| /****************************************************************************** |
| * |
| * Copyright(c) 2007 - 2010 Intel Corporation. All rights reserved. |
| * |
| * Portions of this file are derived from the ipw3945 project, as well |
| * as portions of the ieee80211 subsystem header files. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA |
| * |
| * The full GNU General Public License is included in this distribution in the |
| * file called LICENSE. |
| * |
| * Contact Information: |
| * Intel Linux Wireless <ilw@linux.intel.com> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| *****************************************************************************/ |
| |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| |
| #include <net/mac80211.h> |
| |
| #include "iwl-eeprom.h" |
| #include "iwl-dev.h" |
| #include "iwl-core.h" |
| #include "iwl-io.h" |
| #include "iwl-commands.h" |
| #include "iwl-debug.h" |
| #include "iwl-power.h" |
| |
| /* |
| * Setting power level allows the card to go to sleep when not busy. |
| * |
| * We calculate a sleep command based on the required latency, which |
| * we get from mac80211. In order to handle thermal throttling, we can |
| * also use pre-defined power levels. |
| */ |
| |
| /* |
| * For now, keep using power level 1 instead of automatically |
| * adjusting ... |
| */ |
| bool no_sleep_autoadjust = true; |
| module_param(no_sleep_autoadjust, bool, S_IRUGO); |
| MODULE_PARM_DESC(no_sleep_autoadjust, |
| "don't automatically adjust sleep level " |
| "according to maximum network latency"); |
| |
| /* |
| * This defines the old power levels. They are still used by default |
| * (level 1) and for thermal throttle (levels 3 through 5) |
| */ |
| |
| struct iwl_power_vec_entry { |
| struct iwl_powertable_cmd cmd; |
| u8 no_dtim; /* number of skip dtim */ |
| }; |
| |
| #define IWL_DTIM_RANGE_0_MAX 2 |
| #define IWL_DTIM_RANGE_1_MAX 10 |
| |
| #define NOSLP cpu_to_le16(0), 0, 0 |
| #define SLP IWL_POWER_DRIVER_ALLOW_SLEEP_MSK, 0, 0 |
| #define TU_TO_USEC 1024 |
| #define SLP_TOUT(T) cpu_to_le32((T) * TU_TO_USEC) |
| #define SLP_VEC(X0, X1, X2, X3, X4) {cpu_to_le32(X0), \ |
| cpu_to_le32(X1), \ |
| cpu_to_le32(X2), \ |
| cpu_to_le32(X3), \ |
| cpu_to_le32(X4)} |
| /* default power management (not Tx power) table values */ |
| /* for DTIM period 0 through IWL_DTIM_RANGE_0_MAX */ |
| /* DTIM 0 - 2 */ |
| static const struct iwl_power_vec_entry range_0[IWL_POWER_NUM] = { |
| {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 1, 2, 2, 0xFF)}, 0}, |
| {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(1, 2, 2, 2, 0xFF)}, 0}, |
| {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 2, 2, 2, 0xFF)}, 0}, |
| {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 2, 4, 4, 0xFF)}, 1}, |
| {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(2, 2, 4, 6, 0xFF)}, 2} |
| }; |
| |
| |
| /* for DTIM period IWL_DTIM_RANGE_0_MAX + 1 through IWL_DTIM_RANGE_1_MAX */ |
| /* DTIM 3 - 10 */ |
| static const struct iwl_power_vec_entry range_1[IWL_POWER_NUM] = { |
| {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 3, 4, 4)}, 0}, |
| {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(1, 2, 3, 4, 7)}, 0}, |
| {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 4, 6, 7, 9)}, 0}, |
| {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 4, 6, 9, 10)}, 1}, |
| {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(2, 4, 6, 10, 10)}, 2} |
| }; |
| |
| /* for DTIM period > IWL_DTIM_RANGE_1_MAX */ |
| /* DTIM 11 - */ |
| static const struct iwl_power_vec_entry range_2[IWL_POWER_NUM] = { |
| {{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 3, 4, 0xFF)}, 0}, |
| {{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(2, 4, 6, 7, 0xFF)}, 0}, |
| {{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0}, |
| {{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0}, |
| {{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(4, 7, 10, 10, 0xFF)}, 0} |
| }; |
| |
| static void iwl_static_sleep_cmd(struct iwl_priv *priv, |
| struct iwl_powertable_cmd *cmd, |
| enum iwl_power_level lvl, int period) |
| { |
| const struct iwl_power_vec_entry *table; |
