blob: 64493a7bef1a388a1f7f2a9aca8d13b7834d52fb [file] [log] [blame]
/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* utilities for mac80211
*/
#include <net/mac80211.h>
#include <linux/netdevice.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include <linux/bitmap.h>
#include <linux/crc32.h>
#include <net/net_namespace.h>
#include <net/cfg80211.h>
#include <net/rtnetlink.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "rate.h"
#include "mesh.h"
#include "wme.h"
#include "led.h"
#include "wep.h"
/* privid for wiphys to determine whether they belong to us or not */
void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
{
struct ieee80211_local *local;
BUG_ON(!wiphy);
local = wiphy_priv(wiphy);
return &local->hw;
}
EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
enum nl80211_iftype type)
{
__le16 fc = hdr->frame_control;
/* drop ACK/CTS frames and incorrect hdr len (ctrl) */
if (len < 16)
return NULL;
if (ieee80211_is_data(fc)) {
if (len < 24) /* drop incorrect hdr len (data) */
return NULL;
if (ieee80211_has_a4(fc))
return NULL;
if (ieee80211_has_tods(fc))
return hdr->addr1;
if (ieee80211_has_fromds(fc))
return hdr->addr2;
return hdr->addr3;
}
if (ieee80211_is_mgmt(fc)) {
if (len < 24) /* drop incorrect hdr len (mgmt) */
return NULL;
return hdr->addr3;
}
if (ieee80211_is_ctl(fc)) {
if(ieee80211_is_pspoll(fc))
return hdr->addr1;
if (ieee80211_is_back_req(fc)) {
switch (type) {
case NL80211_IFTYPE_STATION:
return hdr->addr2;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
return hdr->addr1;
default:
break; /* fall through to the return */
}
}
}
return NULL;
}
void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
{
struct sk_buff *skb;
struct ieee80211_hdr *hdr;
skb_queue_walk(&tx->skbs, skb) {
hdr = (struct ieee80211_hdr *) skb->data;
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
}
}
int ieee80211_frame_duration(enum ieee80211_band band, size_t len,
int rate, int erp, int short_preamble)
{
int dur;
/* calculate duration (in microseconds, rounded up to next higher
* integer if it includes a fractional microsecond) to send frame of
* len bytes (does not include FCS) at the given rate. Duration will
* also include SIFS.
*
* rate is in 100 kbps, so divident is multiplied by 10 in the
* DIV_ROUND_UP() operations.
*/
if (band == IEEE80211_BAND_5GHZ || erp) {
/*
* OFDM:
*
* N_DBPS = DATARATE x 4
* N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
* (16 = SIGNAL time, 6 = tail bits)
* TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
*
* T_SYM = 4 usec
* 802.11a - 17.5.2: aSIFSTime = 16 usec
* 802.11g - 19.8.4: aSIFSTime = 10 usec +
* signal ext = 6 usec
*/
dur = 16; /* SIFS + signal ext */
dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
4 * rate); /* T_SYM x N_SYM */
} else {
/*
* 802.11b or 802.11g with 802.11b compatibility:
* 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
* Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
*
* 802.11 (DS): 15.3.3, 802.11b: 18.3.4
* aSIFSTime = 10 usec
* aPreambleLength = 144 usec or 72 usec with short preamble
* aPLCPHeaderLength = 48 usec or 24 usec with short preamble
*/
dur = 10; /* aSIFSTime = 10 usec */
dur += short_preamble ? (72 + 24) : (144 + 48);
dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
}
return dur;
}
/* Exported duration function for driver use */
__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum ieee80211_band band,
size_t frame_len,
struct ieee80211_rate *rate)
{
struct ieee80211_sub_if_data *sdata;
u16 dur;
int erp;
bool short_preamble = false;
erp = 0;
if (vif) {
sdata = vif_to_sdata(vif);
short_preamble = sdata->vif.bss_conf.use_short_preamble;
if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
erp = rate->flags & IEEE80211_RATE_ERP_G;
}
dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
short_preamble);
return cpu_to_le16(dur);
}
EXPORT_SYMBOL(ieee80211_generic_frame_duration);
__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, size_t frame_len,
const struct ieee80211_tx_info *frame_txctl)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_rate *rate;
struct ieee80211_sub_if_data *sdata;
bool short_preamble;
int erp;
u16 dur;
struct ieee80211_supported_band *sband;
sband = local->hw.wiphy->bands[frame_txctl->band];
short_preamble = false;
rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
erp = 0;
if (vif) {
sdata = vif_to_sdata(vif);
short_preamble = sdata->vif.bss_conf.use_short_preamble;
if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
erp = rate->flags & IEEE80211_RATE_ERP_G;
}
/* CTS duration */
dur = ieee80211_frame_duration(sband->band, 10, rate->bitrate,
erp, short_preamble);
/* Data frame duration */
dur += ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
erp, short_preamble);
/* ACK duration */
dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
erp, short_preamble);
return cpu_to_le16(dur);
}
EXPORT_SYMBOL(ieee80211_rts_duration);
__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
size_t frame_len,
const struct ieee80211_tx_info *frame_txctl)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_rate *rate;
struct ieee80211_sub_if_data *sdata;
bool short_preamble;
int erp;
u16 dur;
struct ieee80211_supported_band *sband;
sband = local->hw.wiphy->bands[frame_txctl->band];
short_preamble = false;
rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
erp = 0;
if (vif) {
sdata = vif_to_sdata(vif);
short_preamble = sdata->vif.bss_conf.use_short_preamble;
if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
erp = rate->flags & IEEE80211_RATE_ERP_G;
}
/* Data frame duration */
dur = ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
erp, short_preamble);
if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
/* ACK duration */
dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
erp, short_preamble);
}
return cpu_to_le16(dur);
}
EXPORT_SYMBOL(ieee80211_ctstoself_duration);
void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
{
struct ieee80211_sub_if_data *sdata;
int n_acs = IEEE80211_NUM_ACS;
if (local->hw.queues < IEEE80211_NUM_ACS)
n_acs = 1;
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
int ac;
if (test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))
continue;
if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
