blob: aab8077e50988ef08c3422de907b8bd9f48a3784 [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "amdgpu_ras_eeprom.h"
#include "amdgpu.h"
#include "amdgpu_ras.h"
#include <linux/bits.h>
#include "atom.h"
#include "amdgpu_eeprom.h"
#include "amdgpu_atomfirmware.h"
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include "amdgpu_reset.h"
/* These are memory addresses as would be seen by one or more EEPROM
* chips strung on the I2C bus, usually by manipulating pins 1-3 of a
* set of EEPROM devices. They form a continuous memory space.
*
* The I2C device address includes the device type identifier, 1010b,
* which is a reserved value and indicates that this is an I2C EEPROM
* device. It also includes the top 3 bits of the 19 bit EEPROM memory
* address, namely bits 18, 17, and 16. This makes up the 7 bit
* address sent on the I2C bus with bit 0 being the direction bit,
* which is not represented here, and sent by the hardware directly.
*
* For instance,
* 50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0.
* 54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h.
* 56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h.
* Depending on the size of the I2C EEPROM device(s), bits 18:16 may
* address memory in a device or a device on the I2C bus, depending on
* the status of pins 1-3. See top of amdgpu_eeprom.c.
*
* The RAS table lives either at address 0 or address 40000h of EEPROM.
*/
#define EEPROM_I2C_MADDR_0 0x0
#define EEPROM_I2C_MADDR_4 0x40000
/*
* The 2 macros bellow represent the actual size in bytes that
* those entities occupy in the EEPROM memory.
* RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
* uses uint64 to store 6b fields such as retired_page.
*/
#define RAS_TABLE_HEADER_SIZE 20
#define RAS_TABLE_RECORD_SIZE 24
/* Table hdr is 'AMDR' */
#define RAS_TABLE_HDR_VAL 0x414d4452
/* Bad GPU tag ‘BADG’ */
#define RAS_TABLE_HDR_BAD 0x42414447
/*
* EEPROM Table structure v1
* ---------------------------------
* | |
* | EEPROM TABLE HEADER |
* | ( size 20 Bytes ) |
* | |
* ---------------------------------
* | |
* | BAD PAGE RECORD AREA |
* | |
* ---------------------------------
*/
/* Assume 2-Mbit size EEPROM and take up the whole space. */
#define RAS_TBL_SIZE_BYTES (256 * 1024)
#define RAS_TABLE_START 0
#define RAS_HDR_START RAS_TABLE_START
#define RAS_RECORD_START (RAS_HDR_START + RAS_TABLE_HEADER_SIZE)
#define RAS_MAX_RECORD_COUNT ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \
/ RAS_TABLE_RECORD_SIZE)
/*
* EEPROM Table structrue v2.1
* ---------------------------------
* | |
* | EEPROM TABLE HEADER |
* | ( size 20 Bytes ) |
* | |
* ---------------------------------
* | |
* | EEPROM TABLE RAS INFO |
* | (available info size 4 Bytes) |
* | ( reserved size 252 Bytes ) |
* | |
* ---------------------------------
* | |
* | BAD PAGE RECORD AREA |
* | |
* ---------------------------------
*/
/* EEPROM Table V2_1 */
#define RAS_TABLE_V2_1_INFO_SIZE 256
#define RAS_TABLE_V2_1_INFO_START RAS_TABLE_HEADER_SIZE
#define RAS_RECORD_START_V2_1 (RAS_HDR_START + RAS_TABLE_HEADER_SIZE + \
RAS_TABLE_V2_1_INFO_SIZE)
#define RAS_MAX_RECORD_COUNT_V2_1 ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE - \
RAS_TABLE_V2_1_INFO_SIZE) \
/ RAS_TABLE_RECORD_SIZE)
/* Given a zero-based index of an EEPROM RAS record, yields the EEPROM
* offset off of RAS_TABLE_START. That is, this is something you can
* add to control->i2c_address, and then tell I2C layer to read
* from/write to there. _N is the so called absolute index,
* because it starts right after the table header.
*/
#define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \
(_N) * RAS_TABLE_RECORD_SIZE)
#define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \
(_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE)
/* Given a 0-based relative record index, 0, 1, 2, ..., etc., off
* of "fri", return the absolute record index off of the end of
* the table header.
