| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * iommu.c: IOMMU specific routines for memory management. |
| * |
| * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com) |
| * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) |
| * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/highmem.h> /* pte_offset_map => kmap_atomic */ |
| #include <linux/dma-mapping.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <asm/io.h> |
| #include <asm/mxcc.h> |
| #include <asm/mbus.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/bitext.h> |
| #include <asm/iommu.h> |
| #include <asm/dma.h> |
| |
| #include "mm_32.h" |
| |
| /* |
| * This can be sized dynamically, but we will do this |
| * only when we have a guidance about actual I/O pressures. |
| */ |
| #define IOMMU_RNGE IOMMU_RNGE_256MB |
| #define IOMMU_START 0xF0000000 |
| #define IOMMU_WINSIZE (256*1024*1024U) |
| #define IOMMU_NPTES (IOMMU_WINSIZE/PAGE_SIZE) /* 64K PTEs, 256KB */ |
| #define IOMMU_ORDER 6 /* 4096 * (1<<6) */ |
| |
| static int viking_flush; |
| /* viking.S */ |
| extern void viking_flush_page(unsigned long page); |
| extern void viking_mxcc_flush_page(unsigned long page); |
| |
| /* |
| * Values precomputed according to CPU type. |
| */ |
| static unsigned int ioperm_noc; /* Consistent mapping iopte flags */ |
| static pgprot_t dvma_prot; /* Consistent mapping pte flags */ |
| |
| #define IOPERM (IOPTE_CACHE | IOPTE_WRITE | IOPTE_VALID) |
| #define MKIOPTE(pfn, perm) (((((pfn)<<8) & IOPTE_PAGE) | (perm)) & ~IOPTE_WAZ) |
| |
| static void __init sbus_iommu_init(struct platform_device *op) |
| { |
| struct iommu_struct *iommu; |
| unsigned int impl, vers; |
| unsigned long *bitmap; |
| unsigned long control; |
| unsigned long base; |
| unsigned long tmp; |
| |
| iommu = kmalloc(sizeof(struct iommu_struct), GFP_KERNEL); |
| if (!iommu) { |
| prom_printf("Unable to allocate iommu structure\n"); |
| prom_halt(); |
| } |
| |
| iommu->regs = of_ioremap(&op->resource[0], 0, PAGE_SIZE * 3, |
| "iommu_regs"); |
| if (!iommu->regs) { |
| prom_printf("Cannot map IOMMU registers\n"); |
| prom_halt(); |
| } |
| |
| control = sbus_readl(&iommu->regs->control); |
| impl = (control & IOMMU_CTRL_IMPL) >> 28; |
| vers = (control & IOMMU_CTRL_VERS) >> 24; |
| control &= ~(IOMMU_CTRL_RNGE); |
| control |= (IOMMU_RNGE_256MB | IOMMU_CTRL_ENAB); |
| sbus_writel(control, &iommu->regs->control); |
| |
| iommu_invalidate(iommu->regs); |
| iommu->start = IOMMU_START; |
| iommu->end = 0xffffffff; |
| |
| /* Allocate IOMMU page table */ |
| /* Stupid alignment constraints give me a headache. |
| We need 256K or 512K or 1M or 2M area aligned to |
| its size and current gfp will fortunately give |
| it to us. */ |
| tmp = __get_free_pages(GFP_KERNEL, IOMMU_ORDER); |
| if (!tmp) { |
| prom_printf("Unable to allocate iommu table [0x%lx]\n", |
| IOMMU_NPTES * sizeof(iopte_t)); |
| prom_halt(); |
| } |
| iommu->page_table = (iopte_t *)tmp; |
| |
| /* Initialize new table. */ |
| memset(iommu->page_table, 0, IOMMU_NPTES*sizeof(iopte_t)); |
| flush_cache_all(); |
| flush_tlb_all(); |
| |
| base = __pa((unsigned long)iommu->page_table) >> 4; |
| sbus_writel(base, &iommu->regs->base); |
| iommu_invalidate(iommu->regs); |
| |
| bitmap = kmalloc(IOMMU_NPTES>>3, GFP_KERNEL); |
| if (!bitmap) { |
| prom_printf("Unable to allocate iommu bitmap [%d]\n", |
| (int)(IOMMU_NPTES>>3)); |
| prom_halt(); |
