| /* |
| * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $) |
| * |
| * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> |
| * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
| * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> |
| * |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or (at |
| * your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. |
| * |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/cpufreq.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/compiler.h> |
| #include <asm/io.h> |
| #include <asm/delay.h> |
| #include <asm/uaccess.h> |
| |
| #include <linux/acpi.h> |
| #include <acpi/processor.h> |
| |
| #include "speedstep-est-common.h" |
| |
| #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg) |
| |
| MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); |
| MODULE_DESCRIPTION("ACPI Processor P-States Driver"); |
| MODULE_LICENSE("GPL"); |
| |
| |
| struct cpufreq_acpi_io { |
| struct acpi_processor_performance acpi_data; |
| struct cpufreq_frequency_table *freq_table; |
| unsigned int resume; |
| }; |
| |
| static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; |
| |
| static struct cpufreq_driver acpi_cpufreq_driver; |
| |
| static unsigned int acpi_pstate_strict; |
| |
| static int |
| acpi_processor_write_port( |
| u16 port, |
| u8 bit_width, |
| u32 value) |
| { |
| if (bit_width <= 8) { |
| outb(value, port); |
| } else if (bit_width <= 16) { |
| outw(value, port); |
| } else if (bit_width <= 32) { |
| outl(value, port); |
| } else { |
| return -ENODEV; |
| } |
| return 0; |
| } |
| |
| static int |
| acpi_processor_read_port( |
| u16 port, |
| u8 bit_width, |
| u32 *ret) |
| { |
| *ret = 0; |
| if (bit_width <= 8) { |
| *ret = inb(port); |
| } else if (bit_width <= 16) { |
| *ret = inw(port); |
| } else if (bit_width <= 32) { |
| *ret = inl(port); |
| } else { |
| return -ENODEV; |
| } |
| return 0; |
| } |
| |
| static int |
| acpi_processor_set_performance ( |
| struct cpufreq_acpi_io *data, |
| unsigned int cpu, |
| int state) |
| { |
| u16 port = 0; |
| u8 bit_width = 0; |
| int ret = 0; |
| u32 value = 0; |
| int i = 0; |
| struct cpufreq_freqs cpufreq_freqs; |
| cpumask_t saved_mask; |
| int retval; |
| |
| dprintk("acpi_processor_set_performance\n"); |
| |
| /* |
| * TBD: Use something other than set_cpus_allowed. |
| * As set_cpus_allowed is a bit racy, |
| * with any other set_cpus_allowed for this process. |
| */ |
| saved_mask = current->cpus_allowed; |
| set_cpus_allowed(current, cpumask_of_cpu(cpu)); |
| if (smp_processor_id() != cpu) { |
| return (-EAGAIN); |
| } |
| |
| if (state == data->acpi_data.state) { |
| if (unlikely(data->resume)) { |
| dprintk("Called after resume, resetting to P%d\n", state); |
| data->resume = 0; |
| } else { |
| dprintk("Already at target state (P%d)\n", state); |
| retval = 0; |
| goto migrate_end; |
| } |
| } |
| |
| dprintk("Transitioning from P%d to P%d\n", |
| data->acpi_data.state, state); |
| |
| /* cpufreq frequency struct */ |
| cpufreq_freqs.cpu = cpu; |
| cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency; |
| cpufreq_freqs.new = data->freq_table[state].frequency; |
| |
| /* notify cpufreq */ |
| cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); |
| |
| /* |
| * First we write the target state's 'control' value to the |
| * control_register. |
| */ |
| |
| port = data->acpi_data.control_register.address; |
| bit_width = data->acpi_data.control_register.bit_width; |
| value = (u32) data->acpi_data.states[state].control; |
| |
| dprintk("Writing 0x%08x to port 0x%04x\n", value, port); |
