| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * PCI Endpoint *Controller* (EPC) library |
| * |
| * Copyright (C) 2017 Texas Instruments |
| * Author: Kishon Vijay Abraham I <kishon@ti.com> |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| |
| #include <linux/pci-epc.h> |
| #include <linux/pci-epf.h> |
| #include <linux/pci-ep-cfs.h> |
| |
| static struct class *pci_epc_class; |
| |
| static void devm_pci_epc_release(struct device *dev, void *res) |
| { |
| struct pci_epc *epc = *(struct pci_epc **)res; |
| |
| pci_epc_destroy(epc); |
| } |
| |
| static int devm_pci_epc_match(struct device *dev, void *res, void *match_data) |
| { |
| struct pci_epc **epc = res; |
| |
| return *epc == match_data; |
| } |
| |
| /** |
| * pci_epc_put() - release the PCI endpoint controller |
| * @epc: epc returned by pci_epc_get() |
| * |
| * release the refcount the caller obtained by invoking pci_epc_get() |
| */ |
| void pci_epc_put(struct pci_epc *epc) |
| { |
| if (IS_ERR_OR_NULL(epc)) |
| return; |
| |
| module_put(epc->ops->owner); |
| put_device(&epc->dev); |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_put); |
| |
| /** |
| * pci_epc_get() - get the PCI endpoint controller |
| * @epc_name: device name of the endpoint controller |
| * |
| * Invoke to get struct pci_epc * corresponding to the device name of the |
| * endpoint controller |
| */ |
| struct pci_epc *pci_epc_get(const char *epc_name) |
| { |
| int ret = -EINVAL; |
| struct pci_epc *epc; |
| struct device *dev; |
| struct class_dev_iter iter; |
| |
| class_dev_iter_init(&iter, pci_epc_class, NULL, NULL); |
| while ((dev = class_dev_iter_next(&iter))) { |
| if (strcmp(epc_name, dev_name(dev))) |
| continue; |
| |
| epc = to_pci_epc(dev); |
| if (!try_module_get(epc->ops->owner)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| class_dev_iter_exit(&iter); |
| get_device(&epc->dev); |
| return epc; |
| } |
| |
| err: |
| class_dev_iter_exit(&iter); |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_get); |
| |
| /** |
| * pci_epc_get_first_free_bar() - helper to get first unreserved BAR |
| * @epc_features: pci_epc_features structure that holds the reserved bar bitmap |
| * |
| * Invoke to get the first unreserved BAR that can be used by the endpoint |
| * function. For any incorrect value in reserved_bar return '0'. |
| */ |
| enum pci_barno |
| pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features) |
| { |
| return pci_epc_get_next_free_bar(epc_features, BAR_0); |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar); |
| |
| /** |
| * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar |
| * @epc_features: pci_epc_features structure that holds the reserved bar bitmap |
| * @bar: the starting BAR number from where unreserved BAR should be searched |
| * |
| * Invoke to get the next unreserved BAR starting from @bar that can be used |
| * for endpoint function. For any incorrect value in reserved_bar return '0'. |
| */ |
| enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features |
| *epc_features, enum pci_barno bar) |
| { |
| unsigned long free_bar; |
| |
| if (!epc_features) |
| return BAR_0; |
| |
| /* If 'bar - 1' is a 64-bit BAR, move to the next BAR */ |
| if ((epc_features->bar_fixed_64bit << 1) & 1 << bar) |
| bar++; |
| |
| /* Find if the reserved BAR is also a 64-bit BAR */ |
| free_bar = epc_features->reserved_bar & epc_features->bar_fixed_64bit; |
| |
| /* Set the adjacent bit if the reserved BAR is also a 64-bit BAR */ |
| free_bar <<= 1; |
| free_bar |= epc_features->reserved_bar; |
| |
| free_bar = find_next_zero_bit(&free_bar, 6, bar); |
| if (free_bar > 5) |
| return NO_BAR; |
| |
| return free_bar; |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar); |
| |
| /** |
| * pci_epc_get_features() - get the features supported by EPC |
| * @epc: the features supported by *this* EPC device will be returned |
| * @func_no: the features supported by the EPC device specific to the |
