| /* |
| * Intel Cache Quality-of-Service Monitoring (CQM) support. |
| * |
| * Based very, very heavily on work by Peter Zijlstra. |
| */ |
| |
| #include <linux/perf_event.h> |
| #include <linux/slab.h> |
| #include <asm/cpu_device_id.h> |
| #include "perf_event.h" |
| |
| #define MSR_IA32_PQR_ASSOC 0x0c8f |
| #define MSR_IA32_QM_CTR 0x0c8e |
| #define MSR_IA32_QM_EVTSEL 0x0c8d |
| |
| static u32 cqm_max_rmid = -1; |
| static unsigned int cqm_l3_scale; /* supposedly cacheline size */ |
| |
| /** |
| * struct intel_pqr_state - State cache for the PQR MSR |
| * @rmid: The cached Resource Monitoring ID |
| * @closid: The cached Class Of Service ID |
| * @rmid_usecnt: The usage counter for rmid |
| * |
| * The upper 32 bits of MSR_IA32_PQR_ASSOC contain closid and the |
| * lower 10 bits rmid. The update to MSR_IA32_PQR_ASSOC always |
| * contains both parts, so we need to cache them. |
| * |
| * The cache also helps to avoid pointless updates if the value does |
| * not change. |
| */ |
| struct intel_pqr_state { |
| u32 rmid; |
| u32 closid; |
| int rmid_usecnt; |
| }; |
| |
| /* |
| * The cached intel_pqr_state is strictly per CPU and can never be |
| * updated from a remote CPU. Both functions which modify the state |
| * (intel_cqm_event_start and intel_cqm_event_stop) are called with |
| * interrupts disabled, which is sufficient for the protection. |
| */ |
| static DEFINE_PER_CPU(struct intel_pqr_state, pqr_state); |
| |
| /* |
| * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru. |
| * Also protects event->hw.cqm_rmid |
| * |
| * Hold either for stability, both for modification of ->hw.cqm_rmid. |
| */ |
| static DEFINE_MUTEX(cache_mutex); |
| static DEFINE_RAW_SPINLOCK(cache_lock); |
| |
| /* |
| * Groups of events that have the same target(s), one RMID per group. |
| */ |
| static LIST_HEAD(cache_groups); |
| |
| /* |
| * Mask of CPUs for reading CQM values. We only need one per-socket. |
| */ |
| static cpumask_t cqm_cpumask; |
| |
| #define RMID_VAL_ERROR (1ULL << 63) |
| #define RMID_VAL_UNAVAIL (1ULL << 62) |
| |
| #define QOS_L3_OCCUP_EVENT_ID (1 << 0) |
| |
| #define QOS_EVENT_MASK QOS_L3_OCCUP_EVENT_ID |
| |
| /* |
| * This is central to the rotation algorithm in __intel_cqm_rmid_rotate(). |
| * |
| * This rmid is always free and is guaranteed to have an associated |
| * near-zero occupancy value, i.e. no cachelines are tagged with this |
| * RMID, once __intel_cqm_rmid_rotate() returns. |
| */ |
| static u32 intel_cqm_rotation_rmid; |
| |
| #define INVALID_RMID (-1) |
| |
| /* |
| * Is @rmid valid for programming the hardware? |
| * |
| * rmid 0 is reserved by the hardware for all non-monitored tasks, which |
| * means that we should never come across an rmid with that value. |
| * Likewise, an rmid value of -1 is used to indicate "no rmid currently |
| * assigned" and is used as part of the rotation code. |
| */ |
| static inline bool __rmid_valid(u32 rmid) |
| { |
| if (!rmid || rmid == INVALID_RMID) |
| return false; |
| |
| return true; |
| } |
| |
| static u64 __rmid_read(u32 rmid) |
| { |
| u64 val; |
| |
| /* |
| * Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt, |
| * it just says that to increase confusion. |
| */ |
| wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid); |
| rdmsrl(MSR_IA32_QM_CTR, val); |
| |
| /* |
| * Aside from the ERROR and UNAVAIL bits, assume this thing returns |
| * the number of cachelines tagged with @rmid. |
| */ |
| return val; |
| } |
| |
| enum rmid_recycle_state { |
| RMID_YOUNG = 0, |
| RMID_AVAILABLE, |
| RMID_DIRTY, |
| }; |
| |
| struct cqm_rmid_entry { |
| u32 rmid; |
| enum rmid_recycle_state state; |
| struct list_head list; |
| unsigned long queue_time; |
| }; |
| |
| /* |
| * cqm_rmid_free_lru - A least recently used list of RMIDs. |
| * |
| * Oldest entry at the head, newest (most recently used) entry at the |
| * tail. This list is never traversed, it's only used to keep track of |
| * the lru order. That is, we only pick entries of the head or insert |
| * them on the tail. |
| * |
| * All entries on the list are 'free', and their RMIDs are not currently |
| * in use. To mark an RMID as in use, remove its entry from the lru |
| * list. |
| * |
| * |
| * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs. |
| * |
| * This list is contains RMIDs that no one is currently using but that |
| * may have a non-zero occupancy value associated with them. The |
| * rotation worker moves RMIDs from the limbo list to the free list once |
| * the occupancy value drops below __intel_cqm_threshold. |
| * |
| * Both lists are protected by cache_mutex. |
| */ |
| static LIST_HEAD(cqm_rmid_free_lru); |
| static LIST_HEAD(cqm_rmid_limbo_lru); |
