| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * fs/proc/vmcore.c Interface for accessing the crash |
| * dump from the system's previous life. |
| * Heavily borrowed from fs/proc/kcore.c |
| * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) |
| * Copyright (C) IBM Corporation, 2004. All rights reserved |
| * |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/kcore.h> |
| #include <linux/user.h> |
| #include <linux/elf.h> |
| #include <linux/elfcore.h> |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| #include <linux/highmem.h> |
| #include <linux/printk.h> |
| #include <linux/memblock.h> |
| #include <linux/init.h> |
| #include <linux/crash_dump.h> |
| #include <linux/list.h> |
| #include <linux/moduleparam.h> |
| #include <linux/mutex.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pagemap.h> |
| #include <linux/uaccess.h> |
| #include <linux/mem_encrypt.h> |
| #include <asm/io.h> |
| #include "internal.h" |
| |
| /* List representing chunks of contiguous memory areas and their offsets in |
| * vmcore file. |
| */ |
| static LIST_HEAD(vmcore_list); |
| |
| /* Stores the pointer to the buffer containing kernel elf core headers. */ |
| static char *elfcorebuf; |
| static size_t elfcorebuf_sz; |
| static size_t elfcorebuf_sz_orig; |
| |
| static char *elfnotes_buf; |
| static size_t elfnotes_sz; |
| /* Size of all notes minus the device dump notes */ |
| static size_t elfnotes_orig_sz; |
| |
| /* Total size of vmcore file. */ |
| static u64 vmcore_size; |
| |
| static struct proc_dir_entry *proc_vmcore; |
| |
| #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP |
| /* Device Dump list and mutex to synchronize access to list */ |
| static LIST_HEAD(vmcoredd_list); |
| static DEFINE_MUTEX(vmcoredd_mutex); |
| |
| static bool vmcoredd_disabled; |
| core_param(novmcoredd, vmcoredd_disabled, bool, 0); |
| #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ |
| |
| /* Device Dump Size */ |
| static size_t vmcoredd_orig_sz; |
| |
| /* |
| * Returns > 0 for RAM pages, 0 for non-RAM pages, < 0 on error |
| * The called function has to take care of module refcounting. |
| */ |
| static int (*oldmem_pfn_is_ram)(unsigned long pfn); |
| |
| int register_oldmem_pfn_is_ram(int (*fn)(unsigned long pfn)) |
| { |
| if (oldmem_pfn_is_ram) |
| return -EBUSY; |
| oldmem_pfn_is_ram = fn; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(register_oldmem_pfn_is_ram); |
| |
| void unregister_oldmem_pfn_is_ram(void) |
| { |
| oldmem_pfn_is_ram = NULL; |
| wmb(); |
| } |
| EXPORT_SYMBOL_GPL(unregister_oldmem_pfn_is_ram); |
| |
| static int pfn_is_ram(unsigned long pfn) |
| { |
| int (*fn)(unsigned long pfn); |
| /* pfn is ram unless fn() checks pagetype */ |
| int ret = 1; |
| |
| /* |
| * Ask hypervisor if the pfn is really ram. |
| * A ballooned page contains no data and reading from such a page |
| * will cause high load in the hypervisor. |
| */ |
| fn = oldmem_pfn_is_ram; |
| if (fn) |
| ret = fn(pfn); |
| |
| return ret; |
| } |
| |
| /* Reads a page from the oldmem device from given offset. */ |
| ssize_t read_from_oldmem(char *buf, size_t count, |
| u64 *ppos, int userbuf, |
| bool encrypted) |
| { |
| unsigned long pfn, offset; |
| size_t nr_bytes; |
| ssize_t read = 0, tmp; |
| |
| if (!count) |
| return 0; |
| |
| offset = (unsigned long)(*ppos % PAGE_SIZE); |
| pfn = (unsigned long)(*ppos / PAGE_SIZE); |
| |
| do { |
| if (count > (PAGE_SIZE - offset)) |
| nr_bytes = PAGE_SIZE - offset; |
| else |
| nr_bytes = count; |
| |
| /* If pfn is not ram, return zeros for sparse dump files */ |
| if (pfn_is_ram(pfn) == 0) |
| memset(buf, 0, nr_bytes); |
| else { |
| if (encrypted) |
| tmp = copy_oldmem_page_encrypted(pfn, buf, |
| nr_bytes, |
| offset, |
| userbuf); |
| else |
| tmp = copy_oldmem_page(pfn, buf, nr_bytes, |
| offset, userbuf); |
| |
| if (tmp < 0) |
| return tmp; |
| } |
| *ppos += nr_bytes; |
| count -= nr_bytes; |
| buf += nr_bytes; |
| read += nr_bytes; |
| ++pfn; |
| offset = 0; |
| } while (count); |
| |
| return read; |
| } |
| |
| /* |
| * Architectures may override this function to allocate ELF header in 2nd kernel |
| */ |
| int __weak elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size) |
| { |
| return 0; |
| } |
| |
| /* |
| * Architectures may override this function to free header |
| */ |
| void __weak elfcorehdr_free(unsigned long long addr) |
| {} |
| |
| /* |
| * Architectures may override this function to read from ELF header |
| */ |
| ssize_t __weak elfcorehdr_read(char *buf, size_t count, u64 *ppos) |
| { |
| return read_from_oldmem(buf, count, ppos, 0, false); |
| } |
| |
| /* |
| * Architectures may override this function to read from notes sections |
| */ |
| ssize_t __weak elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos) |
| { |
| return read_from_oldmem(buf, count, ppos, 0, mem_encrypt_active()); |
| } |
| |
| /* |
| * Architectures may override this function to map oldmem |
| */ |
| int __weak remap_oldmem_pfn_range(struct vm_area_struct *vma, |
| unsigned long from, unsigned long pfn, |
| unsigned long size, pgprot_t prot) |
| { |
| prot = pgprot_encrypted(prot); |
| return remap_pfn_range(vma, from, pfn, size, prot); |
| } |
| |
| /* |
| * Architectures which support memory encryption override this. |
| */ |
| ssize_t __weak |
| copy_oldmem_page_encrypted(unsigned long pfn, char *buf, size_t csize, |
| unsigned long offset, int userbuf) |
| { |
| return copy_oldmem_page(pfn, buf, csize, offset, userbuf); |
| } |
| |
| /* |
| * Copy to either kernel or user space |
| */ |
| static int copy_to(void *target, void *src, size_t size, int userbuf) |
| { |
| if (userbuf) { |