| * endpoint function with func_no will be returned |
| * @vfunc_no: the features supported by the EPC device specific to the |
| * virtual endpoint function with vfunc_no will be returned |
| * |
| * Invoke to get the features provided by the EPC which may be |
| * specific to an endpoint function. Returns pci_epc_features on success |
| * and NULL for any failures. |
| */ |
| const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc, |
| u8 func_no, u8 vfunc_no) |
| { |
| const struct pci_epc_features *epc_features; |
| |
| if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) |
| return NULL; |
| |
| if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) |
| return NULL; |
| |
| if (!epc->ops->get_features) |
| return NULL; |
| |
| mutex_lock(&epc->lock); |
| epc_features = epc->ops->get_features(epc, func_no, vfunc_no); |
| mutex_unlock(&epc->lock); |
| |
| return epc_features; |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_get_features); |
| |
| /** |
| * pci_epc_stop() - stop the PCI link |
| * @epc: the link of the EPC device that has to be stopped |
| * |
| * Invoke to stop the PCI link |
| */ |
| void pci_epc_stop(struct pci_epc *epc) |
| { |
| if (IS_ERR(epc) || !epc->ops->stop) |
| return; |
| |
| mutex_lock(&epc->lock); |
| epc->ops->stop(epc); |
| mutex_unlock(&epc->lock); |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_stop); |
| |
| /** |
| * pci_epc_start() - start the PCI link |
| * @epc: the link of *this* EPC device has to be started |
| * |
| * Invoke to start the PCI link |
| */ |
| int pci_epc_start(struct pci_epc *epc) |
| { |
| int ret; |
| |
| if (IS_ERR(epc)) |
| return -EINVAL; |
| |
| if (!epc->ops->start) |
| return 0; |
| |
| mutex_lock(&epc->lock); |
| ret = epc->ops->start(epc); |
| mutex_unlock(&epc->lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_start); |
| |
| /** |
| * pci_epc_raise_irq() - interrupt the host system |
| * @epc: the EPC device which has to interrupt the host |
| * @func_no: the physical endpoint function number in the EPC device |
| * @vfunc_no: the virtual endpoint function number in the physical function |
| * @type: specify the type of interrupt; legacy, MSI or MSI-X |
| * @interrupt_num: the MSI or MSI-X interrupt number with range (1-N) |
| * |
| * Invoke to raise an legacy, MSI or MSI-X interrupt |
| */ |
| int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no, |
| enum pci_epc_irq_type type, u16 interrupt_num) |
| { |
| int ret; |
| |
| if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) |
| return -EINVAL; |
| |
| if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) |
| return -EINVAL; |
| |
| if (!epc->ops->raise_irq) |
| return 0; |
| |
| mutex_lock(&epc->lock); |
| ret = epc->ops->raise_irq(epc, func_no, vfunc_no, type, interrupt_num); |
| mutex_unlock(&epc->lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_raise_irq); |
| |
| /** |
| * pci_epc_map_msi_irq() - Map physical address to MSI address and return |
| * MSI data |
| * @epc: the EPC device which has the MSI capability |
| * @func_no: the physical endpoint function number in the EPC device |
| * @vfunc_no: the virtual endpoint function number in the physical function |
| * @phys_addr: the physical address of the outbound region |
| * @interrupt_num: the MSI interrupt number with range (1-N) |
| * @entry_size: Size of Outbound address region for each interrupt |
| * @msi_data: the data that should be written in order to raise MSI interrupt |
| * with interrupt number as 'interrupt num' |
| * @msi_addr_offset: Offset of MSI address from the aligned outbound address |
| * to which the MSI address is mapped |
| * |
| * Invoke to map physical address to MSI address and return MSI data. The |
| * physical address should be an address in the outbound region. This is |
| * required to implement doorbell functionality of NTB wherein EPC on either |
| * side of the interface (primary and secondary) can directly write to the |
| * physical address (in outbound region) of the other interface to ring |
