| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2022 Intel Corporation |
| */ |
| |
| #include "xe_pt.h" |
| |
| #include "regs/xe_gtt_defs.h" |
| #include "xe_bo.h" |
| #include "xe_device.h" |
| #include "xe_drm_client.h" |
| #include "xe_gt.h" |
| #include "xe_gt_tlb_invalidation.h" |
| #include "xe_migrate.h" |
| #include "xe_pt_types.h" |
| #include "xe_pt_walk.h" |
| #include "xe_res_cursor.h" |
| #include "xe_trace.h" |
| #include "xe_ttm_stolen_mgr.h" |
| #include "xe_vm.h" |
| |
| struct xe_pt_dir { |
| struct xe_pt pt; |
| /** @children: Array of page-table child nodes */ |
| struct xe_ptw *children[XE_PDES]; |
| }; |
| |
| #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM) |
| #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr)) |
| #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr) |
| #else |
| #define xe_pt_set_addr(__xe_pt, __addr) |
| #define xe_pt_addr(__xe_pt) 0ull |
| #endif |
| |
| static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48}; |
| static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48}; |
| |
| #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1) |
| |
| static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt) |
| { |
| return container_of(pt, struct xe_pt_dir, pt); |
| } |
| |
| static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index) |
| { |
| return container_of(pt_dir->children[index], struct xe_pt, base); |
| } |
| |
| static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm, |
| unsigned int level) |
| { |
| struct xe_device *xe = tile_to_xe(tile); |
| u16 pat_index = xe->pat.idx[XE_CACHE_WB]; |
| u8 id = tile->id; |
| |
| if (!xe_vm_has_scratch(vm)) |
| return 0; |
| |
| if (level > MAX_HUGEPTE_LEVEL) |
| return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo, |
| 0, pat_index); |
| |
| return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) | |
| XE_PTE_NULL; |
| } |
| |
| static void xe_pt_free(struct xe_pt *pt) |
| { |
| if (pt->level) |
| kfree(as_xe_pt_dir(pt)); |
| else |
| kfree(pt); |
| } |
| |
| /** |
| * xe_pt_create() - Create a page-table. |
| * @vm: The vm to create for. |
| * @tile: The tile to create for. |
| * @level: The page-table level. |
| * |
| * Allocate and initialize a single struct xe_pt metadata structure. Also |
| * create the corresponding page-table bo, but don't initialize it. If the |
| * level is grater than zero, then it's assumed to be a directory page- |
| * table and the directory structure is also allocated and initialized to |
| * NULL pointers. |
| * |
| * Return: A valid struct xe_pt pointer on success, Pointer error code on |
| * error. |
| */ |
| struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile, |
| unsigned int level) |
| { |
| struct xe_pt *pt; |
| struct xe_bo *bo; |
| int err; |
| |
| if (level) { |
| struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL); |
| |
| pt = (dir) ? &dir->pt : NULL; |
| } else { |
| pt = kzalloc(sizeof(*pt), GFP_KERNEL); |
| } |
| if (!pt) |
| return ERR_PTR(-ENOMEM); |
| |
| pt->level = level; |
| bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K, |
| ttm_bo_type_kernel, |
| XE_BO_FLAG_VRAM_IF_DGFX(tile) | |
| XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE | |
| XE_BO_FLAG_PINNED | |
| XE_BO_FLAG_NO_RESV_EVICT | |
| XE_BO_FLAG_PAGETABLE); |
| if (IS_ERR(bo)) { |
| err = PTR_ERR(bo); |
| goto err_kfree; |
| } |
| pt->bo = bo; |
| pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL; |
| |
| if (vm->xef) |
| xe_drm_client_add_bo(vm->xef->client, pt->bo); |
| xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL); |
| |
| return pt; |
| |
| err_kfree: |
| xe_pt_free(pt); |
| return ERR_PTR(err); |
| } |
| |
| /** |
| * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero |
| * entries. |
| * @tile: The tile the scratch pagetable of which to use. |
| * @vm: The vm we populate for. |
| * @pt: The pagetable the bo of which to initialize. |
| * |
| * Populate the page-table bo of @pt with entries pointing into the tile's |
| * scratch page-table tree if any. Otherwise populate with zeros. |
| */ |
| void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm, |
| struct xe_pt *pt) |
| { |
| struct iosys_map *map = &pt->bo->vmap; |
| u64 empty; |
| int i; |
| |
| if (!xe_vm_has_scratch(vm)) { |
| /* |
| * FIXME: Some memory is allocated already allocated to zero? |
| * Find out which memory that is and avoid this memset... |
| */ |
| xe_map_memset(vm->xe, map, 0, 0, SZ_4K); |
| } else { |
| empty = __xe_pt_empty_pte(tile, vm, pt->level); |
| for (i = 0; i < XE_PDES; i++) |
| xe_pt_write(vm->xe, map, i, empty); |
| } |
| } |
| |
| /** |
| * xe_pt_shift() - Return the ilog2 value of the size of the address range of |
| * a page-table at a certain level. |
| * @level: The level. |
| * |
| * Return: The ilog2 value of the size of the address range of a page-table |
| * at level @level. |
| */ |
| unsigned int xe_pt_shift(unsigned int level) |
| { |
| return XE_PTE_SHIFT + XE_PDE_SHIFT * level; |
| } |
| |
| /** |
| * xe_pt_destroy() - Destroy a page-table tree. |
| * @pt: The root of the page-table tree to destroy. |
| * @flags: vm flags. Currently unused. |
| * @deferred: List head of lockless list for deferred putting. NULL for |
| * immediate putting. |
| * |
| * Puts the page-table bo, recursively calls xe_pt_destroy on all children |
| * and finally frees @pt. TODO: Can we remove the @flags argument? |
| */ |
| void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred) |
| { |
| int i; |
| |
| if (!pt) |
| return; |
| |
| XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list)); |
| xe_bo_unpin(pt->bo); |
| xe_bo_put_deferred(pt->bo, deferred); |
| |
| if (pt->level > 0 && pt->num_live) { |
| struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); |
| |
| for (i = 0; i < XE_PDES; i++) { |
| if (xe_pt_entry(pt_dir, i)) |
| xe_pt_destroy(xe_pt_entry(pt_dir, i), flags, |
| deferred); |
| } |
| } |
| xe_pt_free(pt); |
| } |
| |
| /** |
| * DOC: Pagetable building |
| * |
| * Below we use the term "page-table" for both page-directories, containing |
| * pointers to lower level page-directories or page-tables, and level 0 |
| * page-tables that contain only page-table-entries pointing to memory pages. |
| * |
| * When inserting an address range in an already existing page-table tree |
| * there will typically be a set of page-tables that are shared with other |
| * address ranges, and a set that are private to this address range. |
| * The set of shared page-tables can be at most two per level, |
| * and those can't be updated immediately because the entries of those |
| * page-tables may still be in use by the gpu for other mappings. Therefore |
| * when inserting entries into those, we instead stage those insertions by |
