| /** |
| * AES XCBC routines supporting the Power 7+ Nest Accelerators driver |
| * |
| * Copyright (C) 2011-2012 International Business Machines Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 only. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * Author: Kent Yoder <yoder1@us.ibm.com> |
| */ |
| |
| #include <crypto/internal/hash.h> |
| #include <crypto/aes.h> |
| #include <crypto/algapi.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/crypto.h> |
| #include <asm/vio.h> |
| |
| #include "nx_csbcpb.h" |
| #include "nx.h" |
| |
| |
| struct xcbc_state { |
| u8 state[AES_BLOCK_SIZE]; |
| unsigned int count; |
| u8 buffer[AES_BLOCK_SIZE]; |
| }; |
| |
| static int nx_xcbc_set_key(struct crypto_shash *desc, |
| const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc); |
| struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; |
| |
| switch (key_len) { |
| case AES_KEYSIZE_128: |
| nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128]; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| memcpy(csbcpb->cpb.aes_xcbc.key, in_key, key_len); |
| |
| return 0; |
| } |
| |
| /* |
| * Based on RFC 3566, for a zero-length message: |
| * |
| * n = 1 |
| * K1 = E(K, 0x01010101010101010101010101010101) |
| * K3 = E(K, 0x03030303030303030303030303030303) |
| * E[0] = 0x00000000000000000000000000000000 |
| * M[1] = 0x80000000000000000000000000000000 (0 length message with padding) |
| * E[1] = (K1, M[1] ^ E[0] ^ K3) |
| * Tag = M[1] |
| */ |
| static int nx_xcbc_empty(struct shash_desc *desc, u8 *out) |
| { |
| struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); |
| struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; |
| struct nx_sg *in_sg, *out_sg; |
| u8 keys[2][AES_BLOCK_SIZE]; |
| u8 key[32]; |
| int rc = 0; |
| int len; |
| |
| /* Change to ECB mode */ |
| csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB; |
| memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE); |
| memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE); |
| NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT; |
| |
| /* K1 and K3 base patterns */ |
| memset(keys[0], 0x01, sizeof(keys[0])); |
| memset(keys[1], 0x03, sizeof(keys[1])); |
| |
| len = sizeof(keys); |
| /* Generate K1 and K3 encrypting the patterns */ |
| in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len, |
| nx_ctx->ap->sglen); |
| |
| if (len != sizeof(keys)) |
| return -EINVAL; |
| |
| out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len, |
| nx_ctx->ap->sglen); |
| |
| if (len != sizeof(keys)) |
| return -EINVAL; |
| |
| nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); |
| nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); |
| |
| rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0); |
| if (rc) |
| goto out; |
| atomic_inc(&(nx_ctx->stats->aes_ops)); |
| |
| /* XOr K3 with the padding for a 0 length message */ |
| keys[1][0] ^= 0x80; |
| |
| len = sizeof(keys[1]); |
| |
| /* Encrypt the final result */ |
| memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE); |
| in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len, |
| nx_ctx->ap->sglen); |
| |
| if (len != sizeof(keys[1])) |
| return -EINVAL; |
| |
| len = AES_BLOCK_SIZE; |
| out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, |
| nx_ctx->ap->sglen); |
| |
| if (len != AES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); |
| nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); |
| |
| rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0); |
| if (rc) |
| goto out; |
| atomic_inc(&(nx_ctx->stats->aes_ops)); |
| |
| out: |
| /* Restore XCBC mode */ |
| csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC; |
| memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE); |
| NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT; |
| |
| return rc; |
| } |
| |
| static int nx_crypto_ctx_aes_xcbc_init2(struct crypto_tfm *tfm) |
| { |
| struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); |
| struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; |
| int err; |
| |
| err = nx_crypto_ctx_aes_xcbc_init(tfm); |
| if (err) |
| return err; |
| |
| nx_ctx_init(nx_ctx, HCOP_FC_AES); |
| |
| NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128); |
| csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC; |
| |
| return 0; |
| } |
| |
| static int nx_xcbc_init(struct shash_desc *desc) |
| { |
| struct xcbc_state *sctx = shash_desc_ctx(desc); |
| |
| memset(sctx, 0, sizeof *sctx); |
| |
| return 0; |
| } |
| |
| static int nx_xcbc_update(struct shash_desc *desc, |
| const u8 *data, |
| unsigned int len) |
| { |
| struct xcbc_state *sctx = shash_desc_ctx(desc); |
| struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); |
| struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; |
| struct nx_sg *in_sg; |
| struct nx_sg *out_sg; |
| u32 to_process = 0, leftover, total; |
| unsigned int max_sg_len; |
| unsigned long irq_flags; |
| int rc = 0; |
| int data_len; |
| |
| spin_lock_irqsave(&nx_ctx->lock, irq_flags); |
| |
| |
| total = sctx->count + len; |
| |
| /* 2 cases for total data len: |
| * 1: <= AES_BLOCK_SIZE: copy into state, return 0 |