*/
#define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \
(_C)->ras_max_record_count)
#define RAS_NUM_RECS(_tbl_hdr) (((_tbl_hdr)->tbl_size - \
RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE)
#define RAS_NUM_RECS_V2_1(_tbl_hdr) (((_tbl_hdr)->tbl_size - \
RAS_TABLE_HEADER_SIZE - \
RAS_TABLE_V2_1_INFO_SIZE) / RAS_TABLE_RECORD_SIZE)
#define to_amdgpu_device(x) ((container_of(x, struct amdgpu_ras, eeprom_control))->adev)
static bool __is_ras_eeprom_supported(struct amdgpu_device *adev)
{
switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
case IP_VERSION(11, 0, 2): /* VEGA20 and ARCTURUS */
case IP_VERSION(11, 0, 7): /* Sienna cichlid */
case IP_VERSION(13, 0, 0):
case IP_VERSION(13, 0, 2): /* Aldebaran */
case IP_VERSION(13, 0, 10):
return true;
case IP_VERSION(13, 0, 6):
case IP_VERSION(13, 0, 14):
return (adev->gmc.is_app_apu) ? false : true;
default:
return false;
}
}
static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
struct amdgpu_ras_eeprom_control *control)
{
struct atom_context *atom_ctx = adev->mode_info.atom_context;
u8 i2c_addr;
if (!control)
return false;
if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) {
/* The address given by VBIOS is an 8-bit, wire-format
* address, i.e. the most significant byte.
*
* Normalize it to a 19-bit EEPROM address. Remove the
* device type identifier and make it a 7-bit address;
* then make it a 19-bit EEPROM address. See top of
* amdgpu_eeprom.c.
*/
i2c_addr = (i2c_addr & 0x0F) >> 1;
control->i2c_address = ((u32) i2c_addr) << 16;
return true;
}
switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) {
case IP_VERSION(11, 0, 2):
/* VEGA20 and ARCTURUS */
if (adev->asic_type == CHIP_VEGA20)
control->i2c_address = EEPROM_I2C_MADDR_0;
else if (strnstr(atom_ctx->vbios_pn,
"D342",
sizeof(atom_ctx->vbios_pn)))
control->i2c_address = EEPROM_I2C_MADDR_0;
else
control->i2c_address = EEPROM_I2C_MADDR_4;
return true;
case IP_VERSION(11, 0, 7):
control->i2c_address = EEPROM_I2C_MADDR_0;
return true;
case IP_VERSION(13, 0, 2):
if (strnstr(atom_ctx->vbios_pn, "D673",
sizeof(atom_ctx->vbios_pn)))
control->i2c_address = EEPROM_I2C_MADDR_4;
else
control->i2c_address = EEPROM_I2C_MADDR_0;
return true;
case IP_VERSION(13, 0, 0):
if (strnstr(atom_ctx->vbios_pn, "D707",
sizeof(atom_ctx->vbios_pn)))
control->i2c_address = EEPROM_I2C_MADDR_0;
else
control->i2c_address = EEPROM_I2C_MADDR_4;
return true;
case IP_VERSION(13, 0, 6):
case IP_VERSION(13, 0, 10):
case IP_VERSION(13, 0, 14):
control->i2c_address = EEPROM_I2C_MADDR_4;
return true;
default:
return false;
}
}
static void
__encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr,
unsigned char *buf)
{
u32 *pp = (uint32_t *)buf;
pp[0] = cpu_to_le32(hdr->header);
pp[1] = cpu_to_le32(hdr->version);
pp[2] = cpu_to_le32(hdr->first_rec_offset);
pp[3] = cpu_to_le32(hdr->tbl_size);
pp[4] = cpu_to_le32(hdr->checksum);
}
static void
__decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr,
unsigned char *buf)
{
u32 *pp = (uint32_t *)buf;
hdr->header = le32_to_cpu(pp[0]);
hdr->version = le32_to_cpu(pp[1]);
hdr->first_rec_offset = le32_to_cpu(pp[2]);
hdr->tbl_size = le32_to_cpu(pp[3]);
hdr->checksum = le32_to_cpu(pp[4]);
}
static int __write_table_header(struct amdgpu_ras_eeprom_control *control)
{
u8 buf[RAS_TABLE_HEADER_SIZE];
struct amdgpu_device *adev = to_amdgpu_device(control);
int res;
memset(buf, 0, sizeof(buf));
__encode_table_header_to_buf(&control->tbl_hdr, buf);
/* i2c may be unstable in gpu reset */
down_read(&adev->reset_domain->sem);
res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
control->i2c_address +
control->ras_header_offset,
buf, RAS_TABLE_HEADER_SIZE);
up_read(&adev->reset_domain->sem);
if (res < 0) {
DRM_ERROR("Failed to write EEPROM table header:%d", res);
} else if (res < RAS_TABLE_HEADER_SIZE) {