| * adding insertion data into struct xe_vm_pgtable_update structures. This |
| * data, (subtrees for the cpu and page-table-entries for the gpu) is then |
| * added in a separate commit step. CPU-data is committed while still under the |
| * vm lock, the object lock and for userptr, the notifier lock in read mode. |
| * The GPU async data is committed either by the GPU or CPU after fulfilling |
| * relevant dependencies. |
| * For non-shared page-tables (and, in fact, for shared ones that aren't |
| * existing at the time of staging), we add the data in-place without the |
| * special update structures. This private part of the page-table tree will |
| * remain disconnected from the vm page-table tree until data is committed to |
| * the shared page tables of the vm tree in the commit phase. |
| */ |
| |
| struct xe_pt_update { |
| /** @update: The update structure we're building for this parent. */ |
| struct xe_vm_pgtable_update *update; |
| /** @parent: The parent. Used to detect a parent change. */ |
| struct xe_pt *parent; |
| /** @preexisting: Whether the parent was pre-existing or allocated */ |
| bool preexisting; |
| }; |
| |
| struct xe_pt_stage_bind_walk { |
| /** base: The base class. */ |
| struct xe_pt_walk base; |
| |
| /* Input parameters for the walk */ |
| /** @vm: The vm we're building for. */ |
| struct xe_vm *vm; |
| /** @tile: The tile we're building for. */ |
| struct xe_tile *tile; |
| /** @default_pte: PTE flag only template. No address is associated */ |
| u64 default_pte; |
| /** @dma_offset: DMA offset to add to the PTE. */ |
| u64 dma_offset; |
| /** |
| * @needs_64k: This address range enforces 64K alignment and |
| * granularity. |
| */ |
| bool needs_64K; |
| /** |
| * @vma: VMA being mapped |
| */ |
| struct xe_vma *vma; |
| |
| /* Also input, but is updated during the walk*/ |
| /** @curs: The DMA address cursor. */ |
| struct xe_res_cursor *curs; |
| /** @va_curs_start: The Virtual address coresponding to @curs->start */ |
| u64 va_curs_start; |
| |
| /* Output */ |
| struct xe_walk_update { |
| /** @wupd.entries: Caller provided storage. */ |
| struct xe_vm_pgtable_update *entries; |
| /** @wupd.num_used_entries: Number of update @entries used. */ |
| unsigned int num_used_entries; |
| /** @wupd.updates: Tracks the update entry at a given level */ |
| struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1]; |
| } wupd; |
| |
| /* Walk state */ |
| /** |
| * @l0_end_addr: The end address of the current l0 leaf. Used for |
| * 64K granularity detection. |
| */ |
| u64 l0_end_addr; |
| /** @addr_64K: The start address of the current 64K chunk. */ |
| u64 addr_64K; |
| /** @found_64: Whether @add_64K actually points to a 64K chunk. */ |
| bool found_64K; |
| }; |
| |
| static int |
| xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent, |
| pgoff_t offset, bool alloc_entries) |
| { |
| struct xe_pt_update *upd = &wupd->updates[parent->level]; |
| struct xe_vm_pgtable_update *entry; |
| |
| /* |
| * For *each level*, we could only have one active |
| * struct xt_pt_update at any one time. Once we move on to a |
| * new parent and page-directory, the old one is complete, and |
| * updates are either already stored in the build tree or in |
| * @wupd->entries |
| */ |
| if (likely(upd->parent == parent)) |
| return 0; |
| |
| upd->parent = parent; |
| upd->preexisting = true; |
| |
| if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1) |
| return -EINVAL; |
| |
| entry = wupd->entries + wupd->num_used_entries++; |
| upd->update = entry; |
| entry->ofs = offset; |
| entry->pt_bo = parent->bo; |
| entry->pt = parent; |
| entry->flags = 0; |
| entry->qwords = 0; |
| |
| if (alloc_entries) { |
| entry->pt_entries = kmalloc_array(XE_PDES, |
| sizeof(*entry->pt_entries), |
| GFP_KERNEL); |
| if (!entry->pt_entries) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * NOTE: This is a very frequently called function so we allow ourselves |
| * to annotate (using branch prediction hints) the fastpath of updating a |
| * non-pre-existing pagetable with leaf ptes. |
| */ |
| static int |
| xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent, |
| pgoff_t offset, struct xe_pt *xe_child, u64 pte) |
| { |
| struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level]; |
| struct xe_pt_update *child_upd = xe_child ? |
| &xe_walk->wupd.updates[xe_child->level] : NULL; |
| int ret; |
| |
| ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true); |
| if (unlikely(ret)) |
| return ret; |
| |
| /* |
| * Register this new pagetable so that it won't be recognized as |
| * a shared pagetable by a subsequent insertion. |
| */ |
| if (unlikely(child_upd)) { |
| child_upd->update = NULL; |
| child_upd->parent = xe_child; |
| child_upd->preexisting = false; |
| } |
| |
| if (likely(!upd->preexisting)) { |
| /* Continue building a non-connected subtree. */ |
| struct iosys_map *map = &parent->bo->vmap; |
| |
| if (unlikely(xe_child)) |
| parent->base.children[offset] = &xe_child->base; |
| |
| xe_pt_write(xe_walk->vm->xe, map, offset, pte); |
| parent->num_live++; |
| } else { |
| /* Shared pt. Stage update. */ |
| unsigned int idx; |
| struct xe_vm_pgtable_update *entry = upd->update; |
| |
| idx = offset - entry->ofs; |
| entry->pt_entries[idx].pt = xe_child; |
| entry->pt_entries[idx].pte = pte; |
| entry->qwords++; |
| } |
| |
| return 0; |
| } |
| |
| static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level, |
| struct xe_pt_stage_bind_walk *xe_walk) |
| { |
| u64 size, dma; |
| |
| if (level > MAX_HUGEPTE_LEVEL) |
| return false; |
| |
| /* Does the virtual range requested cover a huge pte? */ |
| if (!xe_pt_covers(addr, next, level, &xe_walk->base)) |
| return false; |
| |
| /* Does the DMA segment cover the whole pte? */ |
| if (next - xe_walk->va_curs_start > xe_walk->curs->size) |
| return false; |
| |
| /* null VMA's do not have dma addresses */ |
| if (xe_vma_is_null(xe_walk->vma)) |
| return true; |
| |
| /* Is the DMA address huge PTE size aligned? */ |
| size = next - addr; |
| dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs); |
| |
| return IS_ALIGNED(dma, size); |
| } |
| |
| /* |
| * Scan the requested mapping to check whether it can be done entirely |
| * with 64K PTEs. |
| */ |
| static bool |
| xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) |
| { |
| struct xe_res_cursor curs = *xe_walk->curs; |
| |
| if (!IS_ALIGNED(addr, SZ_64K)) |
| return false; |
| |
| if (next > xe_walk->l0_end_addr) |
| return false; |
| |
| /* null VMA's do not have dma addresses */ |
| if (xe_vma_is_null(xe_walk->vma)) |
| return true; |
| |
| xe_res_next(&curs, addr - xe_walk->va_curs_start); |
| for (; addr < next; addr += SZ_64K) { |
| if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K) |