| |
| /* |
| * We use a simple array of pointers so that we can lookup a struct |
| * cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid() |
| * and __put_rmid() from having to worry about dealing with struct |
| * cqm_rmid_entry - they just deal with rmids, i.e. integers. |
| * |
| * Once this array is initialized it is read-only. No locks are required |
| * to access it. |
| * |
| * All entries for all RMIDs can be looked up in the this array at all |
| * times. |
| */ |
| static struct cqm_rmid_entry **cqm_rmid_ptrs; |
| |
| static inline struct cqm_rmid_entry *__rmid_entry(u32 rmid) |
| { |
| struct cqm_rmid_entry *entry; |
| |
| entry = cqm_rmid_ptrs[rmid]; |
| WARN_ON(entry->rmid != rmid); |
| |
| return entry; |
| } |
| |
| /* |
| * Returns < 0 on fail. |
| * |
| * We expect to be called with cache_mutex held. |
| */ |
| static u32 __get_rmid(void) |
| { |
| struct cqm_rmid_entry *entry; |
| |
| lockdep_assert_held(&cache_mutex); |
| |
| if (list_empty(&cqm_rmid_free_lru)) |
| return INVALID_RMID; |
| |
| entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list); |
| list_del(&entry->list); |
| |
| return entry->rmid; |
| } |
| |
| static void __put_rmid(u32 rmid) |
| { |
| struct cqm_rmid_entry *entry; |
| |
| lockdep_assert_held(&cache_mutex); |
| |
| WARN_ON(!__rmid_valid(rmid)); |
| entry = __rmid_entry(rmid); |
| |
| entry->queue_time = jiffies; |
| entry->state = RMID_YOUNG; |
| |
| list_add_tail(&entry->list, &cqm_rmid_limbo_lru); |
| } |
| |
| static int intel_cqm_setup_rmid_cache(void) |
| { |
| struct cqm_rmid_entry *entry; |
| unsigned int nr_rmids; |
| int r = 0; |
| |
| nr_rmids = cqm_max_rmid + 1; |
| cqm_rmid_ptrs = kmalloc(sizeof(struct cqm_rmid_entry *) * |
| nr_rmids, GFP_KERNEL); |
| if (!cqm_rmid_ptrs) |
| return -ENOMEM; |
| |
| for (; r <= cqm_max_rmid; r++) { |
| struct cqm_rmid_entry *entry; |
| |
| entry = kmalloc(sizeof(*entry), GFP_KERNEL); |
| if (!entry) |
| goto fail; |
| |
| INIT_LIST_HEAD(&entry->list); |
| entry->rmid = r; |
| cqm_rmid_ptrs[r] = entry; |
| |
| list_add_tail(&entry->list, &cqm_rmid_free_lru); |
| } |
| |
| /* |
| * RMID 0 is special and is always allocated. It's used for all |
| * tasks that are not monitored. |
| */ |
| entry = __rmid_entry(0); |
| list_del(&entry->list); |
| |
| mutex_lock(&cache_mutex); |
| intel_cqm_rotation_rmid = __get_rmid(); |
| mutex_unlock(&cache_mutex); |
| |
| return 0; |
| fail: |
| while (r--) |
| kfree(cqm_rmid_ptrs[r]); |
| |
| kfree(cqm_rmid_ptrs); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Determine if @a and @b measure the same set of tasks. |
| * |
| * If @a and @b measure the same set of tasks then we want to share a |
| * single RMID. |
| */ |
| static bool __match_event(struct perf_event *a, struct perf_event *b) |
| { |
| /* Per-cpu and task events don't mix */ |
| if ((a->attach_state & PERF_ATTACH_TASK) != |
| (b->attach_state & PERF_ATTACH_TASK)) |
| return false; |
| |
| #ifdef CONFIG_CGROUP_PERF |
| if (a->cgrp != b->cgrp) |
| return false; |
| #endif |
| |
| /* If not task event, we're machine wide */ |
| if (!(b->attach_state & PERF_ATTACH_TASK)) |
| return true; |
| |
| /* |
| * Events that target same task are placed into the same cache group. |
| */ |
| if (a->hw.target == b->hw.target) |
| return true; |
| |
| /* |
| * Are we an inherited event? |
| */ |
| if (b->parent == a) |
| return true; |
| |
| return false; |
| } |
| |
| #ifdef CONFIG_CGROUP_PERF |
| static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event) |
| { |
| if (event->attach_state & PERF_ATTACH_TASK) |
| return perf_cgroup_from_task(event->hw.target); |
| |
| return event->cgrp; |
| } |
| #endif |
| |
| /* |
| * Determine if @a's tasks intersect with @b's tasks |
| * |
| * There are combinations of events that we explicitly prohibit, |
| * |
| * PROHIBITS |
| * system-wide -> cgroup and task |
| * cgroup -> system-wide |
| * -> task in cgroup |
| * task -> system-wide |
| * -> task in cgroup |
| * |
| * Call this function before allocating an RMID. |
| */ |
| static bool __conflict_event(struct perf_event *a, struct perf_event *b) |
| { |
| #ifdef CONFIG_CGROUP_PERF |
| /* |
| * We can have any number of cgroups but only one system-wide |
| * event at a time. |
| */ |
| if (a->cgrp && b->cgrp) { |
| struct perf_cgroup *ac = a->cgrp; |
| struct perf_cgroup *bc = b->cgrp; |
| |
| /* |
| * This condition should have been caught in |
| * __match_event() and we should be sharing an RMID. |
| */ |
| WARN_ON_ONCE(ac == bc); |
| |
| if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) || |
| cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup)) |
| return true; |
| |
| return false; |