| * doorbell. |
| */ |
| int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no, |
| phys_addr_t phys_addr, u8 interrupt_num, u32 entry_size, |
| u32 *msi_data, u32 *msi_addr_offset) |
| { |
| int ret; |
| |
| if (IS_ERR_OR_NULL(epc)) |
| return -EINVAL; |
| |
| if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) |
| return -EINVAL; |
| |
| if (!epc->ops->map_msi_irq) |
| return -EINVAL; |
| |
| mutex_lock(&epc->lock); |
| ret = epc->ops->map_msi_irq(epc, func_no, vfunc_no, phys_addr, |
| interrupt_num, entry_size, msi_data, |
| msi_addr_offset); |
| mutex_unlock(&epc->lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq); |
| |
| /** |
| * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated |
| * @epc: the EPC device to which MSI interrupts was requested |
| * @func_no: the physical endpoint function number in the EPC device |
| * @vfunc_no: the virtual endpoint function number in the physical function |
| * |
| * Invoke to get the number of MSI interrupts allocated by the RC |
| */ |
| int pci_epc_get_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no) |
| { |
| int interrupt; |
| |
| if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) |
| return 0; |
| |
| if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) |
| return 0; |
| |
| if (!epc->ops->get_msi) |
| return 0; |
| |
| mutex_lock(&epc->lock); |
| interrupt = epc->ops->get_msi(epc, func_no, vfunc_no); |
| mutex_unlock(&epc->lock); |
| |
| if (interrupt < 0) |
| return 0; |
| |
| interrupt = 1 << interrupt; |
| |
| return interrupt; |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_get_msi); |
| |
| /** |
| * pci_epc_set_msi() - set the number of MSI interrupt numbers required |
| * @epc: the EPC device on which MSI has to be configured |
| * @func_no: the physical endpoint function number in the EPC device |
| * @vfunc_no: the virtual endpoint function number in the physical function |
| * @interrupts: number of MSI interrupts required by the EPF |
| * |
| * Invoke to set the required number of MSI interrupts. |
| */ |
| int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u8 interrupts) |
| { |
| int ret; |
| u8 encode_int; |
| |
| if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || |
| interrupts < 1 || interrupts > 32) |
| return -EINVAL; |
| |
| if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) |
| return -EINVAL; |
| |
| if (!epc->ops->set_msi) |
| return 0; |
| |
| encode_int = order_base_2(interrupts); |
| |
| mutex_lock(&epc->lock); |
| ret = epc->ops->set_msi(epc, func_no, vfunc_no, encode_int); |
| mutex_unlock(&epc->lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_set_msi); |
| |
| /** |
| * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated |
| * @epc: the EPC device to which MSI-X interrupts was requested |
| * @func_no: the physical endpoint function number in the EPC device |
| * @vfunc_no: the virtual endpoint function number in the physical function |
| * |
| * Invoke to get the number of MSI-X interrupts allocated by the RC |
| */ |
| int pci_epc_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no) |
| { |
| int interrupt; |
| |
| if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) |
| return 0; |
| |
| if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) |
| return 0; |
| |
| if (!epc->ops->get_msix) |
| return 0; |
| |
| mutex_lock(&epc->lock); |
| interrupt = epc->ops->get_msix(epc, func_no, vfunc_no); |
| mutex_unlock(&epc->lock); |
| |
| if (interrupt < 0) |
| return 0; |
| |
| return interrupt + 1; |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_get_msix); |
| |
| /** |
| * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required |
| * @epc: the EPC device on which MSI-X has to be configured |
| * @func_no: the physical endpoint function number in the EPC device |
| * @vfunc_no: the virtual endpoint function number in the physical function |
| * @interrupts: number of MSI-X interrupts required by the EPF |