| return false; |
| |
| xe_res_next(&curs, SZ_64K); |
| } |
| |
| return addr == next; |
| } |
| |
| /* |
| * For non-compact "normal" 4K level-0 pagetables, we want to try to group |
| * addresses together in 64K-contigous regions to add a 64K TLB hint for the |
| * device to the PTE. |
| * This function determines whether the address is part of such a |
| * segment. For VRAM in normal pagetables, this is strictly necessary on |
| * some devices. |
| */ |
| static bool |
| xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) |
| { |
| /* Address is within an already found 64k region */ |
| if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K) |
| return true; |
| |
| xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk); |
| xe_walk->addr_64K = addr; |
| |
| return xe_walk->found_64K; |
| } |
| |
| static int |
| xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset, |
| unsigned int level, u64 addr, u64 next, |
| struct xe_ptw **child, |
| enum page_walk_action *action, |
| struct xe_pt_walk *walk) |
| { |
| struct xe_pt_stage_bind_walk *xe_walk = |
| container_of(walk, typeof(*xe_walk), base); |
| u16 pat_index = xe_walk->vma->pat_index; |
| struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base); |
| struct xe_vm *vm = xe_walk->vm; |
| struct xe_pt *xe_child; |
| bool covers; |
| int ret = 0; |
| u64 pte; |
| |
| /* Is this a leaf entry ?*/ |
| if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) { |
| struct xe_res_cursor *curs = xe_walk->curs; |
| bool is_null = xe_vma_is_null(xe_walk->vma); |
| |
| XE_WARN_ON(xe_walk->va_curs_start != addr); |
| |
| pte = vm->pt_ops->pte_encode_vma(is_null ? 0 : |
| xe_res_dma(curs) + xe_walk->dma_offset, |
| xe_walk->vma, pat_index, level); |
| pte |= xe_walk->default_pte; |
| |
| /* |
| * Set the XE_PTE_PS64 hint if possible, otherwise if |
| * this device *requires* 64K PTE size for VRAM, fail. |
| */ |
| if (level == 0 && !xe_parent->is_compact) { |
| if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) { |
| xe_walk->vma->gpuva.flags |= XE_VMA_PTE_64K; |
| pte |= XE_PTE_PS64; |
| } else if (XE_WARN_ON(xe_walk->needs_64K)) { |
| return -EINVAL; |
| } |
| } |
| |
| ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte); |
| if (unlikely(ret)) |
| return ret; |
| |
| if (!is_null) |
| xe_res_next(curs, next - addr); |
| xe_walk->va_curs_start = next; |
| xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level); |
| *action = ACTION_CONTINUE; |
| |
| return ret; |
| } |
| |
| /* |
| * Descending to lower level. Determine if we need to allocate a |
| * new page table or -directory, which we do if there is no |
| * previous one or there is one we can completely replace. |
| */ |
| if (level == 1) { |
| walk->shifts = xe_normal_pt_shifts; |
| xe_walk->l0_end_addr = next; |
| } |
| |
| covers = xe_pt_covers(addr, next, level, &xe_walk->base); |
| if (covers || !*child) { |
| u64 flags = 0; |
| |
| xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1); |
| if (IS_ERR(xe_child)) |
| return PTR_ERR(xe_child); |
| |
| xe_pt_set_addr(xe_child, |
| round_down(addr, 1ull << walk->shifts[level])); |
| |
| if (!covers) |
| xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child); |
| |
| *child = &xe_child->base; |
| |
| /* |
| * Prefer the compact pagetable layout for L0 if possible. Only |
| * possible if VMA covers entire 2MB region as compact 64k and |
| * 4k pages cannot be mixed within a 2MB region. |
| * TODO: Suballocate the pt bo to avoid wasting a lot of |
| * memory. |
| */ |
| if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 && |
| covers && xe_pt_scan_64K(addr, next, xe_walk)) { |
| walk->shifts = xe_compact_pt_shifts; |
| xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT; |
| flags |= XE_PDE_64K; |
| xe_child->is_compact = true; |
| } |
| |
| pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags; |
| ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child, |
| pte); |
| } |
| |
| *action = ACTION_SUBTREE; |
| return ret; |
| } |
| |
| static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = { |
| .pt_entry = xe_pt_stage_bind_entry, |
| }; |
| |
| /** |
| * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address |
| * range. |
| * @tile: The tile we're building for. |
| * @vma: The vma indicating the address range. |
| * @entries: Storage for the update entries used for connecting the tree to |
| * the main tree at commit time. |
| * @num_entries: On output contains the number of @entries used. |
| * |
| * This function builds a disconnected page-table tree for a given address |
| * range. The tree is connected to the main vm tree for the gpu using |
| * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind(). |
| * The function builds xe_vm_pgtable_update structures for already existing |
| * shared page-tables, and non-existing shared and non-shared page-tables |
| * are built and populated directly. |
| * |
| * Return 0 on success, negative error code on error. |
| */ |
| static int |
| xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma, |
| struct xe_vm_pgtable_update *entries, u32 *num_entries) |
| { |
| struct xe_device *xe = tile_to_xe(tile); |
| struct xe_bo *bo = xe_vma_bo(vma); |
| bool is_devmem = !xe_vma_is_userptr(vma) && bo && |
| (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)); |
| struct xe_res_cursor curs; |
| struct xe_pt_stage_bind_walk xe_walk = { |
| .base = { |
| .ops = &xe_pt_stage_bind_ops, |
| .shifts = xe_normal_pt_shifts, |
| .max_level = XE_PT_HIGHEST_LEVEL, |
| }, |
| .vm = xe_vma_vm(vma), |
| .tile = tile, |
| .curs = &curs, |
| .va_curs_start = xe_vma_start(vma), |
| .vma = vma, |
| .wupd.entries = entries, |
| .needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem, |
| }; |
| struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; |
| int ret; |
| |
| /** |
| * Default atomic expectations for different allocation scenarios are as follows: |
| * |
| * 1. Traditional API: When the VM is not in LR mode: |
| * - Device atomics are expected to function with all allocations. |
| * |
| * 2. Compute/SVM API: When the VM is in LR mode: |
| * - Device atomics are the default behavior when the bo is placed in a single region. |
| * - In all other cases device atomics will be disabled with AE=0 until an application |
| * request differently using a ioctl like madvise. |
| */ |
| if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) { |
| if (xe_vm_in_lr_mode(xe_vma_vm(vma))) { |
| if (bo && xe_bo_has_single_placement(bo)) |
| xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; |
| /** |
| * If a SMEM+LMEM allocation is backed by SMEM, a device |
| * atomics will cause a gpu page fault and which then |
| * gets migrated to LMEM, bind such allocations with |
