| /* |
| * Copyright (C) 2015 Cavium, Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License |
| * as published by the Free Software Foundation. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/netdevice.h> |
| #include <linux/ip.h> |
| #include <linux/etherdevice.h> |
| #include <linux/iommu.h> |
| #include <net/ip.h> |
| #include <net/tso.h> |
| |
| #include "nic_reg.h" |
| #include "nic.h" |
| #include "q_struct.h" |
| #include "nicvf_queues.h" |
| |
| static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry, |
| int size, u64 data); |
| static void nicvf_get_page(struct nicvf *nic) |
| { |
| if (!nic->rb_pageref || !nic->rb_page) |
| return; |
| |
| page_ref_add(nic->rb_page, nic->rb_pageref); |
| nic->rb_pageref = 0; |
| } |
| |
| /* Poll a register for a specific value */ |
| static int nicvf_poll_reg(struct nicvf *nic, int qidx, |
| u64 reg, int bit_pos, int bits, int val) |
| { |
| u64 bit_mask; |
| u64 reg_val; |
| int timeout = 10; |
| |
| bit_mask = (1ULL << bits) - 1; |
| bit_mask = (bit_mask << bit_pos); |
| |
| while (timeout) { |
| reg_val = nicvf_queue_reg_read(nic, reg, qidx); |
| if (((reg_val & bit_mask) >> bit_pos) == val) |
| return 0; |
| usleep_range(1000, 2000); |
| timeout--; |
| } |
| netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg); |
| return 1; |
| } |
| |
| /* Allocate memory for a queue's descriptors */ |
| static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem, |
| int q_len, int desc_size, int align_bytes) |
| { |
| dmem->q_len = q_len; |
| dmem->size = (desc_size * q_len) + align_bytes; |
| /* Save address, need it while freeing */ |
| dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size, |
| &dmem->dma, GFP_KERNEL); |
| if (!dmem->unalign_base) |
| return -ENOMEM; |
| |
| /* Align memory address for 'align_bytes' */ |
| dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes); |
| dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma); |
| return 0; |
| } |
| |
| /* Free queue's descriptor memory */ |
| static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem) |
| { |
| if (!dmem) |
| return; |
| |
| dma_free_coherent(&nic->pdev->dev, dmem->size, |
| dmem->unalign_base, dmem->dma); |
| dmem->unalign_base = NULL; |
| dmem->base = NULL; |
| } |
| |
| #define XDP_PAGE_REFCNT_REFILL 256 |
| |
| /* Allocate a new page or recycle one if possible |
| * |
| * We cannot optimize dma mapping here, since |
| * 1. It's only one RBDR ring for 8 Rx queues. |
| * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed |
| * and not idx into RBDR ring, so can't refer to saved info. |
| * 3. There are multiple receive buffers per page |
| */ |
| static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic, |
| struct rbdr *rbdr, gfp_t gfp) |
| { |
| int ref_count; |
| struct page *page = NULL; |
| struct pgcache *pgcache, *next; |
| |
| /* Check if page is already allocated */ |
| pgcache = &rbdr->pgcache[rbdr->pgidx]; |
| page = pgcache->page; |
| /* Check if page can be recycled */ |
| if (page) { |
| ref_count = page_ref_count(page); |
| /* Check if this page has been used once i.e 'put_page' |
| * called after packet transmission i.e internal ref_count |
| * and page's ref_count are equal i.e page can be recycled. |
| */ |
| if (rbdr->is_xdp && (ref_count == pgcache->ref_count)) |
| pgcache->ref_count--; |
| else |
| page = NULL; |
| |
| /* In non-XDP mode, page's ref_count needs to be '1' for it |
| * to be recycled. |
| */ |
| if (!rbdr->is_xdp && (ref_count != 1)) |
| page = NULL; |
| } |
| |
| if (!page) { |
| page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0); |
| if (!page) |
| return NULL; |
| |
| this_cpu_inc(nic->pnicvf->drv_stats->page_alloc); |
| |
| /* Check for space */ |
| if (rbdr->pgalloc >= rbdr->pgcnt) { |
| /* Page can still be used */ |
| nic->rb_page = page; |
| return NULL; |
| } |
| |
| /* Save the page in page cache */ |
| pgcache->page = page; |
| pgcache->dma_addr = 0; |
| pgcache->ref_count = 0; |
| rbdr->pgalloc++; |
| } |
| |
| /* Take additional page references for recycling */ |
| if (rbdr->is_xdp) { |
| /* Since there is single RBDR (i.e single core doing |
| * page recycling) per 8 Rx queues, in XDP mode adjusting |
| * page references atomically is the biggest bottleneck, so |
| * take bunch of references at a time. |
| * |
| * So here, below reference counts defer by '1'. |
| */ |
| if (!pgcache->ref_count) { |
| pgcache->ref_count = XDP_PAGE_REFCNT_REFILL; |
| page_ref_add(page, XDP_PAGE_REFCNT_REFILL); |
| } |
| } else { |
| /* In non-XDP case, single 64K page is divided across multiple |
| * receive buffers, so cost of recycling is less anyway. |
| * So we can do with just one extra reference. |
| */ |
| page_ref_add(page, 1); |
| } |
| |
| rbdr->pgidx++; |
| rbdr->pgidx &= (rbdr->pgcnt - 1); |
| |
| /* Prefetch refcount of next page in page cache */ |
| next = &rbdr->pgcache[rbdr->pgidx]; |
| page = next->page; |
| if (page) |
| prefetch(&page->_refcount); |
| |
| return pgcache; |
| } |
| |
| /* Allocate buffer for packet reception */ |
| static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr, |
| gfp_t gfp, u32 buf_len, u64 *rbuf) |
| { |
| struct pgcache *pgcache = NULL; |
| |
| /* Check if request can be accomodated in previous allocated page. |
| * But in XDP mode only one buffer per page is permitted. |
| */ |
| if (!rbdr->is_xdp && nic->rb_page && |
| ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) { |
| nic->rb_pageref++; |
| goto ret; |
| } |
| |
| nicvf_get_page(nic); |
| nic->rb_page = NULL; |
| |
| /* Get new page, either recycled or new one */ |
| pgcache = nicvf_alloc_page(nic, rbdr, gfp); |
| if (!pgcache && !nic->rb_page) { |
| this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures); |
| return -ENOMEM; |
| } |
| |
| nic->rb_page_offset = 0; |
| |
| /* Reserve space for header modifications by BPF program */ |
| if (rbdr->is_xdp) |
| buf_len += XDP_PACKET_HEADROOM; |
| |
| /* Check if it's recycled */ |
| if (pgcache) |
| nic->rb_page = pgcache->page; |
| ret: |
| if (rbdr->is_xdp && pgcache && pgcache->dma_addr) { |
| *rbuf = pgcache->dma_addr; |
| } else { |
| /* HW will ensure data coherency, CPU sync not required */ |
| *rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page, |
| nic->rb_page_offset, buf_len, |
| DMA_FROM_DEVICE, |
| DMA_ATTR_SKIP_CPU_SYNC); |
| if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) { |
| if (!nic->rb_page_offset) |
| __free_pages(nic->rb_page, 0); |
| nic->rb_page = NULL; |
| return -ENOMEM; |
| } |
| if (pgcache) |
| pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM; |
| nic->rb_page_offset += buf_len; |
| } |
| |
| return 0; |
| } |
| |
| /* Build skb around receive buffer */ |
| static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic, |
| u64 rb_ptr, int len) |
| { |
| void *data; |
| struct sk_buff *skb; |
| |
| data = phys_to_virt(rb_ptr); |
| |
| /* Now build an skb to give to stack */ |
| skb = build_skb(data, RCV_FRAG_LEN); |
| if (!skb) { |
| put_page(virt_to_page(data)); |
| return NULL; |
| } |
| |
| prefetch(skb->data); |
| return skb; |
| } |
| |
| /* Allocate RBDR ring and populate receive buffers */ |
| static int nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, |