continue;
for (ac = 0; ac < n_acs; ac++) {
int ac_queue = sdata->vif.hw_queue[ac];
if (ac_queue == queue ||
(sdata->vif.cab_queue == queue &&
local->queue_stop_reasons[ac_queue] == 0 &&
skb_queue_empty(&local->pending[ac_queue])))
netif_wake_subqueue(sdata->dev, ac);
}
}
}
static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
enum queue_stop_reason reason)
{
struct ieee80211_local *local = hw_to_local(hw);
trace_wake_queue(local, queue, reason);
if (WARN_ON(queue >= hw->queues))
return;
if (!test_bit(reason, &local->queue_stop_reasons[queue]))
return;
__clear_bit(reason, &local->queue_stop_reasons[queue]);
if (local->queue_stop_reasons[queue] != 0)
/* someone still has this queue stopped */
return;
if (skb_queue_empty(&local->pending[queue])) {
rcu_read_lock();
ieee80211_propagate_queue_wake(local, queue);
rcu_read_unlock();
} else
tasklet_schedule(&local->tx_pending_tasklet);
}
void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
enum queue_stop_reason reason)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
__ieee80211_wake_queue(hw, queue, reason);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
{
ieee80211_wake_queue_by_reason(hw, queue,
IEEE80211_QUEUE_STOP_REASON_DRIVER);
}
EXPORT_SYMBOL(ieee80211_wake_queue);
static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
enum queue_stop_reason reason)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_sub_if_data *sdata;
int n_acs = IEEE80211_NUM_ACS;
trace_stop_queue(local, queue, reason);
if (WARN_ON(queue >= hw->queues))
return;
if (test_bit(reason, &local->queue_stop_reasons[queue]))
return;
__set_bit(reason, &local->queue_stop_reasons[queue]);
if (local->hw.queues < IEEE80211_NUM_ACS)
n_acs = 1;
rcu_read_lock();
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
int ac;
for (ac = 0; ac < n_acs; ac++) {
if (sdata->vif.hw_queue[ac] == queue ||
sdata->vif.cab_queue == queue)
netif_stop_subqueue(sdata->dev, ac);
}
}
rcu_read_unlock();
}
void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
enum queue_stop_reason reason)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
__ieee80211_stop_queue(hw, queue, reason);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
{
ieee80211_stop_queue_by_reason(hw, queue,
IEEE80211_QUEUE_STOP_REASON_DRIVER);
}
EXPORT_SYMBOL(ieee80211_stop_queue);
void ieee80211_add_pending_skb(struct ieee80211_local *local,
struct sk_buff *skb)
{
struct ieee80211_hw *hw = &local->hw;
unsigned long flags;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
int queue = info->hw_queue;
if (WARN_ON(!info->control.vif)) {
kfree_skb(skb);
return;
}
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
__ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
__skb_queue_tail(&local->pending[queue], skb);
__ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_add_pending_skbs_fn(struct ieee80211_local *local,
struct sk_buff_head *skbs,
void (*fn)(void *data), void *data)
{
struct ieee80211_hw *hw = &local->hw;
struct sk_buff *skb;
unsigned long flags;
int queue, i;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
while ((skb = skb_dequeue(skbs))) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
if (WARN_ON(!info->control.vif)) {
kfree_skb(skb);
continue;
}
queue = info->hw_queue;
__ieee80211_stop_queue(hw, queue,
IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
__skb_queue_tail(&local->pending[queue], skb);
}
if (fn)
fn(data);
for (i = 0; i < hw->queues; i++)
__ieee80211_wake_queue(hw, i,
IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
enum queue_stop_reason reason)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
int i;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
for (i = 0; i < hw->queues; i++)
__ieee80211_stop_queue(hw, i, reason);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_stop_queues(struct ieee80211_hw *hw)
{
ieee80211_stop_queues_by_reason(hw,
IEEE80211_QUEUE_STOP_REASON_DRIVER);
}
EXPORT_SYMBOL(ieee80211_stop_queues);
int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
int ret;
if (WARN_ON(queue >= hw->queues))
return true;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
ret = !!local->queue_stop_reasons[queue];
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
return ret;
}
EXPORT_SYMBOL(ieee80211_queue_stopped);
void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
enum queue_stop_reason reason)
{
struct ieee80211_local *local = hw_to_local(hw);
unsigned long flags;
int i;
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
for (i = 0; i < hw->queues; i++)
__ieee80211_wake_queue(hw, i, reason);
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
void ieee80211_wake_queues(struct ieee80211_hw *hw)
{
ieee80211_wake_queues_by_reason(hw, IEEE80211_QUEUE_STOP_REASON_DRIVER);
}
EXPORT_SYMBOL(ieee80211_wake_queues);
void ieee80211_iterate_active_interfaces(
struct ieee80211_hw *hw,
void (*iterator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void *data)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_sub_if_data *sdata;
mutex_lock(&local->iflist_mtx);
list_for_each_entry(sdata, &local->interfaces, list) {
switch (sdata->vif.type) {
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_AP_VLAN:
continue;
default:
break;
}
if (ieee80211_sdata_running(sdata))
iterator(data, sdata->vif.addr,
&sdata->vif);
}
mutex_unlock(&local->iflist_mtx);
}
EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces);
void ieee80211_iterate_active_interfaces_atomic(
struct ieee80211_hw *hw,
void (*iterator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void *data)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_sub_if_data *sdata;
rcu_read_lock();
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
switch (sdata->vif.type) {
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_AP_VLAN:
continue;
default:
break;
}
if (ieee80211_sdata_running(sdata))
iterator(data, sdata->vif.addr,
&sdata->vif);
}
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
/*
* Nothing should have been stuffed into the workqueue during
* the suspend->resume cycle. If this WARN is seen then there
* is a bug with either the driver suspend or something in
* mac80211 stuffing into the workqueue which we haven't yet
* cleared during mac80211's suspend cycle.