| if (copy_to_user((char __user *) target, src, size)) |
| return -EFAULT; |
| } else { |
| memcpy(target, src, size); |
| } |
| return 0; |
| } |
| |
| #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP |
| static int vmcoredd_copy_dumps(void *dst, u64 start, size_t size, int userbuf) |
| { |
| struct vmcoredd_node *dump; |
| u64 offset = 0; |
| int ret = 0; |
| size_t tsz; |
| char *buf; |
| |
| mutex_lock(&vmcoredd_mutex); |
| list_for_each_entry(dump, &vmcoredd_list, list) { |
| if (start < offset + dump->size) { |
| tsz = min(offset + (u64)dump->size - start, (u64)size); |
| buf = dump->buf + start - offset; |
| if (copy_to(dst, buf, tsz, userbuf)) { |
| ret = -EFAULT; |
| goto out_unlock; |
| } |
| |
| size -= tsz; |
| start += tsz; |
| dst += tsz; |
| |
| /* Leave now if buffer filled already */ |
| if (!size) |
| goto out_unlock; |
| } |
| offset += dump->size; |
| } |
| |
| out_unlock: |
| mutex_unlock(&vmcoredd_mutex); |
| return ret; |
| } |
| |
| #ifdef CONFIG_MMU |
| static int vmcoredd_mmap_dumps(struct vm_area_struct *vma, unsigned long dst, |
| u64 start, size_t size) |
| { |
| struct vmcoredd_node *dump; |
| u64 offset = 0; |
| int ret = 0; |
| size_t tsz; |
| char *buf; |
| |
| mutex_lock(&vmcoredd_mutex); |
| list_for_each_entry(dump, &vmcoredd_list, list) { |
| if (start < offset + dump->size) { |
| tsz = min(offset + (u64)dump->size - start, (u64)size); |
| buf = dump->buf + start - offset; |
| if (remap_vmalloc_range_partial(vma, dst, buf, 0, |
| tsz)) { |
| ret = -EFAULT; |
| goto out_unlock; |
| } |
| |
| size -= tsz; |
| start += tsz; |
| dst += tsz; |
| |
| /* Leave now if buffer filled already */ |
| if (!size) |
| goto out_unlock; |
| } |
| offset += dump->size; |
| } |
| |
| out_unlock: |
| mutex_unlock(&vmcoredd_mutex); |
| return ret; |
| } |
| #endif /* CONFIG_MMU */ |
| #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ |
| |
| /* Read from the ELF header and then the crash dump. On error, negative value is |
| * returned otherwise number of bytes read are returned. |
| */ |
| static ssize_t __read_vmcore(char *buffer, size_t buflen, loff_t *fpos, |
| int userbuf) |
| { |
| ssize_t acc = 0, tmp; |
| size_t tsz; |
| u64 start; |
| struct vmcore *m = NULL; |
| |
| if (buflen == 0 || *fpos >= vmcore_size) |
| return 0; |
| |
| /* trim buflen to not go beyond EOF */ |
| if (buflen > vmcore_size - *fpos) |
| buflen = vmcore_size - *fpos; |
| |
| /* Read ELF core header */ |
| if (*fpos < elfcorebuf_sz) { |
| tsz = min(elfcorebuf_sz - (size_t)*fpos, buflen); |
| if (copy_to(buffer, elfcorebuf + *fpos, tsz, userbuf)) |
| return -EFAULT; |
| buflen -= tsz; |
| *fpos += tsz; |
| buffer += tsz; |
| acc += tsz; |
| |
| /* leave now if filled buffer already */ |
| if (buflen == 0) |
| return acc; |
| } |
| |
| /* Read Elf note segment */ |
| if (*fpos < elfcorebuf_sz + elfnotes_sz) { |
| void *kaddr; |
| |
| /* We add device dumps before other elf notes because the |
| * other elf notes may not fill the elf notes buffer |
| * completely and we will end up with zero-filled data |
| * between the elf notes and the device dumps. Tools will |
| * then try to decode this zero-filled data as valid notes |
| * and we don't want that. Hence, adding device dumps before |
| * the other elf notes ensure that zero-filled data can be |
| * avoided. |
| */ |
| #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP |
| /* Read device dumps */ |
| if (*fpos < elfcorebuf_sz + vmcoredd_orig_sz) { |
| tsz = min(elfcorebuf_sz + vmcoredd_orig_sz - |
| (size_t)*fpos, buflen); |
| start = *fpos - elfcorebuf_sz; |
| if (vmcoredd_copy_dumps(buffer, start, tsz, userbuf)) |
| return -EFAULT; |
| |
| buflen -= tsz; |
| *fpos += tsz; |
| buffer += tsz; |
| acc += tsz; |
| |
| /* leave now if filled buffer already */ |
| if (!buflen) |
| return acc; |
| } |
| #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ |
| |
| /* Read remaining elf notes */ |
| tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)*fpos, buflen); |
| kaddr = elfnotes_buf + *fpos - elfcorebuf_sz - vmcoredd_orig_sz; |
| if (copy_to(buffer, kaddr, tsz, userbuf)) |
| return -EFAULT; |
| |
| buflen -= tsz; |
| *fpos += tsz; |
| buffer += tsz; |
| acc += tsz; |
| |
| /* leave now if filled buffer already */ |
| if (buflen == 0) |
| return acc; |
| } |
| |
| list_for_each_entry(m, &vmcore_list, list) { |
| if (*fpos < m->offset + m->size) { |
| tsz = (size_t)min_t(unsigned long long, |
| m->offset + m->size - *fpos, |
| buflen); |
| start = m->paddr + *fpos - m->offset; |
| tmp = read_from_oldmem(buffer, tsz, &start, |
| userbuf, mem_encrypt_active()); |
| if (tmp < 0) |
| return tmp; |
| buflen -= tsz; |
| *fpos += tsz; |
| buffer += tsz; |
| acc += tsz; |
| |
| /* leave now if filled buffer already */ |
| if (buflen == 0) |
| return acc; |
| } |
| } |
| |
| return acc; |
| } |
| |
| static ssize_t read_vmcore(struct file *file, char __user *buffer, |
| size_t buflen, loff_t *fpos) |
| { |
| return __read_vmcore((__force char *) buffer, buflen, fpos, 1); |
| } |
| |
| /* |
| * The vmcore fault handler uses the page cache and fills data using the |
| * standard __vmcore_read() function. |
| * |
| * On s390 the fault handler is used for memory regions that can't be mapped |
| * directly with remap_pfn_range(). |
| */ |
| static vm_fault_t mmap_vmcore_fault(struct vm_fault *vmf) |
| { |
| #ifdef CONFIG_S390 |
| struct address_space *mapping = vmf->vma->vm_file->f_mapping; |
| pgoff_t index = vmf->pgoff; |
| struct page *page; |
| loff_t offset; |
| char *buf; |
| int rc; |
| |
| page = find_or_create_page(mapping, index, GFP_KERNEL); |
| if (!page) |
| return VM_FAULT_OOM; |
