| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2001-2005 Silicon Graphics, Inc. All rights reserved. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <asm/sn/addrs.h> |
| #include <asm/sn/geo.h> |
| #include <asm/sn/pcibr_provider.h> |
| #include <asm/sn/pcibus_provider_defs.h> |
| #include <asm/sn/pcidev.h> |
| #include <asm/sn/pic.h> |
| #include <asm/sn/sn_sal.h> |
| #include <asm/sn/tiocp.h> |
| #include "tio.h" |
| #include "xtalk/xwidgetdev.h" |
| #include "xtalk/hubdev.h" |
| |
| extern int sn_ioif_inited; |
| |
| /* ===================================================================== |
| * DMA MANAGEMENT |
| * |
| * The Bridge ASIC provides three methods of doing DMA: via a "direct map" |
| * register available in 32-bit PCI space (which selects a contiguous 2G |
| * address space on some other widget), via "direct" addressing via 64-bit |
| * PCI space (all destination information comes from the PCI address, |
| * including transfer attributes), and via a "mapped" region that allows |
| * a bunch of different small mappings to be established with the PMU. |
| * |
| * For efficiency, we most prefer to use the 32bit direct mapping facility, |
| * since it requires no resource allocations. The advantage of using the |
| * PMU over the 64-bit direct is that single-cycle PCI addressing can be |
| * used; the advantage of using 64-bit direct over PMU addressing is that |
| * we do not have to allocate entries in the PMU. |
| */ |
| |
| static dma_addr_t |
| pcibr_dmamap_ate32(struct pcidev_info *info, |
| u64 paddr, size_t req_size, u64 flags) |
| { |
| |
| struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info; |
| struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info-> |
| pdi_pcibus_info; |
| u8 internal_device = (PCI_SLOT(pcidev_info->pdi_host_pcidev_info-> |
| pdi_linux_pcidev->devfn)) - 1; |
| int ate_count; |
| int ate_index; |
| u64 ate_flags = flags | PCI32_ATE_V; |
| u64 ate; |
| u64 pci_addr; |
| u64 xio_addr; |
| u64 offset; |
| |
| /* PIC in PCI-X mode does not supports 32bit PageMap mode */ |
| if (IS_PIC_SOFT(pcibus_info) && IS_PCIX(pcibus_info)) { |
| return 0; |
| } |
| |
| /* Calculate the number of ATEs needed. */ |
| if (!(MINIMAL_ATE_FLAG(paddr, req_size))) { |
| ate_count = IOPG((IOPGSIZE - 1) /* worst case start offset */ |
| +req_size /* max mapping bytes */ |
| - 1) + 1; /* round UP */ |
| } else { /* assume requested target is page aligned */ |
| ate_count = IOPG(req_size /* max mapping bytes */ |
| - 1) + 1; /* round UP */ |
| } |
| |
| /* Get the number of ATEs required. */ |
| ate_index = pcibr_ate_alloc(pcibus_info, ate_count); |
| if (ate_index < 0) |
| return 0; |
| |
| /* In PCI-X mode, Prefetch not supported */ |
| if (IS_PCIX(pcibus_info)) |
| ate_flags &= ~(PCI32_ATE_PREF); |
| |
| xio_addr = |
| IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) : |
| PHYS_TO_TIODMA(paddr); |
| offset = IOPGOFF(xio_addr); |
| ate = ate_flags | (xio_addr - offset); |
| |
| /* If PIC, put the targetid in the ATE */ |
| if (IS_PIC_SOFT(pcibus_info)) { |
| ate |= (pcibus_info->pbi_hub_xid << PIC_ATE_TARGETID_SHFT); |
| } |
| ate_write(pcibus_info, ate_index, ate_count, ate); |
| |
| /* |
| * Set up the DMA mapped Address. |
| */ |
| pci_addr = PCI32_MAPPED_BASE + offset + IOPGSIZE * ate_index; |
| |
| /* |
| * If swap was set in device in pcibr_endian_set() |
| * we need to turn swapping on. |
| */ |
| if (pcibus_info->pbi_devreg[internal_device] & PCIBR_DEV_SWAP_DIR) |
| ATE_SWAP_ON(pci_addr); |
| |
| return pci_addr; |
| } |
| |
| static dma_addr_t |
| pcibr_dmatrans_direct64(struct pcidev_info * info, u64 paddr, |
| u64 dma_attributes) |
| { |
| struct pcibus_info *pcibus_info = (struct pcibus_info *) |
| ((info->pdi_host_pcidev_info)->pdi_pcibus_info); |
| u64 pci_addr; |
| |
| /* Translate to Crosstalk View of Physical Address */ |
| pci_addr = (IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) : |
