| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * IEEE754 floating point arithmetic |
| * single precision: MADDF.f (Fused Multiply Add) |
| * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft]) |
| * |
| * MIPS floating point support |
| * Copyright (C) 2015 Imagination Technologies, Ltd. |
| * Author: Markos Chandras <markos.chandras@imgtec.com> |
| */ |
| |
| #include "ieee754sp.h" |
| |
| |
| static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x, |
| union ieee754sp y, enum maddf_flags flags) |
| { |
| int re; |
| int rs; |
| unsigned int rm; |
| u64 rm64; |
| u64 zm64; |
| int s; |
| |
| COMPXSP; |
| COMPYSP; |
| COMPZSP; |
| |
| EXPLODEXSP; |
| EXPLODEYSP; |
| EXPLODEZSP; |
| |
| FLUSHXSP; |
| FLUSHYSP; |
| FLUSHZSP; |
| |
| ieee754_clearcx(); |
| |
| rs = xs ^ ys; |
| if (flags & MADDF_NEGATE_PRODUCT) |
| rs ^= 1; |
| if (flags & MADDF_NEGATE_ADDITION) |
| zs ^= 1; |
| |
| /* |
| * Handle the cases when at least one of x, y or z is a NaN. |
| * Order of precedence is sNaN, qNaN and z, x, y. |
| */ |
| if (zc == IEEE754_CLASS_SNAN) |
| return ieee754sp_nanxcpt(z); |
| if (xc == IEEE754_CLASS_SNAN) |
| return ieee754sp_nanxcpt(x); |
| if (yc == IEEE754_CLASS_SNAN) |
| return ieee754sp_nanxcpt(y); |
| if (zc == IEEE754_CLASS_QNAN) |
| return z; |
| if (xc == IEEE754_CLASS_QNAN) |
| return x; |
| if (yc == IEEE754_CLASS_QNAN) |
| return y; |
| |
| if (zc == IEEE754_CLASS_DNORM) |
| SPDNORMZ; |
| /* ZERO z cases are handled separately below */ |
| |
| switch (CLPAIR(xc, yc)) { |
| |
| |
| /* |
| * Infinity handling |
| */ |
| case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): |
| case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): |
| ieee754_setcx(IEEE754_INVALID_OPERATION); |
| return ieee754sp_indef(); |
| |
| case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): |
| case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): |
| case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): |
| case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): |
| case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): |
| if ((zc == IEEE754_CLASS_INF) && (zs != rs)) { |
| /* |
| * Cases of addition of infinities with opposite signs |
| * or subtraction of infinities with same signs. |
| */ |
| ieee754_setcx(IEEE754_INVALID_OPERATION); |
| return ieee754sp_indef(); |
| } |
| /* |
| * z is here either not an infinity, or an infinity having the |
| * same sign as product (x*y). The result must be an infinity, |
| * and its sign is determined only by the sign of product (x*y). |
| */ |
| return ieee754sp_inf(rs); |
| |
| case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): |
| case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): |
| case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): |
| case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): |
| case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): |
| if (zc == IEEE754_CLASS_INF) |
| return ieee754sp_inf(zs); |
| if (zc == IEEE754_CLASS_ZERO) { |
| /* Handle cases +0 + (-0) and similar ones. */ |
| if (zs == rs) |
| /* |
| * Cases of addition of zeros of equal signs |
| * or subtraction of zeroes of opposite signs. |
| * The sign of the resulting zero is in any |
| * such case determined only by the sign of z. |
| */ |
| return z; |
| |
| return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); |
| } |
| /* x*y is here 0, and z is not 0, so just return z */ |
| return z; |
| |
| case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): |
| SPDNORMX; |
| /* fall through */ |
| |
| case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): |
| if (zc == IEEE754_CLASS_INF) |
| return ieee754sp_inf(zs); |