| |
| ret = acpi_processor_write_port(port, bit_width, value); |
| if (ret) { |
| dprintk("Invalid port width 0x%04x\n", bit_width); |
| retval = ret; |
| goto migrate_end; |
| } |
| |
| /* |
| * Assume the write went through when acpi_pstate_strict is not used. |
| * As read status_register is an expensive operation and there |
| * are no specific error cases where an IO port write will fail. |
| */ |
| if (acpi_pstate_strict) { |
| /* Then we read the 'status_register' and compare the value |
| * with the target state's 'status' to make sure the |
| * transition was successful. |
| * Note that we'll poll for up to 1ms (100 cycles of 10us) |
| * before giving up. |
| */ |
| |
| port = data->acpi_data.status_register.address; |
| bit_width = data->acpi_data.status_register.bit_width; |
| |
| dprintk("Looking for 0x%08x from port 0x%04x\n", |
| (u32) data->acpi_data.states[state].status, port); |
| |
| for (i=0; i<100; i++) { |
| ret = acpi_processor_read_port(port, bit_width, &value); |
| if (ret) { |
| dprintk("Invalid port width 0x%04x\n", bit_width); |
| retval = ret; |
| goto migrate_end; |
| } |
| if (value == (u32) data->acpi_data.states[state].status) |
| break; |
| udelay(10); |
| } |
| } else { |
| i = 0; |
| value = (u32) data->acpi_data.states[state].status; |
| } |
| |
| /* notify cpufreq */ |
| cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); |
| |
| if (unlikely(value != (u32) data->acpi_data.states[state].status)) { |
| unsigned int tmp = cpufreq_freqs.new; |
| cpufreq_freqs.new = cpufreq_freqs.old; |
| cpufreq_freqs.old = tmp; |
| cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); |
| cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); |
| printk(KERN_WARNING "acpi-cpufreq: Transition failed\n"); |
| retval = -ENODEV; |
| goto migrate_end; |
| } |
| |
| dprintk("Transition successful after %d microseconds\n", i * 10); |
| |
| data->acpi_data.state = state; |
| |
| retval = 0; |
| migrate_end: |
| set_cpus_allowed(current, saved_mask); |
| return (retval); |
| } |
| |
| |
| static int |
| acpi_cpufreq_target ( |
| struct cpufreq_policy *policy, |
| unsigned int target_freq, |
| unsigned int relation) |
| { |
| struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; |
| unsigned int next_state = 0; |
| unsigned int result = 0; |
| |
| dprintk("acpi_cpufreq_setpolicy\n"); |
| |
| result = cpufreq_frequency_table_target(policy, |
| data->freq_table, |
| target_freq, |
| relation, |
| &next_state); |
| if (result) |
| return (result); |
| |
| result = acpi_processor_set_performance (data, policy->cpu, next_state); |
| |
| return (result); |
| } |
| |
| |
| static int |
| acpi_cpufreq_verify ( |
| struct cpufreq_policy *policy) |
| { |
| unsigned int result = 0; |
| struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; |
| |
| dprintk("acpi_cpufreq_verify\n"); |
| |
| result = cpufreq_frequency_table_verify(policy, |
| data->freq_table); |
| |
| return (result); |
| } |
| |
| |
| static unsigned long |
| acpi_cpufreq_guess_freq ( |
| struct cpufreq_acpi_io *data, |
| unsigned int cpu) |
| { |
| if (cpu_khz) { |
| /* search the closest match to cpu_khz */ |
| unsigned int i; |
| unsigned long freq; |
| unsigned long freqn = data->acpi_data.states[0].core_frequency * 1000; |
| |
| for (i=0; i < (data->acpi_data.state_count - 1); i++) { |
| freq = freqn; |
| freqn = data->acpi_data.states[i+1].core_frequency * 1000; |
| if ((2 * cpu_khz) > (freqn + freq)) { |
| data->acpi_data.state = i; |
| return (freq); |
| } |
| } |
| data->acpi_data.state = data->acpi_data.state_count - 1; |
| return (freqn); |