| } |
| |
| if (a->cgrp || b->cgrp) { |
| struct perf_cgroup *ac, *bc; |
| |
| /* |
| * cgroup and system-wide events are mutually exclusive |
| */ |
| if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) || |
| (b->cgrp && !(a->attach_state & PERF_ATTACH_TASK))) |
| return true; |
| |
| /* |
| * Ensure neither event is part of the other's cgroup |
| */ |
| ac = event_to_cgroup(a); |
| bc = event_to_cgroup(b); |
| if (ac == bc) |
| return true; |
| |
| /* |
| * Must have cgroup and non-intersecting task events. |
| */ |
| if (!ac || !bc) |
| return false; |
| |
| /* |
| * We have cgroup and task events, and the task belongs |
| * to a cgroup. Check for for overlap. |
| */ |
| if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) || |
| cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup)) |
| return true; |
| |
| return false; |
| } |
| #endif |
| /* |
| * If one of them is not a task, same story as above with cgroups. |
| */ |
| if (!(a->attach_state & PERF_ATTACH_TASK) || |
| !(b->attach_state & PERF_ATTACH_TASK)) |
| return true; |
| |
| /* |
| * Must be non-overlapping. |
| */ |
| return false; |
| } |
| |
| struct rmid_read { |
| u32 rmid; |
| atomic64_t value; |
| }; |
| |
| static void __intel_cqm_event_count(void *info); |
| |
| /* |
| * Exchange the RMID of a group of events. |
| */ |
| static u32 intel_cqm_xchg_rmid(struct perf_event *group, u32 rmid) |
| { |
| struct perf_event *event; |
| struct list_head *head = &group->hw.cqm_group_entry; |
| u32 old_rmid = group->hw.cqm_rmid; |
| |
| lockdep_assert_held(&cache_mutex); |
| |
| /* |
| * If our RMID is being deallocated, perform a read now. |
| */ |
| if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) { |
| struct rmid_read rr = { |
| .value = ATOMIC64_INIT(0), |
| .rmid = old_rmid, |
| }; |
| |
| on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, |
| &rr, 1); |
| local64_set(&group->count, atomic64_read(&rr.value)); |
| } |
| |
| raw_spin_lock_irq(&cache_lock); |
| |
| group->hw.cqm_rmid = rmid; |
| list_for_each_entry(event, head, hw.cqm_group_entry) |
| event->hw.cqm_rmid = rmid; |
| |
| raw_spin_unlock_irq(&cache_lock); |
| |
| return old_rmid; |
| } |
| |
| /* |
| * If we fail to assign a new RMID for intel_cqm_rotation_rmid because |
| * cachelines are still tagged with RMIDs in limbo, we progressively |
| * increment the threshold until we find an RMID in limbo with <= |
| * __intel_cqm_threshold lines tagged. This is designed to mitigate the |
| * problem where cachelines tagged with an RMID are not steadily being |
| * evicted. |
| * |
| * On successful rotations we decrease the threshold back towards zero. |
| * |
| * __intel_cqm_max_threshold provides an upper bound on the threshold, |
| * and is measured in bytes because it's exposed to userland. |
| */ |
| static unsigned int __intel_cqm_threshold; |
| static unsigned int __intel_cqm_max_threshold; |
| |
| /* |
| * Test whether an RMID has a zero occupancy value on this cpu. |
| */ |
| static void intel_cqm_stable(void *arg) |
| { |
| struct cqm_rmid_entry *entry; |
| |
| list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) { |
| if (entry->state != RMID_AVAILABLE) |
| break; |
| |
| if (__rmid_read(entry->rmid) > __intel_cqm_threshold) |
| entry->state = RMID_DIRTY; |
| } |
| } |
| |
| /* |
| * If we have group events waiting for an RMID that don't conflict with |
| * events already running, assign @rmid. |
| */ |
| static bool intel_cqm_sched_in_event(u32 rmid) |
| { |
| struct perf_event *leader, *event; |
| |
| lockdep_assert_held(&cache_mutex); |
| |
| leader = list_first_entry(&cache_groups, struct perf_event, |
| hw.cqm_groups_entry); |
| event = leader; |
| |
| list_for_each_entry_continue(event, &cache_groups, |
| hw.cqm_groups_entry) { |
| if (__rmid_valid(event->hw.cqm_rmid)) |
| continue; |
| |
| if (__conflict_event(event, leader)) |
| continue; |
| |
| intel_cqm_xchg_rmid(event, rmid); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Initially use this constant for both the limbo queue time and the |
| * rotation timer interval, pmu::hrtimer_interval_ms. |
| * |
| * They don't need to be the same, but the two are related since if you |
| * rotate faster than you recycle RMIDs, you may run out of available |
| * RMIDs. |
| */ |
| #define RMID_DEFAULT_QUEUE_TIME 250 /* ms */ |
| |
| static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME; |
| |
| /* |
| * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list |
| * @nr_available: number of freeable RMIDs on the limbo list |
| * |
| * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no |
| * cachelines are tagged with those RMIDs. After this we can reuse them |