| int max_sleep[IWL_POWER_VEC_SIZE] = { 0 }; |
| int i; |
| u8 skip; |
| u32 slp_itrvl; |
| |
| table = range_2; |
| if (period <= IWL_DTIM_RANGE_1_MAX) |
| table = range_1; |
| if (period <= IWL_DTIM_RANGE_0_MAX) |
| table = range_0; |
| |
| BUG_ON(lvl < 0 || lvl >= IWL_POWER_NUM); |
| |
| *cmd = table[lvl].cmd; |
| |
| if (period == 0) { |
| skip = 0; |
| period = 1; |
| for (i = 0; i < IWL_POWER_VEC_SIZE; i++) |
| max_sleep[i] = 1; |
| |
| } else { |
| skip = table[lvl].no_dtim; |
| for (i = 0; i < IWL_POWER_VEC_SIZE; i++) |
| max_sleep[i] = le32_to_cpu(cmd->sleep_interval[i]); |
| max_sleep[IWL_POWER_VEC_SIZE - 1] = skip + 1; |
| } |
| |
| slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]); |
| /* figure out the listen interval based on dtim period and skip */ |
| if (slp_itrvl == 0xFF) |
| cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] = |
| cpu_to_le32(period * (skip + 1)); |
| |
| slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]); |
| if (slp_itrvl > period) |
| cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] = |
| cpu_to_le32((slp_itrvl / period) * period); |
| |
| if (skip) |
| cmd->flags |= IWL_POWER_SLEEP_OVER_DTIM_MSK; |
| else |
| cmd->flags &= ~IWL_POWER_SLEEP_OVER_DTIM_MSK; |
| |
| slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]); |
| if (slp_itrvl > IWL_CONN_MAX_LISTEN_INTERVAL) |
| cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] = |
| cpu_to_le32(IWL_CONN_MAX_LISTEN_INTERVAL); |
| |
| /* enforce max sleep interval */ |
| for (i = IWL_POWER_VEC_SIZE - 1; i >= 0 ; i--) { |
| if (le32_to_cpu(cmd->sleep_interval[i]) > |
| (max_sleep[i] * period)) |
| cmd->sleep_interval[i] = |
| cpu_to_le32(max_sleep[i] * period); |
| if (i != (IWL_POWER_VEC_SIZE - 1)) { |
| if (le32_to_cpu(cmd->sleep_interval[i]) > |
| le32_to_cpu(cmd->sleep_interval[i+1])) |
| cmd->sleep_interval[i] = |
| cmd->sleep_interval[i+1]; |
| } |
| } |
| |
| if (priv->power_data.pci_pm) |
| cmd->flags |= IWL_POWER_PCI_PM_MSK; |
| else |
| cmd->flags &= ~IWL_POWER_PCI_PM_MSK; |
| |
| IWL_DEBUG_POWER(priv, "numSkipDtim = %u, dtimPeriod = %d\n", |
| skip, period); |
| IWL_DEBUG_POWER(priv, "Sleep command for index %d\n", lvl + 1); |
| } |
| |
| /* default Thermal Throttling transaction table |
| * Current state | Throttling Down | Throttling Up |
| *============================================================================= |
| * Condition Nxt State Condition Nxt State Condition Nxt State |
| *----------------------------------------------------------------------------- |
| * IWL_TI_0 T >= 114 CT_KILL 114>T>=105 TI_1 N/A N/A |
| * IWL_TI_1 T >= 114 CT_KILL 114>T>=110 TI_2 T<=95 TI_0 |
| * IWL_TI_2 T >= 114 CT_KILL T<=100 TI_1 |
| * IWL_CT_KILL N/A N/A N/A N/A T<=95 TI_0 |
| *============================================================================= |
| */ |
| static const struct iwl_tt_trans tt_range_0[IWL_TI_STATE_MAX - 1] = { |
| {IWL_TI_0, IWL_ABSOLUTE_ZERO, 104}, |
| {IWL_TI_1, 105, CT_KILL_THRESHOLD - 1}, |
| {IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX} |
| }; |
| static const struct iwl_tt_trans tt_range_1[IWL_TI_STATE_MAX - 1] = { |
| {IWL_TI_0, IWL_ABSOLUTE_ZERO, 95}, |
| {IWL_TI_2, 110, CT_KILL_THRESHOLD - 1}, |
| {IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX} |
| }; |
| static const struct iwl_tt_trans tt_range_2[IWL_TI_STATE_MAX - 1] = { |
| {IWL_TI_1, IWL_ABSOLUTE_ZERO, 100}, |
| {IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX}, |
| {IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX} |
| }; |
| static const struct iwl_tt_trans tt_range_3[IWL_TI_STATE_MAX - 1] = { |
| {IWL_TI_0, IWL_ABSOLUTE_ZERO, CT_KILL_EXIT_THRESHOLD}, |
| {IWL_TI_CT_KILL, CT_KILL_EXIT_THRESHOLD + 1, IWL_ABSOLUTE_MAX}, |
| {IWL_TI_CT_KILL, CT_KILL_EXIT_THRESHOLD + 1, IWL_ABSOLUTE_MAX} |
| }; |
| |
| /* Advance Thermal Throttling default restriction table */ |
| static const struct iwl_tt_restriction restriction_range[IWL_TI_STATE_MAX] = { |
| {IWL_ANT_OK_MULTI, IWL_ANT_OK_MULTI, true }, |
| {IWL_ANT_OK_SINGLE, IWL_ANT_OK_MULTI, true }, |
| {IWL_ANT_OK_SINGLE, IWL_ANT_OK_SINGLE, false }, |
| {IWL_ANT_OK_NONE, IWL_ANT_OK_NONE, false } |
| }; |
| |
| |