| int ring_len, int buf_size) |
| { |
| int idx; |
| u64 rbuf; |
| struct rbdr_entry_t *desc; |
| int err; |
| |
| err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len, |
| sizeof(struct rbdr_entry_t), |
| NICVF_RCV_BUF_ALIGN_BYTES); |
| if (err) |
| return err; |
| |
| rbdr->desc = rbdr->dmem.base; |
| /* Buffer size has to be in multiples of 128 bytes */ |
| rbdr->dma_size = buf_size; |
| rbdr->enable = true; |
| rbdr->thresh = RBDR_THRESH; |
| rbdr->head = 0; |
| rbdr->tail = 0; |
| |
| /* Initialize page recycling stuff. |
| * |
| * Can't use single buffer per page especially with 64K pages. |
| * On embedded platforms i.e 81xx/83xx available memory itself |
| * is low and minimum ring size of RBDR is 8K, that takes away |
| * lots of memory. |
| * |
| * But for XDP it has to be a single buffer per page. |
| */ |
| if (!nic->pnicvf->xdp_prog) { |
| rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size); |
| rbdr->is_xdp = false; |
| } else { |
| rbdr->pgcnt = ring_len; |
| rbdr->is_xdp = true; |
| } |
| rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt); |
| rbdr->pgcache = kcalloc(rbdr->pgcnt, sizeof(*rbdr->pgcache), |
| GFP_KERNEL); |
| if (!rbdr->pgcache) |
| return -ENOMEM; |
| rbdr->pgidx = 0; |
| rbdr->pgalloc = 0; |
| |
| nic->rb_page = NULL; |
| for (idx = 0; idx < ring_len; idx++) { |
| err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL, |
| RCV_FRAG_LEN, &rbuf); |
| if (err) { |
| /* To free already allocated and mapped ones */ |
| rbdr->tail = idx - 1; |
| return err; |
| } |
| |
| desc = GET_RBDR_DESC(rbdr, idx); |
| desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1); |
| } |
| |
| nicvf_get_page(nic); |
| |
| return 0; |
| } |
| |
| /* Free RBDR ring and its receive buffers */ |
| static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr) |
| { |
| int head, tail; |
| u64 buf_addr, phys_addr; |
| struct pgcache *pgcache; |
| struct rbdr_entry_t *desc; |
| |
| if (!rbdr) |
| return; |
| |
| rbdr->enable = false; |
| if (!rbdr->dmem.base) |
| return; |
| |
| head = rbdr->head; |
| tail = rbdr->tail; |
| |
| /* Release page references */ |
| while (head != tail) { |
| desc = GET_RBDR_DESC(rbdr, head); |
| buf_addr = desc->buf_addr; |
| phys_addr = nicvf_iova_to_phys(nic, buf_addr); |
| dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN, |
| DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); |
| if (phys_addr) |
| put_page(virt_to_page(phys_to_virt(phys_addr))); |
| head++; |
| head &= (rbdr->dmem.q_len - 1); |
| } |
| /* Release buffer of tail desc */ |
| desc = GET_RBDR_DESC(rbdr, tail); |
| buf_addr = desc->buf_addr; |
| phys_addr = nicvf_iova_to_phys(nic, buf_addr); |
| dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN, |
| DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); |
| if (phys_addr) |
| put_page(virt_to_page(phys_to_virt(phys_addr))); |
| |
| /* Sync page cache info */ |
| smp_rmb(); |
| |
| /* Release additional page references held for recycling */ |
| head = 0; |
| while (head < rbdr->pgcnt) { |
| pgcache = &rbdr->pgcache[head]; |
| if (pgcache->page && page_ref_count(pgcache->page) != 0) { |
| if (!rbdr->is_xdp) { |
| put_page(pgcache->page); |
| continue; |
| } |
| page_ref_sub(pgcache->page, pgcache->ref_count - 1); |
| put_page(pgcache->page); |
| } |
| head++; |
| } |
| |
| /* Free RBDR ring */ |
| nicvf_free_q_desc_mem(nic, &rbdr->dmem); |
| } |
| |
| /* Refill receive buffer descriptors with new buffers. |
| */ |
| static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp) |
| { |
| struct queue_set *qs = nic->qs; |
| int rbdr_idx = qs->rbdr_cnt; |
| int tail, qcount; |
| int refill_rb_cnt; |
| struct rbdr *rbdr; |
| struct rbdr_entry_t *desc; |
| u64 rbuf; |
| int new_rb = 0; |
| |
| refill: |
| if (!rbdr_idx) |
| return; |
| rbdr_idx--; |
| rbdr = &qs->rbdr[rbdr_idx]; |
| /* Check if it's enabled */ |
| if (!rbdr->enable) |
| goto next_rbdr; |
| |
| /* Get no of desc's to be refilled */ |
| qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx); |
| qcount &= 0x7FFFF; |
| /* Doorbell can be ringed with a max of ring size minus 1 */ |
| if (qcount >= (qs->rbdr_len - 1)) |
| goto next_rbdr; |
| else |
| refill_rb_cnt = qs->rbdr_len - qcount - 1; |
| |
| /* Sync page cache info */ |
| smp_rmb(); |
| |
| /* Start filling descs from tail */ |
| tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3; |
| while (refill_rb_cnt) { |
| tail++; |
| tail &= (rbdr->dmem.q_len - 1); |
| |
| if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf)) |
| break; |
| |
| desc = GET_RBDR_DESC(rbdr, tail); |
| desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1); |
| refill_rb_cnt--; |
| new_rb++; |
| } |
| |
| nicvf_get_page(nic); |
| |
| /* make sure all memory stores are done before ringing doorbell */ |
| smp_wmb(); |
| |
| /* Check if buffer allocation failed */ |
| if (refill_rb_cnt) |
| nic->rb_alloc_fail = true; |
| else |
| nic->rb_alloc_fail = false; |
| |
| /* Notify HW */ |
| nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, |
| rbdr_idx, new_rb); |
| next_rbdr: |
| /* Re-enable RBDR interrupts only if buffer allocation is success */ |
| if (!nic->rb_alloc_fail && rbdr->enable && |
| netif_running(nic->pnicvf->netdev)) |
| nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx); |
| |
| if (rbdr_idx) |
| goto refill; |
| } |
| |
| /* Alloc rcv buffers in non-atomic mode for better success */ |
| void nicvf_rbdr_work(struct work_struct *work) |
| { |
| struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work); |
| |
| nicvf_refill_rbdr(nic, GFP_KERNEL); |
| if (nic->rb_alloc_fail) |
| schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10)); |
| else |
| nic->rb_work_scheduled = false; |
| } |
| |
| /* In Softirq context, alloc rcv buffers in atomic mode */ |
| void nicvf_rbdr_task(unsigned long data) |
| { |
| struct nicvf *nic = (struct nicvf *)data; |
| |
| nicvf_refill_rbdr(nic, GFP_ATOMIC); |
| if (nic->rb_alloc_fail) { |
| nic->rb_work_scheduled = true; |
| schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10)); |
| } |
| } |
| |
| /* Initialize completion queue */ |
| static int nicvf_init_cmp_queue(struct nicvf *nic, |
| struct cmp_queue *cq, int q_len) |
| { |
| int err; |
| |
| err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE, |
| NICVF_CQ_BASE_ALIGN_BYTES); |
| if (err) |
| return err; |
| |
| cq->desc = cq->dmem.base; |
| cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH; |
| nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1; |
| |
| return 0; |
| } |
| |
| static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq) |
| { |
| if (!cq) |
| return; |
| if (!cq->dmem.base) |
| return; |
| |
| nicvf_free_q_desc_mem(nic, &cq->dmem); |
| } |
| |
| /* Initialize transmit queue */ |
| static int nicvf_init_snd_queue(struct nicvf *nic, |
| struct snd_queue *sq, int q_len, int qidx) |
| { |
| int err; |
| |
| err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE, |
| NICVF_SQ_BASE_ALIGN_BYTES); |
| if (err) |
| return err; |
| |
| sq->desc = sq->dmem.base; |
| sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL); |
| if (!sq->skbuff) |
| return -ENOMEM; |
| |
| sq->head = 0; |