| * and know that the current set of active RMIDs is stable. |
| * |
| * Return %true or %false depending on whether stabilization needs to be |
| * reattempted. |
| * |
| * If we return %true then @nr_available is updated to indicate the |
| * number of RMIDs on the limbo list that have been queued for the |
| * minimum queue time (RMID_AVAILABLE), but whose data occupancy values |
| * are above __intel_cqm_threshold. |
| */ |
| static bool intel_cqm_rmid_stabilize(unsigned int *available) |
| { |
| struct cqm_rmid_entry *entry, *tmp; |
| |
| lockdep_assert_held(&cache_mutex); |
| |
| *available = 0; |
| list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) { |
| unsigned long min_queue_time; |
| unsigned long now = jiffies; |
| |
| /* |
| * We hold RMIDs placed into limbo for a minimum queue |
| * time. Before the minimum queue time has elapsed we do |
| * not recycle RMIDs. |
| * |
| * The reasoning is that until a sufficient time has |
| * passed since we stopped using an RMID, any RMID |
| * placed onto the limbo list will likely still have |
| * data tagged in the cache, which means we'll probably |
| * fail to recycle it anyway. |
| * |
| * We can save ourselves an expensive IPI by skipping |
| * any RMIDs that have not been queued for the minimum |
| * time. |
| */ |
| min_queue_time = entry->queue_time + |
| msecs_to_jiffies(__rmid_queue_time_ms); |
| |
| if (time_after(min_queue_time, now)) |
| break; |
| |
| entry->state = RMID_AVAILABLE; |
| (*available)++; |
| } |
| |
| /* |
| * Fast return if none of the RMIDs on the limbo list have been |
| * sitting on the queue for the minimum queue time. |
| */ |
| if (!*available) |
| return false; |
| |
| /* |
| * Test whether an RMID is free for each package. |
| */ |
| on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true); |
| |
| list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) { |
| /* |
| * Exhausted all RMIDs that have waited min queue time. |
| */ |
| if (entry->state == RMID_YOUNG) |
| break; |
| |
| if (entry->state == RMID_DIRTY) |
| continue; |
| |
| list_del(&entry->list); /* remove from limbo */ |
| |
| /* |
| * The rotation RMID gets priority if it's |
| * currently invalid. In which case, skip adding |
| * the RMID to the the free lru. |
| */ |
| if (!__rmid_valid(intel_cqm_rotation_rmid)) { |
| intel_cqm_rotation_rmid = entry->rmid; |
| continue; |
| } |
| |
| /* |
| * If we have groups waiting for RMIDs, hand |
| * them one now provided they don't conflict. |
| */ |
| if (intel_cqm_sched_in_event(entry->rmid)) |
| continue; |
| |
| /* |
| * Otherwise place it onto the free list. |
| */ |
| list_add_tail(&entry->list, &cqm_rmid_free_lru); |
| } |
| |
| |
| return __rmid_valid(intel_cqm_rotation_rmid); |
| } |
| |
| /* |
| * Pick a victim group and move it to the tail of the group list. |
| * @next: The first group without an RMID |
| */ |
| static void __intel_cqm_pick_and_rotate(struct perf_event *next) |
| { |
| struct perf_event *rotor; |
| u32 rmid; |
| |
| lockdep_assert_held(&cache_mutex); |
| |
| rotor = list_first_entry(&cache_groups, struct perf_event, |
| hw.cqm_groups_entry); |
| |
| /* |
| * The group at the front of the list should always have a valid |
| * RMID. If it doesn't then no groups have RMIDs assigned and we |
| * don't need to rotate the list. |
| */ |
| if (next == rotor) |
| return; |
| |
| rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID); |
| __put_rmid(rmid); |
| |
| list_rotate_left(&cache_groups); |
| } |
| |
| /* |
| * Deallocate the RMIDs from any events that conflict with @event, and |
| * place them on the back of the group list. |
| */ |
| static void intel_cqm_sched_out_conflicting_events(struct perf_event *event) |
| { |
| struct perf_event *group, *g; |
| u32 rmid; |
| |
| lockdep_assert_held(&cache_mutex); |
| |
| list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) { |
| if (group == event) |
| continue; |
| |
| rmid = group->hw.cqm_rmid; |
| |
| /* |
| * Skip events that don't have a valid RMID. |
| */ |
| if (!__rmid_valid(rmid)) |
| continue; |
| |
| /* |
| * No conflict? No problem! Leave the event alone. |
| */ |
| if (!__conflict_event(group, event)) |
| continue; |
| |
| intel_cqm_xchg_rmid(group, INVALID_RMID); |
| __put_rmid(rmid); |
| } |
| } |
| |
| /* |
| * Attempt to rotate the groups and assign new RMIDs. |
| * |
| * We rotate for two reasons, |
| * 1. To handle the scheduling of conflicting events |
| * 2. To recycle RMIDs |
| * |
| * Rotating RMIDs is complicated because the hardware doesn't give us |
| * any clues. |
| * |
| * There's problems with the hardware interface; when you change the |
| * task:RMID map cachelines retain their 'old' tags, giving a skewed |