| if (!PageUptodate(page)) { |
| offset = (loff_t) index << PAGE_SHIFT; |
| buf = __va((page_to_pfn(page) << PAGE_SHIFT)); |
| rc = __read_vmcore(buf, PAGE_SIZE, &offset, 0); |
| if (rc < 0) { |
| unlock_page(page); |
| put_page(page); |
| return vmf_error(rc); |
| } |
| SetPageUptodate(page); |
| } |
| unlock_page(page); |
| vmf->page = page; |
| return 0; |
| #else |
| return VM_FAULT_SIGBUS; |
| #endif |
| } |
| |
| static const struct vm_operations_struct vmcore_mmap_ops = { |
| .fault = mmap_vmcore_fault, |
| }; |
| |
| /** |
| * vmcore_alloc_buf - allocate buffer in vmalloc memory |
| * @sizez: size of buffer |
| * |
| * If CONFIG_MMU is defined, use vmalloc_user() to allow users to mmap |
| * the buffer to user-space by means of remap_vmalloc_range(). |
| * |
| * If CONFIG_MMU is not defined, use vzalloc() since mmap_vmcore() is |
| * disabled and there's no need to allow users to mmap the buffer. |
| */ |
| static inline char *vmcore_alloc_buf(size_t size) |
| { |
| #ifdef CONFIG_MMU |
| return vmalloc_user(size); |
| #else |
| return vzalloc(size); |
| #endif |
| } |
| |
| /* |
| * Disable mmap_vmcore() if CONFIG_MMU is not defined. MMU is |
| * essential for mmap_vmcore() in order to map physically |
| * non-contiguous objects (ELF header, ELF note segment and memory |
| * regions in the 1st kernel pointed to by PT_LOAD entries) into |
| * virtually contiguous user-space in ELF layout. |
| */ |
| #ifdef CONFIG_MMU |
| /* |
| * remap_oldmem_pfn_checked - do remap_oldmem_pfn_range replacing all pages |
| * reported as not being ram with the zero page. |
| * |
| * @vma: vm_area_struct describing requested mapping |
| * @from: start remapping from |
| * @pfn: page frame number to start remapping to |
| * @size: remapping size |
| * @prot: protection bits |
| * |
| * Returns zero on success, -EAGAIN on failure. |
| */ |
| static int remap_oldmem_pfn_checked(struct vm_area_struct *vma, |
| unsigned long from, unsigned long pfn, |
| unsigned long size, pgprot_t prot) |
| { |
| unsigned long map_size; |
| unsigned long pos_start, pos_end, pos; |
| unsigned long zeropage_pfn = my_zero_pfn(0); |
| size_t len = 0; |
| |
| pos_start = pfn; |
| pos_end = pfn + (size >> PAGE_SHIFT); |
| |
| for (pos = pos_start; pos < pos_end; ++pos) { |
| if (!pfn_is_ram(pos)) { |
| /* |
| * We hit a page which is not ram. Remap the continuous |
| * region between pos_start and pos-1 and replace |
| * the non-ram page at pos with the zero page. |
| */ |
| if (pos > pos_start) { |
| /* Remap continuous region */ |
| map_size = (pos - pos_start) << PAGE_SHIFT; |
| if (remap_oldmem_pfn_range(vma, from + len, |
| pos_start, map_size, |
| prot)) |
| goto fail; |
| len += map_size; |
| } |
| /* Remap the zero page */ |
| if (remap_oldmem_pfn_range(vma, from + len, |
| zeropage_pfn, |
| PAGE_SIZE, prot)) |
| goto fail; |
| len += PAGE_SIZE; |
| pos_start = pos + 1; |
| } |
| } |
| if (pos > pos_start) { |
| /* Remap the rest */ |
| map_size = (pos - pos_start) << PAGE_SHIFT; |
| if (remap_oldmem_pfn_range(vma, from + len, pos_start, |
| map_size, prot)) |
| goto fail; |
| } |
| return 0; |
| fail: |
| do_munmap(vma->vm_mm, from, len, NULL); |
| return -EAGAIN; |
| } |
| |
| static int vmcore_remap_oldmem_pfn(struct vm_area_struct *vma, |
| unsigned long from, unsigned long pfn, |
| unsigned long size, pgprot_t prot) |
| { |
| /* |
| * Check if oldmem_pfn_is_ram was registered to avoid |
| * looping over all pages without a reason. |
| */ |
| if (oldmem_pfn_is_ram) |
| return remap_oldmem_pfn_checked(vma, from, pfn, size, prot); |
| else |
| return remap_oldmem_pfn_range(vma, from, pfn, size, prot); |
| } |
| |
| static int mmap_vmcore(struct file *file, struct vm_area_struct *vma) |
| { |
| size_t size = vma->vm_end - vma->vm_start; |
| u64 start, end, len, tsz; |
| struct vmcore *m; |
| |
| start = (u64)vma->vm_pgoff << PAGE_SHIFT; |
| end = start + size; |
| |
| if (size > vmcore_size || end > vmcore_size) |
| return -EINVAL; |
| |
| if (vma->vm_flags & (VM_WRITE | VM_EXEC)) |
| return -EPERM; |
| |
| vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); |
| vma->vm_flags |= VM_MIXEDMAP; |
| vma->vm_ops = &vmcore_mmap_ops; |
| |
| len = 0; |
| |
| if (start < elfcorebuf_sz) { |
| u64 pfn; |
| |
| tsz = min(elfcorebuf_sz - (size_t)start, size); |
| pfn = __pa(elfcorebuf + start) >> PAGE_SHIFT; |
| if (remap_pfn_range(vma, vma->vm_start, pfn, tsz, |
| vma->vm_page_prot)) |
| return -EAGAIN; |
| size -= tsz; |
| start += tsz; |
| len += tsz; |
| |
| if (size == 0) |
| return 0; |
| } |
| |
| if (start < elfcorebuf_sz + elfnotes_sz) { |
| void *kaddr; |
| |
| /* We add device dumps before other elf notes because the |
| * other elf notes may not fill the elf notes buffer |
| * completely and we will end up with zero-filled data |
| * between the elf notes and the device dumps. Tools will |
| * then try to decode this zero-filled data as valid notes |
| * and we don't want that. Hence, adding device dumps before |
| * the other elf notes ensure that zero-filled data can be |
| * avoided. This also ensures that the device dumps and |
| * other elf notes can be properly mmaped at page aligned |
| * address. |
| */ |
| #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP |
| /* Read device dumps */ |
| if (start < elfcorebuf_sz + vmcoredd_orig_sz) { |
| u64 start_off; |
| |
| tsz = min(elfcorebuf_sz + vmcoredd_orig_sz - |
| (size_t)start, size); |
| start_off = start - elfcorebuf_sz; |
| if (vmcoredd_mmap_dumps(vma, vma->vm_start + len, |
| start_off, tsz)) |
| goto fail; |
| |
| size -= tsz; |
| start += tsz; |
| len += tsz; |
| |
| /* leave now if filled buffer already */ |