| * device atomics enabled. |
| */ |
| else if (is_devmem && !xe_bo_has_single_placement(bo)) |
| xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; |
| } else { |
| xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; |
| } |
| |
| /** |
| * Unset AE if the platform(PVC) doesn't support it on an |
| * allocation |
| */ |
| if (!xe->info.has_device_atomics_on_smem && !is_devmem) |
| xe_walk.default_pte &= ~XE_USM_PPGTT_PTE_AE; |
| } |
| |
| if (is_devmem) { |
| xe_walk.default_pte |= XE_PPGTT_PTE_DM; |
| xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource); |
| } |
| |
| if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo)) |
| xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo)); |
| |
| xe_bo_assert_held(bo); |
| |
| if (!xe_vma_is_null(vma)) { |
| if (xe_vma_is_userptr(vma)) |
| xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0, |
| xe_vma_size(vma), &curs); |
| else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo)) |
| xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma), |
| xe_vma_size(vma), &curs); |
| else |
| xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma), |
| xe_vma_size(vma), &curs); |
| } else { |
| curs.size = xe_vma_size(vma); |
| } |
| |
| ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma), |
| xe_vma_end(vma), &xe_walk.base); |
| |
| *num_entries = xe_walk.wupd.num_used_entries; |
| return ret; |
| } |
| |
| /** |
| * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a |
| * shared pagetable. |
| * @addr: The start address within the non-shared pagetable. |
| * @end: The end address within the non-shared pagetable. |
| * @level: The level of the non-shared pagetable. |
| * @walk: Walk info. The function adjusts the walk action. |
| * @action: next action to perform (see enum page_walk_action) |
| * @offset: Ignored on input, First non-shared entry on output. |
| * @end_offset: Ignored on input, Last non-shared entry + 1 on output. |
| * |
| * A non-shared page-table has some entries that belong to the address range |
| * and others that don't. This function determines the entries that belong |
| * fully to the address range. Depending on level, some entries may |
| * partially belong to the address range (that can't happen at level 0). |
| * The function detects that and adjust those offsets to not include those |
| * partial entries. Iff it does detect partial entries, we know that there must |
| * be shared page tables also at lower levels, so it adjusts the walk action |
| * accordingly. |
| * |
| * Return: true if there were non-shared entries, false otherwise. |
| */ |
| static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level, |
| struct xe_pt_walk *walk, |
| enum page_walk_action *action, |
| pgoff_t *offset, pgoff_t *end_offset) |
| { |
| u64 size = 1ull << walk->shifts[level]; |
| |
| *offset = xe_pt_offset(addr, level, walk); |
| *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset; |
| |
| if (!level) |
| return true; |
| |
| /* |
| * If addr or next are not size aligned, there are shared pts at lower |
| * level, so in that case traverse down the subtree |
| */ |
| *action = ACTION_CONTINUE; |
| if (!IS_ALIGNED(addr, size)) { |
| *action = ACTION_SUBTREE; |
| (*offset)++; |
| } |
| |
| if (!IS_ALIGNED(end, size)) { |
| *action = ACTION_SUBTREE; |
| (*end_offset)--; |
| } |
| |
| return *end_offset > *offset; |
| } |
| |
| struct xe_pt_zap_ptes_walk { |
| /** @base: The walk base-class */ |
| struct xe_pt_walk base; |
| |
| /* Input parameters for the walk */ |
| /** @tile: The tile we're building for */ |
| struct xe_tile *tile; |
| |
| /* Output */ |
| /** @needs_invalidate: Whether we need to invalidate TLB*/ |
| bool needs_invalidate; |
| }; |
| |
| static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset, |
| unsigned int level, u64 addr, u64 next, |
| struct xe_ptw **child, |
| enum page_walk_action *action, |
| struct xe_pt_walk *walk) |
| { |
| struct xe_pt_zap_ptes_walk *xe_walk = |
| container_of(walk, typeof(*xe_walk), base); |
| struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); |
| pgoff_t end_offset; |
| |
| XE_WARN_ON(!*child); |
| XE_WARN_ON(!level); |
| |
| /* |
| * Note that we're called from an entry callback, and we're dealing |
| * with the child of that entry rather than the parent, so need to |
| * adjust level down. |
| */ |
| if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset, |
| &end_offset)) { |
| xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap, |
| offset * sizeof(u64), 0, |
| (end_offset - offset) * sizeof(u64)); |
| xe_walk->needs_invalidate = true; |
| } |
| |
| return 0; |
| } |
| |
| static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = { |
| .pt_entry = xe_pt_zap_ptes_entry, |
| }; |
| |
| /** |
| * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range |
| * @tile: The tile we're zapping for. |
| * @vma: GPU VMA detailing address range. |
| * |
| * Eviction and Userptr invalidation needs to be able to zap the |
| * gpu ptes of a given address range in pagefaulting mode. |
| * In order to be able to do that, that function needs access to the shared |
| * page-table entrieaso it can either clear the leaf PTEs or |
| * clear the pointers to lower-level page-tables. The caller is required |
| * to hold the necessary locks to ensure neither the page-table connectivity |
| * nor the page-table entries of the range is updated from under us. |
| * |
| * Return: Whether ptes were actually updated and a TLB invalidation is |
| * required. |
| */ |
| bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma) |
| { |
| struct xe_pt_zap_ptes_walk xe_walk = { |
| .base = { |
| .ops = &xe_pt_zap_ptes_ops, |
| .shifts = xe_normal_pt_shifts, |
| .max_level = XE_PT_HIGHEST_LEVEL, |
| }, |
| .tile = tile, |
| }; |
| struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; |
| u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated); |
| |
| if (!(pt_mask & BIT(tile->id))) |
| return false; |
| |
| (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), |
| xe_vma_end(vma), &xe_walk.base); |
| |
| return xe_walk.needs_invalidate; |
| } |
| |
| static void |
| xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile, |
| struct iosys_map *map, void *data, |
| u32 qword_ofs, u32 num_qwords, |
| const struct xe_vm_pgtable_update *update) |
| { |
| struct xe_pt_entry *ptes = update->pt_entries; |
| u64 *ptr = data; |
| u32 i; |
| |
| for (i = 0; i < num_qwords; i++) { |
| if (map) |
| xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * |
| sizeof(u64), u64, ptes[i].pte); |
| else |
| ptr[i] = ptes[i].pte; |
| } |
| } |
| |
| static void xe_pt_abort_bind(struct xe_vma *vma, |
| struct xe_vm_pgtable_update *entries, |
| u32 num_entries) |
| { |
| u32 i, j; |