| } |
| bit_map_init(&iommu->usemap, bitmap, IOMMU_NPTES); |
| /* To be coherent on HyperSparc, the page color of DVMA |
| * and physical addresses must match. |
| */ |
| if (srmmu_modtype == HyperSparc) |
| iommu->usemap.num_colors = vac_cache_size >> PAGE_SHIFT; |
| else |
| iommu->usemap.num_colors = 1; |
| |
| printk(KERN_INFO "IOMMU: impl %d vers %d table 0x%p[%d B] map [%d b]\n", |
| impl, vers, iommu->page_table, |
| (int)(IOMMU_NPTES*sizeof(iopte_t)), (int)IOMMU_NPTES); |
| |
| op->dev.archdata.iommu = iommu; |
| } |
| |
| static int __init iommu_init(void) |
| { |
| struct device_node *dp; |
| |
| for_each_node_by_name(dp, "iommu") { |
| struct platform_device *op = of_find_device_by_node(dp); |
| |
| sbus_iommu_init(op); |
| of_propagate_archdata(op); |
| } |
| |
| return 0; |
| } |
| |
| subsys_initcall(iommu_init); |
| |
| /* Flush the iotlb entries to ram. */ |
| /* This could be better if we didn't have to flush whole pages. */ |
| static void iommu_flush_iotlb(iopte_t *iopte, unsigned int niopte) |
| { |
| unsigned long start; |
| unsigned long end; |
| |
| start = (unsigned long)iopte; |
| end = PAGE_ALIGN(start + niopte*sizeof(iopte_t)); |
| start &= PAGE_MASK; |
| if (viking_mxcc_present) { |
| while(start < end) { |
| viking_mxcc_flush_page(start); |
| start += PAGE_SIZE; |
| } |
| } else if (viking_flush) { |
| while(start < end) { |
| viking_flush_page(start); |
| start += PAGE_SIZE; |
| } |
| } else { |
| while(start < end) { |
| __flush_page_to_ram(start); |
| start += PAGE_SIZE; |
| } |
| } |
| } |
| |
| static dma_addr_t __sbus_iommu_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t len, bool per_page_flush) |
| { |
| struct iommu_struct *iommu = dev->archdata.iommu; |
| phys_addr_t paddr = page_to_phys(page) + offset; |
| unsigned long off = paddr & ~PAGE_MASK; |
| unsigned long npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| unsigned long pfn = __phys_to_pfn(paddr); |
| unsigned int busa, busa0; |
| iopte_t *iopte, *iopte0; |
| int ioptex, i; |
| |
| /* XXX So what is maxphys for us and how do drivers know it? */ |
| if (!len || len > 256 * 1024) |
| return DMA_MAPPING_ERROR; |
| |
| /* |
| * We expect unmapped highmem pages to be not in the cache. |
| * XXX Is this a good assumption? |
| * XXX What if someone else unmaps it here and races us? |
| */ |
| if (per_page_flush && !PageHighMem(page)) { |
| unsigned long vaddr, p; |
| |
| vaddr = (unsigned long)page_address(page) + offset; |
| for (p = vaddr & PAGE_MASK; p < vaddr + len; p += PAGE_SIZE) |
| flush_page_for_dma(p); |
| } |
| |
| /* page color = pfn of page */ |
| ioptex = bit_map_string_get(&iommu->usemap, npages, pfn); |
| if (ioptex < 0) |
| panic("iommu out"); |
| busa0 = iommu->start + (ioptex << PAGE_SHIFT); |
| iopte0 = &iommu->page_table[ioptex]; |
| |
| busa = busa0; |
| iopte = iopte0; |
| for (i = 0; i < npages; i++) { |
| iopte_val(*iopte) = MKIOPTE(pfn, IOPERM); |
| iommu_invalidate_page(iommu->regs, busa); |
| busa += PAGE_SIZE; |
| iopte++; |
| pfn++; |
| } |
| |
| iommu_flush_iotlb(iopte0, npages); |
| return busa0 + off; |
| } |
| |
| static dma_addr_t sbus_iommu_map_page_gflush(struct device *dev, |
| struct page *page, unsigned long offset, size_t len, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| flush_page_for_dma(0); |
| return __sbus_iommu_map_page(dev, page, offset, len, false); |
| } |
| |