| sq->tail = 0; |
| sq->thresh = SND_QUEUE_THRESH; |
| |
| /* Check if this SQ is a XDP TX queue */ |
| if (nic->sqs_mode) |
| qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS); |
| if (qidx < nic->pnicvf->xdp_tx_queues) { |
| /* Alloc memory to save page pointers for XDP_TX */ |
| sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL); |
| if (!sq->xdp_page) |
| return -ENOMEM; |
| sq->xdp_desc_cnt = 0; |
| sq->xdp_free_cnt = q_len - 1; |
| sq->is_xdp = true; |
| } else { |
| sq->xdp_page = NULL; |
| sq->xdp_desc_cnt = 0; |
| sq->xdp_free_cnt = 0; |
| sq->is_xdp = false; |
| |
| atomic_set(&sq->free_cnt, q_len - 1); |
| |
| /* Preallocate memory for TSO segment's header */ |
| sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev, |
| q_len * TSO_HEADER_SIZE, |
| &sq->tso_hdrs_phys, |
| GFP_KERNEL); |
| if (!sq->tso_hdrs) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq, |
| int hdr_sqe, u8 subdesc_cnt) |
| { |
| u8 idx; |
| struct sq_gather_subdesc *gather; |
| |
| /* Unmap DMA mapped skb data buffers */ |
| for (idx = 0; idx < subdesc_cnt; idx++) { |
| hdr_sqe++; |
| hdr_sqe &= (sq->dmem.q_len - 1); |
| gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe); |
| /* HW will ensure data coherency, CPU sync not required */ |
| dma_unmap_page_attrs(&nic->pdev->dev, gather->addr, |
| gather->size, DMA_TO_DEVICE, |
| DMA_ATTR_SKIP_CPU_SYNC); |
| } |
| } |
| |
| static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq) |
| { |
| struct sk_buff *skb; |
| struct page *page; |
| struct sq_hdr_subdesc *hdr; |
| struct sq_hdr_subdesc *tso_sqe; |
| |
| if (!sq) |
| return; |
| if (!sq->dmem.base) |
| return; |
| |
| if (sq->tso_hdrs) |
| dma_free_coherent(&nic->pdev->dev, |
| sq->dmem.q_len * TSO_HEADER_SIZE, |
| sq->tso_hdrs, sq->tso_hdrs_phys); |
| |
| /* Free pending skbs in the queue */ |
| smp_rmb(); |
| while (sq->head != sq->tail) { |
| skb = (struct sk_buff *)sq->skbuff[sq->head]; |
| if (!skb || !sq->xdp_page) |
| goto next; |
| |
| page = (struct page *)sq->xdp_page[sq->head]; |
| if (!page) |
| goto next; |
| else |
| put_page(page); |
| |
| hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head); |
| /* Check for dummy descriptor used for HW TSO offload on 88xx */ |
| if (hdr->dont_send) { |
| /* Get actual TSO descriptors and unmap them */ |
| tso_sqe = |
| (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2); |
| nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2, |
| tso_sqe->subdesc_cnt); |
| } else { |
| nicvf_unmap_sndq_buffers(nic, sq, sq->head, |
| hdr->subdesc_cnt); |
| } |
| if (skb) |
| dev_kfree_skb_any(skb); |
| next: |
| sq->head++; |
| sq->head &= (sq->dmem.q_len - 1); |
| } |
| kfree(sq->skbuff); |
| kfree(sq->xdp_page); |
| nicvf_free_q_desc_mem(nic, &sq->dmem); |
| } |
| |
| static void nicvf_reclaim_snd_queue(struct nicvf *nic, |
| struct queue_set *qs, int qidx) |
| { |
| /* Disable send queue */ |
| nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0); |
| /* Check if SQ is stopped */ |
| if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01)) |
| return; |
| /* Reset send queue */ |
| nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET); |
| } |
| |
| static void nicvf_reclaim_rcv_queue(struct nicvf *nic, |
| struct queue_set *qs, int qidx) |
| { |
| union nic_mbx mbx = {}; |
| |
| /* Make sure all packets in the pipeline are written back into mem */ |
| mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC; |
| nicvf_send_msg_to_pf(nic, &mbx); |
| } |
| |
| static void nicvf_reclaim_cmp_queue(struct nicvf *nic, |
| struct queue_set *qs, int qidx) |
| { |
| /* Disable timer threshold (doesn't get reset upon CQ reset */ |
| nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0); |
| /* Disable completion queue */ |
| nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0); |
| /* Reset completion queue */ |
| nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET); |
| } |
| |
| static void nicvf_reclaim_rbdr(struct nicvf *nic, |
| struct rbdr *rbdr, int qidx) |
| { |
| u64 tmp, fifo_state; |
| int timeout = 10; |
| |
| /* Save head and tail pointers for feeing up buffers */ |
| rbdr->head = nicvf_queue_reg_read(nic, |
| NIC_QSET_RBDR_0_1_HEAD, |
| qidx) >> 3; |
| rbdr->tail = nicvf_queue_reg_read(nic, |
| NIC_QSET_RBDR_0_1_TAIL, |
| qidx) >> 3; |
| |
| /* If RBDR FIFO is in 'FAIL' state then do a reset first |
| * before relaiming. |
| */ |
| fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx); |
| if (((fifo_state >> 62) & 0x03) == 0x3) |
| nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, |
| qidx, NICVF_RBDR_RESET); |
| |
| /* Disable RBDR */ |
| nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0); |
| if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00)) |
| return; |
| while (1) { |
| tmp = nicvf_queue_reg_read(nic, |
| NIC_QSET_RBDR_0_1_PREFETCH_STATUS, |
| qidx); |
| if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF)) |
| break; |
| usleep_range(1000, 2000); |
| timeout--; |
| if (!timeout) { |
| netdev_err(nic->netdev, |
| "Failed polling on prefetch status\n"); |
| return; |
| } |
| } |
| nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, |
| qidx, NICVF_RBDR_RESET); |
| |
| if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02)) |
| return; |
| nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00); |
| if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00)) |
| return; |
| } |
| |
| void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features) |
| { |
| u64 rq_cfg; |
| int sqs; |
| |
| rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0); |
| |
| /* Enable first VLAN stripping */ |
| if (features & NETIF_F_HW_VLAN_CTAG_RX) |
| rq_cfg |= (1ULL << 25); |
| else |
| rq_cfg &= ~(1ULL << 25); |
| nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg); |
| |
| /* Configure Secondary Qsets, if any */ |
| for (sqs = 0; sqs < nic->sqs_count; sqs++) |
| if (nic->snicvf[sqs]) |
| nicvf_queue_reg_write(nic->snicvf[sqs], |
| NIC_QSET_RQ_GEN_CFG, 0, rq_cfg); |
| } |
| |
| static void nicvf_reset_rcv_queue_stats(struct nicvf *nic) |
| { |
| union nic_mbx mbx = {}; |
| |
| /* Reset all RQ/SQ and VF stats */ |
| mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER; |
| mbx.reset_stat.rx_stat_mask = 0x3FFF; |
| mbx.reset_stat.tx_stat_mask = 0x1F; |
| mbx.reset_stat.rq_stat_mask = 0xFFFF; |
| mbx.reset_stat.sq_stat_mask = 0xFFFF; |
| nicvf_send_msg_to_pf(nic, &mbx); |
| } |
| |
| /* Configures receive queue */ |
| static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs, |
| int qidx, bool enable) |
| { |
| union nic_mbx mbx = {}; |
| struct rcv_queue *rq; |
| struct rq_cfg rq_cfg; |
| |
| rq = &qs->rq[qidx]; |
| rq->enable = enable; |
| |
| /* Disable receive queue */ |
| nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0); |
| |
| if (!rq->enable) { |
| nicvf_reclaim_rcv_queue(nic, qs, qidx); |
| xdp_rxq_info_unreg(&rq->xdp_rxq); |
| return; |
| } |
| |
| rq->cq_qs = qs->vnic_id; |
| rq->cq_idx = qidx; |
| rq->start_rbdr_qs = qs->vnic_id; |
| rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1; |
| rq->cont_rbdr_qs = qs->vnic_id; |
| rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1; |