| if (!size) |
| return 0; |
| } |
| #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ |
| |
| /* Read remaining elf notes */ |
| tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)start, size); |
| kaddr = elfnotes_buf + start - elfcorebuf_sz - vmcoredd_orig_sz; |
| if (remap_vmalloc_range_partial(vma, vma->vm_start + len, |
| kaddr, 0, tsz)) |
| goto fail; |
| |
| size -= tsz; |
| start += tsz; |
| len += tsz; |
| |
| if (size == 0) |
| return 0; |
| } |
| |
| list_for_each_entry(m, &vmcore_list, list) { |
| if (start < m->offset + m->size) { |
| u64 paddr = 0; |
| |
| tsz = (size_t)min_t(unsigned long long, |
| m->offset + m->size - start, size); |
| paddr = m->paddr + start - m->offset; |
| if (vmcore_remap_oldmem_pfn(vma, vma->vm_start + len, |
| paddr >> PAGE_SHIFT, tsz, |
| vma->vm_page_prot)) |
| goto fail; |
| size -= tsz; |
| start += tsz; |
| len += tsz; |
| |
| if (size == 0) |
| return 0; |
| } |
| } |
| |
| return 0; |
| fail: |
| do_munmap(vma->vm_mm, vma->vm_start, len, NULL); |
| return -EAGAIN; |
| } |
| #else |
| static int mmap_vmcore(struct file *file, struct vm_area_struct *vma) |
| { |
| return -ENOSYS; |
| } |
| #endif |
| |
| static const struct proc_ops vmcore_proc_ops = { |
| .proc_read = read_vmcore, |
| .proc_lseek = default_llseek, |
| .proc_mmap = mmap_vmcore, |
| }; |
| |
| static struct vmcore* __init get_new_element(void) |
| { |
| return kzalloc(sizeof(struct vmcore), GFP_KERNEL); |
| } |
| |
| static u64 get_vmcore_size(size_t elfsz, size_t elfnotesegsz, |
| struct list_head *vc_list) |
| { |
| u64 size; |
| struct vmcore *m; |
| |
| size = elfsz + elfnotesegsz; |
| list_for_each_entry(m, vc_list, list) { |
| size += m->size; |
| } |
| return size; |
| } |
| |
| /** |
| * update_note_header_size_elf64 - update p_memsz member of each PT_NOTE entry |
| * |
| * @ehdr_ptr: ELF header |
| * |
| * This function updates p_memsz member of each PT_NOTE entry in the |
| * program header table pointed to by @ehdr_ptr to real size of ELF |
| * note segment. |
| */ |
| static int __init update_note_header_size_elf64(const Elf64_Ehdr *ehdr_ptr) |
| { |
| int i, rc=0; |
| Elf64_Phdr *phdr_ptr; |
| Elf64_Nhdr *nhdr_ptr; |
| |
| phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1); |
| for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { |
| void *notes_section; |
| u64 offset, max_sz, sz, real_sz = 0; |
| if (phdr_ptr->p_type != PT_NOTE) |
| continue; |
| max_sz = phdr_ptr->p_memsz; |
| offset = phdr_ptr->p_offset; |
| notes_section = kmalloc(max_sz, GFP_KERNEL); |
| if (!notes_section) |
| return -ENOMEM; |
| rc = elfcorehdr_read_notes(notes_section, max_sz, &offset); |
| if (rc < 0) { |
| kfree(notes_section); |
| return rc; |
| } |
| nhdr_ptr = notes_section; |
| while (nhdr_ptr->n_namesz != 0) { |
| sz = sizeof(Elf64_Nhdr) + |
| (((u64)nhdr_ptr->n_namesz + 3) & ~3) + |
| (((u64)nhdr_ptr->n_descsz + 3) & ~3); |
| if ((real_sz + sz) > max_sz) { |
| pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n", |
| nhdr_ptr->n_namesz, nhdr_ptr->n_descsz); |
| break; |
| } |
| real_sz += sz; |
| nhdr_ptr = (Elf64_Nhdr*)((char*)nhdr_ptr + sz); |
| } |
| kfree(notes_section); |
| phdr_ptr->p_memsz = real_sz; |
| if (real_sz == 0) { |
| pr_warn("Warning: Zero PT_NOTE entries found\n"); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * get_note_number_and_size_elf64 - get the number of PT_NOTE program |
| * headers and sum of real size of their ELF note segment headers and |
| * data. |
| * |
| * @ehdr_ptr: ELF header |
| * @nr_ptnote: buffer for the number of PT_NOTE program headers |
| * @sz_ptnote: buffer for size of unique PT_NOTE program header |
| * |
| * This function is used to merge multiple PT_NOTE program headers |
| * into a unique single one. The resulting unique entry will have |
| * @sz_ptnote in its phdr->p_mem. |
| * |
| * It is assumed that program headers with PT_NOTE type pointed to by |
| * @ehdr_ptr has already been updated by update_note_header_size_elf64 |
| * and each of PT_NOTE program headers has actual ELF note segment |
| * size in its p_memsz member. |
| */ |
| static int __init get_note_number_and_size_elf64(const Elf64_Ehdr *ehdr_ptr, |
| int *nr_ptnote, u64 *sz_ptnote) |
| { |
| int i; |
| Elf64_Phdr *phdr_ptr; |
| |
| *nr_ptnote = *sz_ptnote = 0; |
| |
| phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1); |
| for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { |
| if (phdr_ptr->p_type != PT_NOTE) |
| continue; |
| *nr_ptnote += 1; |
| *sz_ptnote += phdr_ptr->p_memsz; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * copy_notes_elf64 - copy ELF note segments in a given buffer |
| * |
| * @ehdr_ptr: ELF header |
| * @notes_buf: buffer into which ELF note segments are copied |
| * |
| * This function is used to copy ELF note segment in the 1st kernel |
| * into the buffer @notes_buf in the 2nd kernel. It is assumed that |
| * size of the buffer @notes_buf is equal to or larger than sum of the |
| * real ELF note segment headers and data. |
| * |
| * It is assumed that program headers with PT_NOTE type pointed to by |
| * @ehdr_ptr has already been updated by update_note_header_size_elf64 |
| * and each of PT_NOTE program headers has actual ELF note segment |
| * size in its p_memsz member. |
| */ |
| static int __init copy_notes_elf64(const Elf64_Ehdr *ehdr_ptr, char *notes_buf) |
| { |
| int i, rc=0; |
| Elf64_Phdr *phdr_ptr; |
| |
| phdr_ptr = (Elf64_Phdr*)(ehdr_ptr + 1); |
| |
| for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { |
| u64 offset; |
| if (phdr_ptr->p_type != PT_NOTE) |
| continue; |
| offset = phdr_ptr->p_offset; |
| rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz, |
| &offset); |
| if (rc < 0) |
| return rc; |
| notes_buf += phdr_ptr->p_memsz; |
| } |
| |
| return 0; |
| } |
| |
| /* Merges all the PT_NOTE headers into one. */ |
| static int __init merge_note_headers_elf64(char *elfptr, size_t *elfsz, |
| char **notes_buf, size_t *notes_sz) |
| { |
| int i, nr_ptnote=0, rc=0; |
| char *tmp; |
| Elf64_Ehdr *ehdr_ptr; |
| Elf64_Phdr phdr; |
| u64 phdr_sz = 0, note_off; |
| |
| ehdr_ptr = (Elf64_Ehdr *)elfptr; |
| |
| rc = update_note_header_size_elf64(ehdr_ptr); |
| if (rc < 0) |
| return rc; |
| |
| rc = get_note_number_and_size_elf64(ehdr_ptr, &nr_ptnote, &phdr_sz); |
| if (rc < 0) |
| return rc; |
| |
| *notes_sz = roundup(phdr_sz, PAGE_SIZE); |
| *notes_buf = vmcore_alloc_buf(*notes_sz); |
| if (!*notes_buf) |
| return -ENOMEM; |
| |
| rc = copy_notes_elf64(ehdr_ptr, *notes_buf); |
| if (rc < 0) |
| return rc; |
| |
| /* Prepare merged PT_NOTE program header. */ |
| phdr.p_type = PT_NOTE; |
| phdr.p_flags = 0; |
| note_off = sizeof(Elf64_Ehdr) + |
| (ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf64_Phdr); |
| phdr.p_offset = roundup(note_off, PAGE_SIZE); |
| phdr.p_vaddr = phdr.p_paddr = 0; |
| phdr.p_filesz = phdr.p_memsz = phdr_sz; |
| phdr.p_align = 0; |
| |
| /* Add merged PT_NOTE program header*/ |
| tmp = elfptr + sizeof(Elf64_Ehdr); |
| memcpy(tmp, &phdr, sizeof(phdr)); |
| tmp += sizeof(phdr); |
| |
| /* Remove unwanted PT_NOTE program headers. */ |
| i = (nr_ptnote - 1) * sizeof(Elf64_Phdr); |
| *elfsz = *elfsz - i; |
| memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf64_Ehdr)-sizeof(Elf64_Phdr))); |
| memset(elfptr + *elfsz, 0, i); |
| *elfsz = roundup(*elfsz, PAGE_SIZE); |
| |
| /* Modify e_phnum to reflect merged headers. */ |
| ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1; |
| |
| /* Store the size of all notes. We need this to update the note |
| * header when the device dumps will be added. |
| */ |
| elfnotes_orig_sz = phdr.p_memsz; |
| |
| return 0; |
| } |
| |
| /** |
| * update_note_header_size_elf32 - update p_memsz member of each PT_NOTE entry |
| * |
| * @ehdr_ptr: ELF header |
| * |
| * This function updates p_memsz member of each PT_NOTE entry in the |
| * program header table pointed to by @ehdr_ptr to real size of ELF |
| * note segment. |
| */ |
| static int __init update_note_header_size_elf32(const Elf32_Ehdr *ehdr_ptr) |
| { |
| int i, rc=0; |
| Elf32_Phdr *phdr_ptr; |
| Elf32_Nhdr *nhdr_ptr; |
| |
| phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1); |
| for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { |
| void *notes_section; |
| u64 offset, max_sz, sz, real_sz = 0; |
| if (phdr_ptr->p_type != PT_NOTE) |
| continue; |
| max_sz = phdr_ptr->p_memsz; |
| offset = phdr_ptr->p_offset; |
| notes_section = kmalloc(max_sz, GFP_KERNEL); |
| if (!notes_section) |
| return -ENOMEM; |
| rc = elfcorehdr_read_notes(notes_section, max_sz, &offset); |
| if (rc < 0) { |
| kfree(notes_section); |
| return rc; |
| } |
| nhdr_ptr = notes_section; |
| while (nhdr_ptr->n_namesz != 0) { |
| sz = sizeof(Elf32_Nhdr) + |
| (((u64)nhdr_ptr->n_namesz + 3) & ~3) + |
| (((u64)nhdr_ptr->n_descsz + 3) & ~3); |
| if ((real_sz + sz) > max_sz) { |
| pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n", |
| nhdr_ptr->n_namesz, nhdr_ptr->n_descsz); |
| break; |
| } |
| real_sz += sz; |
| nhdr_ptr = (Elf32_Nhdr*)((char*)nhdr_ptr + sz); |
| } |
| kfree(notes_section); |
| phdr_ptr->p_memsz = real_sz; |
| if (real_sz == 0) { |
| pr_warn("Warning: Zero PT_NOTE entries found\n"); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * get_note_number_and_size_elf32 - get the number of PT_NOTE program |
| * headers and sum of real size of their ELF note segment headers and |
| * data. |
| * |
| * @ehdr_ptr: ELF header |
| * @nr_ptnote: buffer for the number of PT_NOTE program headers |
| * @sz_ptnote: buffer for size of unique PT_NOTE program header |
| * |
| * This function is used to merge multiple PT_NOTE program headers |
| * into a unique single one. The resulting unique entry will have |
| * @sz_ptnote in its phdr->p_mem. |
| * |
| * It is assumed that program headers with PT_NOTE type pointed to by |
| * @ehdr_ptr has already been updated by update_note_header_size_elf32 |
| * and each of PT_NOTE program headers has actual ELF note segment |
| * size in its p_memsz member. |
| */ |
| static int __init get_note_number_and_size_elf32(const Elf32_Ehdr *ehdr_ptr, |
| int *nr_ptnote, u64 *sz_ptnote) |
| { |
| int i; |
| Elf32_Phdr *phdr_ptr; |
| |
| *nr_ptnote = *sz_ptnote = 0; |
| |
| phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1); |
| for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { |
| if (phdr_ptr->p_type != PT_NOTE) |
| continue; |
| *nr_ptnote += 1; |
| *sz_ptnote += phdr_ptr->p_memsz; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * copy_notes_elf32 - copy ELF note segments in a given buffer |
| * |
| * @ehdr_ptr: ELF header |
| * @notes_buf: buffer into which ELF note segments are copied |
| * |
| * This function is used to copy ELF note segment in the 1st kernel |
| * into the buffer @notes_buf in the 2nd kernel. It is assumed that |
| * size of the buffer @notes_buf is equal to or larger than sum of the |
| * real ELF note segment headers and data. |
| * |
| * It is assumed that program headers with PT_NOTE type pointed to by |
| * @ehdr_ptr has already been updated by update_note_header_size_elf32 |
| * and each of PT_NOTE program headers has actual ELF note segment |
| * size in its p_memsz member. |
| */ |
| static int __init copy_notes_elf32(const Elf32_Ehdr *ehdr_ptr, char *notes_buf) |
| { |