| static dma_addr_t sbus_iommu_map_page_pflush(struct device *dev, |
| struct page *page, unsigned long offset, size_t len, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| return __sbus_iommu_map_page(dev, page, offset, len, true); |
| } |
| |
| static int __sbus_iommu_map_sg(struct device *dev, struct scatterlist *sgl, |
| int nents, enum dma_data_direction dir, unsigned long attrs, |
| bool per_page_flush) |
| { |
| struct scatterlist *sg; |
| int j; |
| |
| for_each_sg(sgl, sg, nents, j) { |
| sg->dma_address =__sbus_iommu_map_page(dev, sg_page(sg), |
| sg->offset, sg->length, per_page_flush); |
| if (sg->dma_address == DMA_MAPPING_ERROR) |
| return 0; |
| sg->dma_length = sg->length; |
| } |
| |
| return nents; |
| } |
| |
| static int sbus_iommu_map_sg_gflush(struct device *dev, struct scatterlist *sgl, |
| int nents, enum dma_data_direction dir, unsigned long attrs) |
| { |
| flush_page_for_dma(0); |
| return __sbus_iommu_map_sg(dev, sgl, nents, dir, attrs, false); |
| } |
| |
| static int sbus_iommu_map_sg_pflush(struct device *dev, struct scatterlist *sgl, |
| int nents, enum dma_data_direction dir, unsigned long attrs) |
| { |
| return __sbus_iommu_map_sg(dev, sgl, nents, dir, attrs, true); |
| } |
| |
| static void sbus_iommu_unmap_page(struct device *dev, dma_addr_t dma_addr, |
| size_t len, enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct iommu_struct *iommu = dev->archdata.iommu; |
| unsigned int busa = dma_addr & PAGE_MASK; |
| unsigned long off = dma_addr & ~PAGE_MASK; |
| unsigned int npages = (off + len + PAGE_SIZE-1) >> PAGE_SHIFT; |
| unsigned int ioptex = (busa - iommu->start) >> PAGE_SHIFT; |
| unsigned int i; |
| |
| BUG_ON(busa < iommu->start); |
| for (i = 0; i < npages; i++) { |
| iopte_val(iommu->page_table[ioptex + i]) = 0; |
| iommu_invalidate_page(iommu->regs, busa); |
| busa += PAGE_SIZE; |
| } |
| bit_map_clear(&iommu->usemap, ioptex, npages); |
| } |
| |
| static void sbus_iommu_unmap_sg(struct device *dev, struct scatterlist *sgl, |
| int nents, enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(sgl, sg, nents, i) { |
| sbus_iommu_unmap_page(dev, sg->dma_address, sg->length, dir, |
| attrs); |
| sg->dma_address = 0x21212121; |
| } |
| } |
| |
| #ifdef CONFIG_SBUS |
| static void *sbus_iommu_alloc(struct device *dev, size_t len, |
| dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) |
| { |
| struct iommu_struct *iommu = dev->archdata.iommu; |
| unsigned long va, addr, page, end, ret; |
| iopte_t *iopte = iommu->page_table; |
| iopte_t *first; |
| int ioptex; |
| |
| /* XXX So what is maxphys for us and how do drivers know it? */ |
| if (!len || len > 256 * 1024) |
| return NULL; |
| |
| len = PAGE_ALIGN(len); |
| va = __get_free_pages(gfp | __GFP_ZERO, get_order(len)); |
| if (va == 0) |
| return NULL; |
| |
| addr = ret = sparc_dma_alloc_resource(dev, len); |
| if (!addr) |
| goto out_free_pages; |
| |
| BUG_ON((va & ~PAGE_MASK) != 0); |
| BUG_ON((addr & ~PAGE_MASK) != 0); |
| BUG_ON((len & ~PAGE_MASK) != 0); |
| |
| /* page color = physical address */ |
| ioptex = bit_map_string_get(&iommu->usemap, len >> PAGE_SHIFT, |
| addr >> PAGE_SHIFT); |
| if (ioptex < 0) |
| panic("iommu out"); |
| |
| iopte += ioptex; |
| first = iopte; |
| end = addr + len; |
| while(addr < end) { |
| page = va; |
| { |
| pgd_t *pgdp; |
| p4d_t *p4dp; |
| pud_t *pudp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| |