DRM_ERROR("Short write:%d out of %d\n",
res, RAS_TABLE_HEADER_SIZE);
res = -EIO;
} else {
res = 0;
}
return res;
}
static void
__encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info *rai,
unsigned char *buf)
{
u32 *pp = (uint32_t *)buf;
u32 tmp;
tmp = ((uint32_t)(rai->rma_status) & 0xFF) |
(((uint32_t)(rai->health_percent) << 8) & 0xFF00) |
(((uint32_t)(rai->ecc_page_threshold) << 16) & 0xFFFF0000);
pp[0] = cpu_to_le32(tmp);
}
static void
__decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info *rai,
unsigned char *buf)
{
u32 *pp = (uint32_t *)buf;
u32 tmp;
tmp = le32_to_cpu(pp[0]);
rai->rma_status = tmp & 0xFF;
rai->health_percent = (tmp >> 8) & 0xFF;
rai->ecc_page_threshold = (tmp >> 16) & 0xFFFF;
}
static int __write_table_ras_info(struct amdgpu_ras_eeprom_control *control)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
u8 *buf;
int res;
buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
if (!buf) {
DRM_ERROR("Failed to alloc buf to write table ras info\n");
return -ENOMEM;
}
__encode_table_ras_info_to_buf(&control->tbl_rai, buf);
/* i2c may be unstable in gpu reset */
down_read(&adev->reset_domain->sem);
res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
control->i2c_address +
control->ras_info_offset,
buf, RAS_TABLE_V2_1_INFO_SIZE);
up_read(&adev->reset_domain->sem);
if (res < 0) {
DRM_ERROR("Failed to write EEPROM table ras info:%d", res);
} else if (res < RAS_TABLE_V2_1_INFO_SIZE) {
DRM_ERROR("Short write:%d out of %d\n",
res, RAS_TABLE_V2_1_INFO_SIZE);
res = -EIO;
} else {
res = 0;
}
kfree(buf);
return res;
}
static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control)
{
int ii;
u8 *pp, csum;
size_t sz;
/* Header checksum, skip checksum field in the calculation */
sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum);
pp = (u8 *) &control->tbl_hdr;
csum = 0;
for (ii = 0; ii < sz; ii++, pp++)
csum += *pp;
return csum;
}
static u8 __calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control *control)
{
int ii;
u8 *pp, csum;
size_t sz;
sz = sizeof(control->tbl_rai);
pp = (u8 *) &control->tbl_rai;
csum = 0;
for (ii = 0; ii < sz; ii++, pp++)
csum += *pp;
return csum;
}
static int amdgpu_ras_eeprom_correct_header_tag(
struct amdgpu_ras_eeprom_control *control,
uint32_t header)
{
struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
u8 *hh;
int res;
u8 csum;
csum = -hdr->checksum;
hh = (void *) &hdr->header;
csum -= (hh[0] + hh[1] + hh[2] + hh[3]);
hh = (void *) &header;
csum += hh[0] + hh[1] + hh[2] + hh[3];
csum = -csum;
mutex_lock(&control->ras_tbl_mutex);
hdr->header = header;
hdr->checksum = csum;
res = __write_table_header(control);
mutex_unlock(&control->ras_tbl_mutex);
return res;
}
static void amdgpu_ras_set_eeprom_table_version(struct amdgpu_ras_eeprom_control *control)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
switch (amdgpu_ip_version(adev, UMC_HWIP, 0)) {
case IP_VERSION(8, 10, 0):
case IP_VERSION(12, 0, 0):
hdr->version = RAS_TABLE_VER_V2_1;
return;
default:
hdr->version = RAS_TABLE_VER_V1;
return;
}
}
/**
* amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table
* @control: pointer to control structure
*
* Reset the contents of the header of the RAS EEPROM table.
* Return 0 on success, -errno on error.
*/
int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai;
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
u8 csum;
int res;
mutex_lock(&control->ras_tbl_mutex);
hdr->header = RAS_TABLE_HDR_VAL;
amdgpu_ras_set_eeprom_table_version(control);
if (hdr->version == RAS_TABLE_VER_V2_1) {
hdr->first_rec_offset = RAS_RECORD_START_V2_1;
hdr->tbl_size = RAS_TABLE_HEADER_SIZE +
RAS_TABLE_V2_1_INFO_SIZE;
rai->rma_status = GPU_HEALTH_USABLE;
/**
* GPU health represented as a percentage.
* 0 means worst health, 100 means fully health.