| static void iwl_power_sleep_cam_cmd(struct iwl_priv *priv, |
| struct iwl_powertable_cmd *cmd) |
| { |
| memset(cmd, 0, sizeof(*cmd)); |
| |
| if (priv->power_data.pci_pm) |
| cmd->flags |= IWL_POWER_PCI_PM_MSK; |
| |
| IWL_DEBUG_POWER(priv, "Sleep command for CAM\n"); |
| } |
| |
| static void iwl_power_fill_sleep_cmd(struct iwl_priv *priv, |
| struct iwl_powertable_cmd *cmd, |
| int dynps_ms, int wakeup_period) |
| { |
| /* |
| * These are the original power level 3 sleep successions. The |
| * device may behave better with such succession and was also |
| * only tested with that. Just like the original sleep commands, |
| * also adjust the succession here to the wakeup_period below. |
| * The ranges are the same as for the sleep commands, 0-2, 3-9 |
| * and >10, which is selected based on the DTIM interval for |
| * the sleep index but here we use the wakeup period since that |
| * is what we need to do for the latency requirements. |
| */ |
| static const u8 slp_succ_r0[IWL_POWER_VEC_SIZE] = { 2, 2, 2, 2, 2 }; |
| static const u8 slp_succ_r1[IWL_POWER_VEC_SIZE] = { 2, 4, 6, 7, 9 }; |
| static const u8 slp_succ_r2[IWL_POWER_VEC_SIZE] = { 2, 7, 9, 9, 0xFF }; |
| const u8 *slp_succ = slp_succ_r0; |
| int i; |
| |
| if (wakeup_period > IWL_DTIM_RANGE_0_MAX) |
| slp_succ = slp_succ_r1; |
| if (wakeup_period > IWL_DTIM_RANGE_1_MAX) |
| slp_succ = slp_succ_r2; |
| |
| memset(cmd, 0, sizeof(*cmd)); |
| |
| cmd->flags = IWL_POWER_DRIVER_ALLOW_SLEEP_MSK | |
| IWL_POWER_FAST_PD; /* no use seeing frames for others */ |
| |
| if (priv->power_data.pci_pm) |
| cmd->flags |= IWL_POWER_PCI_PM_MSK; |
| |
| cmd->rx_data_timeout = cpu_to_le32(1000 * dynps_ms); |
| cmd->tx_data_timeout = cpu_to_le32(1000 * dynps_ms); |
| |
| for (i = 0; i < IWL_POWER_VEC_SIZE; i++) |
| cmd->sleep_interval[i] = |
| cpu_to_le32(min_t(int, slp_succ[i], wakeup_period)); |
| |
| IWL_DEBUG_POWER(priv, "Automatic sleep command\n"); |
| } |
| |
| static int iwl_set_power(struct iwl_priv *priv, struct iwl_powertable_cmd *cmd) |
| { |
| IWL_DEBUG_POWER(priv, "Sending power/sleep command\n"); |
| IWL_DEBUG_POWER(priv, "Flags value = 0x%08X\n", cmd->flags); |
| IWL_DEBUG_POWER(priv, "Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout)); |
| IWL_DEBUG_POWER(priv, "Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout)); |
| IWL_DEBUG_POWER(priv, "Sleep interval vector = { %d , %d , %d , %d , %d }\n", |
| le32_to_cpu(cmd->sleep_interval[0]), |
| le32_to_cpu(cmd->sleep_interval[1]), |
| le32_to_cpu(cmd->sleep_interval[2]), |
| le32_to_cpu(cmd->sleep_interval[3]), |
| le32_to_cpu(cmd->sleep_interval[4])); |
| |
| return iwl_send_cmd_pdu(priv, POWER_TABLE_CMD, |
| sizeof(struct iwl_powertable_cmd), cmd); |
| } |
| |
| /* priv->mutex must be held */ |
| int iwl_power_update_mode(struct iwl_priv *priv, bool force) |
| { |
| int ret = 0; |
| struct iwl_tt_mgmt *tt = &priv->thermal_throttle; |
| bool enabled = priv->hw->conf.flags & IEEE80211_CONF_PS; |
| bool update_chains; |
| struct iwl_powertable_cmd cmd; |
| int dtimper; |
| |
| /* Don't update the RX chain when chain noise calibration is running */ |
| update_chains = priv->chain_noise_data.state == IWL_CHAIN_NOISE_DONE || |
| priv->chain_noise_data.state == IWL_CHAIN_NOISE_ALIVE; |
| |
| dtimper = priv->hw->conf.ps_dtim_period ?: 1; |
| |
| if (priv->cfg->broken_powersave) |
| iwl_power_sleep_cam_cmd(priv, &cmd); |
| else if (priv->cfg->supports_idle && |
| priv->hw->conf.flags & IEEE80211_CONF_IDLE) |
| iwl_static_sleep_cmd(priv, &cmd, IWL_POWER_INDEX_5, 20); |
| else if (tt->state >= IWL_TI_1) |
| iwl_static_sleep_cmd(priv, &cmd, tt->tt_power_mode, dtimper); |
| else if (!enabled) |
| iwl_power_sleep_cam_cmd(priv, &cmd); |
| else if (priv->power_data.debug_sleep_level_override >= 0) |
| iwl_static_sleep_cmd(priv, &cmd, |
| priv->power_data.debug_sleep_level_override, |
| dtimper); |
| else if (no_sleep_autoadjust) |
| iwl_static_sleep_cmd(priv, &cmd, IWL_POWER_INDEX_1, dtimper); |
| else |
| iwl_power_fill_sleep_cmd(priv, &cmd, |
| priv->hw->conf.dynamic_ps_timeout, |
| priv->hw->conf.max_sleep_period); |
| |
| if (iwl_is_ready_rf(priv) && |
| (memcmp(&priv->power_data.sleep_cmd, &cmd, sizeof(cmd)) || force)) { |