| PHYS_TO_TIODMA(paddr)) | dma_attributes; |
| |
| /* Handle Bus mode */ |
| if (IS_PCIX(pcibus_info)) |
| pci_addr &= ~PCI64_ATTR_PREF; |
| |
| /* Handle Bridge Chipset differences */ |
| if (IS_PIC_SOFT(pcibus_info)) { |
| pci_addr |= |
| ((u64) pcibus_info-> |
| pbi_hub_xid << PIC_PCI64_ATTR_TARG_SHFT); |
| } else |
| pci_addr |= TIOCP_PCI64_CMDTYPE_MEM; |
| |
| /* If PCI mode, func zero uses VCHAN0, every other func uses VCHAN1 */ |
| if (!IS_PCIX(pcibus_info) && PCI_FUNC(info->pdi_linux_pcidev->devfn)) |
| pci_addr |= PCI64_ATTR_VIRTUAL; |
| |
| return pci_addr; |
| |
| } |
| |
| static dma_addr_t |
| pcibr_dmatrans_direct32(struct pcidev_info * info, |
| u64 paddr, size_t req_size, u64 flags) |
| { |
| |
| struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info; |
| struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info-> |
| pdi_pcibus_info; |
| u64 xio_addr; |
| |
| u64 xio_base; |
| u64 offset; |
| u64 endoff; |
| |
| if (IS_PCIX(pcibus_info)) { |
| return 0; |
| } |
| |
| xio_addr = IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) : |
| PHYS_TO_TIODMA(paddr); |
| |
| xio_base = pcibus_info->pbi_dir_xbase; |
| offset = xio_addr - xio_base; |
| endoff = req_size + offset; |
| if ((req_size > (1ULL << 31)) || /* Too Big */ |
| (xio_addr < xio_base) || /* Out of range for mappings */ |
| (endoff > (1ULL << 31))) { /* Too Big */ |
| return 0; |
| } |
| |
| return PCI32_DIRECT_BASE | offset; |
| |
| } |
| |
| /* |
| * Wrapper routine for free'ing DMA maps |
| * DMA mappings for Direct 64 and 32 do not have any DMA maps. |
| */ |
| void |
| pcibr_dma_unmap(struct pci_dev *hwdev, dma_addr_t dma_handle, int direction) |
| { |
| struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev); |
| struct pcibus_info *pcibus_info = |
| (struct pcibus_info *)pcidev_info->pdi_pcibus_info; |
| |
| if (IS_PCI32_MAPPED(dma_handle)) { |
| int ate_index; |
| |
| ate_index = |
| IOPG((ATE_SWAP_OFF(dma_handle) - PCI32_MAPPED_BASE)); |
| pcibr_ate_free(pcibus_info, ate_index); |
| } |
| } |
| |
| /* |
| * On SN systems there is a race condition between a PIO read response and |
| * DMA's. In rare cases, the read response may beat the DMA, causing the |
| * driver to think that data in memory is complete and meaningful. This code |
| * eliminates that race. This routine is called by the PIO read routines |
| * after doing the read. For PIC this routine then forces a fake interrupt |
| * on another line, which is logically associated with the slot that the PIO |
| * is addressed to. It then spins while watching the memory location that |
| * the interrupt is targetted to. When the interrupt response arrives, we |
| * are sure that the DMA has landed in memory and it is safe for the driver |
| * to proceed. For TIOCP use the Device(x) Write Request Buffer Flush |
| * Bridge register since it ensures the data has entered the coherence domain, |
| * unlike the PIC Device(x) Write Request Buffer Flush register. |
| */ |
| |
| void sn_dma_flush(u64 addr) |
| { |
| nasid_t nasid; |
| int is_tio; |
| int wid_num; |
| int i, j; |
| u64 flags; |
| u64 itte; |
| struct hubdev_info *hubinfo; |
| volatile struct sn_flush_device_kernel *p; |
| volatile struct sn_flush_device_common *common; |
| |
| struct sn_flush_nasid_entry *flush_nasid_list; |
| |
| if (!sn_ioif_inited) |
| return; |
| |
| nasid = NASID_GET(addr); |
| if (-1 == nasid_to_cnodeid(nasid)) |
| return; |
| |
| hubinfo = (NODEPDA(nasid_to_cnodeid(nasid)))->pdinfo; |
| |
| if (!hubinfo) { |
| BUG(); |
| } |
| |
| flush_nasid_list = &hubinfo->hdi_flush_nasid_list; |
| if (flush_nasid_list->widget_p == NULL) |
| return; |
| |
| is_tio = (nasid & 1); |
| if (is_tio) { |
| int itte_index; |
| |
| if (TIO_HWIN(addr)) |
| itte_index = 0; |
| else if (TIO_BWIN_WINDOWNUM(addr)) |
| itte_index = TIO_BWIN_WINDOWNUM(addr); |
| else |
| itte_index = -1; |