| * @bir: BAR where the MSI-X table resides |
| * @offset: Offset pointing to the start of MSI-X table |
| * |
| * Invoke to set the required number of MSI-X interrupts. |
| */ |
| int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no, |
| u16 interrupts, enum pci_barno bir, u32 offset) |
| { |
| int ret; |
| |
| if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || |
| interrupts < 1 || interrupts > 2048) |
| return -EINVAL; |
| |
| if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) |
| return -EINVAL; |
| |
| if (!epc->ops->set_msix) |
| return 0; |
| |
| mutex_lock(&epc->lock); |
| ret = epc->ops->set_msix(epc, func_no, vfunc_no, interrupts - 1, bir, |
| offset); |
| mutex_unlock(&epc->lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_set_msix); |
| |
| /** |
| * pci_epc_unmap_addr() - unmap CPU address from PCI address |
| * @epc: the EPC device on which address is allocated |
| * @func_no: the physical endpoint function number in the EPC device |
| * @vfunc_no: the virtual endpoint function number in the physical function |
| * @phys_addr: physical address of the local system |
| * |
| * Invoke to unmap the CPU address from PCI address. |
| */ |
| void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no, |
| phys_addr_t phys_addr) |
| { |
| if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) |
| return; |
| |
| if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) |
| return; |
| |
| if (!epc->ops->unmap_addr) |
| return; |
| |
| mutex_lock(&epc->lock); |
| epc->ops->unmap_addr(epc, func_no, vfunc_no, phys_addr); |
| mutex_unlock(&epc->lock); |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_unmap_addr); |
| |
| /** |
| * pci_epc_map_addr() - map CPU address to PCI address |
| * @epc: the EPC device on which address is allocated |
| * @func_no: the physical endpoint function number in the EPC device |
| * @vfunc_no: the virtual endpoint function number in the physical function |
| * @phys_addr: physical address of the local system |
| * @pci_addr: PCI address to which the physical address should be mapped |
| * @size: the size of the allocation |
| * |
| * Invoke to map CPU address with PCI address. |
| */ |
| int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no, |
| phys_addr_t phys_addr, u64 pci_addr, size_t size) |
| { |
| int ret; |
| |
| if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) |
| return -EINVAL; |
| |
| if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) |
| return -EINVAL; |
| |
| if (!epc->ops->map_addr) |
| return 0; |
| |
| mutex_lock(&epc->lock); |
| ret = epc->ops->map_addr(epc, func_no, vfunc_no, phys_addr, pci_addr, |
| size); |
| mutex_unlock(&epc->lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_map_addr); |
| |
| /** |
| * pci_epc_clear_bar() - reset the BAR |
| * @epc: the EPC device for which the BAR has to be cleared |
| * @func_no: the physical endpoint function number in the EPC device |
| * @vfunc_no: the virtual endpoint function number in the physical function |
| * @epf_bar: the struct epf_bar that contains the BAR information |
| * |
| * Invoke to reset the BAR of the endpoint device. |
| */ |
| void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no, |
| struct pci_epf_bar *epf_bar) |
| { |
| if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || |
| (epf_bar->barno == BAR_5 && |
| epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64)) |
| return; |
| |
| if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) |
| return; |
| |
| if (!epc->ops->clear_bar) |
| return; |
| |
| mutex_lock(&epc->lock); |
| epc->ops->clear_bar(epc, func_no, vfunc_no, epf_bar); |
| mutex_unlock(&epc->lock); |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_clear_bar); |
| |
| /** |
| * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space |
| * @epc: the EPC device on which BAR has to be configured |
| * @func_no: the physical endpoint function number in the EPC device |
| * @vfunc_no: the virtual endpoint function number in the physical function |