*/
static bool ieee80211_can_queue_work(struct ieee80211_local *local)
{
if (WARN(local->suspended && !local->resuming,
"queueing ieee80211 work while going to suspend\n"))
return false;
return true;
}
void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
{
struct ieee80211_local *local = hw_to_local(hw);
if (!ieee80211_can_queue_work(local))
return;
queue_work(local->workqueue, work);
}
EXPORT_SYMBOL(ieee80211_queue_work);
void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
struct delayed_work *dwork,
unsigned long delay)
{
struct ieee80211_local *local = hw_to_local(hw);
if (!ieee80211_can_queue_work(local))
return;
queue_delayed_work(local->workqueue, dwork, delay);
}
EXPORT_SYMBOL(ieee80211_queue_delayed_work);
u32 ieee802_11_parse_elems_crc(u8 *start, size_t len,
struct ieee802_11_elems *elems,
u64 filter, u32 crc)
{
size_t left = len;
u8 *pos = start;
bool calc_crc = filter != 0;
DECLARE_BITMAP(seen_elems, 256);
bitmap_zero(seen_elems, 256);
memset(elems, 0, sizeof(*elems));
elems->ie_start = start;
elems->total_len = len;
while (left >= 2) {
u8 id, elen;
bool elem_parse_failed;
id = *pos++;
elen = *pos++;
left -= 2;
if (elen > left) {
elems->parse_error = true;
break;
}
if (id != WLAN_EID_VENDOR_SPECIFIC &&
id != WLAN_EID_QUIET &&
test_bit(id, seen_elems)) {
elems->parse_error = true;
left -= elen;
pos += elen;
continue;
}
if (calc_crc && id < 64 && (filter & (1ULL << id)))
crc = crc32_be(crc, pos - 2, elen + 2);
elem_parse_failed = false;
switch (id) {
case WLAN_EID_SSID:
elems->ssid = pos;
elems->ssid_len = elen;
break;
case WLAN_EID_SUPP_RATES:
elems->supp_rates = pos;
elems->supp_rates_len = elen;
break;
case WLAN_EID_FH_PARAMS:
elems->fh_params = pos;
elems->fh_params_len = elen;
break;
case WLAN_EID_DS_PARAMS:
elems->ds_params = pos;
elems->ds_params_len = elen;
break;
case WLAN_EID_CF_PARAMS:
elems->cf_params = pos;
elems->cf_params_len = elen;
break;
case WLAN_EID_TIM:
if (elen >= sizeof(struct ieee80211_tim_ie)) {
elems->tim = (void *)pos;
elems->tim_len = elen;
} else
elem_parse_failed = true;
break;
case WLAN_EID_IBSS_PARAMS:
elems->ibss_params = pos;
elems->ibss_params_len = elen;
break;
case WLAN_EID_CHALLENGE:
elems->challenge = pos;
elems->challenge_len = elen;
break;
case WLAN_EID_VENDOR_SPECIFIC:
if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
pos[2] == 0xf2) {
/* Microsoft OUI (00:50:F2) */
if (calc_crc)
crc = crc32_be(crc, pos - 2, elen + 2);
if (pos[3] == 1) {
/* OUI Type 1 - WPA IE */
elems->wpa = pos;
elems->wpa_len = elen;
} else if (elen >= 5 && pos[3] == 2) {
/* OUI Type 2 - WMM IE */
if (pos[4] == 0) {
elems->wmm_info = pos;
elems->wmm_info_len = elen;
} else if (pos[4] == 1) {
elems->wmm_param = pos;
elems->wmm_param_len = elen;
}
}
}
break;
case WLAN_EID_RSN:
elems->rsn = pos;
elems->rsn_len = elen;
break;
case WLAN_EID_ERP_INFO:
elems->erp_info = pos;
elems->erp_info_len = elen;
break;
case WLAN_EID_EXT_SUPP_RATES:
elems->ext_supp_rates = pos;
elems->ext_supp_rates_len = elen;
break;
case WLAN_EID_HT_CAPABILITY:
if (elen >= sizeof(struct ieee80211_ht_cap))
elems->ht_cap_elem = (void *)pos;
else
elem_parse_failed = true;
break;
case WLAN_EID_HT_OPERATION:
if (elen >= sizeof(struct ieee80211_ht_operation))
elems->ht_operation = (void *)pos;
else
elem_parse_failed = true;
break;
case WLAN_EID_MESH_ID:
elems->mesh_id = pos;
elems->mesh_id_len = elen;
break;
case WLAN_EID_MESH_CONFIG:
if (elen >= sizeof(struct ieee80211_meshconf_ie))
elems->mesh_config = (void *)pos;
else
elem_parse_failed = true;
break;
case WLAN_EID_PEER_MGMT:
elems->peering = pos;
elems->peering_len = elen;
break;
case WLAN_EID_PREQ:
elems->preq = pos;
elems->preq_len = elen;
break;
case WLAN_EID_PREP:
elems->prep = pos;
elems->prep_len = elen;
break;
case WLAN_EID_PERR:
elems->perr = pos;
elems->perr_len = elen;
break;
case WLAN_EID_RANN:
if (elen >= sizeof(struct ieee80211_rann_ie))
elems->rann = (void *)pos;
else
elem_parse_failed = true;
break;
case WLAN_EID_CHANNEL_SWITCH:
elems->ch_switch_elem = pos;
elems->ch_switch_elem_len = elen;
break;
case WLAN_EID_QUIET:
if (!elems->quiet_elem) {
elems->quiet_elem = pos;
elems->quiet_elem_len = elen;
}
elems->num_of_quiet_elem++;
break;
case WLAN_EID_COUNTRY:
elems->country_elem = pos;
elems->country_elem_len = elen;
break;
case WLAN_EID_PWR_CONSTRAINT:
elems->pwr_constr_elem = pos;
elems->pwr_constr_elem_len = elen;
break;
case WLAN_EID_TIMEOUT_INTERVAL:
elems->timeout_int = pos;
elems->timeout_int_len = elen;
break;
default:
break;
}
if (elem_parse_failed)
elems->parse_error = true;
else
set_bit(id, seen_elems);
left -= elen;
pos += elen;
}
if (left != 0)
elems->parse_error = true;
return crc;
}
void ieee802_11_parse_elems(u8 *start, size_t len,
struct ieee802_11_elems *elems)
{