| /* all writes of RBDR data to be loaded into L2 Cache as well*/ |
| rq->caching = 1; |
| |
| /* Driver have no proper error path for failed XDP RX-queue info reg */ |
| WARN_ON(xdp_rxq_info_reg(&rq->xdp_rxq, nic->netdev, qidx) < 0); |
| |
| /* Send a mailbox msg to PF to config RQ */ |
| mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG; |
| mbx.rq.qs_num = qs->vnic_id; |
| mbx.rq.rq_num = qidx; |
| mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) | |
| (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) | |
| (rq->cont_qs_rbdr_idx << 8) | |
| (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx); |
| nicvf_send_msg_to_pf(nic, &mbx); |
| |
| mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG; |
| mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) | |
| (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) | |
| (qs->vnic_id << 0); |
| nicvf_send_msg_to_pf(nic, &mbx); |
| |
| /* RQ drop config |
| * Enable CQ drop to reserve sufficient CQEs for all tx packets |
| */ |
| mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG; |
| mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) | |
| (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) | |
| (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8); |
| nicvf_send_msg_to_pf(nic, &mbx); |
| |
| if (!nic->sqs_mode && (qidx == 0)) { |
| /* Enable checking L3/L4 length and TCP/UDP checksums |
| * Also allow IPv6 pkts with zero UDP checksum. |
| */ |
| nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, |
| (BIT(24) | BIT(23) | BIT(21) | BIT(20))); |
| nicvf_config_vlan_stripping(nic, nic->netdev->features); |
| } |
| |
| /* Enable Receive queue */ |
| memset(&rq_cfg, 0, sizeof(struct rq_cfg)); |
| rq_cfg.ena = 1; |
| rq_cfg.tcp_ena = 0; |
| nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg); |
| } |
| |
| /* Configures completion queue */ |
| void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs, |
| int qidx, bool enable) |
| { |
| struct cmp_queue *cq; |
| struct cq_cfg cq_cfg; |
| |
| cq = &qs->cq[qidx]; |
| cq->enable = enable; |
| |
| if (!cq->enable) { |
| nicvf_reclaim_cmp_queue(nic, qs, qidx); |
| return; |
| } |
| |
| /* Reset completion queue */ |
| nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET); |
| |
| if (!cq->enable) |
| return; |
| |
| spin_lock_init(&cq->lock); |
| /* Set completion queue base address */ |
| nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, |
| qidx, (u64)(cq->dmem.phys_base)); |
| |
| /* Enable Completion queue */ |
| memset(&cq_cfg, 0, sizeof(struct cq_cfg)); |
| cq_cfg.ena = 1; |
| cq_cfg.reset = 0; |
| cq_cfg.caching = 0; |
| cq_cfg.qsize = ilog2(qs->cq_len >> 10); |
| cq_cfg.avg_con = 0; |
| nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg); |
| |
| /* Set threshold value for interrupt generation */ |
| nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh); |
| nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, |
| qidx, CMP_QUEUE_TIMER_THRESH); |
| } |
| |
| /* Configures transmit queue */ |
| static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, |
| int qidx, bool enable) |
| { |
| union nic_mbx mbx = {}; |
| struct snd_queue *sq; |
| struct sq_cfg sq_cfg; |
| |
| sq = &qs->sq[qidx]; |
| sq->enable = enable; |
| |
| if (!sq->enable) { |
| nicvf_reclaim_snd_queue(nic, qs, qidx); |
| return; |
| } |
| |
| /* Reset send queue */ |
| nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET); |
| |
| sq->cq_qs = qs->vnic_id; |
| sq->cq_idx = qidx; |
| |
| /* Send a mailbox msg to PF to config SQ */ |
| mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG; |
| mbx.sq.qs_num = qs->vnic_id; |
| mbx.sq.sq_num = qidx; |
| mbx.sq.sqs_mode = nic->sqs_mode; |
| mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx; |
| nicvf_send_msg_to_pf(nic, &mbx); |
| |
| /* Set queue base address */ |
| nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, |
| qidx, (u64)(sq->dmem.phys_base)); |
| |
| /* Enable send queue & set queue size */ |
| memset(&sq_cfg, 0, sizeof(struct sq_cfg)); |
| sq_cfg.ena = 1; |
| sq_cfg.reset = 0; |
| sq_cfg.ldwb = 0; |
| sq_cfg.qsize = ilog2(qs->sq_len >> 10); |
| sq_cfg.tstmp_bgx_intf = 0; |
| /* CQ's level at which HW will stop processing SQEs to avoid |
| * transmitting a pkt with no space in CQ to post CQE_TX. |
| */ |
| sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len; |
| nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg); |
| |
| /* Set threshold value for interrupt generation */ |
| nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh); |
| |
| /* Set queue:cpu affinity for better load distribution */ |
| if (cpu_online(qidx)) { |
| cpumask_set_cpu(qidx, &sq->affinity_mask); |
| netif_set_xps_queue(nic->netdev, |
| &sq->affinity_mask, qidx); |
| } |
| } |
| |
| /* Configures receive buffer descriptor ring */ |
| static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, |
| int qidx, bool enable) |
| { |
| struct rbdr *rbdr; |
| struct rbdr_cfg rbdr_cfg; |
| |
| rbdr = &qs->rbdr[qidx]; |
| nicvf_reclaim_rbdr(nic, rbdr, qidx); |
| if (!enable) |
| return; |
| |
| /* Set descriptor base address */ |
| nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, |
| qidx, (u64)(rbdr->dmem.phys_base)); |
| |
| /* Enable RBDR & set queue size */ |
| /* Buffer size should be in multiples of 128 bytes */ |
| memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg)); |
| rbdr_cfg.ena = 1; |
| rbdr_cfg.reset = 0; |
| rbdr_cfg.ldwb = 0; |
| rbdr_cfg.qsize = RBDR_SIZE; |
| rbdr_cfg.avg_con = 0; |
| rbdr_cfg.lines = rbdr->dma_size / 128; |
| nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, |
| qidx, *(u64 *)&rbdr_cfg); |
| |
| /* Notify HW */ |
| nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, |
| qidx, qs->rbdr_len - 1); |
| |
| /* Set threshold value for interrupt generation */ |
| nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, |
| qidx, rbdr->thresh - 1); |
| } |
| |
| /* Requests PF to assign and enable Qset */ |
| void nicvf_qset_config(struct nicvf *nic, bool enable) |
| { |
| union nic_mbx mbx = {}; |
| struct queue_set *qs = nic->qs; |
| struct qs_cfg *qs_cfg; |
| |
| if (!qs) { |
| netdev_warn(nic->netdev, |
| "Qset is still not allocated, don't init queues\n"); |
| return; |
| } |
| |
| qs->enable = enable; |
| qs->vnic_id = nic->vf_id; |
| |
| /* Send a mailbox msg to PF to config Qset */ |
| mbx.qs.msg = NIC_MBOX_MSG_QS_CFG; |
| mbx.qs.num = qs->vnic_id; |
| mbx.qs.sqs_count = nic->sqs_count; |
| |
| mbx.qs.cfg = 0; |
| qs_cfg = (struct qs_cfg *)&mbx.qs.cfg; |
| if (qs->enable) { |
| qs_cfg->ena = 1; |
| #ifdef __BIG_ENDIAN |
| qs_cfg->be = 1; |
| #endif |
| qs_cfg->vnic = qs->vnic_id; |
| /* Enable Tx timestamping capability */ |
| if (nic->ptp_clock) |
| qs_cfg->send_tstmp_ena = 1; |
| } |
| nicvf_send_msg_to_pf(nic, &mbx); |
| } |
| |
| static void nicvf_free_resources(struct nicvf *nic) |
| { |
| int qidx; |
| struct queue_set *qs = nic->qs; |
| |
| /* Free receive buffer descriptor ring */ |
| for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) |
| nicvf_free_rbdr(nic, &qs->rbdr[qidx]); |
| |
| /* Free completion queue */ |
| for (qidx = 0; qidx < qs->cq_cnt; qidx++) |
| nicvf_free_cmp_queue(nic, &qs->cq[qidx]); |
| |
| /* Free send queue */ |