| * picture. In order to work around this, we must always keep one free |
| * RMID - intel_cqm_rotation_rmid. |
| * |
| * Rotation works by taking away an RMID from a group (the old RMID), |
| * and assigning the free RMID to another group (the new RMID). We must |
| * then wait for the old RMID to not be used (no cachelines tagged). |
| * This ensure that all cachelines are tagged with 'active' RMIDs. At |
| * this point we can start reading values for the new RMID and treat the |
| * old RMID as the free RMID for the next rotation. |
| * |
| * Return %true or %false depending on whether we did any rotating. |
| */ |
| static bool __intel_cqm_rmid_rotate(void) |
| { |
| struct perf_event *group, *start = NULL; |
| unsigned int threshold_limit; |
| unsigned int nr_needed = 0; |
| unsigned int nr_available; |
| bool rotated = false; |
| |
| mutex_lock(&cache_mutex); |
| |
| again: |
| /* |
| * Fast path through this function if there are no groups and no |
| * RMIDs that need cleaning. |
| */ |
| if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru)) |
| goto out; |
| |
| list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) { |
| if (!__rmid_valid(group->hw.cqm_rmid)) { |
| if (!start) |
| start = group; |
| nr_needed++; |
| } |
| } |
| |
| /* |
| * We have some event groups, but they all have RMIDs assigned |
| * and no RMIDs need cleaning. |
| */ |
| if (!nr_needed && list_empty(&cqm_rmid_limbo_lru)) |
| goto out; |
| |
| if (!nr_needed) |
| goto stabilize; |
| |
| /* |
| * We have more event groups without RMIDs than available RMIDs, |
| * or we have event groups that conflict with the ones currently |
| * scheduled. |
| * |
| * We force deallocate the rmid of the group at the head of |
| * cache_groups. The first event group without an RMID then gets |
| * assigned intel_cqm_rotation_rmid. This ensures we always make |
| * forward progress. |
| * |
| * Rotate the cache_groups list so the previous head is now the |
| * tail. |
| */ |
| __intel_cqm_pick_and_rotate(start); |
| |
| /* |
| * If the rotation is going to succeed, reduce the threshold so |
| * that we don't needlessly reuse dirty RMIDs. |
| */ |
| if (__rmid_valid(intel_cqm_rotation_rmid)) { |
| intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid); |
| intel_cqm_rotation_rmid = __get_rmid(); |
| |
| intel_cqm_sched_out_conflicting_events(start); |
| |
| if (__intel_cqm_threshold) |
| __intel_cqm_threshold--; |
| } |
| |
| rotated = true; |
| |
| stabilize: |
| /* |
| * We now need to stablize the RMID we freed above (if any) to |
| * ensure that the next time we rotate we have an RMID with zero |
| * occupancy value. |
| * |
| * Alternatively, if we didn't need to perform any rotation, |
| * we'll have a bunch of RMIDs in limbo that need stabilizing. |
| */ |
| threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale; |
| |
| while (intel_cqm_rmid_stabilize(&nr_available) && |
| __intel_cqm_threshold < threshold_limit) { |
| unsigned int steal_limit; |
| |
| /* |
| * Don't spin if nobody is actively waiting for an RMID, |
| * the rotation worker will be kicked as soon as an |
| * event needs an RMID anyway. |
| */ |
| if (!nr_needed) |
| break; |
| |
| /* Allow max 25% of RMIDs to be in limbo. */ |
| steal_limit = (cqm_max_rmid + 1) / 4; |
| |
| /* |
| * We failed to stabilize any RMIDs so our rotation |
| * logic is now stuck. In order to make forward progress |
| * we have a few options: |
| * |
| * 1. rotate ("steal") another RMID |
| * 2. increase the threshold |
| * 3. do nothing |
| * |
| * We do both of 1. and 2. until we hit the steal limit. |
| * |
| * The steal limit prevents all RMIDs ending up on the |
| * limbo list. This can happen if every RMID has a |
| * non-zero occupancy above threshold_limit, and the |
| * occupancy values aren't dropping fast enough. |
| * |
| * Note that there is prioritisation at work here - we'd |
| * rather increase the number of RMIDs on the limbo list |
| * than increase the threshold, because increasing the |
| * threshold skews the event data (because we reuse |
| * dirty RMIDs) - threshold bumps are a last resort. |
| */ |
| if (nr_available < steal_limit) |
| goto again; |
| |
| __intel_cqm_threshold++; |
| } |
| |
| out: |
| mutex_unlock(&cache_mutex); |
| return rotated; |
| } |
| |
| static void intel_cqm_rmid_rotate(struct work_struct *work); |
| |
| static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate); |
| |
| static struct pmu intel_cqm_pmu; |
| |
| static void intel_cqm_rmid_rotate(struct work_struct *work) |
| { |
| unsigned long delay; |
| |
| __intel_cqm_rmid_rotate(); |
| |
| delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms); |