ieee802_11_parse_elems_crc(start, len, elems, 0, 0);
}
void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
bool bss_notify)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_tx_queue_params qparam;
int ac;
bool use_11b, enable_qos;
int aCWmin, aCWmax;
if (!local->ops->conf_tx)
return;
if (local->hw.queues < IEEE80211_NUM_ACS)
return;
memset(&qparam, 0, sizeof(qparam));
use_11b = (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) &&
!(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
/*
* By default disable QoS in STA mode for old access points, which do
* not support 802.11e. New APs will provide proper queue parameters,
* that we will configure later.
*/
enable_qos = (sdata->vif.type != NL80211_IFTYPE_STATION);
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
/* Set defaults according to 802.11-2007 Table 7-37 */
aCWmax = 1023;
if (use_11b)
aCWmin = 31;
else
aCWmin = 15;
if (enable_qos) {
switch (ac) {
case IEEE80211_AC_BK:
qparam.cw_max = aCWmax;
qparam.cw_min = aCWmin;
qparam.txop = 0;
qparam.aifs = 7;
break;
/* never happens but let's not leave undefined */
default:
case IEEE80211_AC_BE:
qparam.cw_max = aCWmax;
qparam.cw_min = aCWmin;
qparam.txop = 0;
qparam.aifs = 3;
break;
case IEEE80211_AC_VI:
qparam.cw_max = aCWmin;
qparam.cw_min = (aCWmin + 1) / 2 - 1;
if (use_11b)
qparam.txop = 6016/32;
else
qparam.txop = 3008/32;
qparam.aifs = 2;
break;
case IEEE80211_AC_VO:
qparam.cw_max = (aCWmin + 1) / 2 - 1;
qparam.cw_min = (aCWmin + 1) / 4 - 1;
if (use_11b)
qparam.txop = 3264/32;
else
qparam.txop = 1504/32;
qparam.aifs = 2;
break;
}
} else {
/* Confiure old 802.11b/g medium access rules. */
qparam.cw_max = aCWmax;
qparam.cw_min = aCWmin;
qparam.txop = 0;
qparam.aifs = 2;
}
qparam.uapsd = false;
sdata->tx_conf[ac] = qparam;
drv_conf_tx(local, sdata, ac, &qparam);
}
if (sdata->vif.type != NL80211_IFTYPE_MONITOR) {
sdata->vif.bss_conf.qos = enable_qos;
if (bss_notify)
ieee80211_bss_info_change_notify(sdata,
BSS_CHANGED_QOS);
}
}
void ieee80211_sta_def_wmm_params(struct ieee80211_sub_if_data *sdata,
const size_t supp_rates_len,
const u8 *supp_rates)
{
struct ieee80211_local *local = sdata->local;
int i, have_higher_than_11mbit = 0;
/* cf. IEEE 802.11 9.2.12 */
for (i = 0; i < supp_rates_len; i++)
if ((supp_rates[i] & 0x7f) * 5 > 110)
have_higher_than_11mbit = 1;
if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
have_higher_than_11mbit)
sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
else
sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
ieee80211_set_wmm_default(sdata, true);
}
u32 ieee80211_mandatory_rates(struct ieee80211_local *local,
enum ieee80211_band band)
{
struct ieee80211_supported_band *sband;
struct ieee80211_rate *bitrates;
u32 mandatory_rates;
enum ieee80211_rate_flags mandatory_flag;
int i;
sband = local->hw.wiphy->bands[band];
if (WARN_ON(!sband))
return 1;
if (band == IEEE80211_BAND_2GHZ)
mandatory_flag = IEEE80211_RATE_MANDATORY_B;
else
mandatory_flag = IEEE80211_RATE_MANDATORY_A;
bitrates = sband->bitrates;
mandatory_rates = 0;
for (i = 0; i < sband->n_bitrates; i++)
if (bitrates[i].flags & mandatory_flag)
mandatory_rates |= BIT(i);
return mandatory_rates;
}
void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
u16 transaction, u16 auth_alg,
u8 *extra, size_t extra_len, const u8 *da,
const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx)
{
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
int err;
skb = dev_alloc_skb(local->hw.extra_tx_headroom +
sizeof(*mgmt) + 6 + extra_len);
if (!skb)
return;
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
memset(mgmt, 0, 24 + 6);
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_AUTH);
memcpy(mgmt->da, da, ETH_ALEN);
memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
memcpy(mgmt->bssid, bssid, ETH_ALEN);
mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
mgmt->u.auth.status_code = cpu_to_le16(0);
if (extra)
memcpy(skb_put(skb, extra_len), extra, extra_len);
if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
WARN_ON(err);
}
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
ieee80211_tx_skb(sdata, skb);
}
int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer,
const u8 *ie, size_t ie_len,
enum ieee80211_band band, u32 rate_mask,
u8 channel)
{
struct ieee80211_supported_band *sband;
u8 *pos;
size_t offset = 0, noffset;
int supp_rates_len, i;
u8 rates[32];
int num_rates;
int ext_rates_len;
sband = local->hw.wiphy->bands[band];
pos = buffer;
num_rates = 0;
for (i = 0; i < sband->n_bitrates; i++) {
if ((BIT(i) & rate_mask) == 0)
continue; /* skip rate */
rates[num_rates++] = (u8) (sband->bitrates[i].bitrate / 5);
}
supp_rates_len = min_t(int, num_rates, 8);
*pos++ = WLAN_EID_SUPP_RATES;
*pos++ = supp_rates_len;
memcpy(pos, rates, supp_rates_len);