| for (qidx = 0; qidx < qs->sq_cnt; qidx++) |
| nicvf_free_snd_queue(nic, &qs->sq[qidx]); |
| } |
| |
| static int nicvf_alloc_resources(struct nicvf *nic) |
| { |
| int qidx; |
| struct queue_set *qs = nic->qs; |
| |
| /* Alloc receive buffer descriptor ring */ |
| for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) { |
| if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len, |
| DMA_BUFFER_LEN)) |
| goto alloc_fail; |
| } |
| |
| /* Alloc send queue */ |
| for (qidx = 0; qidx < qs->sq_cnt; qidx++) { |
| if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx)) |
| goto alloc_fail; |
| } |
| |
| /* Alloc completion queue */ |
| for (qidx = 0; qidx < qs->cq_cnt; qidx++) { |
| if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len)) |
| goto alloc_fail; |
| } |
| |
| return 0; |
| alloc_fail: |
| nicvf_free_resources(nic); |
| return -ENOMEM; |
| } |
| |
| int nicvf_set_qset_resources(struct nicvf *nic) |
| { |
| struct queue_set *qs; |
| |
| qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL); |
| if (!qs) |
| return -ENOMEM; |
| nic->qs = qs; |
| |
| /* Set count of each queue */ |
| qs->rbdr_cnt = DEFAULT_RBDR_CNT; |
| qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus()); |
| qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus()); |
| qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt); |
| |
| /* Set queue lengths */ |
| qs->rbdr_len = RCV_BUF_COUNT; |
| qs->sq_len = SND_QUEUE_LEN; |
| qs->cq_len = CMP_QUEUE_LEN; |
| |
| nic->rx_queues = qs->rq_cnt; |
| nic->tx_queues = qs->sq_cnt; |
| nic->xdp_tx_queues = 0; |
| |
| return 0; |
| } |
| |
| int nicvf_config_data_transfer(struct nicvf *nic, bool enable) |
| { |
| bool disable = false; |
| struct queue_set *qs = nic->qs; |
| struct queue_set *pqs = nic->pnicvf->qs; |
| int qidx; |
| |
| if (!qs) |
| return 0; |
| |
| /* Take primary VF's queue lengths. |
| * This is needed to take queue lengths set from ethtool |
| * into consideration. |
| */ |
| if (nic->sqs_mode && pqs) { |
| qs->cq_len = pqs->cq_len; |
| qs->sq_len = pqs->sq_len; |
| } |
| |
| if (enable) { |
| if (nicvf_alloc_resources(nic)) |
| return -ENOMEM; |
| |
| for (qidx = 0; qidx < qs->sq_cnt; qidx++) |
| nicvf_snd_queue_config(nic, qs, qidx, enable); |
| for (qidx = 0; qidx < qs->cq_cnt; qidx++) |
| nicvf_cmp_queue_config(nic, qs, qidx, enable); |
| for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) |
| nicvf_rbdr_config(nic, qs, qidx, enable); |
| for (qidx = 0; qidx < qs->rq_cnt; qidx++) |
| nicvf_rcv_queue_config(nic, qs, qidx, enable); |
| } else { |
| for (qidx = 0; qidx < qs->rq_cnt; qidx++) |
| nicvf_rcv_queue_config(nic, qs, qidx, disable); |
| for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) |
| nicvf_rbdr_config(nic, qs, qidx, disable); |
| for (qidx = 0; qidx < qs->sq_cnt; qidx++) |
| nicvf_snd_queue_config(nic, qs, qidx, disable); |
| for (qidx = 0; qidx < qs->cq_cnt; qidx++) |
| nicvf_cmp_queue_config(nic, qs, qidx, disable); |
| |
| nicvf_free_resources(nic); |
| } |
| |
| /* Reset RXQ's stats. |
| * SQ's stats will get reset automatically once SQ is reset. |
| */ |
| nicvf_reset_rcv_queue_stats(nic); |
| |
| return 0; |
| } |
| |
| /* Get a free desc from SQ |
| * returns descriptor ponter & descriptor number |
| */ |
| static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt) |
| { |
| int qentry; |
| |
| qentry = sq->tail; |
| if (!sq->is_xdp) |
| atomic_sub(desc_cnt, &sq->free_cnt); |
| else |
| sq->xdp_free_cnt -= desc_cnt; |
| sq->tail += desc_cnt; |
| sq->tail &= (sq->dmem.q_len - 1); |
| |
| return qentry; |
| } |
| |
| /* Rollback to previous tail pointer when descriptors not used */ |
| static inline void nicvf_rollback_sq_desc(struct snd_queue *sq, |
| int qentry, int desc_cnt) |
| { |
| sq->tail = qentry; |
| atomic_add(desc_cnt, &sq->free_cnt); |
| } |
| |
| /* Free descriptor back to SQ for future use */ |
| void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt) |
| { |
| if (!sq->is_xdp) |
| atomic_add(desc_cnt, &sq->free_cnt); |
| else |
| sq->xdp_free_cnt += desc_cnt; |
| sq->head += desc_cnt; |
| sq->head &= (sq->dmem.q_len - 1); |
| } |
| |
| static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry) |
| { |
| qentry++; |
| qentry &= (sq->dmem.q_len - 1); |
| return qentry; |
| } |
| |
| void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx) |
| { |
| u64 sq_cfg; |
| |
| sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx); |
| sq_cfg |= NICVF_SQ_EN; |
| nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg); |
| /* Ring doorbell so that H/W restarts processing SQEs */ |
| nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0); |
| } |
| |
| void nicvf_sq_disable(struct nicvf *nic, int qidx) |
| { |
| u64 sq_cfg; |
| |
| sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx); |
| sq_cfg &= ~NICVF_SQ_EN; |
| nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg); |
| } |
| |
| void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq, |
| int qidx) |
| { |
| u64 head, tail; |
| struct sk_buff *skb; |
| struct nicvf *nic = netdev_priv(netdev); |
| struct sq_hdr_subdesc *hdr; |
| |
| head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4; |
| tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4; |
| while (sq->head != head) { |
| hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head); |
| if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) { |
| nicvf_put_sq_desc(sq, 1); |
| continue; |
| } |
| skb = (struct sk_buff *)sq->skbuff[sq->head]; |
| if (skb) |
| dev_kfree_skb_any(skb); |
| atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets); |
| atomic64_add(hdr->tot_len, |
| (atomic64_t *)&netdev->stats.tx_bytes); |
| nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1); |
| } |
| } |
| |
| /* XDP Transmit APIs */ |
| void nicvf_xdp_sq_doorbell(struct nicvf *nic, |
| struct snd_queue *sq, int sq_num) |
| { |
| if (!sq->xdp_desc_cnt) |
| return; |
| |
| /* make sure all memory stores are done before ringing doorbell */ |
| wmb(); |
| |
| /* Inform HW to xmit all TSO segments */ |
| nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, |
| sq_num, sq->xdp_desc_cnt); |
| sq->xdp_desc_cnt = 0; |
| } |
| |
| static inline void |
| nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry, |
| int subdesc_cnt, u64 data, int len) |
| { |
| struct sq_hdr_subdesc *hdr; |
| |
| hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry); |
| memset(hdr, 0, SND_QUEUE_DESC_SIZE); |
| hdr->subdesc_type = SQ_DESC_TYPE_HEADER; |
| hdr->subdesc_cnt = subdesc_cnt; |
| hdr->tot_len = len; |
| hdr->post_cqe = 1; |
| sq->xdp_page[qentry] = (u64)virt_to_page((void *)data); |
| } |
| |
| int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq, |
| u64 bufaddr, u64 dma_addr, u16 len) |
| { |
| int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT; |
| int qentry; |
| |
| if (subdesc_cnt > sq->xdp_free_cnt) |
| return 0; |
| |
| qentry = nicvf_get_sq_desc(sq, subdesc_cnt); |
| |
| nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len); |
| |
| qentry = nicvf_get_nxt_sqentry(sq, qentry); |
| nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr); |
| |
| sq->xdp_desc_cnt += subdesc_cnt; |
| |
| return 1; |
| } |
| |