| if (cmd.flags & IWL_POWER_DRIVER_ALLOW_SLEEP_MSK) |
| set_bit(STATUS_POWER_PMI, &priv->status); |
| |
| ret = iwl_set_power(priv, &cmd); |
| if (!ret) { |
| if (!(cmd.flags & IWL_POWER_DRIVER_ALLOW_SLEEP_MSK)) |
| clear_bit(STATUS_POWER_PMI, &priv->status); |
| |
| if (priv->cfg->ops->lib->update_chain_flags && |
| update_chains) |
| priv->cfg->ops->lib->update_chain_flags(priv); |
| else if (priv->cfg->ops->lib->update_chain_flags) |
| IWL_DEBUG_POWER(priv, |
| "Cannot update the power, chain noise " |
| "calibration running: %d\n", |
| priv->chain_noise_data.state); |
| memcpy(&priv->power_data.sleep_cmd, &cmd, sizeof(cmd)); |
| } else |
| IWL_ERR(priv, "set power fail, ret = %d", ret); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(iwl_power_update_mode); |
| |
| bool iwl_ht_enabled(struct iwl_priv *priv) |
| { |
| struct iwl_tt_mgmt *tt = &priv->thermal_throttle; |
| struct iwl_tt_restriction *restriction; |
| |
| if (!priv->thermal_throttle.advanced_tt) |
| return true; |
| restriction = tt->restriction + tt->state; |
| return restriction->is_ht; |
| } |
| EXPORT_SYMBOL(iwl_ht_enabled); |
| |
| bool iwl_within_ct_kill_margin(struct iwl_priv *priv) |
| { |
| s32 temp = priv->temperature; /* degrees CELSIUS except specified */ |
| bool within_margin = false; |
| |
| if (priv->cfg->temperature_kelvin) |
| temp = KELVIN_TO_CELSIUS(priv->temperature); |
| |
| if (!priv->thermal_throttle.advanced_tt) |
| within_margin = ((temp + IWL_TT_CT_KILL_MARGIN) >= |
| CT_KILL_THRESHOLD_LEGACY) ? true : false; |
| else |
| within_margin = ((temp + IWL_TT_CT_KILL_MARGIN) >= |
| CT_KILL_THRESHOLD) ? true : false; |
| return within_margin; |
| } |
| |
| enum iwl_antenna_ok iwl_tx_ant_restriction(struct iwl_priv *priv) |
| { |
| struct iwl_tt_mgmt *tt = &priv->thermal_throttle; |
| struct iwl_tt_restriction *restriction; |
| |
| if (!priv->thermal_throttle.advanced_tt) |
| return IWL_ANT_OK_MULTI; |
| restriction = tt->restriction + tt->state; |
| return restriction->tx_stream; |
| } |
| EXPORT_SYMBOL(iwl_tx_ant_restriction); |
| |
| enum iwl_antenna_ok iwl_rx_ant_restriction(struct iwl_priv *priv) |
| { |
| struct iwl_tt_mgmt *tt = &priv->thermal_throttle; |
| struct iwl_tt_restriction *restriction; |
| |
| if (!priv->thermal_throttle.advanced_tt) |
| return IWL_ANT_OK_MULTI; |
| restriction = tt->restriction + tt->state; |
| return restriction->rx_stream; |
| } |
| |
| #define CT_KILL_EXIT_DURATION (5) /* 5 seconds duration */ |
| #define CT_KILL_WAITING_DURATION (300) /* 300ms duration */ |
| |
| /* |
| * toggle the bit to wake up uCode and check the temperature |
| * if the temperature is below CT, uCode will stay awake and send card |
| * state notification with CT_KILL bit clear to inform Thermal Throttling |
| * Management to change state. Otherwise, uCode will go back to sleep |
| * without doing anything, driver should continue the 5 seconds timer |
| * to wake up uCode for temperature check until temperature drop below CT |
| */ |
| static void iwl_tt_check_exit_ct_kill(unsigned long data) |
| { |
| struct iwl_priv *priv = (struct iwl_priv *)data; |
| struct iwl_tt_mgmt *tt = &priv->thermal_throttle; |
| unsigned long flags; |
| |
| if (test_bit(STATUS_EXIT_PENDING, &priv->status)) |
| return; |
| |
| if (tt->state == IWL_TI_CT_KILL) { |
| if (priv->thermal_throttle.ct_kill_toggle) { |
| iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR, |
| CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT); |
| priv->thermal_throttle.ct_kill_toggle = false; |
| } else { |
| iwl_write32(priv, CSR_UCODE_DRV_GP1_SET, |
| CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT); |
| priv->thermal_throttle.ct_kill_toggle = true; |
| } |
| iwl_read32(priv, CSR_UCODE_DRV_GP1); |
| spin_lock_irqsave(&priv->reg_lock, flags); |
| if (!iwl_grab_nic_access(priv)) |
| iwl_release_nic_access(priv); |
| spin_unlock_irqrestore(&priv->reg_lock, flags); |
| |
| /* Reschedule the ct_kill timer to occur in |
| * CT_KILL_EXIT_DURATION seconds to ensure we get a |
| * thermal update */ |
| IWL_DEBUG_POWER(priv, "schedule ct_kill exit timer\n"); |
| mod_timer(&priv->thermal_throttle.ct_kill_exit_tm, jiffies + |
| CT_KILL_EXIT_DURATION * HZ); |