| * @epf_bar: the struct epf_bar that contains the BAR information |
| * |
| * Invoke to configure the BAR of the endpoint device. |
| */ |
| int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no, |
| struct pci_epf_bar *epf_bar) |
| { |
| int ret; |
| int flags = epf_bar->flags; |
| |
| if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || |
| (epf_bar->barno == BAR_5 && |
| flags & PCI_BASE_ADDRESS_MEM_TYPE_64) || |
| (flags & PCI_BASE_ADDRESS_SPACE_IO && |
| flags & PCI_BASE_ADDRESS_IO_MASK) || |
| (upper_32_bits(epf_bar->size) && |
| !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64))) |
| return -EINVAL; |
| |
| if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) |
| return -EINVAL; |
| |
| if (!epc->ops->set_bar) |
| return 0; |
| |
| mutex_lock(&epc->lock); |
| ret = epc->ops->set_bar(epc, func_no, vfunc_no, epf_bar); |
| mutex_unlock(&epc->lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_set_bar); |
| |
| /** |
| * pci_epc_write_header() - write standard configuration header |
| * @epc: the EPC device to which the configuration header should be written |
| * @func_no: the physical endpoint function number in the EPC device |
| * @vfunc_no: the virtual endpoint function number in the physical function |
| * @header: standard configuration header fields |
| * |
| * Invoke to write the configuration header to the endpoint controller. Every |
| * endpoint controller will have a dedicated location to which the standard |
| * configuration header would be written. The callback function should write |
| * the header fields to this dedicated location. |
| */ |
| int pci_epc_write_header(struct pci_epc *epc, u8 func_no, u8 vfunc_no, |
| struct pci_epf_header *header) |
| { |
| int ret; |
| |
| if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) |
| return -EINVAL; |
| |
| if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) |
| return -EINVAL; |
| |
| /* Only Virtual Function #1 has deviceID */ |
| if (vfunc_no > 1) |
| return -EINVAL; |
| |
| if (!epc->ops->write_header) |
| return 0; |
| |
| mutex_lock(&epc->lock); |
| ret = epc->ops->write_header(epc, func_no, vfunc_no, header); |
| mutex_unlock(&epc->lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_write_header); |
| |
| /** |
| * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller |
| * @epc: the EPC device to which the endpoint function should be added |
| * @epf: the endpoint function to be added |
| * @type: Identifies if the EPC is connected to the primary or secondary |
| * interface of EPF |
| * |
| * A PCI endpoint device can have one or more functions. In the case of PCIe, |
| * the specification allows up to 8 PCIe endpoint functions. Invoke |
| * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller. |
| */ |
| int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf, |
| enum pci_epc_interface_type type) |
| { |
| struct list_head *list; |
| u32 func_no; |
| int ret = 0; |
| |
| if (IS_ERR_OR_NULL(epc) || epf->is_vf) |
| return -EINVAL; |
| |
| if (type == PRIMARY_INTERFACE && epf->epc) |
| return -EBUSY; |
| |
| if (type == SECONDARY_INTERFACE && epf->sec_epc) |
| return -EBUSY; |
| |
| mutex_lock(&epc->list_lock); |
| func_no = find_first_zero_bit(&epc->function_num_map, |
| BITS_PER_LONG); |
| if (func_no >= BITS_PER_LONG) { |
| ret = -EINVAL; |
| goto ret; |
| } |
| |
| if (func_no > epc->max_functions - 1) { |
| dev_err(&epc->dev, "Exceeding max supported Function Number\n"); |
| ret = -EINVAL; |
| goto ret; |
| } |
| |
| set_bit(func_no, &epc->function_num_map); |
| if (type == PRIMARY_INTERFACE) { |
| epf->func_no = func_no; |
| epf->epc = epc; |
| list = &epf->list; |
| } else { |
| epf->sec_epc_func_no = func_no; |
| epf->sec_epc = epc; |
| list = &epf->sec_epc_list; |
| } |
| |
| list_add_tail(list, &epc->pci_epf); |
| ret: |
| mutex_unlock(&epc->list_lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_add_epf); |
| |
| /** |
| * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller |
| * @epc: the EPC device from which the endpoint function should be removed |
| * @epf: the endpoint function to be removed |
| * @type: identifies if the EPC is connected to the primary or secondary |
| * interface of EPF |
| * |
| * Invoke to remove PCI endpoint function from the endpoint controller. |
| */ |
| void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf, |
| enum pci_epc_interface_type type) |
| { |
| struct list_head *list; |
| u32 func_no = 0; |
| |
| if (IS_ERR_OR_NULL(epc) || !epf) |
| return; |
| |
| if (type == PRIMARY_INTERFACE) { |
| func_no = epf->func_no; |
| list = &epf->list; |
| } else { |
| func_no = epf->sec_epc_func_no; |
| list = &epf->sec_epc_list; |
| } |
| |
| mutex_lock(&epc->list_lock); |
| clear_bit(func_no, &epc->function_num_map); |
| list_del(list); |
| epf->epc = NULL; |
| mutex_unlock(&epc->list_lock); |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_remove_epf); |
| |
| /** |
| * pci_epc_linkup() - Notify the EPF device that EPC device has established a |
| * connection with the Root Complex. |
| * @epc: the EPC device which has established link with the host |
| * |
| * Invoke to Notify the EPF device that the EPC device has established a |
| * connection with the Root Complex. |
| */ |
| void pci_epc_linkup(struct pci_epc *epc) |
| { |
| struct pci_epf *epf; |
| |
| if (IS_ERR_OR_NULL(epc)) |
| return; |
| |
| mutex_lock(&epc->list_lock); |
| list_for_each_entry(epf, &epc->pci_epf, list) { |
| mutex_lock(&epf->lock); |
| if (epf->event_ops && epf->event_ops->link_up) |
| epf->event_ops->link_up(epf); |
| mutex_unlock(&epf->lock); |
| } |
| mutex_unlock(&epc->list_lock); |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_linkup); |
| |
| /** |
| * pci_epc_linkdown() - Notify the EPF device that EPC device has dropped the |
| * connection with the Root Complex. |
| * @epc: the EPC device which has dropped the link with the host |
| * |
| * Invoke to Notify the EPF device that the EPC device has dropped the |
| * connection with the Root Complex. |
| */ |
| void pci_epc_linkdown(struct pci_epc *epc) |
| { |
| struct pci_epf *epf; |
| |
| if (IS_ERR_OR_NULL(epc)) |
| return; |
| |
| mutex_lock(&epc->list_lock); |
| list_for_each_entry(epf, &epc->pci_epf, list) { |
| mutex_lock(&epf->lock); |
| if (epf->event_ops && epf->event_ops->link_down) |
| epf->event_ops->link_down(epf); |
| mutex_unlock(&epf->lock); |
| } |
| mutex_unlock(&epc->list_lock); |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_linkdown); |
| |
| /** |
| * pci_epc_init_notify() - Notify the EPF device that EPC device's core |
| * initialization is completed. |
| * @epc: the EPC device whose core initialization is completed |
| * |
| * Invoke to Notify the EPF device that the EPC device's initialization |
| * is completed. |
| */ |
| void pci_epc_init_notify(struct pci_epc *epc) |
| { |
| struct pci_epf *epf; |
| |
| if (IS_ERR_OR_NULL(epc)) |
| return; |
| |
| mutex_lock(&epc->list_lock); |
| list_for_each_entry(epf, &epc->pci_epf, list) { |
| mutex_lock(&epf->lock); |
| if (epf->event_ops && epf->event_ops->core_init) |
| epf->event_ops->core_init(epf); |
| mutex_unlock(&epf->lock); |
| } |
| mutex_unlock(&epc->list_lock); |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_init_notify); |
| |
| /** |
| * pci_epc_bme_notify() - Notify the EPF device that the EPC device has received |
| * the BME event from the Root complex |
| * @epc: the EPC device that received the BME event |
| * |
| * Invoke to Notify the EPF device that the EPC device has received the Bus |
| * Master Enable (BME) event from the Root complex |
| */ |
| void pci_epc_bme_notify(struct pci_epc *epc) |
| { |
| struct pci_epf *epf; |
| |
| if (IS_ERR_OR_NULL(epc)) |
| return; |
| |
| mutex_lock(&epc->list_lock); |
| list_for_each_entry(epf, &epc->pci_epf, list) { |
| mutex_lock(&epf->lock); |
| if (epf->event_ops && epf->event_ops->bme) |
| epf->event_ops->bme(epf); |
| mutex_unlock(&epf->lock); |
| } |