| } else |
| /* assume CPU is at P0... */ |
| data->acpi_data.state = 0; |
| return data->acpi_data.states[0].core_frequency * 1000; |
| |
| } |
| |
| |
| /* |
| * acpi_processor_cpu_init_pdc_est - let BIOS know about the SMP capabilities |
| * of this driver |
| * @perf: processor-specific acpi_io_data struct |
| * @cpu: CPU being initialized |
| * |
| * To avoid issues with legacy OSes, some BIOSes require to be informed of |
| * the SMP capabilities of OS P-state driver. Here we set the bits in _PDC |
| * accordingly, for Enhanced Speedstep. Actual call to _PDC is done in |
| * driver/acpi/processor.c |
| */ |
| static void |
| acpi_processor_cpu_init_pdc_est( |
| struct acpi_processor_performance *perf, |
| unsigned int cpu, |
| struct acpi_object_list *obj_list |
| ) |
| { |
| union acpi_object *obj; |
| u32 *buf; |
| struct cpuinfo_x86 *c = cpu_data + cpu; |
| dprintk("acpi_processor_cpu_init_pdc_est\n"); |
| |
| if (!cpu_has(c, X86_FEATURE_EST)) |
| return; |
| |
| /* Initialize pdc. It will be used later. */ |
| if (!obj_list) |
| return; |
| |
| if (!(obj_list->count && obj_list->pointer)) |
| return; |
| |
| obj = obj_list->pointer; |
| if ((obj->buffer.length == 12) && obj->buffer.pointer) { |
| buf = (u32 *)obj->buffer.pointer; |
| buf[0] = ACPI_PDC_REVISION_ID; |
| buf[1] = 1; |
| buf[2] = ACPI_PDC_EST_CAPABILITY_SMP; |
| perf->pdc = obj_list; |
| } |
| return; |
| } |
| |
| |
| /* CPU specific PDC initialization */ |
| static void |
| acpi_processor_cpu_init_pdc( |
| struct acpi_processor_performance *perf, |
| unsigned int cpu, |
| struct acpi_object_list *obj_list |
| ) |
| { |
| struct cpuinfo_x86 *c = cpu_data + cpu; |
| dprintk("acpi_processor_cpu_init_pdc\n"); |
| perf->pdc = NULL; |
| if (cpu_has(c, X86_FEATURE_EST)) |
| acpi_processor_cpu_init_pdc_est(perf, cpu, obj_list); |
| return; |
| } |
| |
| |
| static int |
| acpi_cpufreq_cpu_init ( |
| struct cpufreq_policy *policy) |
| { |
| unsigned int i; |
| unsigned int cpu = policy->cpu; |
| struct cpufreq_acpi_io *data; |
| unsigned int result = 0; |
| |
| union acpi_object arg0 = {ACPI_TYPE_BUFFER}; |
| u32 arg0_buf[3]; |
| struct acpi_object_list arg_list = {1, &arg0}; |
| |
| dprintk("acpi_cpufreq_cpu_init\n"); |
| /* setup arg_list for _PDC settings */ |
| arg0.buffer.length = 12; |
| arg0.buffer.pointer = (u8 *) arg0_buf; |
| |
| data = kmalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL); |
| if (!data) |
| return (-ENOMEM); |
| memset(data, 0, sizeof(struct cpufreq_acpi_io)); |
| |
| acpi_io_data[cpu] = data; |
| |
| acpi_processor_cpu_init_pdc(&data->acpi_data, cpu, &arg_list); |
| result = acpi_processor_register_performance(&data->acpi_data, cpu); |
| data->acpi_data.pdc = NULL; |
| |
| if (result) |
| goto err_free; |
| |
| if (is_const_loops_cpu(cpu)) { |
| acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; |
| } |
| |
| /* capability check */ |
| if (data->acpi_data.state_count <= 1) { |
| dprintk("No P-States\n"); |
| result = -ENODEV; |
| goto err_unreg; |
| } |
| if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) || |
| (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) { |
| dprintk("Unsupported address space [%d, %d]\n", |
| (u32) (data->acpi_data.control_register.space_id), |
| (u32) (data->acpi_data.status_register.space_id)); |
| result = -ENODEV; |
| goto err_unreg; |
| } |
| |
| /* alloc freq_table */ |
| data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (data->acpi_data.state_count + 1), GFP_KERNEL); |
| if (!data->freq_table) { |
| result = -ENOMEM; |
| goto err_unreg; |
| } |
| |
| /* detect transition latency */ |