| } |
| } |
| |
| static void iwl_perform_ct_kill_task(struct iwl_priv *priv, |
| bool stop) |
| { |
| if (stop) { |
| IWL_DEBUG_POWER(priv, "Stop all queues\n"); |
| if (priv->mac80211_registered) |
| ieee80211_stop_queues(priv->hw); |
| IWL_DEBUG_POWER(priv, |
| "Schedule 5 seconds CT_KILL Timer\n"); |
| mod_timer(&priv->thermal_throttle.ct_kill_exit_tm, jiffies + |
| CT_KILL_EXIT_DURATION * HZ); |
| } else { |
| IWL_DEBUG_POWER(priv, "Wake all queues\n"); |
| if (priv->mac80211_registered) |
| ieee80211_wake_queues(priv->hw); |
| } |
| } |
| |
| static void iwl_tt_ready_for_ct_kill(unsigned long data) |
| { |
| struct iwl_priv *priv = (struct iwl_priv *)data; |
| struct iwl_tt_mgmt *tt = &priv->thermal_throttle; |
| |
| if (test_bit(STATUS_EXIT_PENDING, &priv->status)) |
| return; |
| |
| /* temperature timer expired, ready to go into CT_KILL state */ |
| if (tt->state != IWL_TI_CT_KILL) { |
| IWL_DEBUG_POWER(priv, "entering CT_KILL state when temperature timer expired\n"); |
| tt->state = IWL_TI_CT_KILL; |
| set_bit(STATUS_CT_KILL, &priv->status); |
| iwl_perform_ct_kill_task(priv, true); |
| } |
| } |
| |
| static void iwl_prepare_ct_kill_task(struct iwl_priv *priv) |
| { |
| IWL_DEBUG_POWER(priv, "Prepare to enter IWL_TI_CT_KILL\n"); |
| /* make request to retrieve statistics information */ |
| iwl_send_statistics_request(priv, CMD_SYNC, false); |
| /* Reschedule the ct_kill wait timer */ |
| mod_timer(&priv->thermal_throttle.ct_kill_waiting_tm, |
| jiffies + msecs_to_jiffies(CT_KILL_WAITING_DURATION)); |
| } |
| |
| #define IWL_MINIMAL_POWER_THRESHOLD (CT_KILL_THRESHOLD_LEGACY) |
| #define IWL_REDUCED_PERFORMANCE_THRESHOLD_2 (100) |
| #define IWL_REDUCED_PERFORMANCE_THRESHOLD_1 (90) |
| |
| /* |
| * Legacy thermal throttling |
| * 1) Avoid NIC destruction due to high temperatures |
| * Chip will identify dangerously high temperatures that can |
| * harm the device and will power down |
| * 2) Avoid the NIC power down due to high temperature |
| * Throttle early enough to lower the power consumption before |
| * drastic steps are needed |
| */ |
| static void iwl_legacy_tt_handler(struct iwl_priv *priv, s32 temp, bool force) |
| { |
| struct iwl_tt_mgmt *tt = &priv->thermal_throttle; |
| enum iwl_tt_state old_state; |
| |
| #ifdef CONFIG_IWLWIFI_DEBUG |
| if ((tt->tt_previous_temp) && |
| (temp > tt->tt_previous_temp) && |
| ((temp - tt->tt_previous_temp) > |
| IWL_TT_INCREASE_MARGIN)) { |
| IWL_DEBUG_POWER(priv, |
| "Temperature increase %d degree Celsius\n", |
| (temp - tt->tt_previous_temp)); |
| } |
| #endif |
| old_state = tt->state; |
| /* in Celsius */ |
| if (temp >= IWL_MINIMAL_POWER_THRESHOLD) |
| tt->state = IWL_TI_CT_KILL; |
| else if (temp >= IWL_REDUCED_PERFORMANCE_THRESHOLD_2) |
| tt->state = IWL_TI_2; |
| else if (temp >= IWL_REDUCED_PERFORMANCE_THRESHOLD_1) |
| tt->state = IWL_TI_1; |
| else |
| tt->state = IWL_TI_0; |
| |
| #ifdef CONFIG_IWLWIFI_DEBUG |
| tt->tt_previous_temp = temp; |
| #endif |
| /* stop ct_kill_waiting_tm timer */ |
| del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm); |
| if (tt->state != old_state) { |
| switch (tt->state) { |
| case IWL_TI_0: |
| /* |
| * When the system is ready to go back to IWL_TI_0 |
| * we only have to call iwl_power_update_mode() to |
| * do so. |
| */ |
| break; |
| case IWL_TI_1: |
| tt->tt_power_mode = IWL_POWER_INDEX_3; |
| break; |
| case IWL_TI_2: |
| tt->tt_power_mode = IWL_POWER_INDEX_4; |
| break; |
| default: |
| tt->tt_power_mode = IWL_POWER_INDEX_5; |
| break; |
| } |
| mutex_lock(&priv->mutex); |
| if (old_state == IWL_TI_CT_KILL) |
| clear_bit(STATUS_CT_KILL, &priv->status); |
| if (tt->state != IWL_TI_CT_KILL && |
| iwl_power_update_mode(priv, true)) { |
| /* TT state not updated |
| * try again during next temperature read |
| */ |
| if (old_state == IWL_TI_CT_KILL) |
| set_bit(STATUS_CT_KILL, &priv->status); |
| tt->state = old_state; |
| IWL_ERR(priv, "Cannot update power mode, " |
| "TT state not updated\n"); |
| } else { |
| if (tt->state == IWL_TI_CT_KILL) { |
| if (force) { |
| set_bit(STATUS_CT_KILL, &priv->status); |
| iwl_perform_ct_kill_task(priv, true); |
| } else { |
| iwl_prepare_ct_kill_task(priv); |