pos += supp_rates_len;
/* insert "request information" if in custom IEs */
if (ie && ie_len) {
static const u8 before_extrates[] = {
WLAN_EID_SSID,
WLAN_EID_SUPP_RATES,
WLAN_EID_REQUEST,
};
noffset = ieee80211_ie_split(ie, ie_len,
before_extrates,
ARRAY_SIZE(before_extrates),
offset);
memcpy(pos, ie + offset, noffset - offset);
pos += noffset - offset;
offset = noffset;
}
ext_rates_len = num_rates - supp_rates_len;
if (ext_rates_len > 0) {
*pos++ = WLAN_EID_EXT_SUPP_RATES;
*pos++ = ext_rates_len;
memcpy(pos, rates + supp_rates_len, ext_rates_len);
pos += ext_rates_len;
}
if (channel && sband->band == IEEE80211_BAND_2GHZ) {
*pos++ = WLAN_EID_DS_PARAMS;
*pos++ = 1;
*pos++ = channel;
}
/* insert custom IEs that go before HT */
if (ie && ie_len) {
static const u8 before_ht[] = {
WLAN_EID_SSID,
WLAN_EID_SUPP_RATES,
WLAN_EID_REQUEST,
WLAN_EID_EXT_SUPP_RATES,
WLAN_EID_DS_PARAMS,
WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
};
noffset = ieee80211_ie_split(ie, ie_len,
before_ht, ARRAY_SIZE(before_ht),
offset);
memcpy(pos, ie + offset, noffset - offset);
pos += noffset - offset;
offset = noffset;
}
if (sband->ht_cap.ht_supported)
pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
sband->ht_cap.cap);
/*
* If adding more here, adjust code in main.c
* that calculates local->scan_ies_len.
*/
/* add any remaining custom IEs */
if (ie && ie_len) {
noffset = ie_len;
memcpy(pos, ie + offset, noffset - offset);
pos += noffset - offset;
}
if (sband->vht_cap.vht_supported)
pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
sband->vht_cap.cap);
return pos - buffer;
}
struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
u8 *dst, u32 ratemask,
const u8 *ssid, size_t ssid_len,
const u8 *ie, size_t ie_len,
bool directed)
{
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
size_t buf_len;
u8 *buf;
u8 chan;
/* FIXME: come up with a proper value */
buf = kmalloc(200 + ie_len, GFP_KERNEL);
if (!buf)
return NULL;
/*
* Do not send DS Channel parameter for directed probe requests
* in order to maximize the chance that we get a response. Some
* badly-behaved APs don't respond when this parameter is included.
*/
if (directed)
chan = 0;
else
chan = ieee80211_frequency_to_channel(
local->hw.conf.channel->center_freq);
buf_len = ieee80211_build_preq_ies(local, buf, ie, ie_len,
local->hw.conf.channel->band,
ratemask, chan);
skb = ieee80211_probereq_get(&local->hw, &sdata->vif,
ssid, ssid_len,
buf, buf_len);
if (!skb)
goto out;
if (dst) {
mgmt = (struct ieee80211_mgmt *) skb->data;
memcpy(mgmt->da, dst, ETH_ALEN);
memcpy(mgmt->bssid, dst, ETH_ALEN);
}
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
out:
kfree(buf);
return skb;
}
void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst,
const u8 *ssid, size_t ssid_len,
const u8 *ie, size_t ie_len,
u32 ratemask, bool directed, bool no_cck)
{
struct sk_buff *skb;
skb = ieee80211_build_probe_req(sdata, dst, ratemask, ssid, ssid_len,
ie, ie_len, directed);
if (skb) {
if (no_cck)
IEEE80211_SKB_CB(skb)->flags |=
IEEE80211_TX_CTL_NO_CCK_RATE;
ieee80211_tx_skb(sdata, skb);
}
}
u32 ieee80211_sta_get_rates(struct ieee80211_local *local,
struct ieee802_11_elems *elems,
enum ieee80211_band band, u32 *basic_rates)
{
struct ieee80211_supported_band *sband;
struct ieee80211_rate *bitrates;
size_t num_rates;
u32 supp_rates;
int i, j;
sband = local->hw.wiphy->bands[band];
if (WARN_ON(!sband))
return 1;
bitrates = sband->bitrates;
num_rates = sband->n_bitrates;
supp_rates = 0;
for (i = 0; i < elems->supp_rates_len +
elems->ext_supp_rates_len; i++) {
u8 rate = 0;
int own_rate;
bool is_basic;
if (i < elems->supp_rates_len)
rate = elems->supp_rates[i];
else if (elems->ext_supp_rates)
rate = elems->ext_supp_rates
[i - elems->supp_rates_len];
own_rate = 5 * (rate & 0x7f);
is_basic = !!(rate & 0x80);
if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
continue;
for (j = 0; j < num_rates; j++) {
if (bitrates[j].bitrate == own_rate) {
supp_rates |= BIT(j);
if (basic_rates && is_basic)
*basic_rates |= BIT(j);
}
}
}
return supp_rates;
}
void ieee80211_stop_device(struct ieee80211_local *local)
{
ieee80211_led_radio(local, false);
ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
cancel_work_sync(&local->reconfig_filter);
flush_workqueue(local->workqueue);
drv_stop(local);
}
int ieee80211_reconfig(struct ieee80211_local *local)
{
struct ieee80211_hw *hw = &local->hw;
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta;
int res, i;
#ifdef CONFIG_PM
if (local->suspended)
local->resuming = true;
if (local->wowlan) {
local->wowlan = false;
res = drv_resume(local);
if (res < 0) {
local->resuming = false;
return res;
}
if (res == 0)
goto wake_up;
WARN_ON(res > 1);
/*
* res is 1, which means the driver requested
* to go through a regular reset on wakeup.