| /* Calculate no of SQ subdescriptors needed to transmit all |
| * segments of this TSO packet. |
| * Taken from 'Tilera network driver' with a minor modification. |
| */ |
| static int nicvf_tso_count_subdescs(struct sk_buff *skb) |
| { |
| struct skb_shared_info *sh = skb_shinfo(skb); |
| unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| unsigned int data_len = skb->len - sh_len; |
| unsigned int p_len = sh->gso_size; |
| long f_id = -1; /* id of the current fragment */ |
| long f_size = skb_headlen(skb) - sh_len; /* current fragment size */ |
| long f_used = 0; /* bytes used from the current fragment */ |
| long n; /* size of the current piece of payload */ |
| int num_edescs = 0; |
| int segment; |
| |
| for (segment = 0; segment < sh->gso_segs; segment++) { |
| unsigned int p_used = 0; |
| |
| /* One edesc for header and for each piece of the payload. */ |
| for (num_edescs++; p_used < p_len; num_edescs++) { |
| /* Advance as needed. */ |
| while (f_used >= f_size) { |
| f_id++; |
| f_size = skb_frag_size(&sh->frags[f_id]); |
| f_used = 0; |
| } |
| |
| /* Use bytes from the current fragment. */ |
| n = p_len - p_used; |
| if (n > f_size - f_used) |
| n = f_size - f_used; |
| f_used += n; |
| p_used += n; |
| } |
| |
| /* The last segment may be less than gso_size. */ |
| data_len -= p_len; |
| if (data_len < p_len) |
| p_len = data_len; |
| } |
| |
| /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */ |
| return num_edescs + sh->gso_segs; |
| } |
| |
| #define POST_CQE_DESC_COUNT 2 |
| |
| /* Get the number of SQ descriptors needed to xmit this skb */ |
| static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb) |
| { |
| int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT; |
| |
| if (skb_shinfo(skb)->gso_size && !nic->hw_tso) { |
| subdesc_cnt = nicvf_tso_count_subdescs(skb); |
| return subdesc_cnt; |
| } |
| |
| /* Dummy descriptors to get TSO pkt completion notification */ |
| if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) |
| subdesc_cnt += POST_CQE_DESC_COUNT; |
| |
| if (skb_shinfo(skb)->nr_frags) |
| subdesc_cnt += skb_shinfo(skb)->nr_frags; |
| |
| return subdesc_cnt; |
| } |
| |
| /* Add SQ HEADER subdescriptor. |
| * First subdescriptor for every send descriptor. |
| */ |
| static inline void |
| nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry, |
| int subdesc_cnt, struct sk_buff *skb, int len) |
| { |
| int proto; |
| struct sq_hdr_subdesc *hdr; |
| union { |
| struct iphdr *v4; |
| struct ipv6hdr *v6; |
| unsigned char *hdr; |
| } ip; |
| |
| ip.hdr = skb_network_header(skb); |
| hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry); |
| memset(hdr, 0, SND_QUEUE_DESC_SIZE); |
| hdr->subdesc_type = SQ_DESC_TYPE_HEADER; |
| |
| if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) { |
| /* post_cqe = 0, to avoid HW posting a CQE for every TSO |
| * segment transmitted on 88xx. |
| */ |
| hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT; |
| } else { |
| sq->skbuff[qentry] = (u64)skb; |
| /* Enable notification via CQE after processing SQE */ |
| hdr->post_cqe = 1; |
| /* No of subdescriptors following this */ |
| hdr->subdesc_cnt = subdesc_cnt; |
| } |
| hdr->tot_len = len; |
| |
| /* Offload checksum calculation to HW */ |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| if (ip.v4->version == 4) |
| hdr->csum_l3 = 1; /* Enable IP csum calculation */ |
| hdr->l3_offset = skb_network_offset(skb); |
| hdr->l4_offset = skb_transport_offset(skb); |
| |
| proto = (ip.v4->version == 4) ? ip.v4->protocol : |
| ip.v6->nexthdr; |
| |
| switch (proto) { |
| case IPPROTO_TCP: |
| hdr->csum_l4 = SEND_L4_CSUM_TCP; |
| break; |
| case IPPROTO_UDP: |
| hdr->csum_l4 = SEND_L4_CSUM_UDP; |
| break; |
| case IPPROTO_SCTP: |
| hdr->csum_l4 = SEND_L4_CSUM_SCTP; |
| break; |
| } |
| } |
| |
| if (nic->hw_tso && skb_shinfo(skb)->gso_size) { |
| hdr->tso = 1; |
| hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| hdr->tso_max_paysize = skb_shinfo(skb)->gso_size; |
| /* For non-tunneled pkts, point this to L2 ethertype */ |
| hdr->inner_l3_offset = skb_network_offset(skb) - 2; |
| this_cpu_inc(nic->pnicvf->drv_stats->tx_tso); |
| } |
| |
| /* Check if timestamp is requested */ |
| if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { |
| skb_tx_timestamp(skb); |
| return; |
| } |
| |
| /* Tx timestamping not supported along with TSO, so ignore request */ |
| if (skb_shinfo(skb)->gso_size) |
| return; |
| |
| /* HW supports only a single outstanding packet to timestamp */ |
| if (!atomic_add_unless(&nic->pnicvf->tx_ptp_skbs, 1, 1)) |
| return; |
| |
| /* Mark the SKB for later reference */ |
| skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| |
| /* Finally enable timestamp generation |
| * Since 'post_cqe' is also set, two CQEs will be posted |
| * for this packet i.e CQE_TYPE_SEND and CQE_TYPE_SEND_PTP. |
| */ |
| hdr->tstmp = 1; |
| } |
| |
| /* SQ GATHER subdescriptor |
| * Must follow HDR descriptor |
| */ |
| static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry, |
| int size, u64 data) |
| { |
| struct sq_gather_subdesc *gather; |
| |
| qentry &= (sq->dmem.q_len - 1); |
| gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry); |
| |
| memset(gather, 0, SND_QUEUE_DESC_SIZE); |
| gather->subdesc_type = SQ_DESC_TYPE_GATHER; |
| gather->ld_type = NIC_SEND_LD_TYPE_E_LDD; |
| gather->size = size; |
| gather->addr = data; |
| } |
| |
| /* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO |
| * packet so that a CQE is posted as a notifation for transmission of |
| * TSO packet. |
| */ |
| static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry, |
| int tso_sqe, struct sk_buff *skb) |
| { |
| struct sq_imm_subdesc *imm; |
| struct sq_hdr_subdesc *hdr; |
| |
| sq->skbuff[qentry] = (u64)skb; |
| |
| hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry); |
| memset(hdr, 0, SND_QUEUE_DESC_SIZE); |
| hdr->subdesc_type = SQ_DESC_TYPE_HEADER; |
| /* Enable notification via CQE after processing SQE */ |
| hdr->post_cqe = 1; |
| /* There is no packet to transmit here */ |
| hdr->dont_send = 1; |
| hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1; |
| hdr->tot_len = 1; |
| /* Actual TSO header SQE index, needed for cleanup */ |
| hdr->rsvd2 = tso_sqe; |
| |
| qentry = nicvf_get_nxt_sqentry(sq, qentry); |
| imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry); |
| memset(imm, 0, SND_QUEUE_DESC_SIZE); |
| imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE; |
| imm->len = 1; |
| } |
| |
| static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb, |
| int sq_num, int desc_cnt) |
| { |
| struct netdev_queue *txq; |
| |
| txq = netdev_get_tx_queue(nic->pnicvf->netdev, |
| skb_get_queue_mapping(skb)); |
| |
| netdev_tx_sent_queue(txq, skb->len); |
| |
| /* make sure all memory stores are done before ringing doorbell */ |
| smp_wmb(); |
| |
| /* Inform HW to xmit all TSO segments */ |
| nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, |
| sq_num, desc_cnt); |
| } |
| |
| /* Segment a TSO packet into 'gso_size' segments and append |
| * them to SQ for transfer |
| */ |
| static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq, |
| int sq_num, int qentry, struct sk_buff *skb) |