| |
| if (itte_index >= 0) { |
| itte = flush_nasid_list->iio_itte[itte_index]; |
| if (! TIO_ITTE_VALID(itte)) |
| return; |
| wid_num = TIO_ITTE_WIDGET(itte); |
| } else |
| wid_num = TIO_SWIN_WIDGETNUM(addr); |
| } else { |
| if (BWIN_WINDOWNUM(addr)) { |
| itte = flush_nasid_list->iio_itte[BWIN_WINDOWNUM(addr)]; |
| wid_num = IIO_ITTE_WIDGET(itte); |
| } else |
| wid_num = SWIN_WIDGETNUM(addr); |
| } |
| if (flush_nasid_list->widget_p[wid_num] == NULL) |
| return; |
| p = &flush_nasid_list->widget_p[wid_num][0]; |
| |
| /* find a matching BAR */ |
| for (i = 0; i < DEV_PER_WIDGET; i++,p++) { |
| common = p->common; |
| for (j = 0; j < PCI_ROM_RESOURCE; j++) { |
| if (common->sfdl_bar_list[j].start == 0) |
| break; |
| if (addr >= common->sfdl_bar_list[j].start |
| && addr <= common->sfdl_bar_list[j].end) |
| break; |
| } |
| if (j < PCI_ROM_RESOURCE && common->sfdl_bar_list[j].start != 0) |
| break; |
| } |
| |
| /* if no matching BAR, return without doing anything. */ |
| if (i == DEV_PER_WIDGET) |
| return; |
| |
| /* |
| * For TIOCP use the Device(x) Write Request Buffer Flush Bridge |
| * register since it ensures the data has entered the coherence |
| * domain, unlike PIC. |
| */ |
| if (is_tio) { |
| /* |
| * Note: devices behind TIOCE should never be matched in the |
| * above code, and so the following code is PIC/CP centric. |
| * If CE ever needs the sn_dma_flush mechanism, we will have |
| * to account for that here and in tioce_bus_fixup(). |
| */ |
| u32 tio_id = HUB_L(TIO_IOSPACE_ADDR(nasid, TIO_NODE_ID)); |
| u32 revnum = XWIDGET_PART_REV_NUM(tio_id); |
| |
| /* TIOCP BRINGUP WAR (PV907516): Don't write buffer flush reg */ |
| if ((1 << XWIDGET_PART_REV_NUM_REV(revnum)) & PV907516) { |
| return; |
| } else { |
| pcireg_wrb_flush_get(common->sfdl_pcibus_info, |
| (common->sfdl_slot - 1)); |
| } |
| } else { |
| spin_lock_irqsave((spinlock_t *)&p->sfdl_flush_lock, |
| flags); |
| *common->sfdl_flush_addr = 0; |
| |
| /* force an interrupt. */ |
| *(volatile u32 *)(common->sfdl_force_int_addr) = 1; |
| |
| /* wait for the interrupt to come back. */ |
| while (*(common->sfdl_flush_addr) != 0x10f) |
| cpu_relax(); |
| |
| /* okay, everything is synched up. */ |
| spin_unlock_irqrestore((spinlock_t *)&p->sfdl_flush_lock, |
| flags); |
| } |
| return; |
| } |
| |
| /* |
| * DMA interfaces. Called from pci_dma.c routines. |
| */ |
| |
| dma_addr_t |
| pcibr_dma_map(struct pci_dev * hwdev, unsigned long phys_addr, size_t size) |
| { |
| dma_addr_t dma_handle; |
| struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev); |
| |
| /* SN cannot support DMA addresses smaller than 32 bits. */ |
| if (hwdev->dma_mask < 0x7fffffff) { |
| return 0; |
| } |
| |
| if (hwdev->dma_mask == ~0UL) { |
| /* |
| * Handle the most common case: 64 bit cards. This |
| * call should always succeed. |
| */ |
| |
| dma_handle = pcibr_dmatrans_direct64(pcidev_info, phys_addr, |
| PCI64_ATTR_PREF); |
| } else { |
| /* Handle 32-63 bit cards via direct mapping */ |
| dma_handle = pcibr_dmatrans_direct32(pcidev_info, phys_addr, |
| size, 0); |
| if (!dma_handle) { |
| /* |
| * It is a 32 bit card and we cannot do direct mapping, |
| * so we use an ATE. |
| */ |
| |
| dma_handle = pcibr_dmamap_ate32(pcidev_info, phys_addr, |
| size, PCI32_ATE_PREF); |
| } |
| } |
| |
| return dma_handle; |
| } |
| |
| dma_addr_t |
| pcibr_dma_map_consistent(struct pci_dev * hwdev, unsigned long phys_addr, |
| size_t size) |
| { |
| dma_addr_t dma_handle; |
| struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev); |
| |
| if (hwdev->dev.coherent_dma_mask == ~0UL) { |
| dma_handle = pcibr_dmatrans_direct64(pcidev_info, phys_addr, |
| PCI64_ATTR_BAR); |
| } else { |
| dma_handle = (dma_addr_t) pcibr_dmamap_ate32(pcidev_info, |
| phys_addr, size, |
| PCI32_ATE_BAR); |
| } |
| |
| return dma_handle; |
| } |
| |
| EXPORT_SYMBOL(sn_dma_flush); |