*/
}
#endif
/* everything else happens only if HW was up & running */
if (!local->open_count)
goto wake_up;
/*
* Upon resume hardware can sometimes be goofy due to
* various platform / driver / bus issues, so restarting
* the device may at times not work immediately. Propagate
* the error.
*/
res = drv_start(local);
if (res) {
WARN(local->suspended, "Hardware became unavailable "
"upon resume. This could be a software issue "
"prior to suspend or a hardware issue.\n");
return res;
}
/* setup fragmentation threshold */
drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
/* setup RTS threshold */
drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
/* reset coverage class */
drv_set_coverage_class(local, hw->wiphy->coverage_class);
ieee80211_led_radio(local, true);
ieee80211_mod_tpt_led_trig(local,
IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
/* add interfaces */
sdata = rtnl_dereference(local->monitor_sdata);
if (sdata) {
res = drv_add_interface(local, sdata);
if (WARN_ON(res)) {
rcu_assign_pointer(local->monitor_sdata, NULL);
synchronize_net();
kfree(sdata);
}
}
list_for_each_entry(sdata, &local->interfaces, list) {
if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_MONITOR &&
ieee80211_sdata_running(sdata))
res = drv_add_interface(local, sdata);
}
/* add STAs back */
mutex_lock(&local->sta_mtx);
list_for_each_entry(sta, &local->sta_list, list) {
enum ieee80211_sta_state state;
if (!sta->uploaded)
continue;
/* AP-mode stations will be added later */
if (sta->sdata->vif.type == NL80211_IFTYPE_AP)
continue;
for (state = IEEE80211_STA_NOTEXIST;
state < sta->sta_state; state++)
WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
state + 1));
}
mutex_unlock(&local->sta_mtx);
/* reconfigure tx conf */
if (hw->queues >= IEEE80211_NUM_ACS) {
list_for_each_entry(sdata, &local->interfaces, list) {
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
sdata->vif.type == NL80211_IFTYPE_MONITOR ||
!ieee80211_sdata_running(sdata))
continue;
for (i = 0; i < IEEE80211_NUM_ACS; i++)
drv_conf_tx(local, sdata, i,
&sdata->tx_conf[i]);
}
}
/* reconfigure hardware */
ieee80211_hw_config(local, ~0);
ieee80211_configure_filter(local);
/* Finally also reconfigure all the BSS information */
list_for_each_entry(sdata, &local->interfaces, list) {
u32 changed;
if (!ieee80211_sdata_running(sdata))
continue;
/* common change flags for all interface types */
changed = BSS_CHANGED_ERP_CTS_PROT |
BSS_CHANGED_ERP_PREAMBLE |
BSS_CHANGED_ERP_SLOT |
BSS_CHANGED_HT |
BSS_CHANGED_BASIC_RATES |
BSS_CHANGED_BEACON_INT |
BSS_CHANGED_BSSID |
BSS_CHANGED_CQM |
BSS_CHANGED_QOS |
BSS_CHANGED_IDLE;
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
changed |= BSS_CHANGED_ASSOC |
BSS_CHANGED_ARP_FILTER;
mutex_lock(&sdata->u.mgd.mtx);
ieee80211_bss_info_change_notify(sdata, changed);
mutex_unlock(&sdata->u.mgd.mtx);
break;
case NL80211_IFTYPE_ADHOC:
changed |= BSS_CHANGED_IBSS;
/* fall through */
case NL80211_IFTYPE_AP:
changed |= BSS_CHANGED_SSID;
if (sdata->vif.type == NL80211_IFTYPE_AP)
changed |= BSS_CHANGED_AP_PROBE_RESP;
/* fall through */
case NL80211_IFTYPE_MESH_POINT:
changed |= BSS_CHANGED_BEACON |
BSS_CHANGED_BEACON_ENABLED;
ieee80211_bss_info_change_notify(sdata, changed);
break;
case NL80211_IFTYPE_WDS:
break;
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_MONITOR:
/* ignore virtual */
break;
case NL80211_IFTYPE_UNSPECIFIED:
case NUM_NL80211_IFTYPES:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_P2P_GO:
WARN_ON(1);
break;
}
}
ieee80211_recalc_ps(local, -1);
/*
* The sta might be in psm against the ap (e.g. because
* this was the state before a hw restart), so we
* explicitly send a null packet in order to make sure
* it'll sync against the ap (and get out of psm).