| schedule_delayed_work(&intel_cqm_rmid_work, delay); |
| } |
| |
| /* |
| * Find a group and setup RMID. |
| * |
| * If we're part of a group, we use the group's RMID. |
| */ |
| static void intel_cqm_setup_event(struct perf_event *event, |
| struct perf_event **group) |
| { |
| struct perf_event *iter; |
| bool conflict = false; |
| u32 rmid; |
| |
| list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) { |
| rmid = iter->hw.cqm_rmid; |
| |
| if (__match_event(iter, event)) { |
| /* All tasks in a group share an RMID */ |
| event->hw.cqm_rmid = rmid; |
| *group = iter; |
| return; |
| } |
| |
| /* |
| * We only care about conflicts for events that are |
| * actually scheduled in (and hence have a valid RMID). |
| */ |
| if (__conflict_event(iter, event) && __rmid_valid(rmid)) |
| conflict = true; |
| } |
| |
| if (conflict) |
| rmid = INVALID_RMID; |
| else |
| rmid = __get_rmid(); |
| |
| event->hw.cqm_rmid = rmid; |
| } |
| |
| static void intel_cqm_event_read(struct perf_event *event) |
| { |
| unsigned long flags; |
| u32 rmid; |
| u64 val; |
| |
| /* |
| * Task events are handled by intel_cqm_event_count(). |
| */ |
| if (event->cpu == -1) |
| return; |
| |
| raw_spin_lock_irqsave(&cache_lock, flags); |
| rmid = event->hw.cqm_rmid; |
| |
| if (!__rmid_valid(rmid)) |
| goto out; |
| |
| val = __rmid_read(rmid); |
| |
| /* |
| * Ignore this reading on error states and do not update the value. |
| */ |
| if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) |
| goto out; |
| |
| local64_set(&event->count, val); |
| out: |
| raw_spin_unlock_irqrestore(&cache_lock, flags); |
| } |
| |
| static void __intel_cqm_event_count(void *info) |
| { |
| struct rmid_read *rr = info; |
| u64 val; |
| |
| val = __rmid_read(rr->rmid); |
| |
| if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) |
| return; |
| |
| atomic64_add(val, &rr->value); |
| } |
| |
| static inline bool cqm_group_leader(struct perf_event *event) |
| { |
| return !list_empty(&event->hw.cqm_groups_entry); |
| } |
| |
| static u64 intel_cqm_event_count(struct perf_event *event) |
| { |
| unsigned long flags; |
| struct rmid_read rr = { |
| .value = ATOMIC64_INIT(0), |
| }; |
| |
| /* |
| * We only need to worry about task events. System-wide events |
| * are handled like usual, i.e. entirely with |
| * intel_cqm_event_read(). |
| */ |
| if (event->cpu != -1) |
| return __perf_event_count(event); |
| |
| /* |
| * Only the group leader gets to report values. This stops us |
| * reporting duplicate values to userspace, and gives us a clear |
| * rule for which task gets to report the values. |
| * |
| * Note that it is impossible to attribute these values to |
| * specific packages - we forfeit that ability when we create |
| * task events. |
| */ |
| if (!cqm_group_leader(event)) |
| return 0; |
| |
| /* |
| * Notice that we don't perform the reading of an RMID |
| * atomically, because we can't hold a spin lock across the |
| * IPIs. |
| * |
| * Speculatively perform the read, since @event might be |
| * assigned a different (possibly invalid) RMID while we're |
| * busying performing the IPI calls. It's therefore necessary to |
| * check @event's RMID afterwards, and if it has changed, |
| * discard the result of the read. |
| */ |
| rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid); |
| |
| if (!__rmid_valid(rr.rmid)) |
| goto out; |
| |
| on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1); |
| |
| raw_spin_lock_irqsave(&cache_lock, flags); |
| if (event->hw.cqm_rmid == rr.rmid) |
| local64_set(&event->count, atomic64_read(&rr.value)); |
| raw_spin_unlock_irqrestore(&cache_lock, flags); |
| out: |
| return __perf_event_count(event); |
| } |
| |
| static void intel_cqm_event_start(struct perf_event *event, int mode) |
| { |
| struct intel_pqr_state *state = this_cpu_ptr(&pqr_state); |
| u32 rmid = event->hw.cqm_rmid; |
| |
| if (!(event->hw.cqm_state & PERF_HES_STOPPED)) |
| return; |
| |
| event->hw.cqm_state &= ~PERF_HES_STOPPED; |
| |
| if (state->rmid_usecnt++) { |
| if (!WARN_ON_ONCE(state->rmid != rmid)) |
| return; |
| } else { |
| WARN_ON_ONCE(state->rmid); |
| } |
| |
| state->rmid = rmid; |
| wrmsr(MSR_IA32_PQR_ASSOC, rmid, state->closid); |
| } |
| |
| static void intel_cqm_event_stop(struct perf_event *event, int mode) |
| { |
| struct intel_pqr_state *state = this_cpu_ptr(&pqr_state); |
| |
| if (event->hw.cqm_state & PERF_HES_STOPPED) |
| return; |
| |
| event->hw.cqm_state |= PERF_HES_STOPPED; |
| |
| intel_cqm_event_read(event); |
| |
| if (!--state->rmid_usecnt) { |
| state->rmid = 0; |
| wrmsr(MSR_IA32_PQR_ASSOC, 0, state->closid); |
| } else { |
| WARN_ON_ONCE(!state->rmid); |