| tt->state = old_state; |
| } |
| } else if (old_state == IWL_TI_CT_KILL && |
| tt->state != IWL_TI_CT_KILL) |
| iwl_perform_ct_kill_task(priv, false); |
| IWL_DEBUG_POWER(priv, "Temperature state changed %u\n", |
| tt->state); |
| IWL_DEBUG_POWER(priv, "Power Index change to %u\n", |
| tt->tt_power_mode); |
| } |
| mutex_unlock(&priv->mutex); |
| } |
| } |
| |
| /* |
| * Advance thermal throttling |
| * 1) Avoid NIC destruction due to high temperatures |
| * Chip will identify dangerously high temperatures that can |
| * harm the device and will power down |
| * 2) Avoid the NIC power down due to high temperature |
| * Throttle early enough to lower the power consumption before |
| * drastic steps are needed |
| * Actions include relaxing the power down sleep thresholds and |
| * decreasing the number of TX streams |
| * 3) Avoid throughput performance impact as much as possible |
| * |
| *============================================================================= |
| * Condition Nxt State Condition Nxt State Condition Nxt State |
| *----------------------------------------------------------------------------- |
| * IWL_TI_0 T >= 114 CT_KILL 114>T>=105 TI_1 N/A N/A |
| * IWL_TI_1 T >= 114 CT_KILL 114>T>=110 TI_2 T<=95 TI_0 |
| * IWL_TI_2 T >= 114 CT_KILL T<=100 TI_1 |
| * IWL_CT_KILL N/A N/A N/A N/A T<=95 TI_0 |
| *============================================================================= |
| */ |
| static void iwl_advance_tt_handler(struct iwl_priv *priv, s32 temp, bool force) |
| { |
| struct iwl_tt_mgmt *tt = &priv->thermal_throttle; |
| int i; |
| bool changed = false; |
| enum iwl_tt_state old_state; |
| struct iwl_tt_trans *transaction; |
| |
| old_state = tt->state; |
| for (i = 0; i < IWL_TI_STATE_MAX - 1; i++) { |
| /* based on the current TT state, |
| * find the curresponding transaction table |
| * each table has (IWL_TI_STATE_MAX - 1) entries |
| * tt->transaction + ((old_state * (IWL_TI_STATE_MAX - 1)) |
| * will advance to the correct table. |
| * then based on the current temperature |
| * find the next state need to transaction to |
| * go through all the possible (IWL_TI_STATE_MAX - 1) entries |
| * in the current table to see if transaction is needed |
| */ |
| transaction = tt->transaction + |
| ((old_state * (IWL_TI_STATE_MAX - 1)) + i); |
| if (temp >= transaction->tt_low && |
| temp <= transaction->tt_high) { |
| #ifdef CONFIG_IWLWIFI_DEBUG |
| if ((tt->tt_previous_temp) && |
| (temp > tt->tt_previous_temp) && |
| ((temp - tt->tt_previous_temp) > |
| IWL_TT_INCREASE_MARGIN)) { |
| IWL_DEBUG_POWER(priv, |
| "Temperature increase %d " |
| "degree Celsius\n", |
| (temp - tt->tt_previous_temp)); |
| } |
| tt->tt_previous_temp = temp; |
| #endif |
| if (old_state != |
| transaction->next_state) { |
| changed = true; |
| tt->state = |
| transaction->next_state; |
| } |
| break; |
| } |
| } |
| /* stop ct_kill_waiting_tm timer */ |
| del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm); |
| if (changed) { |
| struct iwl_rxon_cmd *rxon = &priv->staging_rxon; |
| |
| if (tt->state >= IWL_TI_1) { |
| /* force PI = IWL_POWER_INDEX_5 in the case of TI > 0 */ |
| tt->tt_power_mode = IWL_POWER_INDEX_5; |
| if (!iwl_ht_enabled(priv)) |
| /* disable HT */ |
| rxon->flags &= ~(RXON_FLG_CHANNEL_MODE_MSK | |
| RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK | |
| RXON_FLG_HT40_PROT_MSK | |
| RXON_FLG_HT_PROT_MSK); |
| else { |
| /* check HT capability and set |
| * according to the system HT capability |
| * in case get disabled before */ |
| iwl_set_rxon_ht(priv, &priv->current_ht_config); |
| } |
| |
| } else { |
| /* |
| * restore system power setting -- it will be |
| * recalculated automatically. |
| */ |
| |
| /* check HT capability and set |
| * according to the system HT capability |
| * in case get disabled before */ |
| iwl_set_rxon_ht(priv, &priv->current_ht_config); |
| } |
| mutex_lock(&priv->mutex); |
| if (old_state == IWL_TI_CT_KILL) |
| clear_bit(STATUS_CT_KILL, &priv->status); |
| if (tt->state != IWL_TI_CT_KILL && |
| iwl_power_update_mode(priv, true)) { |
| /* TT state not updated |
| * try again during next temperature read |
| */ |
| IWL_ERR(priv, "Cannot update power mode, " |