| int i, rc=0; |
| Elf32_Phdr *phdr_ptr; |
| |
| phdr_ptr = (Elf32_Phdr*)(ehdr_ptr + 1); |
| |
| for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { |
| u64 offset; |
| if (phdr_ptr->p_type != PT_NOTE) |
| continue; |
| offset = phdr_ptr->p_offset; |
| rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz, |
| &offset); |
| if (rc < 0) |
| return rc; |
| notes_buf += phdr_ptr->p_memsz; |
| } |
| |
| return 0; |
| } |
| |
| /* Merges all the PT_NOTE headers into one. */ |
| static int __init merge_note_headers_elf32(char *elfptr, size_t *elfsz, |
| char **notes_buf, size_t *notes_sz) |
| { |
| int i, nr_ptnote=0, rc=0; |
| char *tmp; |
| Elf32_Ehdr *ehdr_ptr; |
| Elf32_Phdr phdr; |
| u64 phdr_sz = 0, note_off; |
| |
| ehdr_ptr = (Elf32_Ehdr *)elfptr; |
| |
| rc = update_note_header_size_elf32(ehdr_ptr); |
| if (rc < 0) |
| return rc; |
| |
| rc = get_note_number_and_size_elf32(ehdr_ptr, &nr_ptnote, &phdr_sz); |
| if (rc < 0) |
| return rc; |
| |
| *notes_sz = roundup(phdr_sz, PAGE_SIZE); |
| *notes_buf = vmcore_alloc_buf(*notes_sz); |
| if (!*notes_buf) |
| return -ENOMEM; |
| |
| rc = copy_notes_elf32(ehdr_ptr, *notes_buf); |
| if (rc < 0) |
| return rc; |
| |
| /* Prepare merged PT_NOTE program header. */ |
| phdr.p_type = PT_NOTE; |
| phdr.p_flags = 0; |
| note_off = sizeof(Elf32_Ehdr) + |
| (ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf32_Phdr); |
| phdr.p_offset = roundup(note_off, PAGE_SIZE); |
| phdr.p_vaddr = phdr.p_paddr = 0; |
| phdr.p_filesz = phdr.p_memsz = phdr_sz; |
| phdr.p_align = 0; |
| |
| /* Add merged PT_NOTE program header*/ |
| tmp = elfptr + sizeof(Elf32_Ehdr); |
| memcpy(tmp, &phdr, sizeof(phdr)); |
| tmp += sizeof(phdr); |
| |
| /* Remove unwanted PT_NOTE program headers. */ |
| i = (nr_ptnote - 1) * sizeof(Elf32_Phdr); |
| *elfsz = *elfsz - i; |
| memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf32_Ehdr)-sizeof(Elf32_Phdr))); |
| memset(elfptr + *elfsz, 0, i); |
| *elfsz = roundup(*elfsz, PAGE_SIZE); |
| |
| /* Modify e_phnum to reflect merged headers. */ |
| ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1; |
| |
| /* Store the size of all notes. We need this to update the note |
| * header when the device dumps will be added. |
| */ |
| elfnotes_orig_sz = phdr.p_memsz; |
| |
| return 0; |
| } |
| |
| /* Add memory chunks represented by program headers to vmcore list. Also update |
| * the new offset fields of exported program headers. */ |
| static int __init process_ptload_program_headers_elf64(char *elfptr, |
| size_t elfsz, |
| size_t elfnotes_sz, |
| struct list_head *vc_list) |
| { |
| int i; |
| Elf64_Ehdr *ehdr_ptr; |
| Elf64_Phdr *phdr_ptr; |
| loff_t vmcore_off; |
| struct vmcore *new; |
| |
| ehdr_ptr = (Elf64_Ehdr *)elfptr; |
| phdr_ptr = (Elf64_Phdr*)(elfptr + sizeof(Elf64_Ehdr)); /* PT_NOTE hdr */ |
| |
| /* Skip Elf header, program headers and Elf note segment. */ |
| vmcore_off = elfsz + elfnotes_sz; |
| |
| for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { |
| u64 paddr, start, end, size; |
| |
| if (phdr_ptr->p_type != PT_LOAD) |
| continue; |
| |
| paddr = phdr_ptr->p_offset; |
| start = rounddown(paddr, PAGE_SIZE); |
| end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE); |
| size = end - start; |
| |
| /* Add this contiguous chunk of memory to vmcore list.*/ |
| new = get_new_element(); |
| if (!new) |
| return -ENOMEM; |
| new->paddr = start; |
| new->size = size; |
| list_add_tail(&new->list, vc_list); |
| |
| /* Update the program header offset. */ |
| phdr_ptr->p_offset = vmcore_off + (paddr - start); |
| vmcore_off = vmcore_off + size; |
| } |
| return 0; |
| } |
| |
| static int __init process_ptload_program_headers_elf32(char *elfptr, |
| size_t elfsz, |
| size_t elfnotes_sz, |
| struct list_head *vc_list) |
| { |
| int i; |
| Elf32_Ehdr *ehdr_ptr; |
| Elf32_Phdr *phdr_ptr; |
| loff_t vmcore_off; |
| struct vmcore *new; |
| |
| ehdr_ptr = (Elf32_Ehdr *)elfptr; |
| phdr_ptr = (Elf32_Phdr*)(elfptr + sizeof(Elf32_Ehdr)); /* PT_NOTE hdr */ |
| |
| /* Skip Elf header, program headers and Elf note segment. */ |
| vmcore_off = elfsz + elfnotes_sz; |
| |
| for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { |
| u64 paddr, start, end, size; |
| |
| if (phdr_ptr->p_type != PT_LOAD) |
| continue; |
| |
| paddr = phdr_ptr->p_offset; |
| start = rounddown(paddr, PAGE_SIZE); |
| end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE); |
| size = end - start; |
| |
| /* Add this contiguous chunk of memory to vmcore list.*/ |
| new = get_new_element(); |
| if (!new) |
| return -ENOMEM; |
| new->paddr = start; |
| new->size = size; |
| list_add_tail(&new->list, vc_list); |
| |
| /* Update the program header offset */ |
| phdr_ptr->p_offset = vmcore_off + (paddr - start); |
| vmcore_off = vmcore_off + size; |
| } |
| return 0; |
| } |
| |
| /* Sets offset fields of vmcore elements. */ |
| static void set_vmcore_list_offsets(size_t elfsz, size_t elfnotes_sz, |
| struct list_head *vc_list) |
| { |
| loff_t vmcore_off; |
| struct vmcore *m; |
| |
| /* Skip Elf header, program headers and Elf note segment. */ |
| vmcore_off = elfsz + elfnotes_sz; |
| |
| list_for_each_entry(m, vc_list, list) { |
| m->offset = vmcore_off; |
| vmcore_off += m->size; |
| } |
| } |
| |
| static void free_elfcorebuf(void) |
| { |
| free_pages((unsigned long)elfcorebuf, get_order(elfcorebuf_sz_orig)); |
| elfcorebuf = NULL; |
| vfree(elfnotes_buf); |
| elfnotes_buf = NULL; |
| } |
| |
| static int __init parse_crash_elf64_headers(void) |
| { |
| int rc=0; |
| Elf64_Ehdr ehdr; |
| u64 addr; |
| |
| addr = elfcorehdr_addr; |
| |
| /* Read Elf header */ |
| rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf64_Ehdr), &addr); |
| if (rc < 0) |
| return rc; |
| |
| /* Do some basic Verification. */ |
| if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 || |
| (ehdr.e_type != ET_CORE) || |
| !vmcore_elf64_check_arch(&ehdr) || |
| ehdr.e_ident[EI_CLASS] != ELFCLASS64 || |
| ehdr.e_ident[EI_VERSION] != EV_CURRENT || |
| ehdr.e_version != EV_CURRENT || |
| ehdr.e_ehsize != sizeof(Elf64_Ehdr) || |
| ehdr.e_phentsize != sizeof(Elf64_Phdr) || |
| ehdr.e_phnum == 0) { |
| pr_warn("Warning: Core image elf header is not sane\n"); |
| return -EINVAL; |
| } |
| |
| /* Read in all elf headers. */ |
| elfcorebuf_sz_orig = sizeof(Elf64_Ehdr) + |
| ehdr.e_phnum * sizeof(Elf64_Phdr); |
| elfcorebuf_sz = elfcorebuf_sz_orig; |
| elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, |
| get_order(elfcorebuf_sz_orig)); |
| if (!elfcorebuf) |
| return -ENOMEM; |
| addr = elfcorehdr_addr; |
| rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr); |
| if (rc < 0) |
| goto fail; |
| |
| /* Merge all PT_NOTE headers into one. */ |
| rc = merge_note_headers_elf64(elfcorebuf, &elfcorebuf_sz, |
| &elfnotes_buf, &elfnotes_sz); |
| if (rc) |
| goto fail; |
| rc = process_ptload_program_headers_elf64(elfcorebuf, elfcorebuf_sz, |
| elfnotes_sz, &vmcore_list); |
| if (rc) |
| goto fail; |
| set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); |
| return 0; |
| fail: |
| free_elfcorebuf(); |
| return rc; |
| } |
| |
| static int __init parse_crash_elf32_headers(void) |
| { |
| int rc=0; |
| Elf32_Ehdr ehdr; |
| u64 addr; |
| |
| addr = elfcorehdr_addr; |
| |
| /* Read Elf header */ |
| rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf32_Ehdr), &addr); |
| if (rc < 0) |
| return rc; |
| |
| /* Do some basic Verification. */ |
| if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 || |
| (ehdr.e_type != ET_CORE) || |
| !vmcore_elf32_check_arch(&ehdr) || |
| ehdr.e_ident[EI_CLASS] != ELFCLASS32|| |
| ehdr.e_ident[EI_VERSION] != EV_CURRENT || |
| ehdr.e_version != EV_CURRENT || |
| ehdr.e_ehsize != sizeof(Elf32_Ehdr) || |
| ehdr.e_phentsize != sizeof(Elf32_Phdr) || |
| ehdr.e_phnum == 0) { |
| pr_warn("Warning: Core image elf header is not sane\n"); |
| return -EINVAL; |
| } |
| |
| /* Read in all elf headers. */ |
| elfcorebuf_sz_orig = sizeof(Elf32_Ehdr) + ehdr.e_phnum * sizeof(Elf32_Phdr); |
| elfcorebuf_sz = elfcorebuf_sz_orig; |
| elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, |
| get_order(elfcorebuf_sz_orig)); |
| if (!elfcorebuf) |
| return -ENOMEM; |
| addr = elfcorehdr_addr; |
| rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr); |
| if (rc < 0) |
| goto fail; |
| |
| /* Merge all PT_NOTE headers into one. */ |
| rc = merge_note_headers_elf32(elfcorebuf, &elfcorebuf_sz, |
| &elfnotes_buf, &elfnotes_sz); |
| if (rc) |
| goto fail; |
| rc = process_ptload_program_headers_elf32(elfcorebuf, elfcorebuf_sz, |
| elfnotes_sz, &vmcore_list); |
| if (rc) |
| goto fail; |
| set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); |
| return 0; |
| fail: |
| free_elfcorebuf(); |
| return rc; |
| } |
| |
| static int __init parse_crash_elf_headers(void) |
| { |
| unsigned char e_ident[EI_NIDENT]; |
| u64 addr; |
| int rc=0; |
| |
| addr = elfcorehdr_addr; |
| rc = elfcorehdr_read(e_ident, EI_NIDENT, &addr); |
| if (rc < 0) |
| return rc; |
| if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) { |
| pr_warn("Warning: Core image elf header not found\n"); |
| return -EINVAL; |
| } |
| |
| if (e_ident[EI_CLASS] == ELFCLASS64) { |
| rc = parse_crash_elf64_headers(); |
| if (rc) |
| return rc; |
| } else if (e_ident[EI_CLASS] == ELFCLASS32) { |
| rc = parse_crash_elf32_headers(); |
| if (rc) |
| return rc; |
| } else { |
| pr_warn("Warning: Core image elf header is not sane\n"); |
| return -EINVAL; |
| } |
| |
| /* Determine vmcore size. */ |
| vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz, |
| &vmcore_list); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP |
| /** |
| * vmcoredd_write_header - Write vmcore device dump header at the |
| * beginning of the dump's buffer. |
| * @buf: Output buffer where the note is written |
| * @data: Dump info |
| * @size: Size of the dump |
| * |
| * Fills beginning of the dump's buffer with vmcore device dump header. |
| */ |
| static void vmcoredd_write_header(void *buf, struct vmcoredd_data *data, |
| u32 size) |
| { |
| struct vmcoredd_header *vdd_hdr = (struct vmcoredd_header *)buf; |
| |
| vdd_hdr->n_namesz = sizeof(vdd_hdr->name); |
| vdd_hdr->n_descsz = size + sizeof(vdd_hdr->dump_name); |
| vdd_hdr->n_type = NT_VMCOREDD; |
| |
| strncpy((char *)vdd_hdr->name, VMCOREDD_NOTE_NAME, |
| sizeof(vdd_hdr->name)); |
| memcpy(vdd_hdr->dump_name, data->dump_name, sizeof(vdd_hdr->dump_name)); |
| } |
| |
| /** |
| * vmcoredd_update_program_headers - Update all Elf program headers |
| * @elfptr: Pointer to elf header |
| * @elfnotesz: Size of elf notes aligned to page size |
| * @vmcoreddsz: Size of device dumps to be added to elf note header |
| * |
| * Determine type of Elf header (Elf64 or Elf32) and update the elf note size. |
| * Also update the offsets of all the program headers after the elf note header. |
| */ |
| static void vmcoredd_update_program_headers(char *elfptr, size_t elfnotesz, |
| size_t vmcoreddsz) |
| { |
| unsigned char *e_ident = (unsigned char *)elfptr; |
| u64 start, end, size; |
| loff_t vmcore_off; |
| u32 i; |
| |
| vmcore_off = elfcorebuf_sz + elfnotesz; |
| |
| if (e_ident[EI_CLASS] == ELFCLASS64) { |
| Elf64_Ehdr *ehdr = (Elf64_Ehdr *)elfptr; |
| Elf64_Phdr *phdr = (Elf64_Phdr *)(elfptr + sizeof(Elf64_Ehdr)); |
| |
| /* Update all program headers */ |
