; /* 1 byte */ |
| break; |
| default: |
| break; |
| } |
| break; |
| |
| #if defined(CONFIG_64BIT) |
| case ldl_op: |
| run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| vcpu->arch.host_cp0_badvaddr) & (~0x7); |
| |
| run->mmio.len = 8; |
| imme = vcpu->arch.host_cp0_badvaddr & 0x7; |
| switch (imme) { |
| case 0: |
| vcpu->mmio_needed = 11; /* 1 byte */ |
| break; |
| case 1: |
| vcpu->mmio_needed = 12; /* 2 bytes */ |
| break; |
| case 2: |
| vcpu->mmio_needed = 13; /* 3 bytes */ |
| break; |
| case 3: |
| vcpu->mmio_needed = 14; /* 4 bytes */ |
| break; |
| case 4: |
| vcpu->mmio_needed = 15; /* 5 bytes */ |
| break; |
| case 5: |
| vcpu->mmio_needed = 16; /* 6 bytes */ |
| break; |
| case 6: |
| vcpu->mmio_needed = 17; /* 7 bytes */ |
| break; |
| case 7: |
| vcpu->mmio_needed = 18; /* 8 bytes */ |
| break; |
| default: |
| break; |
| } |
| break; |
| |
| case ldr_op: |
| run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( |
| vcpu->arch.host_cp0_badvaddr) & (~0x7); |
| |
| run->mmio.len = 8; |
| imme = vcpu->arch.host_cp0_badvaddr & 0x7; |
| switch (imme) { |
| case 0: |
| vcpu->mmio_needed = 19; /* 8 bytes */ |
| break; |
| case 1: |
| vcpu->mmio_needed = 20; /* 7 bytes */ |
| break; |
| case 2: |
| vcpu->mmio_needed = 21; /* 6 bytes */ |
| break; |
| case 3: |
| vcpu->mmio_needed = 22; /* 5 bytes */ |
| break; |
| case 4: |
| vcpu->mmio_needed = 23; /* 4 bytes */ |
| break; |
| case 5: |
| vcpu->mmio_needed = 24; /* 3 bytes */ |
| break; |
| case 6: |
| vcpu->mmio_needed = 25; /* 2 bytes */ |
| break; |
| case 7: |
| vcpu->mmio_needed = 26; /* 1 byte */ |
| break; |
| default: |
| break; |
| } |
| break; |
| #endif |
| |
| #ifdef CONFIG_CPU_LOONGSON64 |
| case ldc2_op: |
| rt = inst.loongson3_lsdc2_format.rt; |
| switch (inst.loongson3_lsdc2_format.opcode1) { |
| /* |
| * Loongson-3 overridden ldc2 instructions. |
| * opcode1 instruction |
| * 0x0 gslbx: store 1 bytes from GPR |
| * 0x1 gslhx: store 2 bytes from GPR |
| * 0x2 gslwx: store 4 bytes from GPR |
| * 0x3 gsldx: store 8 bytes from GPR |
| */ |
| case 0x0: |
| run->mmio.len = 1; |
| vcpu->mmio_needed = 27; /* signed */ |
| break; |
| case 0x1: |
| run->mmio.len = 2; |
| vcpu->mmio_needed = 28; /* signed */ |
| break; |
| case 0x2: |
| run->mmio.len = 4; |
| vcpu->mmio_needed = 29; /* signed */ |
| break; |
| case 0x3: |
| run->mmio.len = 8; |
| vcpu->mmio_needed = 30; /* signed */ |
| break; |
| default: |
| kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n", |
| inst.word); |
| break; |
| } |
| break; |
| #endif |
| |
| default: |
| kvm_err("Load not yet supported (inst=0x%08x)\n", |
| inst.word); |
| vcpu->mmio_needed = 0; |
| return EMULATE_FAIL; |
| } |
| |
| run->mmio.is_write = 0; |
| vcpu->mmio_is_write = 0; |
| |
| r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, |
| run->mmio.phys_addr, run->mmio.len, run->mmio.data); |
| |
| if (!r) { |
| kvm_mips_complete_mmio_load(vcpu); |
| vcpu->mmio_needed = 0; |
| return EMULATE_DONE; |
| } |
| |
| return EMULATE_DO_MMIO; |
| } |
| |
| enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr]; |
| enum emulation_result er = EMULATE_DONE; |
| |
| if (run->mmio.len > sizeof(*gpr)) { |
| kvm_err("Bad MMIO length: %d", run->mmio.len); |
| er = EMULATE_FAIL; |
| goto done; |
| } |
| |
| /* Restore saved resume PC */ |
| vcpu->arch.pc = vcpu->arch.io_pc; |
| |
| switch (run->mmio.len) { |
| case 8: |
| switch (vcpu->mmio_needed) { |