| SPDNORMY; |
| break; |
| |
| case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): |
| if (zc == IEEE754_CLASS_INF) |
| return ieee754sp_inf(zs); |
| SPDNORMX; |
| break; |
| |
| case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): |
| if (zc == IEEE754_CLASS_INF) |
| return ieee754sp_inf(zs); |
| /* continue to real computations */ |
| } |
| |
| /* Finally get to do some computation */ |
| |
| /* |
| * Do the multiplication bit first |
| * |
| * rm = xm * ym, re = xe + ye basically |
| * |
| * At this point xm and ym should have been normalized. |
| */ |
| |
| /* rm = xm * ym, re = xe+ye basically */ |
| assert(xm & SP_HIDDEN_BIT); |
| assert(ym & SP_HIDDEN_BIT); |
| |
| re = xe + ye; |
| |
| /* Multiple 24 bit xm and ym to give 48 bit results */ |
| rm64 = (uint64_t)xm * ym; |
| |
| /* Shunt to top of word */ |
| rm64 = rm64 << 16; |
| |
| /* Put explicit bit at bit 62 if necessary */ |
| if ((int64_t) rm64 < 0) { |
| rm64 = rm64 >> 1; |
| re++; |
| } |
| |
| assert(rm64 & (1 << 62)); |
| |
| if (zc == IEEE754_CLASS_ZERO) { |
| /* |
| * Move explicit bit from bit 62 to bit 26 since the |
| * ieee754sp_format code expects the mantissa to be |
| * 27 bits wide (24 + 3 rounding bits). |
| */ |
| rm = XSPSRS64(rm64, (62 - 26)); |
| return ieee754sp_format(rs, re, rm); |
| } |
| |
| /* Move explicit bit from bit 23 to bit 62 */ |
| zm64 = (uint64_t)zm << (62 - 23); |
| assert(zm64 & (1 << 62)); |
| |
| /* Make the exponents the same */ |
| if (ze > re) { |
| /* |
| * Have to shift r fraction right to align. |
| */ |
| s = ze - re; |
| rm64 = XSPSRS64(rm64, s); |
| re += s; |
| } else if (re > ze) { |
| /* |
| * Have to shift z fraction right to align. |
| */ |
| s = re - ze; |
| zm64 = XSPSRS64(zm64, s); |
| ze += s; |
| } |
| assert(ze == re); |
| assert(ze <= SP_EMAX); |
| |
| /* Do the addition */ |
| if (zs == rs) { |
| /* |
| * Generate 64 bit result by adding two 63 bit numbers |
| * leaving result in zm64, zs and ze. |
| */ |
| zm64 = zm64 + rm64; |
| if ((int64_t)zm64 < 0) { /* carry out */ |
| zm64 = XSPSRS1(zm64); |
| ze++; |
| } |
| } else { |
| if (zm64 >= rm64) { |
| zm64 = zm64 - rm64; |
| } else { |
| zm64 = rm64 - zm64; |
| zs = rs; |
| } |
| if (zm64 == 0) |
| return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); |
| |
| /* |
| * Put explicit bit at bit 62 if necessary. |
| */ |
| while ((zm64 >> 62) == 0) { |
| zm64 <<= 1; |
| ze--; |
| } |
| } |
| |
| /* |
| * Move explicit bit from bit 62 to bit 26 since the |
| * ieee754sp_format code expects the mantissa to be |
| * 27 bits wide (24 + 3 rounding bits). |
| */ |
| zm = XSPSRS64(zm64, (62 - 26)); |
| |
| return ieee754sp_format(zs, ze, zm); |
| } |
| |
| union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x, |
| union ieee754sp y) |
| { |
| return _sp_maddf(z, x, y, 0); |
| } |
| |
| union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x, |
| union ieee754sp y) |
| { |
| return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); |
| } |
| |
| union ieee754sp ieee754sp_madd(union ieee754sp z, union ieee754sp x, |
| union ieee754sp y) |
| { |
| return _sp_maddf(z, x, y, 0); |
| } |
| |
| union ieee754sp ieee754sp_msub(union ieee754sp z, union ieee754sp x, |
| union ieee754sp y) |
| { |
| return _sp_maddf(z, x, y, MADDF_NEGATE_ADDITION); |
| } |
| |
| union ieee754sp ieee754sp_nmadd(union ieee754sp z, union ieee754sp x, |
| union ieee754sp y) |
| { |
| return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT|MADDF_NEGATE_ADDITION); |
| } |
| |
| union ieee754sp ieee754sp_nmsub(union ieee754sp z, union ieee754sp x, |
| union ieee754sp y) |
| { |
| return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); |
| } |