| |
| for (i = 0; i < num_entries; i++) { |
| if (!entries[i].pt_entries) |
| continue; |
| |
| for (j = 0; j < entries[i].qwords; j++) |
| xe_pt_destroy(entries[i].pt_entries[j].pt, xe_vma_vm(vma)->flags, NULL); |
| kfree(entries[i].pt_entries); |
| } |
| } |
| |
| static void xe_pt_commit_locks_assert(struct xe_vma *vma) |
| { |
| struct xe_vm *vm = xe_vma_vm(vma); |
| |
| lockdep_assert_held(&vm->lock); |
| |
| if (xe_vma_is_userptr(vma)) |
| lockdep_assert_held_read(&vm->userptr.notifier_lock); |
| else if (!xe_vma_is_null(vma)) |
| dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv); |
| |
| xe_vm_assert_held(vm); |
| } |
| |
| static void xe_pt_commit_bind(struct xe_vma *vma, |
| struct xe_vm_pgtable_update *entries, |
| u32 num_entries, bool rebind, |
| struct llist_head *deferred) |
| { |
| u32 i, j; |
| |
| xe_pt_commit_locks_assert(vma); |
| |
| for (i = 0; i < num_entries; i++) { |
| struct xe_pt *pt = entries[i].pt; |
| struct xe_pt_dir *pt_dir; |
| |
| if (!rebind) |
| pt->num_live += entries[i].qwords; |
| |
| if (!pt->level) { |
| kfree(entries[i].pt_entries); |
| continue; |
| } |
| |
| pt_dir = as_xe_pt_dir(pt); |
| for (j = 0; j < entries[i].qwords; j++) { |
| u32 j_ = j + entries[i].ofs; |
| struct xe_pt *newpte = entries[i].pt_entries[j].pt; |
| |
| if (xe_pt_entry(pt_dir, j_)) |
| xe_pt_destroy(xe_pt_entry(pt_dir, j_), |
| xe_vma_vm(vma)->flags, deferred); |
| |
| pt_dir->children[j_] = &newpte->base; |
| } |
| kfree(entries[i].pt_entries); |
| } |
| } |
| |
| static int |
| xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma, |
| struct xe_vm_pgtable_update *entries, u32 *num_entries) |
| { |
| int err; |
| |
| *num_entries = 0; |
| err = xe_pt_stage_bind(tile, vma, entries, num_entries); |
| if (!err) |
| xe_tile_assert(tile, *num_entries); |
| else /* abort! */ |
| xe_pt_abort_bind(vma, entries, *num_entries); |
| |
| return err; |
| } |
| |
| static void xe_vm_dbg_print_entries(struct xe_device *xe, |
| const struct xe_vm_pgtable_update *entries, |
| unsigned int num_entries) |
| #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)) |
| { |
| unsigned int i; |
| |
| vm_dbg(&xe->drm, "%u entries to update\n", num_entries); |
| for (i = 0; i < num_entries; i++) { |
| const struct xe_vm_pgtable_update *entry = &entries[i]; |
| struct xe_pt *xe_pt = entry->pt; |
| u64 page_size = 1ull << xe_pt_shift(xe_pt->level); |
| u64 end; |
| u64 start; |
| |
| xe_assert(xe, !entry->pt->is_compact); |
| start = entry->ofs * page_size; |
| end = start + page_size * entry->qwords; |
| vm_dbg(&xe->drm, |
| "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n", |
| i, xe_pt->level, entry->ofs, entry->qwords, |
| xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0); |
| } |
| } |
| #else |
| {} |
| #endif |
| |
| #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT |
| |
| static int xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) |
| { |
| u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2; |
| static u32 count; |
| |
| if (count++ % divisor == divisor - 1) { |
| struct xe_vm *vm = xe_vma_vm(&uvma->vma); |
| |
| uvma->userptr.divisor = divisor << 1; |
| spin_lock(&vm->userptr.invalidated_lock); |
| list_move_tail(&uvma->userptr.invalidate_link, |
| &vm->userptr.invalidated); |
| spin_unlock(&vm->userptr.invalidated_lock); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| #else |
| |
| static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma) |
| { |
| return false; |
| } |
| |
| #endif |
| |
| /** |
| * struct xe_pt_migrate_pt_update - Callback argument for pre-commit callbacks |
| * @base: Base we derive from. |
| * @bind: Whether this is a bind or an unbind operation. A bind operation |
| * makes the pre-commit callback error with -EAGAIN if it detects a |
| * pending invalidation. |
| * @locked: Whether the pre-commit callback locked the userptr notifier lock |
| * and it needs unlocking. |
| */ |
| struct xe_pt_migrate_pt_update { |
| struct xe_migrate_pt_update base; |
| bool bind; |
| bool locked; |
| }; |
| |
| /* |
| * This function adds the needed dependencies to a page-table update job |
| * to make sure racing jobs for separate bind engines don't race writing |
| * to the same page-table range, wreaking havoc. Initially use a single |
| * fence for the entire VM. An optimization would use smaller granularity. |
| */ |
| static int xe_pt_vm_dependencies(struct xe_sched_job *job, |
| struct xe_range_fence_tree *rftree, |
| u64 start, u64 last) |
| { |
| struct xe_range_fence *rtfence; |
| struct dma_fence *fence; |
| int err; |
| |
| rtfence = xe_range_fence_tree_first(rftree, start, last); |
| while (rtfence) { |
| fence = rtfence->fence; |
| |
| if (!dma_fence_is_signaled(fence)) { |
| /* |
| * Is this a CPU update? GPU is busy updating, so return |
| * an error |
| */ |
| if (!job) |
| return -ETIME; |
| |
| dma_fence_get(fence); |
| err = drm_sched_job_add_dependency(&job->drm, fence); |
| if (err) |
| return err; |
| } |
| |
| rtfence = xe_range_fence_tree_next(rtfence, start, last); |
| } |
| |
| return 0; |
| } |
| |
| static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update) |
| { |
| struct xe_range_fence_tree *rftree = |
| &xe_vma_vm(pt_update->vma)->rftree[pt_update->tile_id]; |
| |
| return xe_pt_vm_dependencies(pt_update->job, rftree, |
| pt_update->start, pt_update->last); |
| } |
| |
| static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update) |
| { |
| struct xe_pt_migrate_pt_update *userptr_update = |
| container_of(pt_update, typeof(*userptr_update), base); |
| struct xe_userptr_vma *uvma = to_userptr_vma(pt_update->vma); |
| unsigned long notifier_seq = uvma->userptr.notifier_seq; |
| struct xe_vm *vm = xe_vma_vm(&uvma->vma); |
| int err = xe_pt_vm_dependencies(pt_update->job, |
| &vm->rftree[pt_update->tile_id], |
| pt_update->start, |
| pt_update->last); |
| |
| if (err) |
| return err; |
| |
| userptr_update->locked = false; |
| |
| /* |
| * Wait until nobody is running the invalidation notifier, and |
| * since we're exiting the loop holding the notifier lock, |
| * nobody can proceed invalidating either. |
| * |
| * Note that we don't update the vma->userptr.notifier_seq since |
| * we don't update the userptr pages. |
| */ |
| do { |
| down_read(&vm->userptr.notifier_lock); |
| if (!mmu_interval_read_retry(&uvma->userptr.notifier, |
| notifier_seq)) |
| break; |
| |
| up_read(&vm->userptr.notifier_lock); |
| |
| if (userptr_update->bind) |
| return -EAGAIN; |
| |
| notifier_seq = mmu_interval_read_begin(&uvma->userptr.notifier); |
| } while (true); |
| |
| /* Inject errors to test_whether they are handled correctly */ |
| if (userptr_update->bind && xe_pt_userptr_inject_eagain(uvma)) { |
| up_read(&vm->userptr.notifier_lock); |