| for (i = 0; i < ehdr->e_phnum; i++, phdr++) { |
| if (phdr->p_type == PT_NOTE) { |
| /* Update note size */ |
| phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz; |
| phdr->p_filesz = phdr->p_memsz; |
| continue; |
| } |
| |
| start = rounddown(phdr->p_offset, PAGE_SIZE); |
| end = roundup(phdr->p_offset + phdr->p_memsz, |
| PAGE_SIZE); |
| size = end - start; |
| phdr->p_offset = vmcore_off + (phdr->p_offset - start); |
| vmcore_off += size; |
| } |
| } else { |
| Elf32_Ehdr *ehdr = (Elf32_Ehdr *)elfptr; |
| Elf32_Phdr *phdr = (Elf32_Phdr *)(elfptr + sizeof(Elf32_Ehdr)); |
| |
| /* Update all program headers */ |
| for (i = 0; i < ehdr->e_phnum; i++, phdr++) { |
| if (phdr->p_type == PT_NOTE) { |
| /* Update note size */ |
| phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz; |
| phdr->p_filesz = phdr->p_memsz; |
| continue; |
| } |
| |
| start = rounddown(phdr->p_offset, PAGE_SIZE); |
| end = roundup(phdr->p_offset + phdr->p_memsz, |
| PAGE_SIZE); |
| size = end - start; |
| phdr->p_offset = vmcore_off + (phdr->p_offset - start); |
| vmcore_off += size; |
| } |
| } |
| } |
| |
| /** |
| * vmcoredd_update_size - Update the total size of the device dumps and update |
| * Elf header |
| * @dump_size: Size of the current device dump to be added to total size |
| * |
| * Update the total size of all the device dumps and update the Elf program |
| * headers. Calculate the new offsets for the vmcore list and update the |
| * total vmcore size. |
| */ |
| static void vmcoredd_update_size(size_t dump_size) |
| { |
| vmcoredd_orig_sz += dump_size; |
| elfnotes_sz = roundup(elfnotes_orig_sz, PAGE_SIZE) + vmcoredd_orig_sz; |
| vmcoredd_update_program_headers(elfcorebuf, elfnotes_sz, |
| vmcoredd_orig_sz); |
| |
| /* Update vmcore list offsets */ |
| set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); |
| |
| vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz, |
| &vmcore_list); |
| proc_vmcore->size = vmcore_size; |
| } |
| |
| /** |
| * vmcore_add_device_dump - Add a buffer containing device dump to vmcore |
| * @data: dump info. |
| * |
| * Allocate a buffer and invoke the calling driver's dump collect routine. |
| * Write Elf note at the beginning of the buffer to indicate vmcore device |
| * dump and add the dump to global list. |
| */ |
| int vmcore_add_device_dump(struct vmcoredd_data *data) |
| { |
| struct vmcoredd_node *dump; |
| void *buf = NULL; |
| size_t data_size; |
| int ret; |
| |
| if (vmcoredd_disabled) { |
| pr_err_once("Device dump is disabled\n"); |
| return -EINVAL; |
| } |
| |
| if (!data || !strlen(data->dump_name) || |
| !data->vmcoredd_callback || !data->size) |
| return -EINVAL; |
| |
| dump = vzalloc(sizeof(*dump)); |
| if (!dump) { |
| ret = -ENOMEM; |
| goto out_err; |
| } |
| |
| /* Keep size of the buffer page aligned so that it can be mmaped */ |
| data_size = roundup(sizeof(struct vmcoredd_header) + data->size, |
| PAGE_SIZE); |
| |
| /* Allocate buffer for driver's to write their dumps */ |
| buf = vmcore_alloc_buf(data_size); |
| if (!buf) { |
| ret = -ENOMEM; |
| goto out_err; |
| } |
| |
| vmcoredd_write_header(buf, data, data_size - |
| sizeof(struct vmcoredd_header)); |
| |
| /* Invoke the driver's dump collection routing */ |
| ret = data->vmcoredd_callback(data, buf + |
| sizeof(struct vmcoredd_header)); |
| if (ret) |
| goto out_err; |
| |
| dump->buf = buf; |
| dump->size = data_size; |
| |
| /* Add the dump to driver sysfs list */ |
| mutex_lock(&vmcoredd_mutex); |
| list_add_tail(&dump->list, &vmcoredd_list); |
| mutex_unlock(&vmcoredd_mutex); |
| |
| vmcoredd_update_size(data_size); |
| return 0; |
| |
| out_err: |
| vfree(buf); |
| vfree(dump); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(vmcore_add_device_dump); |
| #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ |
| |
| /* Free all dumps in vmcore device dump list */ |
| static void vmcore_free_device_dumps(void) |
| { |
| #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP |
| mutex_lock(&vmcoredd_mutex); |
| while (!list_empty(&vmcoredd_list)) { |
| struct vmcoredd_node *dump; |
| |
| dump = list_first_entry(&vmcoredd_list, struct vmcoredd_node, |
| list); |
| list_del(&dump->list); |
| vfree(dump->buf); |
| vfree(dump); |
| } |
| mutex_unlock(&vmcoredd_mutex); |
| #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ |
| } |
| |
| /* Init function for vmcore module. */ |
| static int __init vmcore_init(void) |
| { |
| int rc = 0; |
| |
| /* Allow architectures to allocate ELF header in 2nd kernel */ |
| rc = elfcorehdr_alloc(&elfcorehdr_addr, &elfcorehdr_size); |
| if (rc) |
| return rc; |
| /* |
| * If elfcorehdr= has been passed in cmdline or created in 2nd kernel, |
| * then capture the dump. |
| */ |
| if (!(is_vmcore_usable())) |
| return rc; |
| rc = parse_crash_elf_headers(); |
| if (rc) { |
| pr_warn("Kdump: vmcore not initialized\n"); |
| return rc; |
| } |
| elfcorehdr_free(elfcorehdr_addr); |
| elfcorehdr_addr = ELFCORE_ADDR_ERR; |
| |
| proc_vmcore = proc_create("vmcore", S_IRUSR, NULL, &vmcore_proc_ops); |
| if (proc_vmcore) |
| proc_vmcore->size = vmcore_size; |
| return 0; |
| } |
| fs_initcall(vmcore_init); |
| |
| /* Cleanup function for vmcore module. */ |
| void vmcore_cleanup(void) |
| { |
| if (proc_vmcore) { |
| proc_remove(proc_vmcore); |
| proc_vmcore = NULL; |
| } |
| |
| /* clear the vmcore list. */ |
| while (!list_empty(&vmcore_list)) { |
| struct vmcore *m; |
| |
| m = list_first_entry(&vmcore_list, struct vmcore, list); |
| list_del(&m->list); |
| kfree(m); |
| } |
| free_elfcorebuf(); |
| |
| /* clear vmcore device dump list */ |
| vmcore_free_device_dumps(); |
| } |