| case 11: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) | |
| (((*(s64 *)run->mmio.data) & 0xff) << 56); |
| break; |
| case 12: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) | |
| (((*(s64 *)run->mmio.data) & 0xffff) << 48); |
| break; |
| case 13: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) | |
| (((*(s64 *)run->mmio.data) & 0xffffff) << 40); |
| break; |
| case 14: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) | |
| (((*(s64 *)run->mmio.data) & 0xffffffff) << 32); |
| break; |
| case 15: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) | |
| (((*(s64 *)run->mmio.data) & 0xffffffffff) << 24); |
| break; |
| case 16: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) | |
| (((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16); |
| break; |
| case 17: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) | |
| (((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8); |
| break; |
| case 18: |
| case 19: |
| *gpr = *(s64 *)run->mmio.data; |
| break; |
| case 20: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) | |
| ((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff); |
| break; |
| case 21: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) | |
| ((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff); |
| break; |
| case 22: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) | |
| ((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff); |
| break; |
| case 23: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) | |
| ((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff); |
| break; |
| case 24: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) | |
| ((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff); |
| break; |
| case 25: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) | |
| ((((*(s64 *)run->mmio.data)) >> 48) & 0xffff); |
| break; |
| case 26: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) | |
| ((((*(s64 *)run->mmio.data)) >> 56) & 0xff); |
| break; |
| default: |
| *gpr = *(s64 *)run->mmio.data; |
| } |
| break; |
| |
| case 4: |
| switch (vcpu->mmio_needed) { |
| case 1: |
| *gpr = *(u32 *)run->mmio.data; |
| break; |
| case 2: |
| *gpr = *(s32 *)run->mmio.data; |
| break; |
| case 3: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) | |
| (((*(s32 *)run->mmio.data) & 0xff) << 24); |
| break; |
| case 4: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) | |
| (((*(s32 *)run->mmio.data) & 0xffff) << 16); |
| break; |
| case 5: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) | |
| (((*(s32 *)run->mmio.data) & 0xffffff) << 8); |
| break; |
| case 6: |
| case 7: |
| *gpr = *(s32 *)run->mmio.data; |
| break; |
| case 8: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) | |
| ((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff); |
| break; |
| case 9: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) | |
| ((((*(s32 *)run->mmio.data)) >> 16) & 0xffff); |
| break; |
| case 10: |
| *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) | |
| ((((*(s32 *)run->mmio.data)) >> 24) & 0xff); |
| break; |
| default: |
| *gpr = *(s32 *)run->mmio.data; |
| } |
| break; |
| |
| case 2: |
| if (vcpu->mmio_needed == 1) |
| *gpr = *(u16 *)run->mmio.data; |
| else |
| *gpr = *(s16 *)run->mmio.data; |
| |
| break; |
| case 1: |
| if (vcpu->mmio_needed == 1) |
| *gpr = *(u8 *)run->mmio.data; |
| else |
| *gpr = *(s8 *)run->mmio.data; |
| break; |
| } |
| |
| done: |
| return er; |
| } |