| return -EAGAIN; |
| } |
| |
| userptr_update->locked = true; |
| |
| return 0; |
| } |
| |
| static const struct xe_migrate_pt_update_ops bind_ops = { |
| .populate = xe_vm_populate_pgtable, |
| .pre_commit = xe_pt_pre_commit, |
| }; |
| |
| static const struct xe_migrate_pt_update_ops userptr_bind_ops = { |
| .populate = xe_vm_populate_pgtable, |
| .pre_commit = xe_pt_userptr_pre_commit, |
| }; |
| |
| struct invalidation_fence { |
| struct xe_gt_tlb_invalidation_fence base; |
| struct xe_gt *gt; |
| struct dma_fence *fence; |
| struct dma_fence_cb cb; |
| struct work_struct work; |
| u64 start; |
| u64 end; |
| u32 asid; |
| }; |
| |
| static const char * |
| invalidation_fence_get_driver_name(struct dma_fence *dma_fence) |
| { |
| return "xe"; |
| } |
| |
| static const char * |
| invalidation_fence_get_timeline_name(struct dma_fence *dma_fence) |
| { |
| return "invalidation_fence"; |
| } |
| |
| static const struct dma_fence_ops invalidation_fence_ops = { |
| .get_driver_name = invalidation_fence_get_driver_name, |
| .get_timeline_name = invalidation_fence_get_timeline_name, |
| }; |
| |
| static void invalidation_fence_cb(struct dma_fence *fence, |
| struct dma_fence_cb *cb) |
| { |
| struct invalidation_fence *ifence = |
| container_of(cb, struct invalidation_fence, cb); |
| struct xe_device *xe = gt_to_xe(ifence->gt); |
| |
| trace_xe_gt_tlb_invalidation_fence_cb(xe, &ifence->base); |
| if (!ifence->fence->error) { |
| queue_work(system_wq, &ifence->work); |
| } else { |
| ifence->base.base.error = ifence->fence->error; |
| dma_fence_signal(&ifence->base.base); |
| dma_fence_put(&ifence->base.base); |
| } |
| dma_fence_put(ifence->fence); |
| } |
| |
| static void invalidation_fence_work_func(struct work_struct *w) |
| { |
| struct invalidation_fence *ifence = |
| container_of(w, struct invalidation_fence, work); |
| struct xe_device *xe = gt_to_xe(ifence->gt); |
| |
| trace_xe_gt_tlb_invalidation_fence_work_func(xe, &ifence->base); |
| xe_gt_tlb_invalidation_range(ifence->gt, &ifence->base, ifence->start, |
| ifence->end, ifence->asid); |
| } |
| |
| static int invalidation_fence_init(struct xe_gt *gt, |
| struct invalidation_fence *ifence, |
| struct dma_fence *fence, |
| u64 start, u64 end, u32 asid) |
| { |
| int ret; |
| |
| trace_xe_gt_tlb_invalidation_fence_create(gt_to_xe(gt), &ifence->base); |
| |
| spin_lock_irq(>->tlb_invalidation.lock); |
| dma_fence_init(&ifence->base.base, &invalidation_fence_ops, |
| >->tlb_invalidation.lock, |
| dma_fence_context_alloc(1), 1); |
| spin_unlock_irq(>->tlb_invalidation.lock); |
| |
| INIT_LIST_HEAD(&ifence->base.link); |
| |
| dma_fence_get(&ifence->base.base); /* Ref for caller */ |
| ifence->fence = fence; |
| ifence->gt = gt; |
| ifence->start = start; |
| ifence->end = end; |
| ifence->asid = asid; |
| |
| INIT_WORK(&ifence->work, invalidation_fence_work_func); |
| ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb); |
| if (ret == -ENOENT) { |
| dma_fence_put(ifence->fence); /* Usually dropped in CB */ |
| invalidation_fence_work_func(&ifence->work); |
| } else if (ret) { |
| dma_fence_put(&ifence->base.base); /* Caller ref */ |
| dma_fence_put(&ifence->base.base); /* Creation ref */ |
| } |
| |
| xe_gt_assert(gt, !ret || ret == -ENOENT); |
| |
| return ret && ret != -ENOENT ? ret : 0; |
| } |
| |
| static void xe_pt_calc_rfence_interval(struct xe_vma *vma, |
| struct xe_pt_migrate_pt_update *update, |
| struct xe_vm_pgtable_update *entries, |
| u32 num_entries) |
| { |
| int i, level = 0; |
| |
| for (i = 0; i < num_entries; i++) { |
| const struct xe_vm_pgtable_update *entry = &entries[i]; |
| |
| if (entry->pt->level > level) |
| level = entry->pt->level; |
| } |
| |
| /* Greedy (non-optimal) calculation but simple */ |
| update->base.start = ALIGN_DOWN(xe_vma_start(vma), |
| 0x1ull << xe_pt_shift(level)); |
| update->base.last = ALIGN(xe_vma_end(vma), |
| 0x1ull << xe_pt_shift(level)) - 1; |
| } |
| |
| /** |
| * __xe_pt_bind_vma() - Build and connect a page-table tree for the vma |
| * address range. |
| * @tile: The tile to bind for. |
| * @vma: The vma to bind. |
| * @q: The exec_queue with which to do pipelined page-table updates. |
| * @syncs: Entries to sync on before binding the built tree to the live vm tree. |
| * @num_syncs: Number of @sync entries. |
| * @rebind: Whether we're rebinding this vma to the same address range without |
| * an unbind in-between. |
| * |
| * This function builds a page-table tree (see xe_pt_stage_bind() for more |
| * information on page-table building), and the xe_vm_pgtable_update entries |
| * abstracting the operations needed to attach it to the main vm tree. It |
| * then takes the relevant locks and updates the metadata side of the main |
| * vm tree and submits the operations for pipelined attachment of the |
| * gpu page-table to the vm main tree, (which can be done either by the |
| * cpu and the GPU). |
| * |
| * Return: A valid dma-fence representing the pipelined attachment operation |
| * on success, an error pointer on error. |
| */ |
| struct dma_fence * |
| __xe_pt_bind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q, |
| struct xe_sync_entry *syncs, u32 num_syncs, |
| bool rebind) |
| { |
| struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1]; |
| struct xe_pt_migrate_pt_update bind_pt_update = { |
| .base = { |
| .ops = xe_vma_is_userptr(vma) ? &userptr_bind_ops : &bind_ops, |
| .vma = vma, |
| .tile_id = tile->id, |
| }, |
| .bind = true, |
| }; |
| struct xe_vm *vm = xe_vma_vm(vma); |
| u32 num_entries; |
| struct dma_fence *fence; |
| struct invalidation_fence *ifence = NULL; |
| struct xe_range_fence *rfence; |
| int err; |
| |
| bind_pt_update.locked = false; |
| xe_bo_assert_held(xe_vma_bo(vma)); |
| xe_vm_assert_held(vm); |
| |
| vm_dbg(&xe_vma_vm(vma)->xe->drm, |
| "Preparing bind, with range [%llx...%llx) engine %p.\n", |
| xe_vma_start(vma), xe_vma_end(vma), q); |
| |
| err = xe_pt_prepare_bind(tile, vma, entries, &num_entries); |
| if (err) |
| goto err; |
| |
| err = dma_resv_reserve_fences(xe_vm_resv(vm), 1); |
| if (!err && !xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) |
| err = dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1); |
| if (err) |
| goto err; |
| |
| xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries)); |
| |
| xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries); |
| xe_pt_calc_rfence_interval(vma, &bind_pt_update, entries, |
| num_entries); |
| |
| /* |
| * If rebind, we have to invalidate TLB on !LR vms to invalidate |
| * cached PTEs point to freed memory. on LR vms this is done |
| * automatically when the context is re-enabled by the rebind worker, |
| * or in fault mode it was invalidated on PTE zapping. |
| * |