| { |
| struct tso_t tso; |
| int seg_subdescs = 0, desc_cnt = 0; |
| int seg_len, total_len, data_left; |
| int hdr_qentry = qentry; |
| int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| |
| tso_start(skb, &tso); |
| total_len = skb->len - hdr_len; |
| while (total_len > 0) { |
| char *hdr; |
| |
| /* Save Qentry for adding HDR_SUBDESC at the end */ |
| hdr_qentry = qentry; |
| |
| data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); |
| total_len -= data_left; |
| |
| /* Add segment's header */ |
| qentry = nicvf_get_nxt_sqentry(sq, qentry); |
| hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE; |
| tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); |
| nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len, |
| sq->tso_hdrs_phys + |
| qentry * TSO_HEADER_SIZE); |
| /* HDR_SUDESC + GATHER */ |
| seg_subdescs = 2; |
| seg_len = hdr_len; |
| |
| /* Add segment's payload fragments */ |
| while (data_left > 0) { |
| int size; |
| |
| size = min_t(int, tso.size, data_left); |
| |
| qentry = nicvf_get_nxt_sqentry(sq, qentry); |
| nicvf_sq_add_gather_subdesc(sq, qentry, size, |
| virt_to_phys(tso.data)); |
| seg_subdescs++; |
| seg_len += size; |
| |
| data_left -= size; |
| tso_build_data(skb, &tso, size); |
| } |
| nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry, |
| seg_subdescs - 1, skb, seg_len); |
| sq->skbuff[hdr_qentry] = (u64)NULL; |
| qentry = nicvf_get_nxt_sqentry(sq, qentry); |
| |
| desc_cnt += seg_subdescs; |
| } |
| /* Save SKB in the last segment for freeing */ |
| sq->skbuff[hdr_qentry] = (u64)skb; |
| |
| nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt); |
| |
| this_cpu_inc(nic->pnicvf->drv_stats->tx_tso); |
| return 1; |
| } |
| |
| /* Append an skb to a SQ for packet transfer. */ |
| int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq, |
| struct sk_buff *skb, u8 sq_num) |
| { |
| int i, size; |
| int subdesc_cnt, hdr_sqe = 0; |
| int qentry; |
| u64 dma_addr; |
| |
| subdesc_cnt = nicvf_sq_subdesc_required(nic, skb); |
| if (subdesc_cnt > atomic_read(&sq->free_cnt)) |
| goto append_fail; |
| |
| qentry = nicvf_get_sq_desc(sq, subdesc_cnt); |
| |
| /* Check if its a TSO packet */ |
| if (skb_shinfo(skb)->gso_size && !nic->hw_tso) |
| return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb); |
| |
| /* Add SQ header subdesc */ |
| nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1, |
| skb, skb->len); |
| hdr_sqe = qentry; |
| |
| /* Add SQ gather subdescs */ |
| qentry = nicvf_get_nxt_sqentry(sq, qentry); |
| size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len; |
| /* HW will ensure data coherency, CPU sync not required */ |
| dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data), |
| offset_in_page(skb->data), size, |
| DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); |
| if (dma_mapping_error(&nic->pdev->dev, dma_addr)) { |
| nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt); |
| return 0; |
| } |
| |
| nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr); |
| |
| /* Check for scattered buffer */ |
| if (!skb_is_nonlinear(skb)) |
| goto doorbell; |
| |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| const struct skb_frag_struct *frag; |
| |
| frag = &skb_shinfo(skb)->frags[i]; |
| |
| qentry = nicvf_get_nxt_sqentry(sq, qentry); |
| size = skb_frag_size(frag); |
| dma_addr = dma_map_page_attrs(&nic->pdev->dev, |
| skb_frag_page(frag), |
| frag->page_offset, size, |
| DMA_TO_DEVICE, |
| DMA_ATTR_SKIP_CPU_SYNC); |
| if (dma_mapping_error(&nic->pdev->dev, dma_addr)) { |
| /* Free entire chain of mapped buffers |
| * here 'i' = frags mapped + above mapped skb->data |
| */ |
| nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i); |
| nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt); |
| return 0; |
| } |
| nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr); |
| } |
| |
| doorbell: |
| if (nic->t88 && skb_shinfo(skb)->gso_size) { |
| qentry = nicvf_get_nxt_sqentry(sq, qentry); |
| nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb); |
| } |
| |
| nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt); |
| |
| return 1; |
| |
| append_fail: |
| /* Use original PCI dev for debug log */ |
| nic = nic->pnicvf; |
| netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n"); |
| return 0; |
| } |
| |
| static inline unsigned frag_num(unsigned i) |
| { |
| #ifdef __BIG_ENDIAN |
| return (i & ~3) + 3 - (i & 3); |
| #else |
| return i; |
| #endif |
| } |
| |
| static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr, |
| u64 buf_addr, bool xdp) |
| { |
| struct page *page = NULL; |
| int len = RCV_FRAG_LEN; |
| |
| if (xdp) { |
| page = virt_to_page(phys_to_virt(buf_addr)); |
| /* Check if it's a recycled page, if not |
| * unmap the DMA mapping. |
| * |
| * Recycled page holds an extra reference. |
| */ |
| if (page_ref_count(page) != 1) |
| return; |
| |
| len += XDP_PACKET_HEADROOM; |
| /* Receive buffers in XDP mode are mapped from page start */ |
| dma_addr &= PAGE_MASK; |
| } |
| dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len, |
| DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); |
| } |
| |
| /* Returns SKB for a received packet */ |
| struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, |
| struct cqe_rx_t *cqe_rx, bool xdp) |
| { |
| int frag; |
| int payload_len = 0; |
| struct sk_buff *skb = NULL; |
| struct page *page; |
| int offset; |
| u16 *rb_lens = NULL; |
| u64 *rb_ptrs = NULL; |
| u64 phys_addr; |
| |
| rb_lens = (void *)cqe_rx + (3 * sizeof(u64)); |
| /* Except 88xx pass1 on all other chips CQE_RX2_S is added to |
| * CQE_RX at word6, hence buffer pointers move by word |
| * |
| * Use existing 'hw_tso' flag which will be set for all chips |
| * except 88xx pass1 instead of a additional cache line |
| * access (or miss) by using pci dev's revision. |
| */ |
| if (!nic->hw_tso) |
| rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64)); |
| else |
| rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64)); |
| |
| for (frag = 0; frag < cqe_rx->rb_cnt; frag++) { |
| payload_len = rb_lens[frag_num(frag)]; |
| phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs); |
| if (!phys_addr) { |
| if (skb) |
| dev_kfree_skb_any(skb); |
| return NULL; |
| } |
| |
| if (!frag) { |
| /* First fragment */ |
| nicvf_unmap_rcv_buffer(nic, |
| *rb_ptrs - cqe_rx->align_pad, |
| phys_addr, xdp); |
| skb = nicvf_rb_ptr_to_skb(nic, |
| phys_addr - cqe_rx->align_pad, |
| payload_len); |
| if (!skb) |
| return NULL; |
| skb_reserve(skb, cqe_rx->align_pad); |
| skb_put(skb, payload_len); |
| } else { |
| /* Add fragments */ |
| nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp); |
| page = virt_to_page(phys_to_virt(phys_addr)); |
| offset = phys_to_virt(phys_addr) - page_address(page); |
| skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, |
| offset, payload_len, RCV_FRAG_LEN); |
| } |
| /* Next buffer pointer */ |
| rb_ptrs++; |
| } |
| return skb; |
| } |
| |
| static u64 nicvf_int_type_to_mask(int int_type, int q_idx) |
| { |
| u64 reg_val; |
| |
| switch (int_type) { |
| case NICVF_INTR_CQ: |
| reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT); |
| break; |
| case NICVF_INTR_SQ: |
| reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT); |
| break; |
| case NICVF_INTR_RBDR: |
| reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT); |
| break; |
| case NICVF_INTR_PKT_DROP: |
| reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT); |
| break; |
| case NICVF_INTR_TCP_TIMER: |
| reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT); |
| break; |
| case NICVF_INTR_MBOX: |
| reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT); |
| break; |
| case NICVF_INTR_QS_ERR: |
| reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT); |
| break; |
| default: |
| reg_val = 0; |
| } |
| |
| return reg_val; |
| } |
| |
| /* Enable interrupt */ |
| void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx) |
| { |
| u64 mask = nicvf_int_type_to_mask(int_type, q_idx); |
| |
| if (!mask) { |
| netdev_dbg(nic->netdev, |
| "Failed to enable interrupt: unknown type\n"); |
| return; |
| } |
| nicvf_reg_write(nic, NIC_VF_ENA_W1S, |
| nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask); |
| } |
| |
| /* Disable interrupt */ |
| void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx) |
| { |
| u64 mask = nicvf_int_type_to_mask(int_type, q_idx); |
| |
| if (!mask) { |
| netdev_dbg(nic->netdev, |
| "Failed to disable interrupt: unknown type\n"); |
| return; |
| } |
| |
| nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask); |
| } |
| |
| /* Clear interrupt */ |
| void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx) |
| { |
| u64 mask = nicvf_int_type_to_mask(int_type, q_idx); |
| |
| if (!mask) { |
| netdev_dbg(nic->netdev, |
| "Failed to clear interrupt: unknown type\n"); |
| return; |
| } |
| |
| nicvf_reg_write(nic, NIC_VF_INT, mask); |
| } |
| |
| /* Check if interrupt is enabled */ |
| int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx) |
| { |
| u64 mask = nicvf_int_type_to_mask(int_type, q_idx); |
| /* If interrupt type is unknown, we treat it disabled. */ |
| if (!mask) { |
| netdev_dbg(nic->netdev, |
| "Failed to check interrupt enable: unknown type\n"); |
| return 0; |
| } |
| |
| return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S); |
| } |
| |
| void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx) |
| { |
| struct rcv_queue *rq; |
| |
| #define GET_RQ_STATS(reg) \ |
| nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\ |
| (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3)) |
| |
| rq = &nic->qs->rq[rq_idx]; |
| rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS); |
| rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS); |
| } |
| |
| void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx) |
| { |
| struct snd_queue *sq; |
| |
| #define GET_SQ_STATS(reg) \ |
| nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\ |
| (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3)) |
| |
| sq = &nic->qs->sq[sq_idx]; |
| sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS); |
| sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS); |
| } |
| |
| /* Check for errors in the receive cmp.queue entry */ |
| int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx) |
| { |
| netif_err(nic, rx_err, nic->netdev, |
| "RX error CQE err_level 0x%x err_opcode 0x%x\n", |
| cqe_rx->err_level, cqe_rx->err_opcode); |
| |
| switch (cqe_rx->err_opcode) { |
| case CQ_RX_ERROP_RE_PARTIAL: |
| this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts); |
| break; |
| case CQ_RX_ERROP_RE_JABBER: |
| this_cpu_inc(nic->drv_stats->rx_jabber_errs); |
| break; |
| case CQ_RX_ERROP_RE_FCS: |
| this_cpu_inc(nic->drv_stats->rx_fcs_errs); |
| break; |
| case CQ_RX_ERROP_RE_RX_CTL: |
| this_cpu_inc(nic->drv_stats->rx_bgx_errs); |
| break; |
| case CQ_RX_ERROP_PREL2_ERR: |
| this_cpu_inc(nic->drv_stats->rx_prel2_errs); |
| break; |
| case CQ_RX_ERROP_L2_MAL: |
| this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed); |
| break; |
| case CQ_RX_ERROP_L2_OVERSIZE: |
| this_cpu_inc(nic->drv_stats->rx_oversize); |
| break; |
| case CQ_RX_ERROP_L2_UNDERSIZE: |
| this_cpu_inc(nic->drv_stats->rx_undersize); |
| break; |
| case CQ_RX_ERROP_L2_LENMISM: |
| this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch); |
| break; |
| case CQ_RX_ERROP_L2_PCLP: |
| this_cpu_inc(nic->drv_stats->rx_l2_pclp); |
| break; |
| case CQ_RX_ERROP_IP_NOT: |
| this_cpu_inc(nic->drv_stats->rx_ip_ver_errs); |
| break; |
| case CQ_RX_ERROP_IP_CSUM_ERR: |
| this_cpu_inc(nic->drv_stats->rx_ip_csum_errs); |
| break; |
| case CQ_RX_ERROP_IP_MAL: |
| this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed); |
| break; |
| case CQ_RX_ERROP_IP_MALD: |
| this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed); |
| break; |
| case CQ_RX_ERROP_IP_HOP: |
| this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs); |
| break; |
| case CQ_RX_ERROP_L3_PCLP: |
| this_cpu_inc(nic->drv_stats->rx_l3_pclp); |
| break; |
| case CQ_RX_ERROP_L4_MAL: |
| this_cpu_inc(nic->drv_stats->rx_l4_malformed); |
| break; |
| case CQ_RX_ERROP_L4_CHK: |
| this_cpu_inc(nic->drv_stats->rx_l4_csum_errs); |
| break; |
| case CQ_RX_ERROP_UDP_LEN: |
| this_cpu_inc(nic->drv_stats->rx_udp_len_errs); |
| break; |
| case CQ_RX_ERROP_L4_PORT: |
| this_cpu_inc(nic->drv_stats->rx_l4_port_errs); |
| break; |
| case CQ_RX_ERROP_TCP_FLAG: |
| this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs); |
| break; |
| case CQ_RX_ERROP_TCP_OFFSET: |
| this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs); |
| break; |
| case CQ_RX_ERROP_L4_PCLP: |
| this_cpu_inc(nic->drv_stats->rx_l4_pclp); |
| break; |
| case CQ_RX_ERROP_RBDR_TRUNC: |
| this_cpu_inc(nic->drv_stats->rx_truncated_pkts); |
| break; |
| } |
| |
| return 1; |
| } |
| |
| /* Check for errors in the send cmp.queue entry */ |
| int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx) |
| { |
| switch (cqe_tx->send_status) { |
| case CQ_TX_ERROP_DESC_FAULT: |
| this_cpu_inc(nic->drv_stats->tx_desc_fault); |
| break; |
| case CQ_TX_ERROP_HDR_CONS_ERR: |
| this_cpu_inc(nic->drv_stats->tx_hdr_cons_err); |
| break; |
| case CQ_TX_ERROP_SUBDC_ERR: |
| this_cpu_inc(nic->drv_stats->tx_subdesc_err); |
| break; |
| case CQ_TX_ERROP_MAX_SIZE_VIOL: |
| this_cpu_inc(nic->drv_stats->tx_max_size_exceeded); |
| break; |
| case CQ_TX_ERROP_IMM_SIZE_OFLOW: |
| this_cpu_inc(nic->drv_stats->tx_imm_size_oflow); |
| break; |
| case CQ_TX_ERROP_DATA_SEQUENCE_ERR: |
| this_cpu_inc(nic->drv_stats->tx_data_seq_err); |
| break; |
| case CQ_TX_ERROP_MEM_SEQUENCE_ERR: |
| this_cpu_inc(nic->drv_stats->tx_mem_seq_err); |
| break; |
| case CQ_TX_ERROP_LOCK_VIOL: |
| this_cpu_inc(nic->drv_stats->tx_lock_viol); |
| break; |
| case CQ_TX_ERROP_DATA_FAULT: |
| this_cpu_inc(nic->drv_stats->tx_data_fault); |
| break; |
| case CQ_TX_ERROP_TSTMP_CONFLICT: |
| this_cpu_inc(nic->drv_stats->tx_tstmp_conflict); |
| break; |
| case CQ_TX_ERROP_TSTMP_TIMEOUT: |
| this_cpu_inc(nic->drv_stats->tx_tstmp_timeout); |
| break; |
| case CQ_TX_ERROP_MEM_FAULT: |
| this_cpu_inc(nic->drv_stats->tx_mem_fault); |
| break; |
| case CQ_TX_ERROP_CK_OVERLAP: |
| this_cpu_inc(nic->drv_stats->tx_csum_overlap); |
| break; |
| case CQ_TX_ERROP_CK_OFLOW: |
| this_cpu_inc(nic->drv_stats->tx_csum_overflow); |
| break; |
| } |
| |
| return 1; |
| } |