| policy->cpuinfo.transition_latency = 0; |
| for (i=0; i<data->acpi_data.state_count; i++) { |
| if ((data->acpi_data.states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency) |
| policy->cpuinfo.transition_latency = data->acpi_data.states[i].transition_latency * 1000; |
| } |
| policy->governor = CPUFREQ_DEFAULT_GOVERNOR; |
| |
| /* The current speed is unknown and not detectable by ACPI... */ |
| policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); |
| |
| /* table init */ |
| for (i=0; i<=data->acpi_data.state_count; i++) |
| { |
| data->freq_table[i].index = i; |
| if (i<data->acpi_data.state_count) |
| data->freq_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000; |
| else |
| data->freq_table[i].frequency = CPUFREQ_TABLE_END; |
| } |
| |
| result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); |
| if (result) { |
| goto err_freqfree; |
| } |
| |
| /* notify BIOS that we exist */ |
| acpi_processor_notify_smm(THIS_MODULE); |
| |
| printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n", |
| cpu); |
| for (i = 0; i < data->acpi_data.state_count; i++) |
| dprintk(" %cP%d: %d MHz, %d mW, %d uS\n", |
| (i == data->acpi_data.state?'*':' '), i, |
| (u32) data->acpi_data.states[i].core_frequency, |
| (u32) data->acpi_data.states[i].power, |
| (u32) data->acpi_data.states[i].transition_latency); |
| |
| cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); |
| |
| /* |
| * the first call to ->target() should result in us actually |
| * writing something to the appropriate registers. |
| */ |
| data->resume = 1; |
| |
| return (result); |
| |
| err_freqfree: |
| kfree(data->freq_table); |
| err_unreg: |
| acpi_processor_unregister_performance(&data->acpi_data, cpu); |
| err_free: |
| kfree(data); |
| acpi_io_data[cpu] = NULL; |
| |
| return (result); |
| } |
| |
| |
| static int |
| acpi_cpufreq_cpu_exit ( |
| struct cpufreq_policy *policy) |
| { |
| struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; |
| |
| |
| dprintk("acpi_cpufreq_cpu_exit\n"); |
| |
| if (data) { |
| cpufreq_frequency_table_put_attr(policy->cpu); |
| acpi_io_data[policy->cpu] = NULL; |
| acpi_processor_unregister_performance(&data->acpi_data, policy->cpu); |
| kfree(data); |
| } |
| |
| return (0); |
| } |
| |
| static int |
| acpi_cpufreq_resume ( |
| struct cpufreq_policy *policy) |
| { |
| struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; |
| |
| |
| dprintk("acpi_cpufreq_resume\n"); |
| |
| data->resume = 1; |
| |
| return (0); |
| } |
| |
| |
| static struct freq_attr* acpi_cpufreq_attr[] = { |
| &cpufreq_freq_attr_scaling_available_freqs, |
| NULL, |
| }; |
| |
| static struct cpufreq_driver acpi_cpufreq_driver = { |
| .verify = acpi_cpufreq_verify, |
| .target = acpi_cpufreq_target, |
| .init = acpi_cpufreq_cpu_init, |
| .exit = acpi_cpufreq_cpu_exit, |
| .resume = acpi_cpufreq_resume, |
| .name = "acpi-cpufreq", |
| .owner = THIS_MODULE, |
| .attr = acpi_cpufreq_attr, |
| }; |
| |
| |
| static int __init |
| acpi_cpufreq_init (void) |
| { |
| int result = 0; |
| |
| dprintk("acpi_cpufreq_init\n"); |
| |
| result = cpufreq_register_driver(&acpi_cpufreq_driver); |
| |
| return (result); |
| } |
| |
| |
| static void __exit |
| acpi_cpufreq_exit (void) |
| { |
| dprintk("acpi_cpufreq_exit\n"); |
| |
| cpufreq_unregister_driver(&acpi_cpufreq_driver); |
| |
| return; |
| } |
| |
| module_param(acpi_pstate_strict, uint, 0644); |
| MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes."); |
| |
| late_initcall(acpi_cpufreq_init); |
| module_exit(acpi_cpufreq_exit); |
| |
| MODULE_ALIAS("acpi"); |