*/
if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
list_for_each_entry(sdata, &local->interfaces, list) {
if (sdata->vif.type != NL80211_IFTYPE_STATION)
continue;
ieee80211_send_nullfunc(local, sdata, 0);
}
}
/* APs are now beaconing, add back stations */
mutex_lock(&local->sta_mtx);
list_for_each_entry(sta, &local->sta_list, list) {
enum ieee80211_sta_state state;
if (!sta->uploaded)
continue;
if (sta->sdata->vif.type != NL80211_IFTYPE_AP)
continue;
for (state = IEEE80211_STA_NOTEXIST;
state < sta->sta_state; state++)
WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
state + 1));
}
mutex_unlock(&local->sta_mtx);
/* add back keys */
list_for_each_entry(sdata, &local->interfaces, list)
if (ieee80211_sdata_running(sdata))
ieee80211_enable_keys(sdata);
wake_up:
local->in_reconfig = false;
barrier();
/*
* Clear the WLAN_STA_BLOCK_BA flag so new aggregation
* sessions can be established after a resume.
*
* Also tear down aggregation sessions since reconfiguring
* them in a hardware restart scenario is not easily done
* right now, and the hardware will have lost information
* about the sessions, but we and the AP still think they
* are active. This is really a workaround though.
*/
if (hw->flags & IEEE80211_HW_AMPDU_AGGREGATION) {
mutex_lock(&local->sta_mtx);
list_for_each_entry(sta, &local->sta_list, list) {
ieee80211_sta_tear_down_BA_sessions(sta, true);
clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
}
mutex_unlock(&local->sta_mtx);
}
ieee80211_wake_queues_by_reason(hw,
IEEE80211_QUEUE_STOP_REASON_SUSPEND);
/*
* If this is for hw restart things are still running.
* We may want to change that later, however.
*/
if (!local->suspended)
return 0;
#ifdef CONFIG_PM
/* first set suspended false, then resuming */
local->suspended = false;
mb();
local->resuming = false;
list_for_each_entry(sdata, &local->interfaces, list) {
switch(sdata->vif.type) {
case NL80211_IFTYPE_STATION:
ieee80211_sta_restart(sdata);
break;
case NL80211_IFTYPE_ADHOC:
ieee80211_ibss_restart(sdata);
break;
case NL80211_IFTYPE_MESH_POINT:
ieee80211_mesh_restart(sdata);
break;
default:
break;
}
}
mod_timer(&local->sta_cleanup, jiffies + 1);
mutex_lock(&local->sta_mtx);
list_for_each_entry(sta, &local->sta_list, list)
mesh_plink_restart(sta);
mutex_unlock(&local->sta_mtx);
#else
WARN_ON(1);
#endif
return 0;
}
void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_local *local;
struct ieee80211_key *key;
if (WARN_ON(!vif))
return;
sdata = vif_to_sdata(vif);
local = sdata->local;
if (WARN_ON(!local->resuming))
return;
if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
return;
sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
mutex_lock(&local->key_mtx);
list_for_each_entry(key, &sdata->key_list, list)
key->flags |= KEY_FLAG_TAINTED;
mutex_unlock(&local->key_mtx);
}
EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
static int check_mgd_smps(struct ieee80211_if_managed *ifmgd,
enum ieee80211_smps_mode *smps_mode)
{
if (ifmgd->associated) {
*smps_mode = ifmgd->ap_smps;
if (*smps_mode == IEEE80211_SMPS_AUTOMATIC) {
if (ifmgd->powersave)
*smps_mode = IEEE80211_SMPS_DYNAMIC;
else
*smps_mode = IEEE80211_SMPS_OFF;
}
return 1;
}
return 0;
}
/* must hold iflist_mtx */
void ieee80211_recalc_smps(struct ieee80211_local *local)
{
struct ieee80211_sub_if_data *sdata;
enum ieee80211_smps_mode smps_mode = IEEE80211_SMPS_OFF;
int count = 0;
lockdep_assert_held(&local->iflist_mtx);
/*
* This function could be improved to handle multiple
* interfaces better, but right now it makes any
* non-station interfaces force SM PS to be turned
* off. If there are multiple station interfaces it
* could also use the best possible mode, e.g. if
* one is in static and the other in dynamic then
* dynamic is ok.
*/
list_for_each_entry(sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(sdata))
continue;
if (sdata->vif.type != NL80211_IFTYPE_STATION)
goto set;
count += check_mgd_smps(&sdata->u.mgd, &smps_mode);
if (count > 1) {
smps_mode = IEEE80211_SMPS_OFF;
break;
}
}
if (smps_mode == local->smps_mode)
return;
set:
local->smps_mode = smps_mode;
/* changed flag is auto-detected for this */
ieee80211_hw_config(local, 0);
}
static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
{
int i;
for (i = 0; i < n_ids; i++)
if (ids[i] == id)
return true;
return false;
}
/**
* ieee80211_ie_split - split an IE buffer according to ordering
*
* @ies: the IE buffer
* @ielen: the length of the IE buffer
* @ids: an array with element IDs that are allowed before
* the split
* @n_ids: the size of the element ID array
* @offset: offset where to start splitting in the buffer
*
* This function splits an IE buffer by updating the @offset
* variable to point to the location where the buffer should be
* split.
*
* It assumes that the given IE buffer is well-formed, this
* has to be guaranteed by the caller!
*
* It also assumes that the IEs in the buffer are ordered
* correctly, if not the result of using this function will not
* be ordered correctly either, i.e. it does no reordering.
*
* The function returns the offset where the next part of the
* buffer starts, which may be @ielen if the entire (remainder)
* of the buffer should be used.