*/
rai->health_percent = 100;
/* ecc_page_threshold = 0 means disable bad page retirement */
rai->ecc_page_threshold = con->bad_page_cnt_threshold;
} else {
hdr->first_rec_offset = RAS_RECORD_START;
hdr->tbl_size = RAS_TABLE_HEADER_SIZE;
}
csum = __calc_hdr_byte_sum(control);
if (hdr->version == RAS_TABLE_VER_V2_1)
csum += __calc_ras_info_byte_sum(control);
csum = -csum;
hdr->checksum = csum;
res = __write_table_header(control);
if (!res && hdr->version > RAS_TABLE_VER_V1)
res = __write_table_ras_info(control);
control->ras_num_recs = 0;
control->ras_fri = 0;
amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_recs);
control->bad_channel_bitmap = 0;
amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap);
con->update_channel_flag = false;
amdgpu_ras_debugfs_set_ret_size(control);
mutex_unlock(&control->ras_tbl_mutex);
return res;
}
static void
__encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *record,
unsigned char *buf)
{
__le64 tmp = 0;
int i = 0;
/* Next are all record fields according to EEPROM page spec in LE foramt */
buf[i++] = record->err_type;
buf[i++] = record->bank;
tmp = cpu_to_le64(record->ts);
memcpy(buf + i, &tmp, 8);
i += 8;
tmp = cpu_to_le64((record->offset & 0xffffffffffff));
memcpy(buf + i, &tmp, 6);
i += 6;
buf[i++] = record->mem_channel;
buf[i++] = record->mcumc_id;
tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
memcpy(buf + i, &tmp, 6);
}
static void
__decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *record,
unsigned char *buf)
{
__le64 tmp = 0;
int i = 0;
/* Next are all record fields according to EEPROM page spec in LE foramt */
record->err_type = buf[i++];
record->bank = buf[i++];
memcpy(&tmp, buf + i, 8);
record->ts = le64_to_cpu(tmp);
i += 8;
memcpy(&tmp, buf + i, 6);
record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
i += 6;
record->mem_channel = buf[i++];
record->mcumc_id = buf[i++];
memcpy(&tmp, buf + i, 6);
record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
}
bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
if (!__is_ras_eeprom_supported(adev) ||
!amdgpu_bad_page_threshold)
return false;
/* skip check eeprom table for VEGA20 Gaming */
if (!con)
return false;
else
if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC)))
return false;
if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) {
if (amdgpu_bad_page_threshold == -1) {
dev_warn(adev->dev, "RAS records:%d exceed threshold:%d",
con->eeprom_control.ras_num_recs, con->bad_page_cnt_threshold);
dev_warn(adev->dev,
"But GPU can be operated due to bad_page_threshold = -1.\n");
return false;
} else {
dev_warn(adev->dev, "This GPU is in BAD status.");
dev_warn(adev->dev, "Please retire it or set a larger "
"threshold value when reloading driver.\n");
return true;
}
}
return false;
}
/**
* __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM
* @control: pointer to control structure
* @buf: pointer to buffer containing data to write
* @fri: start writing at this index
* @num: number of records to write
*
* The caller must hold the table mutex in @control.
* Return 0 on success, -errno otherwise.
*/
static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control,
u8 *buf, const u32 fri, const u32 num)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
u32 buf_size;
int res;
/* i2c may be unstable in gpu reset */
down_read(&adev->reset_domain->sem);
buf_size = num * RAS_TABLE_RECORD_SIZE;
res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
control->i2c_address +
RAS_INDEX_TO_OFFSET(control, fri),
buf, buf_size);
up_read(&adev->reset_domain->sem);
if (res < 0) {
DRM_ERROR("Writing %d EEPROM table records error:%d",
num, res);
} else if (res < buf_size) {
/* Short write, return error.
*/
DRM_ERROR("Wrote %d records out of %d",
res / RAS_TABLE_RECORD_SIZE, num);
res = -EIO;
} else {
res = 0;
}
return res;
}
static int
amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *record,
const u32 num)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control));
u32 a, b, i;
u8 *buf, *pp;
int res;
buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* Encode all of them in one go.
*/
pp = buf;
for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
__encode_table_record_to_buf(control, &record[i], pp);
/* update bad channel bitmap */
if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) &&
!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
control->bad_channel_bitmap |= 1 << record[i].mem_channel;
con->update_channel_flag = true;
}
}
/* a, first record index to write into.
* b, last record index to write into.
* a = first index to read (fri) + number of records in the table,
* b = a + @num - 1.
* Let N = control->ras_max_num_record_count, then we have,
* case 0: 0 <= a <= b < N,
* just append @num records starting at a;
* case 1: 0 <= a < N <= b,
* append (N - a) records starting at a, and
* append the remainder, b % N + 1, starting at 0.
* case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases,
* case 2a: 0 <= a <= b < N
* append num records starting at a; and fix fri if b overwrote it,
* and since a <= b, if b overwrote it then a must've also,
* and if b didn't overwrite it, then a didn't also.
* case 2b: 0 <= b < a < N
* write num records starting at a, which wraps around 0=N
* and overwrite fri unconditionally. Now from case 2a,
* this means that b eclipsed fri to overwrite it and wrap
* around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally
* set fri = b + 1 (mod N).
* Now, since fri is updated in every case, except the trivial case 0,
* the number of records present in the table after writing, is,
* num_recs - 1 = b - fri (mod N), and we take the positive value,
* by adding an arbitrary multiple of N before taking the modulo N
* as shown below.