| } |
| } |
| |
| static int intel_cqm_event_add(struct perf_event *event, int mode) |
| { |
| unsigned long flags; |
| u32 rmid; |
| |
| raw_spin_lock_irqsave(&cache_lock, flags); |
| |
| event->hw.cqm_state = PERF_HES_STOPPED; |
| rmid = event->hw.cqm_rmid; |
| |
| if (__rmid_valid(rmid) && (mode & PERF_EF_START)) |
| intel_cqm_event_start(event, mode); |
| |
| raw_spin_unlock_irqrestore(&cache_lock, flags); |
| |
| return 0; |
| } |
| |
| static void intel_cqm_event_destroy(struct perf_event *event) |
| { |
| struct perf_event *group_other = NULL; |
| |
| mutex_lock(&cache_mutex); |
| |
| /* |
| * If there's another event in this group... |
| */ |
| if (!list_empty(&event->hw.cqm_group_entry)) { |
| group_other = list_first_entry(&event->hw.cqm_group_entry, |
| struct perf_event, |
| hw.cqm_group_entry); |
| list_del(&event->hw.cqm_group_entry); |
| } |
| |
| /* |
| * And we're the group leader.. |
| */ |
| if (cqm_group_leader(event)) { |
| /* |
| * If there was a group_other, make that leader, otherwise |
| * destroy the group and return the RMID. |
| */ |
| if (group_other) { |
| list_replace(&event->hw.cqm_groups_entry, |
| &group_other->hw.cqm_groups_entry); |
| } else { |
| u32 rmid = event->hw.cqm_rmid; |
| |
| if (__rmid_valid(rmid)) |
| __put_rmid(rmid); |
| list_del(&event->hw.cqm_groups_entry); |
| } |
| } |
| |
| mutex_unlock(&cache_mutex); |
| } |
| |
| static int intel_cqm_event_init(struct perf_event *event) |
| { |
| struct perf_event *group = NULL; |
| bool rotate = false; |
| |
| if (event->attr.type != intel_cqm_pmu.type) |
| return -ENOENT; |
| |
| if (event->attr.config & ~QOS_EVENT_MASK) |
| return -EINVAL; |
| |
| /* unsupported modes and filters */ |
| if (event->attr.exclude_user || |
| event->attr.exclude_kernel || |
| event->attr.exclude_hv || |
| event->attr.exclude_idle || |
| event->attr.exclude_host || |
| event->attr.exclude_guest || |
| event->attr.sample_period) /* no sampling */ |
| return -EINVAL; |
| |
| INIT_LIST_HEAD(&event->hw.cqm_group_entry); |
| INIT_LIST_HEAD(&event->hw.cqm_groups_entry); |
| |
| event->destroy = intel_cqm_event_destroy; |
| |
| mutex_lock(&cache_mutex); |
| |
| /* Will also set rmid */ |
| intel_cqm_setup_event(event, &group); |
| |
| if (group) { |
| list_add_tail(&event->hw.cqm_group_entry, |
| &group->hw.cqm_group_entry); |
| } else { |
| list_add_tail(&event->hw.cqm_groups_entry, |
| &cache_groups); |
| |
| /* |
| * All RMIDs are either in use or have recently been |
| * used. Kick the rotation worker to clean/free some. |
| * |
| * We only do this for the group leader, rather than for |
| * every event in a group to save on needless work. |
| */ |
| if (!__rmid_valid(event->hw.cqm_rmid)) |
| rotate = true; |
| } |
| |
| mutex_unlock(&cache_mutex); |
| |
| if (rotate) |
| schedule_delayed_work(&intel_cqm_rmid_work, 0); |
| |
| return 0; |
| } |
| |
| EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01"); |
| EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1"); |
| EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes"); |
| EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL); |
| EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1"); |
| |
| static struct attribute *intel_cqm_events_attr[] = { |
| EVENT_PTR(intel_cqm_llc), |
| EVENT_PTR(intel_cqm_llc_pkg), |
| EVENT_PTR(intel_cqm_llc_unit), |
| EVENT_PTR(intel_cqm_llc_scale), |
| EVENT_PTR(intel_cqm_llc_snapshot), |
| NULL, |
| }; |
| |
| static struct attribute_group intel_cqm_events_group = { |
| .name = "events", |
| .attrs = intel_cqm_events_attr, |
| }; |
| |
| PMU_FORMAT_ATTR(event, "config:0-7"); |
| static struct attribute *intel_cqm_formats_attr[] = { |
| &format_attr_event.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group intel_cqm_format_group = { |
| .name = "format", |
| .attrs = intel_cqm_formats_attr, |
| }; |
| |
| static ssize_t |
| max_recycle_threshold_show(struct device *dev, struct device_attribute *attr, |
| char *page) |
| { |
| ssize_t rv; |
| |
| mutex_lock(&cache_mutex); |
| rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold); |
| mutex_unlock(&cache_mutex); |
| |
| return rv; |
| } |
| |
| static ssize_t |
| max_recycle_threshold_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| unsigned int bytes, cachelines; |
| int ret; |
| |
| ret = kstrtouint(buf, 0, &bytes); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&cache_mutex); |
| |
| __intel_cqm_max_threshold = bytes; |
| cachelines = bytes / cqm_l3_scale; |
| |
| /* |
| * The new maximum takes effect immediately. |
| */ |
| if (__intel_cqm_threshold > cachelines) |
| __intel_cqm_threshold = cachelines; |
| |
| mutex_unlock(&cache_mutex); |
| |
| return count; |