| mutex_unlock(&epc->list_lock); |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_bme_notify); |
| |
| /** |
| * pci_epc_destroy() - destroy the EPC device |
| * @epc: the EPC device that has to be destroyed |
| * |
| * Invoke to destroy the PCI EPC device |
| */ |
| void pci_epc_destroy(struct pci_epc *epc) |
| { |
| pci_ep_cfs_remove_epc_group(epc->group); |
| device_unregister(&epc->dev); |
| } |
| EXPORT_SYMBOL_GPL(pci_epc_destroy); |
| |
| /** |
| * devm_pci_epc_destroy() - destroy the EPC device |
| * @dev: device that wants to destroy the EPC |
| * @epc: the EPC device that has to be destroyed |
| * |
| * Invoke to destroy the devres associated with this |
| * pci_epc and destroy the EPC device. |
| */ |
| void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc) |
| { |
| int r; |
| |
| r = devres_destroy(dev, devm_pci_epc_release, devm_pci_epc_match, |
| epc); |
| dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n"); |
| } |
| EXPORT_SYMBOL_GPL(devm_pci_epc_destroy); |
| |
| static void pci_epc_release(struct device *dev) |
| { |
| kfree(to_pci_epc(dev)); |
| } |
| |
| /** |
| * __pci_epc_create() - create a new endpoint controller (EPC) device |
| * @dev: device that is creating the new EPC |
| * @ops: function pointers for performing EPC operations |
| * @owner: the owner of the module that creates the EPC device |
| * |
| * Invoke to create a new EPC device and add it to pci_epc class. |
| */ |
| struct pci_epc * |
| __pci_epc_create(struct device *dev, const struct pci_epc_ops *ops, |
| struct module *owner) |
| { |
| int ret; |
| struct pci_epc *epc; |
| |
| if (WARN_ON(!dev)) { |
| ret = -EINVAL; |
| goto err_ret; |
| } |
| |
| epc = kzalloc(sizeof(*epc), GFP_KERNEL); |
| if (!epc) { |
| ret = -ENOMEM; |
| goto err_ret; |
| } |
| |
| mutex_init(&epc->lock); |
| mutex_init(&epc->list_lock); |
| INIT_LIST_HEAD(&epc->pci_epf); |
| |
| device_initialize(&epc->dev); |
| epc->dev.class = pci_epc_class; |
| epc->dev.parent = dev; |
| epc->dev.release = pci_epc_release; |
| epc->ops = ops; |
| |
| ret = dev_set_name(&epc->dev, "%s", dev_name(dev)); |
| if (ret) |
| goto put_dev; |
| |
| ret = device_add(&epc->dev); |
| if (ret) |
| goto put_dev; |
| |
| epc->group = pci_ep_cfs_add_epc_group(dev_name(dev)); |
| |
| return epc; |
| |
| put_dev: |
| put_device(&epc->dev); |
| |
| err_ret: |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL_GPL(__pci_epc_create); |
| |
| /** |
| * __devm_pci_epc_create() - create a new endpoint controller (EPC) device |
| * @dev: device that is creating the new EPC |
| * @ops: function pointers for performing EPC operations |
| * @owner: the owner of the module that creates the EPC device |
| * |
| * Invoke to create a new EPC device and add it to pci_epc class. |
| * While at that, it also associates the device with the pci_epc using devres. |
| * On driver detach, release function is invoked on the devres data, |
| * then, devres data is freed. |
| */ |
| struct pci_epc * |
| __devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops, |
| struct module *owner) |
| { |
| struct pci_epc **ptr, *epc; |
| |
| ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL); |
| if (!ptr) |
| return ERR_PTR(-ENOMEM); |
| |
| epc = __pci_epc_create(dev, ops, owner); |
| if (!IS_ERR(epc)) { |
| *ptr = epc; |
| devres_add(dev, ptr); |
| } else { |
| devres_free(ptr); |
| } |
| |
| return epc; |
| } |
| EXPORT_SYMBOL_GPL(__devm_pci_epc_create); |
| |
| static int __init pci_epc_init(void) |
| { |
| pci_epc_class = class_create("pci_epc"); |
| if (IS_ERR(pci_epc_class)) { |
| pr_err("failed to create pci epc class --> %ld\n", |
| PTR_ERR(pci_epc_class)); |
| return PTR_ERR(pci_epc_class); |
| } |
| |
| return 0; |
| } |
| module_init(pci_epc_init); |
| |
| static void __exit pci_epc_exit(void) |
| { |
| class_destroy(pci_epc_class); |
| } |
| module_exit(pci_epc_exit); |
| |
| MODULE_DESCRIPTION("PCI EPC Library"); |
| MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); |