*/
a = control->ras_fri + control->ras_num_recs;
b = a + num - 1;
if (b < control->ras_max_record_count) {
res = __amdgpu_ras_eeprom_write(control, buf, a, num);
} else if (a < control->ras_max_record_count) {
u32 g0, g1;
g0 = control->ras_max_record_count - a;
g1 = b % control->ras_max_record_count + 1;
res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
if (res)
goto Out;
res = __amdgpu_ras_eeprom_write(control,
buf + g0 * RAS_TABLE_RECORD_SIZE,
0, g1);
if (res)
goto Out;
if (g1 > control->ras_fri)
control->ras_fri = g1 % control->ras_max_record_count;
} else {
a %= control->ras_max_record_count;
b %= control->ras_max_record_count;
if (a <= b) {
/* Note that, b - a + 1 = num. */
res = __amdgpu_ras_eeprom_write(control, buf, a, num);
if (res)
goto Out;
if (b >= control->ras_fri)
control->ras_fri = (b + 1) % control->ras_max_record_count;
} else {
u32 g0, g1;
/* b < a, which means, we write from
* a to the end of the table, and from
* the start of the table to b.
*/
g0 = control->ras_max_record_count - a;
g1 = b + 1;
res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
if (res)
goto Out;
res = __amdgpu_ras_eeprom_write(control,
buf + g0 * RAS_TABLE_RECORD_SIZE,
0, g1);
if (res)
goto Out;
control->ras_fri = g1 % control->ras_max_record_count;
}
}
control->ras_num_recs = 1 + (control->ras_max_record_count + b
- control->ras_fri)
% control->ras_max_record_count;
Out:
kfree(buf);
return res;
}
static int
amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
u8 *buf, *pp, csum;
u32 buf_size;
int res;
/* Modify the header if it exceeds.
*/
if (amdgpu_bad_page_threshold != 0 &&
control->ras_num_recs >= ras->bad_page_cnt_threshold) {
dev_warn(adev->dev,
"Saved bad pages %d reaches threshold value %d\n",
control->ras_num_recs, ras->bad_page_cnt_threshold);
control->tbl_hdr.header = RAS_TABLE_HDR_BAD;
if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) {
control->tbl_rai.rma_status = GPU_RETIRED__ECC_REACH_THRESHOLD;
control->tbl_rai.health_percent = 0;
}
if (amdgpu_bad_page_threshold != -1)
ras->is_rma = true;
/* ignore the -ENOTSUPP return value */
amdgpu_dpm_send_rma_reason(adev);
}
if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
RAS_TABLE_V2_1_INFO_SIZE +
control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
else
control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
control->tbl_hdr.checksum = 0;
buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
if (!buf) {
DRM_ERROR("allocating memory for table of size %d bytes failed\n",
control->tbl_hdr.tbl_size);
res = -ENOMEM;
goto Out;
}
down_read(&adev->reset_domain->sem);
res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
control->i2c_address +
control->ras_record_offset,
buf, buf_size);
up_read(&adev->reset_domain->sem);
if (res < 0) {
DRM_ERROR("EEPROM failed reading records:%d\n",
res);
goto Out;
} else if (res < buf_size) {
DRM_ERROR("EEPROM read %d out of %d bytes\n",
res, buf_size);
res = -EIO;
goto Out;
}
/**
* bad page records have been stored in eeprom,
* now calculate gpu health percent
*/
if (amdgpu_bad_page_threshold != 0 &&
control->tbl_hdr.version == RAS_TABLE_VER_V2_1 &&
control->ras_num_recs < ras->bad_page_cnt_threshold)
control->tbl_rai.health_percent = ((ras->bad_page_cnt_threshold -
control->ras_num_recs) * 100) /
ras->bad_page_cnt_threshold;
/* Recalc the checksum.
*/
csum = 0;
for (pp = buf; pp < buf + buf_size; pp++)
csum += *pp;
csum += __calc_hdr_byte_sum(control);
if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
csum += __calc_ras_info_byte_sum(control);
/* avoid sign extension when assigning to "checksum" */
csum = -csum;
control->tbl_hdr.checksum = csum;
res = __write_table_header(control);
if (!res && control->tbl_hdr.version > RAS_TABLE_VER_V1)
res = __write_table_ras_info(control);
Out:
kfree(buf);
return res;
}
/**
* amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table
* @control: pointer to control structure
* @record: array of records to append
* @num: number of records in @record array
*
* Append @num records to the table, calculate the checksum and write
* the table back to EEPROM. The maximum number of records that
* can be appended is between 1 and control->ras_max_record_count,
* regardless of how many records are already stored in the table.
*
* Return 0 on success or if EEPROM is not supported, -errno on error.
*/
int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *record,
const u32 num)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
int res;
if (!__is_ras_eeprom_supported(adev))
return 0;
if (num == 0) {
DRM_ERROR("will not append 0 records\n");
return -EINVAL;
} else if (num > control->ras_max_record_count) {
DRM_ERROR("cannot append %d records than the size of table %d\n",
num, control->ras_max_record_count);
return -EINVAL;
}
mutex_lock(&control->ras_tbl_mutex);
res = amdgpu_ras_eeprom_append_table(control, record, num);
if (!res)
res = amdgpu_ras_eeprom_update_header(control);
if (!res)
amdgpu_ras_debugfs_set_ret_size(control);
mutex_unlock(&control->ras_tbl_mutex);
return res;
}
/**
* __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer
* @control: pointer to control structure
* @buf: pointer to buffer to read into
* @fri: first record index, start reading at this index, absolute index
* @num: number of records to read
*
* The caller must hold the table mutex in @control.
