blob: 74cf3b612f05cb785a293308c4b3d8d69b61680e [file] [log] [blame]
/*
* Driver for IMS Passenger Control Unit Devices
*
* Copyright (C) 2013 The IMS Company
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*/
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/firmware.h>
#include <linux/ihex.h>
#include <linux/input.h>
#include <linux/kernel.h>
#include <linux/leds.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/usb/input.h>
#include <linux/usb/cdc.h>
#include <asm/unaligned.h>
#define IMS_PCU_KEYMAP_LEN 32
struct ims_pcu_buttons {
struct input_dev *input;
char name[32];
char phys[32];
unsigned short keymap[IMS_PCU_KEYMAP_LEN];
};
struct ims_pcu_gamepad {
struct input_dev *input;
char name[32];
char phys[32];
};
struct ims_pcu_backlight {
struct led_classdev cdev;
char name[32];
};
#define IMS_PCU_PART_NUMBER_LEN 15
#define IMS_PCU_SERIAL_NUMBER_LEN 8
#define IMS_PCU_DOM_LEN 8
#define IMS_PCU_FW_VERSION_LEN (9 + 1)
#define IMS_PCU_BL_VERSION_LEN (9 + 1)
#define IMS_PCU_BL_RESET_REASON_LEN (2 + 1)
#define IMS_PCU_PCU_B_DEVICE_ID 5
#define IMS_PCU_BUF_SIZE 128
struct ims_pcu {
struct usb_device *udev;
struct device *dev; /* control interface's device, used for logging */
unsigned int device_no;
bool bootloader_mode;
char part_number[IMS_PCU_PART_NUMBER_LEN];
char serial_number[IMS_PCU_SERIAL_NUMBER_LEN];
char date_of_manufacturing[IMS_PCU_DOM_LEN];
char fw_version[IMS_PCU_FW_VERSION_LEN];
char bl_version[IMS_PCU_BL_VERSION_LEN];
char reset_reason[IMS_PCU_BL_RESET_REASON_LEN];
int update_firmware_status;
u8 device_id;
u8 ofn_reg_addr;
struct usb_interface *ctrl_intf;
struct usb_endpoint_descriptor *ep_ctrl;
struct urb *urb_ctrl;
u8 *urb_ctrl_buf;
dma_addr_t ctrl_dma;
size_t max_ctrl_size;
struct usb_interface *data_intf;
struct usb_endpoint_descriptor *ep_in;
struct urb *urb_in;
u8 *urb_in_buf;
dma_addr_t read_dma;
size_t max_in_size;
struct usb_endpoint_descriptor *ep_out;
u8 *urb_out_buf;
size_t max_out_size;
u8 read_buf[IMS_PCU_BUF_SIZE];
u8 read_pos;
u8 check_sum;
bool have_stx;
bool have_dle;
u8 cmd_buf[IMS_PCU_BUF_SIZE];
u8 ack_id;
u8 expected_response;
u8 cmd_buf_len;
struct completion cmd_done;
struct mutex cmd_mutex;
u32 fw_start_addr;
u32 fw_end_addr;
struct completion async_firmware_done;
struct ims_pcu_buttons buttons;
struct ims_pcu_gamepad *gamepad;
struct ims_pcu_backlight backlight;
bool setup_complete; /* Input and LED devices have been created */
};
/*********************************************************************
* Buttons Input device support *
*********************************************************************/
static const unsigned short ims_pcu_keymap_1[] = {
[1] = KEY_ATTENDANT_OFF,
[2] = KEY_ATTENDANT_ON,
[3] = KEY_LIGHTS_TOGGLE,
[4] = KEY_VOLUMEUP,
[5] = KEY_VOLUMEDOWN,
[6] = KEY_INFO,
};
static const unsigned short ims_pcu_keymap_2[] = {
[4] = KEY_VOLUMEUP,
[5] = KEY_VOLUMEDOWN,
[6] = KEY_INFO,
};
static const unsigned short ims_pcu_keymap_3[] = {
[1] = KEY_HOMEPAGE,
[2] = KEY_ATTENDANT_TOGGLE,
[3] = KEY_LIGHTS_TOGGLE,
[4] = KEY_VOLUMEUP,
[5] = KEY_VOLUMEDOWN,
[6] = KEY_DISPLAYTOGGLE,
[18] = KEY_PLAYPAUSE,
};
static const unsigned short ims_pcu_keymap_4[] = {
[1] = KEY_ATTENDANT_OFF,
[2] = KEY_ATTENDANT_ON,
[3] = KEY_LIGHTS_TOGGLE,
[4] = KEY_VOLUMEUP,
[5] = KEY_VOLUMEDOWN,
[6] = KEY_INFO,
[18] = KEY_PLAYPAUSE,
};
static const unsigned short ims_pcu_keymap_5[] = {
[1] = KEY_ATTENDANT_OFF,
[2] = KEY_ATTENDANT_ON,
[3] = KEY_LIGHTS_TOGGLE,
};
struct ims_pcu_device_info {