| * If !rebind, and scratch enabled VMs, there is a chance the scratch |
| * PTE is already cached in the TLB so it needs to be invalidated. |
| * on !LR VMs this is done in the ring ops preceding a batch, but on |
| * non-faulting LR, in particular on user-space batch buffer chaining, |
| * it needs to be done here. |
| */ |
| if ((!rebind && xe_vm_has_scratch(vm) && xe_vm_in_preempt_fence_mode(vm))) { |
| ifence = kzalloc(sizeof(*ifence), GFP_KERNEL); |
| if (!ifence) |
| return ERR_PTR(-ENOMEM); |
| } else if (rebind && !xe_vm_in_lr_mode(vm)) { |
| /* We bump also if batch_invalidate_tlb is true */ |
| vm->tlb_flush_seqno++; |
| } |
| |
| rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); |
| if (!rfence) { |
| kfree(ifence); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| fence = xe_migrate_update_pgtables(tile->migrate, |
| vm, xe_vma_bo(vma), q, |
| entries, num_entries, |
| syncs, num_syncs, |
| &bind_pt_update.base); |
| if (!IS_ERR(fence)) { |
| bool last_munmap_rebind = vma->gpuva.flags & XE_VMA_LAST_REBIND; |
| LLIST_HEAD(deferred); |
| int err; |
| |
| err = xe_range_fence_insert(&vm->rftree[tile->id], rfence, |
| &xe_range_fence_kfree_ops, |
| bind_pt_update.base.start, |
| bind_pt_update.base.last, fence); |
| if (err) |
| dma_fence_wait(fence, false); |
| |
| /* TLB invalidation must be done before signaling rebind */ |
| if (ifence) { |
| int err = invalidation_fence_init(tile->primary_gt, |
| ifence, fence, |
| xe_vma_start(vma), |
| xe_vma_end(vma), |
| xe_vma_vm(vma)->usm.asid); |
| if (err) { |
| dma_fence_put(fence); |
| kfree(ifence); |
| return ERR_PTR(err); |
| } |
| fence = &ifence->base.base; |
| } |
| |
| /* add shared fence now for pagetable delayed destroy */ |
| dma_resv_add_fence(xe_vm_resv(vm), fence, rebind || |
| last_munmap_rebind ? |
| DMA_RESV_USAGE_KERNEL : |
| DMA_RESV_USAGE_BOOKKEEP); |
| |
| if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) |
| dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, |
| DMA_RESV_USAGE_BOOKKEEP); |
| xe_pt_commit_bind(vma, entries, num_entries, rebind, |
| bind_pt_update.locked ? &deferred : NULL); |
| |
| /* This vma is live (again?) now */ |
| vma->tile_present |= BIT(tile->id); |
| |
| if (bind_pt_update.locked) { |
| to_userptr_vma(vma)->userptr.initial_bind = true; |
| up_read(&vm->userptr.notifier_lock); |
| xe_bo_put_commit(&deferred); |
| } |
| if (!rebind && last_munmap_rebind && |
| xe_vm_in_preempt_fence_mode(vm)) |
| xe_vm_queue_rebind_worker(vm); |
| } else { |
| kfree(rfence); |
| kfree(ifence); |
| if (bind_pt_update.locked) |
| up_read(&vm->userptr.notifier_lock); |
| xe_pt_abort_bind(vma, entries, num_entries); |
| } |
| |
| return fence; |
| |
| err: |
| return ERR_PTR(err); |
| } |
| |
| struct xe_pt_stage_unbind_walk { |
| /** @base: The pagewalk base-class. */ |
| struct xe_pt_walk base; |
| |
| /* Input parameters for the walk */ |
| /** @tile: The tile we're unbinding from. */ |
| struct xe_tile *tile; |
| |
| /** |
| * @modified_start: Walk range start, modified to include any |
| * shared pagetables that we're the only user of and can thus |
| * treat as private. |
| */ |
| u64 modified_start; |
| /** @modified_end: Walk range start, modified like @modified_start. */ |
| u64 modified_end; |
| |
| /* Output */ |
| /* @wupd: Structure to track the page-table updates we're building */ |
| struct xe_walk_update wupd; |
| }; |
| |
| /* |
| * Check whether this range is the only one populating this pagetable, |
| * and in that case, update the walk range checks so that higher levels don't |
| * view us as a shared pagetable. |
| */ |
| static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level, |
| const struct xe_pt *child, |
| enum page_walk_action *action, |
| struct xe_pt_walk *walk) |
| { |
| struct xe_pt_stage_unbind_walk *xe_walk = |
| container_of(walk, typeof(*xe_walk), base); |
| unsigned int shift = walk->shifts[level]; |
| u64 size = 1ull << shift; |
| |
| if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) && |
| ((next - addr) >> shift) == child->num_live) { |
| u64 size = 1ull << walk->shifts[level + 1]; |
| |
| *action = ACTION_CONTINUE; |
| |
| if (xe_walk->modified_start >= addr) |
| xe_walk->modified_start = round_down(addr, size); |
| if (xe_walk->modified_end <= next) |
| xe_walk->modified_end = round_up(next, size); |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset, |
| unsigned int level, u64 addr, u64 next, |
| struct xe_ptw **child, |
| enum page_walk_action *action, |
| struct xe_pt_walk *walk) |
| { |
| struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); |
| |
| XE_WARN_ON(!*child); |
| XE_WARN_ON(!level); |
| |
| xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk); |
| |
| return 0; |
| } |
| |
| static int |
| xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset, |
| unsigned int level, u64 addr, u64 next, |
| struct xe_ptw **child, |
| enum page_walk_action *action, |
| struct xe_pt_walk *walk) |
| { |
| struct xe_pt_stage_unbind_walk *xe_walk = |
| container_of(walk, typeof(*xe_walk), base); |
| struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); |
| pgoff_t end_offset; |
| u64 size = 1ull << walk->shifts[--level]; |
| |
| if (!IS_ALIGNED(addr, size)) |
| addr = xe_walk->modified_start; |
| if (!IS_ALIGNED(next, size)) |
| next = xe_walk->modified_end; |
| |
| /* Parent == *child is the root pt. Don't kill it. */ |
| if (parent != *child && |
| xe_pt_check_kill(addr, next, level, xe_child, action, walk)) |
| return 0; |
| |
| if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset, |
| &end_offset)) |
| return 0; |
| |
| (void)xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, false); |
| xe_walk->wupd.updates[level].update->qwords = end_offset - offset; |
| |
| return 0; |
| } |
| |
| static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = { |
| .pt_entry = xe_pt_stage_unbind_entry, |
| .pt_post_descend = xe_pt_stage_unbind_post_descend, |
| }; |
| |
| /** |
| * xe_pt_stage_unbind() - Build page-table update structures for an unbind |
| * operation |
| * @tile: The tile we're unbinding for. |
| * @vma: The vma we're unbinding. |
| * @entries: Caller-provided storage for the update structures. |
| * |
| * Builds page-table update structures for an unbind operation. The function |
| * will attempt to remove all page-tables that we're the only user |
| * of, and for that to work, the unbind operation must be committed in the |
| * same critical section that blocks racing binds to the same page-table tree. |
| * |
| * Return: The number of entries used. |
| */ |
| static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma, |
| struct xe_vm_pgtable_update *entries) |
| { |
| struct xe_pt_stage_unbind_walk xe_walk = { |
| .base = { |
| .ops = &xe_pt_stage_unbind_ops, |
