blob: dfb6acc42f02efc40f36914e2925510cd8056d0b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2015 Free Electrons
* Copyright (C) 2015 NextThing Co
*
* Maxime Ripard <maxime.ripard@free-electrons.com>
*/
#include <linux/clk.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_simple_kms_helper.h>
#include "sun4i_crtc.h"
#include "sun4i_tcon.h"
#include "sun4i_rgb.h"
struct sun4i_rgb {
struct drm_connector connector;
struct drm_encoder encoder;
struct sun4i_tcon *tcon;
struct drm_panel *panel;
struct drm_bridge *bridge;
};
static inline struct sun4i_rgb *
drm_connector_to_sun4i_rgb(struct drm_connector *connector)
{
return container_of(connector, struct sun4i_rgb,
connector);
}
static inline struct sun4i_rgb *
drm_encoder_to_sun4i_rgb(struct drm_encoder *encoder)
{
return container_of(encoder, struct sun4i_rgb,
encoder);
}
static int sun4i_rgb_get_modes(struct drm_connector *connector)
{
struct sun4i_rgb *rgb =
drm_connector_to_sun4i_rgb(connector);
return drm_panel_get_modes(rgb->panel, connector);
}
/*
* VESA DMT defines a tolerance of 0.5% on the pixel clock, while the
* CVT spec reuses that tolerance in its examples, so it looks to be a
* good default tolerance for the EDID-based modes. Define it to 5 per
* mille to avoid floating point operations.
*/
#define SUN4I_RGB_DOTCLOCK_TOLERANCE_PER_MILLE 5
static enum drm_mode_status sun4i_rgb_mode_valid(struct drm_encoder *crtc,
const struct drm_display_mode *mode)
{
struct sun4i_rgb *rgb = drm_encoder_to_sun4i_rgb(crtc);
struct sun4i_tcon *tcon = rgb->tcon;
u32 hsync = mode->hsync_end - mode->hsync_start;
u32 vsync = mode->vsync_end - mode->vsync_start;
unsigned long long rate = mode->clock * 1000;
unsigned long long lowest, highest;
unsigned long long rounded_rate;
DRM_DEBUG_DRIVER("Validating modes...\n");
if (hsync < 1)
return MODE_HSYNC_NARROW;
if (hsync > 0x3ff)
return MODE_HSYNC_WIDE;
if ((mode->hdisplay < 1) || (mode->htotal < 1))
return MODE_H_ILLEGAL;
if ((mode->hdisplay > 0x7ff) || (mode->htotal > 0xfff))
return MODE_BAD_HVALUE;
DRM_DEBUG_DRIVER("Horizontal parameters OK\n");
if (vsync < 1)
return MODE_VSYNC_NARROW;
if (vsync > 0x3ff)
return MODE_VSYNC_WIDE;
if ((mode->vdisplay < 1) || (mode->vtotal < 1))
return MODE_V_ILLEGAL;
if ((mode->vdisplay > 0x7ff) || (mode->vtotal > 0xfff))
return MODE_BAD_VVALUE;
DRM_DEBUG_DRIVER("Vertical parameters OK\n");
/*
* TODO: We should use the struct display_timing if available
* and / or trying to stretch the timings within that
* tolerancy to take care of panels that we wouldn't be able
* to have a exact match for.
*/
if (rgb->panel) {
DRM_DEBUG_DRIVER("RGB panel used, skipping clock rate checks");
goto out;
}
/*
* That shouldn't ever happen unless something is really wrong, but it
* doesn't harm to check.
*/
if (!rgb->bridge)
goto out;
tcon->dclk_min_div = 6;
tcon->dclk_max_div = 127;
rounded_rate = clk_round_rate(tcon->dclk, rate);
lowest = rate * (1000 - SUN4I_RGB_DOTCLOCK_TOLERANCE_PER_MILLE);
do_div(lowest, 1000);
if (rounded_rate < lowest)
return MODE_CLOCK_LOW;
highest = rate * (1000 + SUN4I_RGB_DOTCLOCK_TOLERANCE_PER_MILLE);
do_div(highest, 1000);
if (rounded_rate > highest)
return MODE_CLOCK_HIGH;
out:
DRM_DEBUG_DRIVER("Clock rate OK\n");
return MODE_OK;
}
static const struct drm_connector_helper_funcs sun4i_rgb_con_helper_funcs = {
.get_modes = sun4i_rgb_get_modes,
};
static void
sun4i_rgb_connector_destroy(struct drm_connector *connector)
{
drm_connector_cleanup(connector);
}
static const struct drm_connector_funcs sun4i_rgb_con_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = sun4i_rgb_connector_destroy,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static void sun4i_rgb_encoder_enable(struct drm_encoder *encoder)
{
struct sun4i_rgb *rgb = drm_encoder_to_sun4i_rgb(encoder);
DRM_DEBUG_DRIVER("Enabling RGB output\n");
if (rgb->panel) {
drm_panel_prepare(rgb->panel);
drm_panel_enable(rgb->panel);
}
}
static void sun4i_rgb_encoder_disable(struct drm_encoder *encoder)
{
struct sun4i_rgb *rgb = drm_encoder_to_sun4i_rgb(encoder);
DRM_DEBUG_DRIVER("Disabling RGB output\n");
if (rgb->panel) {
drm_panel_disable(rgb->panel);
drm_panel_unprepare(rgb->panel);
}
}
static const struct drm_encoder_helper_funcs sun4i_rgb_enc_helper_funcs = {
.disable = sun4i_rgb_encoder_disable,
.enable = sun4i_rgb_encoder_enable,
.mode_valid = sun4i_rgb_mode_valid,
};
int sun4i_rgb_init(struct drm_device *drm, struct sun4i_tcon *tcon)
{
struct drm_encoder *encoder;
struct sun4i_rgb *rgb;
int ret;
rgb = devm_kzalloc(drm->dev, sizeof(*rgb), GFP_KERNEL);
if (!rgb)
return -ENOMEM;
rgb->tcon = tcon;
encoder = &rgb->encoder;
ret = drm_of_find_panel_or_bridge(tcon->dev->of_node, 1, 0,
&rgb->panel, &rgb->bridge);
if (ret) {
dev_info(drm->dev, "No panel or bridge found... RGB output disabled\n");
return 0;
}
drm_encoder_helper_add(&rgb->encoder,
&sun4i_rgb_enc_helper_funcs);
ret = drm_simple_encoder_init(drm, &rgb->encoder,
DRM_MODE_ENCODER_NONE);
if (ret) {
dev_err(drm->dev, "Couldn't initialise the rgb encoder\n");
goto err_out;
}
/* The RGB encoder can only work with the TCON channel 0 */
rgb->encoder.possible_crtcs = drm_crtc_mask(&tcon->crtc->crtc);
if (rgb->panel) {
drm_connector_helper_add(&rgb->connector,
&sun4i_rgb_con_helper_funcs);
ret = drm_connector_init(drm, &rgb->connector,
&sun4i_rgb_con_funcs,
DRM_MODE_CONNECTOR_Unknown);
if (ret) {
dev_err(drm->dev, "Couldn't initialise the rgb connector\n");
goto err_cleanup_connector;
}
drm_connector_attach_encoder(&rgb->connector,
&rgb->encoder);
}
if (rgb->bridge) {
ret = drm_bridge_attach(encoder, rgb->bridge, NULL, 0);
if (ret)
goto err_cleanup_connector;
}
return 0;
err_cleanup_connector:
drm_encoder_cleanup(&rgb->encoder);
err_out:
return ret;
}
EXPORT_SYMBOL(sun4i_rgb_init);