* Return 0 on success, -errno otherwise.
*/
static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
u8 *buf, const u32 fri, const u32 num)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
u32 buf_size;
int res;
/* i2c may be unstable in gpu reset */
down_read(&adev->reset_domain->sem);
buf_size = num * RAS_TABLE_RECORD_SIZE;
res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
control->i2c_address +
RAS_INDEX_TO_OFFSET(control, fri),
buf, buf_size);
up_read(&adev->reset_domain->sem);
if (res < 0) {
DRM_ERROR("Reading %d EEPROM table records error:%d",
num, res);
} else if (res < buf_size) {
/* Short read, return error.
*/
DRM_ERROR("Read %d records out of %d",
res / RAS_TABLE_RECORD_SIZE, num);
res = -EIO;
} else {
res = 0;
}
return res;
}
/**
* amdgpu_ras_eeprom_read -- read EEPROM
* @control: pointer to control structure
* @record: array of records to read into
* @num: number of records in @record
*
* Reads num records from the RAS table in EEPROM and
* writes the data into @record array.
*
* Returns 0 on success, -errno on error.
*/
int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *record,
const u32 num)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
int i, res;
u8 *buf, *pp;
u32 g0, g1;
if (!__is_ras_eeprom_supported(adev))
return 0;
if (num == 0) {
DRM_ERROR("will not read 0 records\n");
return -EINVAL;
} else if (num > control->ras_num_recs) {
DRM_ERROR("too many records to read:%d available:%d\n",
num, control->ras_num_recs);
return -EINVAL;
}
buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* Determine how many records to read, from the first record
* index, fri, to the end of the table, and from the beginning
* of the table, such that the total number of records is
* @num, and we handle wrap around when fri > 0 and
* fri + num > RAS_MAX_RECORD_COUNT.
*
* First we compute the index of the last element
* which would be fetched from each region,
* g0 is in [fri, fri + num - 1], and
* g1 is in [0, RAS_MAX_RECORD_COUNT - 1].
* Then, if g0 < RAS_MAX_RECORD_COUNT, the index of
* the last element to fetch, we set g0 to _the number_
* of elements to fetch, @num, since we know that the last
* indexed to be fetched does not exceed the table.
*
* If, however, g0 >= RAS_MAX_RECORD_COUNT, then
* we set g0 to the number of elements to read
* until the end of the table, and g1 to the number of
* elements to read from the beginning of the table.
*/
g0 = control->ras_fri + num - 1;
g1 = g0 % control->ras_max_record_count;
if (g0 < control->ras_max_record_count) {
g0 = num;
g1 = 0;
} else {
g0 = control->ras_max_record_count - control->ras_fri;
g1 += 1;
}
mutex_lock(&control->ras_tbl_mutex);
res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0);
if (res)
goto Out;
if (g1) {
res = __amdgpu_ras_eeprom_read(control,
buf + g0 * RAS_TABLE_RECORD_SIZE,
0, g1);
if (res)
goto Out;
}
res = 0;
/* Read up everything? Then transform.
*/
pp = buf;
for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
__decode_table_record_from_buf(control, &record[i], pp);
/* update bad channel bitmap */
if ((record[i].mem_channel < BITS_PER_TYPE(control->bad_channel_bitmap)) &&
!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
control->bad_channel_bitmap |= 1 << record[i].mem_channel;
con->update_channel_flag = true;
}
}
Out:
kfree(buf);
mutex_unlock(&control->ras_tbl_mutex);
return res;
}
uint32_t amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control *control)
{
/* get available eeprom table version first before eeprom table init */
amdgpu_ras_set_eeprom_table_version(control);
if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
return RAS_MAX_RECORD_COUNT_V2_1;
else
return RAS_MAX_RECORD_COUNT;
}
static ssize_t
amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
u8 data[50];
int res;
if (!size)
return size;
if (!ras || !control) {
res = snprintf(data, sizeof(data), "Not supported\n");
} else {
res = snprintf(data, sizeof(data), "%d bytes or %d records\n",
RAS_TBL_SIZE_BYTES, control->ras_max_record_count);
}
if (*pos >= res)
return 0;
res -= *pos;
res = min_t(size_t, res, size);
if (copy_to_user(buf, &data[*pos], res))
return -EFAULT;
*pos += res;
return res;
}
const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = {
.owner = THIS_MODULE,
.read = amdgpu_ras_debugfs_eeprom_size_read,
.write = NULL,
.llseek = default_llseek,
};
static const char *tbl_hdr_str = " Signature Version FirstOffs Size Checksum\n";
static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n";
#define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1)
static const char *rec_hdr_str = "Index Offset ErrType Bank/CU TimeStamp Offs/Addr MemChl MCUMCID RetiredPage\n";
static const char *rec_hdr_fmt = "%5d 0x%05X %7s 0x%02X 0x%016llX 0x%012llX 0x%02X 0x%02X 0x%012llX\n";
#define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1)
static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = {
"ignore",
"re",
"ue",
};
static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control)
{
return strlen(tbl_hdr_str) + tbl_hdr_fmt_size +
strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs;
}
void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control)
{
struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras,
eeprom_control);
struct dentry *de = ras->de_ras_eeprom_table;
if (de)
d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control);
}
static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control;
const size_t orig_size = size;
int res = -EFAULT;
size_t data_len;
mutex_lock(&control->ras_tbl_mutex);
/* We want *pos - data_len > 0, which means there's
* bytes to be printed from data.