| "TT state not updated\n"); |
| if (old_state == IWL_TI_CT_KILL) |
| set_bit(STATUS_CT_KILL, &priv->status); |
| tt->state = old_state; |
| } else { |
| IWL_DEBUG_POWER(priv, |
| "Thermal Throttling to new state: %u\n", |
| tt->state); |
| if (old_state != IWL_TI_CT_KILL && |
| tt->state == IWL_TI_CT_KILL) { |
| if (force) { |
| IWL_DEBUG_POWER(priv, |
| "Enter IWL_TI_CT_KILL\n"); |
| set_bit(STATUS_CT_KILL, &priv->status); |
| iwl_perform_ct_kill_task(priv, true); |
| } else { |
| iwl_prepare_ct_kill_task(priv); |
| tt->state = old_state; |
| } |
| } else if (old_state == IWL_TI_CT_KILL && |
| tt->state != IWL_TI_CT_KILL) { |
| IWL_DEBUG_POWER(priv, "Exit IWL_TI_CT_KILL\n"); |
| iwl_perform_ct_kill_task(priv, false); |
| } |
| } |
| mutex_unlock(&priv->mutex); |
| } |
| } |
| |
| /* Card State Notification indicated reach critical temperature |
| * if PSP not enable, no Thermal Throttling function will be performed |
| * just set the GP1 bit to acknowledge the event |
| * otherwise, go into IWL_TI_CT_KILL state |
| * since Card State Notification will not provide any temperature reading |
| * for Legacy mode |
| * so just pass the CT_KILL temperature to iwl_legacy_tt_handler() |
| * for advance mode |
| * pass CT_KILL_THRESHOLD+1 to make sure move into IWL_TI_CT_KILL state |
| */ |
| static void iwl_bg_ct_enter(struct work_struct *work) |
| { |
| struct iwl_priv *priv = container_of(work, struct iwl_priv, ct_enter); |
| struct iwl_tt_mgmt *tt = &priv->thermal_throttle; |
| |
| if (test_bit(STATUS_EXIT_PENDING, &priv->status)) |
| return; |
| |
| if (!iwl_is_ready(priv)) |
| return; |
| |
| if (tt->state != IWL_TI_CT_KILL) { |
| IWL_ERR(priv, "Device reached critical temperature " |
| "- ucode going to sleep!\n"); |
| if (!priv->thermal_throttle.advanced_tt) |
| iwl_legacy_tt_handler(priv, |
| IWL_MINIMAL_POWER_THRESHOLD, |
| true); |
| else |
| iwl_advance_tt_handler(priv, |
| CT_KILL_THRESHOLD + 1, true); |
| } |
| } |
| |
| /* Card State Notification indicated out of critical temperature |
| * since Card State Notification will not provide any temperature reading |
| * so pass the IWL_REDUCED_PERFORMANCE_THRESHOLD_2 temperature |
| * to iwl_legacy_tt_handler() to get out of IWL_CT_KILL state |
| */ |
| static void iwl_bg_ct_exit(struct work_struct *work) |
| { |
| struct iwl_priv *priv = container_of(work, struct iwl_priv, ct_exit); |
| struct iwl_tt_mgmt *tt = &priv->thermal_throttle; |
| |
| if (test_bit(STATUS_EXIT_PENDING, &priv->status)) |
| return; |
| |
| if (!iwl_is_ready(priv)) |
| return; |
| |
| /* stop ct_kill_exit_tm timer */ |
| del_timer_sync(&priv->thermal_throttle.ct_kill_exit_tm); |
| |
| if (tt->state == IWL_TI_CT_KILL) { |
| IWL_ERR(priv, |
| "Device temperature below critical" |
| "- ucode awake!\n"); |
| /* |
| * exit from CT_KILL state |
| * reset the current temperature reading |
| */ |
| priv->temperature = 0; |
| if (!priv->thermal_throttle.advanced_tt) |
| iwl_legacy_tt_handler(priv, |
| IWL_REDUCED_PERFORMANCE_THRESHOLD_2, |
| true); |
| else |
| iwl_advance_tt_handler(priv, CT_KILL_EXIT_THRESHOLD, |
| true); |
| } |
| } |
| |
| void iwl_tt_enter_ct_kill(struct iwl_priv *priv) |
| { |
| if (test_bit(STATUS_EXIT_PENDING, &priv->status)) |
| return; |
| |
| IWL_DEBUG_POWER(priv, "Queueing critical temperature enter.\n"); |
| queue_work(priv->workqueue, &priv->ct_enter); |
| } |
| EXPORT_SYMBOL(iwl_tt_enter_ct_kill); |
| |
| void iwl_tt_exit_ct_kill(struct iwl_priv *priv) |
| { |
| if (test_bit(STATUS_EXIT_PENDING, &priv->status)) |
| return; |
| |
| IWL_DEBUG_POWER(priv, "Queueing critical temperature exit.\n"); |
| queue_work(priv->workqueue, &priv->ct_exit); |
| } |
| EXPORT_SYMBOL(iwl_tt_exit_ct_kill); |
| |
| static void iwl_bg_tt_work(struct work_struct *work) |
| { |
| struct iwl_priv *priv = container_of(work, struct iwl_priv, tt_work); |
| s32 temp = priv->temperature; /* degrees CELSIUS except specified */ |
| |
| if (test_bit(STATUS_EXIT_PENDING, &priv->status)) |
| return; |
| |
| if (priv->cfg->temperature_kelvin) |
| temp = KELVIN_TO_CELSIUS(priv->temperature); |
| |
| if (!priv->thermal_throttle.advanced_tt) |
| iwl_legacy_tt_handler(priv, temp, false); |