| .shifts = xe_normal_pt_shifts, |
| .max_level = XE_PT_HIGHEST_LEVEL, |
| }, |
| .tile = tile, |
| .modified_start = xe_vma_start(vma), |
| .modified_end = xe_vma_end(vma), |
| .wupd.entries = entries, |
| }; |
| struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; |
| |
| (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), |
| xe_vma_end(vma), &xe_walk.base); |
| |
| return xe_walk.wupd.num_used_entries; |
| } |
| |
| static void |
| xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update, |
| struct xe_tile *tile, struct iosys_map *map, |
| void *ptr, u32 qword_ofs, u32 num_qwords, |
| const struct xe_vm_pgtable_update *update) |
| { |
| struct xe_vma *vma = pt_update->vma; |
| u64 empty = __xe_pt_empty_pte(tile, xe_vma_vm(vma), update->pt->level); |
| int i; |
| |
| if (map && map->is_iomem) |
| for (i = 0; i < num_qwords; ++i) |
| xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * |
| sizeof(u64), u64, empty); |
| else if (map) |
| memset64(map->vaddr + qword_ofs * sizeof(u64), empty, |
| num_qwords); |
| else |
| memset64(ptr, empty, num_qwords); |
| } |
| |
| static void |
| xe_pt_commit_unbind(struct xe_vma *vma, |
| struct xe_vm_pgtable_update *entries, u32 num_entries, |
| struct llist_head *deferred) |
| { |
| u32 j; |
| |
| xe_pt_commit_locks_assert(vma); |
| |
| for (j = 0; j < num_entries; ++j) { |
| struct xe_vm_pgtable_update *entry = &entries[j]; |
| struct xe_pt *pt = entry->pt; |
| |
| pt->num_live -= entry->qwords; |
| if (pt->level) { |
| struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); |
| u32 i; |
| |
| for (i = entry->ofs; i < entry->ofs + entry->qwords; |
| i++) { |
| if (xe_pt_entry(pt_dir, i)) |
| xe_pt_destroy(xe_pt_entry(pt_dir, i), |
| xe_vma_vm(vma)->flags, deferred); |
| |
| pt_dir->children[i] = NULL; |
| } |
| } |
| } |
| } |
| |
| static const struct xe_migrate_pt_update_ops unbind_ops = { |
| .populate = xe_migrate_clear_pgtable_callback, |
| .pre_commit = xe_pt_pre_commit, |
| }; |
| |
| static const struct xe_migrate_pt_update_ops userptr_unbind_ops = { |
| .populate = xe_migrate_clear_pgtable_callback, |
| .pre_commit = xe_pt_userptr_pre_commit, |
| }; |
| |
| /** |
| * __xe_pt_unbind_vma() - Disconnect and free a page-table tree for the vma |
| * address range. |
| * @tile: The tile to unbind for. |
| * @vma: The vma to unbind. |
| * @q: The exec_queue with which to do pipelined page-table updates. |
| * @syncs: Entries to sync on before disconnecting the tree to be destroyed. |
| * @num_syncs: Number of @sync entries. |
| * |
| * This function builds a the xe_vm_pgtable_update entries abstracting the |
| * operations needed to detach the page-table tree to be destroyed from the |
| * man vm tree. |
| * It then takes the relevant locks and submits the operations for |
| * pipelined detachment of the gpu page-table from the vm main tree, |
| * (which can be done either by the cpu and the GPU), Finally it frees the |
| * detached page-table tree. |
| * |
| * Return: A valid dma-fence representing the pipelined detachment operation |
| * on success, an error pointer on error. |
| */ |
| struct dma_fence * |
| __xe_pt_unbind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q, |
| struct xe_sync_entry *syncs, u32 num_syncs) |
| { |
| struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1]; |
| struct xe_pt_migrate_pt_update unbind_pt_update = { |
| .base = { |
| .ops = xe_vma_is_userptr(vma) ? &userptr_unbind_ops : |
| &unbind_ops, |
| .vma = vma, |
| .tile_id = tile->id, |
| }, |
| }; |
| struct xe_vm *vm = xe_vma_vm(vma); |
| u32 num_entries; |
| struct dma_fence *fence = NULL; |
| struct invalidation_fence *ifence; |
| struct xe_range_fence *rfence; |
| int err; |
| |
| LLIST_HEAD(deferred); |
| |
| xe_bo_assert_held(xe_vma_bo(vma)); |
| xe_vm_assert_held(vm); |
| |
| vm_dbg(&xe_vma_vm(vma)->xe->drm, |
| "Preparing unbind, with range [%llx...%llx) engine %p.\n", |
| xe_vma_start(vma), xe_vma_end(vma), q); |
| |
| num_entries = xe_pt_stage_unbind(tile, vma, entries); |
| xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries)); |
| |
| xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries); |
| xe_pt_calc_rfence_interval(vma, &unbind_pt_update, entries, |
| num_entries); |
| |
| err = dma_resv_reserve_fences(xe_vm_resv(vm), 1); |
| if (!err && !xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) |
| err = dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv, 1); |
| if (err) |
| return ERR_PTR(err); |
| |
| ifence = kzalloc(sizeof(*ifence), GFP_KERNEL); |
| if (!ifence) |
| return ERR_PTR(-ENOMEM); |
| |
| rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); |
| if (!rfence) { |
| kfree(ifence); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* |
| * Even if we were already evicted and unbind to destroy, we need to |
| * clear again here. The eviction may have updated pagetables at a |
| * lower level, because it needs to be more conservative. |
| */ |
| fence = xe_migrate_update_pgtables(tile->migrate, |
| vm, NULL, q ? q : |
| vm->q[tile->id], |
| entries, num_entries, |
| syncs, num_syncs, |
| &unbind_pt_update.base); |
| if (!IS_ERR(fence)) { |
| int err; |
| |
| err = xe_range_fence_insert(&vm->rftree[tile->id], rfence, |
| &xe_range_fence_kfree_ops, |
| unbind_pt_update.base.start, |
| unbind_pt_update.base.last, fence); |
| if (err) |
| dma_fence_wait(fence, false); |
| |
| /* TLB invalidation must be done before signaling unbind */ |
| err = invalidation_fence_init(tile->primary_gt, ifence, fence, |
| xe_vma_start(vma), |
| xe_vma_end(vma), |
| xe_vma_vm(vma)->usm.asid); |
| if (err) { |
| dma_fence_put(fence); |
| kfree(ifence); |
| return ERR_PTR(err); |
| } |
| fence = &ifence->base.base; |
| |
| /* add shared fence now for pagetable delayed destroy */ |
| dma_resv_add_fence(xe_vm_resv(vm), fence, |
| DMA_RESV_USAGE_BOOKKEEP); |
| |
| /* This fence will be installed by caller when doing eviction */ |
| if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) |
| dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, |
| DMA_RESV_USAGE_BOOKKEEP); |
| xe_pt_commit_unbind(vma, entries, num_entries, |
| unbind_pt_update.locked ? &deferred : NULL); |
| vma->tile_present &= ~BIT(tile->id); |
| } else { |
| kfree(rfence); |
| kfree(ifence); |
| } |
| |
| if (!vma->tile_present) |
| list_del_init(&vma->combined_links.rebind); |
| |
| if (unbind_pt_update.locked) { |
| xe_tile_assert(tile, xe_vma_is_userptr(vma)); |
| |
| if (!vma->tile_present) { |
| spin_lock(&vm->userptr.invalidated_lock); |
| list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link); |
| spin_unlock(&vm->userptr.invalidated_lock); |
| } |
| up_read(&vm->userptr.notifier_lock); |
| xe_bo_put_commit(&deferred); |
| } |
| |
| return fence; |
| } |