| * 2: > AES_BLOCK_SIZE: process X blocks, copy in leftover |
| */ |
| if (total <= AES_BLOCK_SIZE) { |
| memcpy(sctx->buffer + sctx->count, data, len); |
| sctx->count += len; |
| goto out; |
| } |
| |
| in_sg = nx_ctx->in_sg; |
| max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg), |
| nx_ctx->ap->sglen); |
| max_sg_len = min_t(u64, max_sg_len, |
| nx_ctx->ap->databytelen/NX_PAGE_SIZE); |
| |
| data_len = AES_BLOCK_SIZE; |
| out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, |
| &len, nx_ctx->ap->sglen); |
| |
| if (data_len != AES_BLOCK_SIZE) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); |
| |
| do { |
| to_process = total - to_process; |
| to_process = to_process & ~(AES_BLOCK_SIZE - 1); |
| |
| leftover = total - to_process; |
| |
| /* the hardware will not accept a 0 byte operation for this |
| * algorithm and the operation MUST be finalized to be correct. |
| * So if we happen to get an update that falls on a block sized |
| * boundary, we must save off the last block to finalize with |
| * later. */ |
| if (!leftover) { |
| to_process -= AES_BLOCK_SIZE; |
| leftover = AES_BLOCK_SIZE; |
| } |
| |
| if (sctx->count) { |
| data_len = sctx->count; |
| in_sg = nx_build_sg_list(nx_ctx->in_sg, |
| (u8 *) sctx->buffer, |
| &data_len, |
| max_sg_len); |
| if (data_len != sctx->count) { |
| rc = -EINVAL; |
| goto out; |
| } |
| } |
| |
| data_len = to_process - sctx->count; |
| in_sg = nx_build_sg_list(in_sg, |
| (u8 *) data, |
| &data_len, |
| max_sg_len); |
| |
| if (data_len != to_process - sctx->count) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * |
| sizeof(struct nx_sg); |
| |
| /* we've hit the nx chip previously and we're updating again, |
| * so copy over the partial digest */ |
| if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { |
| memcpy(csbcpb->cpb.aes_xcbc.cv, |
| csbcpb->cpb.aes_xcbc.out_cv_mac, |
| AES_BLOCK_SIZE); |
| } |
| |
| NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; |
| if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0); |
| if (rc) |
| goto out; |
| |
| atomic_inc(&(nx_ctx->stats->aes_ops)); |
| |
| /* everything after the first update is continuation */ |
| NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; |
| |
| total -= to_process; |
| data += to_process - sctx->count; |
| sctx->count = 0; |
| in_sg = nx_ctx->in_sg; |
| } while (leftover > AES_BLOCK_SIZE); |
| |
| /* copy the leftover back into the state struct */ |
| memcpy(sctx->buffer, data, leftover); |
| sctx->count = leftover; |
| |
| out: |
| spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); |
| return rc; |
| } |
| |
| static int nx_xcbc_final(struct shash_desc *desc, u8 *out) |
| { |
| struct xcbc_state *sctx = shash_desc_ctx(desc); |
| struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); |
| struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; |
| struct nx_sg *in_sg, *out_sg; |
| unsigned long irq_flags; |
| int rc = 0; |
| int len; |
| |
| spin_lock_irqsave(&nx_ctx->lock, irq_flags); |
| |
| if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { |
| /* we've hit the nx chip previously, now we're finalizing, |
| * so copy over the partial digest */ |
| memcpy(csbcpb->cpb.aes_xcbc.cv, |
| csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE); |
| } else if (sctx->count == 0) { |
| /* |
| * we've never seen an update, so this is a 0 byte op. The |
| * hardware cannot handle a 0 byte op, so just ECB to |
| * generate the hash. |
| */ |
| rc = nx_xcbc_empty(desc, out); |
| goto out; |
| } |
| |
| /* final is represented by continuing the operation and indicating that |
| * this is not an intermediate operation */ |
| NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; |
| |
| len = sctx->count; |
| in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer, |
| &len, nx_ctx->ap->sglen); |
| |
| if (len != sctx->count) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| len = AES_BLOCK_SIZE; |
| out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, |
| nx_ctx->ap->sglen); |
| |
| if (len != AES_BLOCK_SIZE) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); |
| nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); |
| |
| if (!nx_ctx->op.outlen) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0); |
| if (rc) |
| goto out; |
| |
| atomic_inc(&(nx_ctx->stats->aes_ops)); |
| |
| memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE); |
| out: |
| spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); |
| return rc; |
| } |
| |
| struct shash_alg nx_shash_aes_xcbc_alg = { |
| .digestsize = AES_BLOCK_SIZE, |
| .init = nx_xcbc_init, |
| .update = nx_xcbc_update, |
| .final = nx_xcbc_final, |
| .setkey = nx_xcbc_set_key, |
| .descsize = sizeof(struct xcbc_state), |
| .statesize = sizeof(struct xcbc_state), |
| .base = { |
| .cra_name = "xcbc(aes)", |
| .cra_driver_name = "xcbc-aes-nx", |
| .cra_priority = 300, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_module = THIS_MODULE, |
| .cra_ctxsize = sizeof(struct nx_crypto_ctx), |
| .cra_init = nx_crypto_ctx_aes_xcbc_init2, |
| .cra_exit = nx_crypto_ctx_exit, |
| } |
| }; |