| } |
| |
| static DEVICE_ATTR_RW(max_recycle_threshold); |
| |
| static struct attribute *intel_cqm_attrs[] = { |
| &dev_attr_max_recycle_threshold.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group intel_cqm_group = { |
| .attrs = intel_cqm_attrs, |
| }; |
| |
| static const struct attribute_group *intel_cqm_attr_groups[] = { |
| &intel_cqm_events_group, |
| &intel_cqm_format_group, |
| &intel_cqm_group, |
| NULL, |
| }; |
| |
| static struct pmu intel_cqm_pmu = { |
| .hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME, |
| .attr_groups = intel_cqm_attr_groups, |
| .task_ctx_nr = perf_sw_context, |
| .event_init = intel_cqm_event_init, |
| .add = intel_cqm_event_add, |
| .del = intel_cqm_event_stop, |
| .start = intel_cqm_event_start, |
| .stop = intel_cqm_event_stop, |
| .read = intel_cqm_event_read, |
| .count = intel_cqm_event_count, |
| }; |
| |
| static inline void cqm_pick_event_reader(int cpu) |
| { |
| int phys_id = topology_physical_package_id(cpu); |
| int i; |
| |
| for_each_cpu(i, &cqm_cpumask) { |
| if (phys_id == topology_physical_package_id(i)) |
| return; /* already got reader for this socket */ |
| } |
| |
| cpumask_set_cpu(cpu, &cqm_cpumask); |
| } |
| |
| static void intel_cqm_cpu_prepare(unsigned int cpu) |
| { |
| struct intel_pqr_state *state = &per_cpu(pqr_state, cpu); |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| |
| state->rmid = 0; |
| state->closid = 0; |
| state->rmid_usecnt = 0; |
| |
| WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid); |
| WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale); |
| } |
| |
| static void intel_cqm_cpu_exit(unsigned int cpu) |
| { |
| int phys_id = topology_physical_package_id(cpu); |
| int i; |
| |
| /* |
| * Is @cpu a designated cqm reader? |
| */ |
| if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask)) |
| return; |
| |
| for_each_online_cpu(i) { |
| if (i == cpu) |
| continue; |
| |
| if (phys_id == topology_physical_package_id(i)) { |
| cpumask_set_cpu(i, &cqm_cpumask); |
| break; |
| } |
| } |
| } |
| |
| static int intel_cqm_cpu_notifier(struct notifier_block *nb, |
| unsigned long action, void *hcpu) |
| { |
| unsigned int cpu = (unsigned long)hcpu; |
| |
| switch (action & ~CPU_TASKS_FROZEN) { |
| case CPU_UP_PREPARE: |
| intel_cqm_cpu_prepare(cpu); |
| break; |
| case CPU_DOWN_PREPARE: |
| intel_cqm_cpu_exit(cpu); |
| break; |
| case CPU_STARTING: |
| cqm_pick_event_reader(cpu); |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static const struct x86_cpu_id intel_cqm_match[] = { |
| { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC }, |
| {} |
| }; |
| |
| static int __init intel_cqm_init(void) |
| { |
| char *str, scale[20]; |
| int i, cpu, ret; |
| |
| if (!x86_match_cpu(intel_cqm_match)) |
| return -ENODEV; |
| |
| cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale; |
| |
| /* |
| * It's possible that not all resources support the same number |
| * of RMIDs. Instead of making scheduling much more complicated |
| * (where we have to match a task's RMID to a cpu that supports |
| * that many RMIDs) just find the minimum RMIDs supported across |
| * all cpus. |
| * |
| * Also, check that the scales match on all cpus. |
| */ |
| cpu_notifier_register_begin(); |
| |
| for_each_online_cpu(cpu) { |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| |
| if (c->x86_cache_max_rmid < cqm_max_rmid) |
| cqm_max_rmid = c->x86_cache_max_rmid; |
| |
| if (c->x86_cache_occ_scale != cqm_l3_scale) { |
| pr_err("Multiple LLC scale values, disabling\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| } |
| |
| /* |
| * A reasonable upper limit on the max threshold is the number |
| * of lines tagged per RMID if all RMIDs have the same number of |
| * lines tagged in the LLC. |
| * |
| * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC. |
| */ |
| __intel_cqm_max_threshold = |
| boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1); |
| |
| snprintf(scale, sizeof(scale), "%u", cqm_l3_scale); |
| str = kstrdup(scale, GFP_KERNEL); |
| if (!str) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| event_attr_intel_cqm_llc_scale.event_str = str; |
| |
| ret = intel_cqm_setup_rmid_cache(); |
| if (ret) |
| goto out; |
| |
| for_each_online_cpu(i) { |
| intel_cqm_cpu_prepare(i); |
| cqm_pick_event_reader(i); |
| } |
| |
| __perf_cpu_notifier(intel_cqm_cpu_notifier); |
| |
| ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1); |
| if (ret) |
| pr_err("Intel CQM perf registration failed: %d\n", ret); |
| else |
| pr_info("Intel CQM monitoring enabled\n"); |
| |
| out: |
| cpu_notifier_register_done(); |
| |
| return ret; |
| } |
| device_initcall(intel_cqm_init); |