*/
data_len = strlen(tbl_hdr_str);
if (*pos < data_len) {
data_len -= *pos;
data_len = min_t(size_t, data_len, size);
if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len))
goto Out;
buf += data_len;
size -= data_len;
*pos += data_len;
}
data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size;
if (*pos < data_len && size > 0) {
u8 data[tbl_hdr_fmt_size + 1];
loff_t lpos;
snprintf(data, sizeof(data), tbl_hdr_fmt,
control->tbl_hdr.header,
control->tbl_hdr.version,
control->tbl_hdr.first_rec_offset,
control->tbl_hdr.tbl_size,
control->tbl_hdr.checksum);
data_len -= *pos;
data_len = min_t(size_t, data_len, size);
lpos = *pos - strlen(tbl_hdr_str);
if (copy_to_user(buf, &data[lpos], data_len))
goto Out;
buf += data_len;
size -= data_len;
*pos += data_len;
}
data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str);
if (*pos < data_len && size > 0) {
loff_t lpos;
data_len -= *pos;
data_len = min_t(size_t, data_len, size);
lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size;
if (copy_to_user(buf, &rec_hdr_str[lpos], data_len))
goto Out;
buf += data_len;
size -= data_len;
*pos += data_len;
}
data_len = amdgpu_ras_debugfs_table_size(control);
if (*pos < data_len && size > 0) {
u8 dare[RAS_TABLE_RECORD_SIZE];
u8 data[rec_hdr_fmt_size + 1];
struct eeprom_table_record record;
int s, r;
/* Find the starting record index
*/
s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
strlen(rec_hdr_str);
s = s / rec_hdr_fmt_size;
r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
strlen(rec_hdr_str);
r = r % rec_hdr_fmt_size;
for ( ; size > 0 && s < control->ras_num_recs; s++) {
u32 ai = RAS_RI_TO_AI(control, s);
/* Read a single record
*/
res = __amdgpu_ras_eeprom_read(control, dare, ai, 1);
if (res)
goto Out;
__decode_table_record_from_buf(control, &record, dare);
snprintf(data, sizeof(data), rec_hdr_fmt,
s,
RAS_INDEX_TO_OFFSET(control, ai),
record_err_type_str[record.err_type],
record.bank,
record.ts,
record.offset,
record.mem_channel,
record.mcumc_id,
record.retired_page);
data_len = min_t(size_t, rec_hdr_fmt_size - r, size);
if (copy_to_user(buf, &data[r], data_len)) {
res = -EFAULT;
goto Out;
}
buf += data_len;
size -= data_len;
*pos += data_len;
r = 0;
}
}
res = 0;
Out:
mutex_unlock(&control->ras_tbl_mutex);
return res < 0 ? res : orig_size - size;
}
static ssize_t
amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
u8 data[81];
int res;
if (!size)
return size;
if (!ras || !control) {
res = snprintf(data, sizeof(data), "Not supported\n");
if (*pos >= res)
return 0;
res -= *pos;
res = min_t(size_t, res, size);
if (copy_to_user(buf, &data[*pos], res))
return -EFAULT;
*pos += res;
return res;
} else {
return amdgpu_ras_debugfs_table_read(f, buf, size, pos);
}
}
const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = {
.owner = THIS_MODULE,
.read = amdgpu_ras_debugfs_eeprom_table_read,
.write = NULL,
.llseek = default_llseek,
};
/**
* __verify_ras_table_checksum -- verify the RAS EEPROM table checksum
* @control: pointer to control structure
*
* Check the checksum of the stored in EEPROM RAS table.
*
* Return 0 if the checksum is correct,
* positive if it is not correct, and
* -errno on I/O error.
*/
static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
int buf_size, res;
u8 csum, *buf, *pp;
if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
buf_size = RAS_TABLE_HEADER_SIZE +
RAS_TABLE_V2_1_INFO_SIZE +
control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
else
buf_size = RAS_TABLE_HEADER_SIZE +
control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
buf = kzalloc(buf_size, GFP_KERNEL);
if (!buf) {
DRM_ERROR("Out of memory checking RAS table checksum.\n");
return -ENOMEM;
}
res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
control->i2c_address +
control->ras_header_offset,
buf, buf_size);
if (res < buf_size) {
DRM_ERROR("Partial read for checksum, res:%d\n", res);
/* On partial reads, return -EIO.