| if (viking_mxcc_present) |
| viking_mxcc_flush_page(page); |
| else if (viking_flush) |
| viking_flush_page(page); |
| else |
| __flush_page_to_ram(page); |
| |
| pgdp = pgd_offset(&init_mm, addr); |
| p4dp = p4d_offset(pgdp, addr); |
| pudp = pud_offset(p4dp, addr); |
| pmdp = pmd_offset(pudp, addr); |
| ptep = pte_offset_map(pmdp, addr); |
| |
| set_pte(ptep, mk_pte(virt_to_page(page), dvma_prot)); |
| } |
| iopte_val(*iopte++) = |
| MKIOPTE(page_to_pfn(virt_to_page(page)), ioperm_noc); |
| addr += PAGE_SIZE; |
| va += PAGE_SIZE; |
| } |
| /* P3: why do we need this? |
| * |
| * DAVEM: Because there are several aspects, none of which |
| * are handled by a single interface. Some cpus are |
| * completely not I/O DMA coherent, and some have |
| * virtually indexed caches. The driver DMA flushing |
| * methods handle the former case, but here during |
| * IOMMU page table modifications, and usage of non-cacheable |
| * cpu mappings of pages potentially in the cpu caches, we have |
| * to handle the latter case as well. |
| */ |
| flush_cache_all(); |
| iommu_flush_iotlb(first, len >> PAGE_SHIFT); |
| flush_tlb_all(); |
| iommu_invalidate(iommu->regs); |
| |
| *dma_handle = iommu->start + (ioptex << PAGE_SHIFT); |
| return (void *)ret; |
| |
| out_free_pages: |
| free_pages(va, get_order(len)); |
| return NULL; |
| } |
| |
| static void sbus_iommu_free(struct device *dev, size_t len, void *cpu_addr, |
| dma_addr_t busa, unsigned long attrs) |
| { |
| struct iommu_struct *iommu = dev->archdata.iommu; |
| iopte_t *iopte = iommu->page_table; |
| struct page *page = virt_to_page(cpu_addr); |
| int ioptex = (busa - iommu->start) >> PAGE_SHIFT; |
| unsigned long end; |
| |
| if (!sparc_dma_free_resource(cpu_addr, len)) |
| return; |
| |
| BUG_ON((busa & ~PAGE_MASK) != 0); |
| BUG_ON((len & ~PAGE_MASK) != 0); |
| |
| iopte += ioptex; |
| end = busa + len; |
| while (busa < end) { |
| iopte_val(*iopte++) = 0; |
| busa += PAGE_SIZE; |
| } |
| flush_tlb_all(); |
| iommu_invalidate(iommu->regs); |
| bit_map_clear(&iommu->usemap, ioptex, len >> PAGE_SHIFT); |
| |
| __free_pages(page, get_order(len)); |
| } |
| #endif |
| |
| static const struct dma_map_ops sbus_iommu_dma_gflush_ops = { |
| #ifdef CONFIG_SBUS |
| .alloc = sbus_iommu_alloc, |
| .free = sbus_iommu_free, |
| #endif |
| .map_page = sbus_iommu_map_page_gflush, |
| .unmap_page = sbus_iommu_unmap_page, |
| .map_sg = sbus_iommu_map_sg_gflush, |
| .unmap_sg = sbus_iommu_unmap_sg, |
| }; |
| |
| static const struct dma_map_ops sbus_iommu_dma_pflush_ops = { |
| #ifdef CONFIG_SBUS |
| .alloc = sbus_iommu_alloc, |
| .free = sbus_iommu_free, |
| #endif |
| .map_page = sbus_iommu_map_page_pflush, |
| .unmap_page = sbus_iommu_unmap_page, |
| .map_sg = sbus_iommu_map_sg_pflush, |
| .unmap_sg = sbus_iommu_unmap_sg, |
| }; |
| |
| void __init ld_mmu_iommu(void) |
| { |
| if (flush_page_for_dma_global) { |
| /* flush_page_for_dma flushes everything, no matter of what page is it */ |
| dma_ops = &sbus_iommu_dma_gflush_ops; |
| } else { |
| dma_ops = &sbus_iommu_dma_pflush_ops; |
| } |
| |
| if (viking_mxcc_present || srmmu_modtype == HyperSparc) { |
| dvma_prot = __pgprot(SRMMU_CACHE | SRMMU_ET_PTE | SRMMU_PRIV); |
| ioperm_noc = IOPTE_CACHE | IOPTE_WRITE | IOPTE_VALID; |
| } else { |
| dvma_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV); |
| ioperm_noc = IOPTE_WRITE | IOPTE_VALID; |
| } |
| } |