*/
size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
const u8 *ids, int n_ids, size_t offset)
{
size_t pos = offset;
while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos]))
pos += 2 + ies[pos + 1];
return pos;
}
size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
{
size_t pos = offset;
while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
pos += 2 + ies[pos + 1];
return pos;
}
static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
int rssi_min_thold,
int rssi_max_thold)
{
trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
return;
/*
* Scale up threshold values before storing it, as the RSSI averaging
* algorithm uses a scaled up value as well. Change this scaling
* factor if the RSSI averaging algorithm changes.
*/
sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
}
void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
int rssi_min_thold,
int rssi_max_thold)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
WARN_ON(rssi_min_thold == rssi_max_thold ||
rssi_min_thold > rssi_max_thold);
_ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
rssi_max_thold);
}
EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
_ieee80211_enable_rssi_reports(sdata, 0, 0);
}
EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
u16 cap)
{
__le16 tmp;
*pos++ = WLAN_EID_HT_CAPABILITY;
*pos++ = sizeof(struct ieee80211_ht_cap);
memset(pos, 0, sizeof(struct ieee80211_ht_cap));
/* capability flags */
tmp = cpu_to_le16(cap);
memcpy(pos, &tmp, sizeof(u16));
pos += sizeof(u16);
/* AMPDU parameters */
*pos++ = ht_cap->ampdu_factor |
(ht_cap->ampdu_density <<
IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
/* MCS set */
memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
pos += sizeof(ht_cap->mcs);
/* extended capabilities */
pos += sizeof(__le16);
/* BF capabilities */
pos += sizeof(__le32);
/* antenna selection */
pos += sizeof(u8);
return pos;
}
u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
u32 cap)
{
__le32 tmp;
*pos++ = WLAN_EID_VHT_CAPABILITY;
*pos++ = sizeof(struct ieee80211_vht_capabilities);
memset(pos, 0, sizeof(struct ieee80211_vht_capabilities));
/* capability flags */
tmp = cpu_to_le32(cap);
memcpy(pos, &tmp, sizeof(u32));
pos += sizeof(u32);
/* VHT MCS set */
memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
pos += sizeof(vht_cap->vht_mcs);
return pos;
}
u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
struct ieee80211_channel *channel,
enum nl80211_channel_type channel_type,
u16 prot_mode)
{
struct ieee80211_ht_operation *ht_oper;
/* Build HT Information */
*pos++ = WLAN_EID_HT_OPERATION;
*pos++ = sizeof(struct ieee80211_ht_operation);
ht_oper = (struct ieee80211_ht_operation *)pos;
ht_oper->primary_chan =
ieee80211_frequency_to_channel(channel->center_freq);
switch (channel_type) {
case NL80211_CHAN_HT40MINUS:
ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
break;
case NL80211_CHAN_HT40PLUS:
ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
break;
case NL80211_CHAN_HT20:
default:
ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
break;
}
if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
channel_type != NL80211_CHAN_NO_HT &&
channel_type != NL80211_CHAN_HT20)
ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
ht_oper->operation_mode = cpu_to_le16(prot_mode);
ht_oper->stbc_param = 0x0000;
/* It seems that Basic MCS set and Supported MCS set
are identical for the first 10 bytes */
memset(&ht_oper->basic_set, 0, 16);
memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
return pos + sizeof(struct ieee80211_ht_operation);
}
enum nl80211_channel_type
ieee80211_ht_oper_to_channel_type(struct ieee80211_ht_operation *ht_oper)
{
enum nl80211_channel_type channel_type;
if (!ht_oper)
return NL80211_CHAN_NO_HT;
switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
case IEEE80211_HT_PARAM_CHA_SEC_NONE:
channel_type = NL80211_CHAN_HT20;
break;
case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
channel_type = NL80211_CHAN_HT40PLUS;
break;
case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
channel_type = NL80211_CHAN_HT40MINUS;
break;
default:
channel_type = NL80211_CHAN_NO_HT;
}
return channel_type;
}
int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb, bool need_basic)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_supported_band *sband;
int rate;
u8 i, rates, *pos;
u32 basic_rates = sdata->vif.bss_conf.basic_rates;
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
rates = sband->n_bitrates;
if (rates > 8)
rates = 8;
if (skb_tailroom(skb) < rates + 2)
return -ENOMEM;
pos = skb_put(skb, rates + 2);
*pos++ = WLAN_EID_SUPP_RATES;
*pos++ = rates;
for (i = 0; i < rates; i++) {
u8 basic = 0;
if (need_basic && basic_rates & BIT(i))
basic = 0x80;
rate = sband->bitrates[i].bitrate;
*pos++ = basic | (u8) (rate / 5);
}
return 0;
}
int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb, bool need_basic)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_supported_band *sband;
int rate;
u8 i, exrates, *pos;
u32 basic_rates = sdata->vif.bss_conf.basic_rates;
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
exrates = sband->n_bitrates;
if (exrates > 8)
exrates -= 8;
else
exrates = 0;
if (skb_tailroom(skb) < exrates + 2)
return -ENOMEM;
if (exrates) {
pos = skb_put(skb, exrates + 2);
*pos++ = WLAN_EID_EXT_SUPP_RATES;
*pos++ = exrates;
for (i = 8; i < sband->n_bitrates; i++) {
u8 basic = 0;
if (need_basic && basic_rates & BIT(i))
basic = 0x80;
rate = sband->bitrates[i].bitrate;
*pos++ = basic | (u8) (rate / 5);
}
}
return 0;
}
int ieee80211_ave_rssi(struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
/* non-managed type inferfaces */
return 0;
}
return ifmgd->ave_beacon_signal;
}
EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);