*/
if (res >= 0)
res = -EIO;
goto Out;
}
csum = 0;
for (pp = buf; pp < buf + buf_size; pp++)
csum += *pp;
Out:
kfree(buf);
return res < 0 ? res : csum;
}
static int __read_table_ras_info(struct amdgpu_ras_eeprom_control *control)
{
struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai;
struct amdgpu_device *adev = to_amdgpu_device(control);
unsigned char *buf;
int res;
buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
if (!buf) {
DRM_ERROR("Failed to alloc buf to read EEPROM table ras info\n");
return -ENOMEM;
}
/**
* EEPROM table V2_1 supports ras info,
* read EEPROM table ras info
*/
res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
control->i2c_address + control->ras_info_offset,
buf, RAS_TABLE_V2_1_INFO_SIZE);
if (res < RAS_TABLE_V2_1_INFO_SIZE) {
DRM_ERROR("Failed to read EEPROM table ras info, res:%d", res);
res = res >= 0 ? -EIO : res;
goto Out;
}
__decode_table_ras_info_from_buf(rai, buf);
Out:
kfree(buf);
return res == RAS_TABLE_V2_1_INFO_SIZE ? 0 : res;
}
int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 };
struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
int res;
ras->is_rma = false;
if (!__is_ras_eeprom_supported(adev))
return 0;
/* Verify i2c adapter is initialized */
if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo)
return -ENOENT;
if (!__get_eeprom_i2c_addr(adev, control))
return -EINVAL;
control->ras_header_offset = RAS_HDR_START;
control->ras_info_offset = RAS_TABLE_V2_1_INFO_START;
mutex_init(&control->ras_tbl_mutex);
/* Read the table header from EEPROM address */
res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
control->i2c_address + control->ras_header_offset,
buf, RAS_TABLE_HEADER_SIZE);
if (res < RAS_TABLE_HEADER_SIZE) {
DRM_ERROR("Failed to read EEPROM table header, res:%d", res);
return res >= 0 ? -EIO : res;
}
__decode_table_header_from_buf(hdr, buf);
if (hdr->version == RAS_TABLE_VER_V2_1) {
control->ras_num_recs = RAS_NUM_RECS_V2_1(hdr);
control->ras_record_offset = RAS_RECORD_START_V2_1;
control->ras_max_record_count = RAS_MAX_RECORD_COUNT_V2_1;
} else {
control->ras_num_recs = RAS_NUM_RECS(hdr);
control->ras_record_offset = RAS_RECORD_START;
control->ras_max_record_count = RAS_MAX_RECORD_COUNT;
}
control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset);
if (hdr->header == RAS_TABLE_HDR_VAL) {
DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
control->ras_num_recs);
if (hdr->version == RAS_TABLE_VER_V2_1) {
res = __read_table_ras_info(control);
if (res)
return res;
}
res = __verify_ras_table_checksum(control);
if (res)
DRM_ERROR("RAS table incorrect checksum or error:%d\n",
res);
/* Warn if we are at 90% of the threshold or above
*/
if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold)
dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d",
control->ras_num_recs,
ras->bad_page_cnt_threshold);
} else if (hdr->header == RAS_TABLE_HDR_BAD &&
amdgpu_bad_page_threshold != 0) {
if (hdr->version == RAS_TABLE_VER_V2_1) {
res = __read_table_ras_info(control);
if (res)
return res;
}
res = __verify_ras_table_checksum(control);
if (res)
DRM_ERROR("RAS Table incorrect checksum or error:%d\n",
res);
if (ras->bad_page_cnt_threshold > control->ras_num_recs) {
/* This means that, the threshold was increased since
* the last time the system was booted, and now,
* ras->bad_page_cnt_threshold - control->num_recs > 0,
* so that at least one more record can be saved,
* before the page count threshold is reached.
*/
dev_info(adev->dev,
"records:%d threshold:%d, resetting "
"RAS table header signature",
control->ras_num_recs,
ras->bad_page_cnt_threshold);
res = amdgpu_ras_eeprom_correct_header_tag(control,
RAS_TABLE_HDR_VAL);
} else {
dev_err(adev->dev, "RAS records:%d exceed threshold:%d",
control->ras_num_recs, ras->bad_page_cnt_threshold);
if (amdgpu_bad_page_threshold == -1) {
dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -1.");
res = 0;
} else {
ras->is_rma = true;
dev_err(adev->dev,
"RAS records:%d exceed threshold:%d, "
"GPU will not be initialized. Replace this GPU or increase the threshold",
control->ras_num_recs, ras->bad_page_cnt_threshold);
}
}
} else {
DRM_INFO("Creating a new EEPROM table");
res = amdgpu_ras_eeprom_reset_table(control);
}
return res < 0 ? res : 0;
}