| else |
| iwl_advance_tt_handler(priv, temp, false); |
| } |
| |
| void iwl_tt_handler(struct iwl_priv *priv) |
| { |
| if (test_bit(STATUS_EXIT_PENDING, &priv->status)) |
| return; |
| |
| IWL_DEBUG_POWER(priv, "Queueing thermal throttling work.\n"); |
| queue_work(priv->workqueue, &priv->tt_work); |
| } |
| EXPORT_SYMBOL(iwl_tt_handler); |
| |
| /* Thermal throttling initialization |
| * For advance thermal throttling: |
| * Initialize Thermal Index and temperature threshold table |
| * Initialize thermal throttling restriction table |
| */ |
| void iwl_tt_initialize(struct iwl_priv *priv) |
| { |
| struct iwl_tt_mgmt *tt = &priv->thermal_throttle; |
| int size = sizeof(struct iwl_tt_trans) * (IWL_TI_STATE_MAX - 1); |
| struct iwl_tt_trans *transaction; |
| |
| IWL_DEBUG_POWER(priv, "Initialize Thermal Throttling\n"); |
| |
| memset(tt, 0, sizeof(struct iwl_tt_mgmt)); |
| |
| tt->state = IWL_TI_0; |
| init_timer(&priv->thermal_throttle.ct_kill_exit_tm); |
| priv->thermal_throttle.ct_kill_exit_tm.data = (unsigned long)priv; |
| priv->thermal_throttle.ct_kill_exit_tm.function = |
| iwl_tt_check_exit_ct_kill; |
| init_timer(&priv->thermal_throttle.ct_kill_waiting_tm); |
| priv->thermal_throttle.ct_kill_waiting_tm.data = (unsigned long)priv; |
| priv->thermal_throttle.ct_kill_waiting_tm.function = |
| iwl_tt_ready_for_ct_kill; |
| /* setup deferred ct kill work */ |
| INIT_WORK(&priv->tt_work, iwl_bg_tt_work); |
| INIT_WORK(&priv->ct_enter, iwl_bg_ct_enter); |
| INIT_WORK(&priv->ct_exit, iwl_bg_ct_exit); |
| |
| if (priv->cfg->adv_thermal_throttle) { |
| IWL_DEBUG_POWER(priv, "Advanced Thermal Throttling\n"); |
| tt->restriction = kzalloc(sizeof(struct iwl_tt_restriction) * |
| IWL_TI_STATE_MAX, GFP_KERNEL); |
| tt->transaction = kzalloc(sizeof(struct iwl_tt_trans) * |
| IWL_TI_STATE_MAX * (IWL_TI_STATE_MAX - 1), |
| GFP_KERNEL); |
| if (!tt->restriction || !tt->transaction) { |
| IWL_ERR(priv, "Fallback to Legacy Throttling\n"); |
| priv->thermal_throttle.advanced_tt = false; |
| kfree(tt->restriction); |
| tt->restriction = NULL; |
| kfree(tt->transaction); |
| tt->transaction = NULL; |
| } else { |
| transaction = tt->transaction + |
| (IWL_TI_0 * (IWL_TI_STATE_MAX - 1)); |
| memcpy(transaction, &tt_range_0[0], size); |
| transaction = tt->transaction + |
| (IWL_TI_1 * (IWL_TI_STATE_MAX - 1)); |
| memcpy(transaction, &tt_range_1[0], size); |
| transaction = tt->transaction + |
| (IWL_TI_2 * (IWL_TI_STATE_MAX - 1)); |
| memcpy(transaction, &tt_range_2[0], size); |
| transaction = tt->transaction + |
| (IWL_TI_CT_KILL * (IWL_TI_STATE_MAX - 1)); |
| memcpy(transaction, &tt_range_3[0], size); |
| size = sizeof(struct iwl_tt_restriction) * |
| IWL_TI_STATE_MAX; |
| memcpy(tt->restriction, |
| &restriction_range[0], size); |
| priv->thermal_throttle.advanced_tt = true; |
| } |
| } else { |
| IWL_DEBUG_POWER(priv, "Legacy Thermal Throttling\n"); |
| priv->thermal_throttle.advanced_tt = false; |
| } |
| } |
| EXPORT_SYMBOL(iwl_tt_initialize); |
| |
| /* cleanup thermal throttling management related memory and timer */ |
| void iwl_tt_exit(struct iwl_priv *priv) |
| { |
| struct iwl_tt_mgmt *tt = &priv->thermal_throttle; |
| |
| /* stop ct_kill_exit_tm timer if activated */ |
| del_timer_sync(&priv->thermal_throttle.ct_kill_exit_tm); |
| /* stop ct_kill_waiting_tm timer if activated */ |
| del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm); |
| cancel_work_sync(&priv->tt_work); |
| cancel_work_sync(&priv->ct_enter); |
| cancel_work_sync(&priv->ct_exit); |
| |
| if (priv->thermal_throttle.advanced_tt) { |
| /* free advance thermal throttling memory */ |
| kfree(tt->restriction); |
| tt->restriction = NULL; |
| kfree(tt->transaction); |
| tt->transaction = NULL; |
| } |
| } |
| EXPORT_SYMBOL(iwl_tt_exit); |
| |
| /* initialize to default */ |
| void iwl_power_initialize(struct iwl_priv *priv) |
| { |
| u16 lctl = iwl_pcie_link_ctl(priv); |
| |
| priv->power_data.pci_pm = !(lctl & PCI_CFG_LINK_CTRL_VAL_L0S_EN); |
| |
| priv->power_data.debug_sleep_level_override = -1; |
| |
| memset(&priv->power_data.sleep_cmd, 0, |
| sizeof(priv->power_data.sleep_cmd)); |
| } |
| EXPORT_SYMBOL(iwl_power_initialize); |