const unsigned short *keymap;
size_t keymap_len;
bool has_gamepad;
};
#define IMS_PCU_DEVINFO(_n, _gamepad) \
[_n] = { \
.keymap = ims_pcu_keymap_##_n, \
.keymap_len = ARRAY_SIZE(ims_pcu_keymap_##_n), \
.has_gamepad = _gamepad, \
}
static const struct ims_pcu_device_info ims_pcu_device_info[] = {
IMS_PCU_DEVINFO(1, true),
IMS_PCU_DEVINFO(2, true),
IMS_PCU_DEVINFO(3, true),
IMS_PCU_DEVINFO(4, true),
IMS_PCU_DEVINFO(5, false),
};
static void ims_pcu_buttons_report(struct ims_pcu *pcu, u32 data)
{
struct ims_pcu_buttons *buttons = &pcu->buttons;
struct input_dev *input = buttons->input;
int i;
for (i = 0; i < 32; i++) {
unsigned short keycode = buttons->keymap[i];
if (keycode != KEY_RESERVED)
input_report_key(input, keycode, data & (1UL << i));
}
input_sync(input);
}
static int ims_pcu_setup_buttons(struct ims_pcu *pcu,
const unsigned short *keymap,
size_t keymap_len)
{
struct ims_pcu_buttons *buttons = &pcu->buttons;
struct input_dev *input;
int i;
int error;
input = input_allocate_device();
if (!input) {
dev_err(pcu->dev,
"Not enough memory for input input device\n");
return -ENOMEM;
}
snprintf(buttons->name, sizeof(buttons->name),
"IMS PCU#%d Button Interface", pcu->device_no);
usb_make_path(pcu->udev, buttons->phys, sizeof(buttons->phys));
strlcat(buttons->phys, "/input0", sizeof(buttons->phys));
memcpy(buttons->keymap, keymap, sizeof(*keymap) * keymap_len);
input->name = buttons->name;
input->phys = buttons->phys;
usb_to_input_id(pcu->udev, &input->id);
input->dev.parent = &pcu->ctrl_intf->dev;
input->keycode = buttons->keymap;
input->keycodemax = ARRAY_SIZE(buttons->keymap);
input->keycodesize = sizeof(buttons->keymap[0]);
__set_bit(EV_KEY, input->evbit);
for (i = 0; i < IMS_PCU_KEYMAP_LEN; i++)
__set_bit(buttons->keymap[i], input->keybit);
__clear_bit(KEY_RESERVED, input->keybit);
error = input_register_device(input);
if (error) {
dev_err(pcu->dev,
"Failed to register buttons input device: %d\n",
error);
input_free_device(input);
return error;
}
buttons->input = input;
return 0;
}
static void ims_pcu_destroy_buttons(struct ims_pcu *pcu)
{
struct ims_pcu_buttons *buttons = &pcu->buttons;
input_unregister_device(buttons->input);
}
/*********************************************************************
* Gamepad Input device support *
*********************************************************************/
static void ims_pcu_gamepad_report(struct ims_pcu *pcu, u32 data)
{
struct ims_pcu_gamepad *gamepad = pcu->gamepad;
struct input_dev *input = gamepad->input;
int x, y;
x = !!(data & (1 << 14)) - !!(data & (1 << 13));
y = !!(data & (1 << 12)) - !!(data & (1 << 11));
input_report_abs(input, ABS_X, x);
input_report_abs(input, ABS_Y, y);
input_report_key(input, BTN_A, data & (1 << 7));
input_report_key(input, BTN_B, data & (1 << 8));
input_report_key(input, BTN_X, data & (1 << 9));
input_report_key(input, BTN_Y, data & (1 << 10));
input_report_key(input, BTN_START, data & (1 << 15));
input_report_key(input, BTN_SELECT, data & (1 << 16));
input_sync(input);
}
static int ims_pcu_setup_gamepad(struct ims_pcu *pcu)
{
struct ims_pcu_gamepad *gamepad;
struct input_dev *input;
int error;
gamepad = kzalloc(sizeof(struct ims_pcu_gamepad), GFP_KERNEL);
input = input_allocate_device();
if (!gamepad || !input) {
dev_err(pcu->dev,
"Not enough memory for gamepad device\n");
error = -ENOMEM;
goto err_free_mem;
}
gamepad->input = input;
snprintf(gamepad->name, sizeof(gamepad->name),
"IMS PCU#%d Gamepad Interface", pcu->device_no);
usb_make_path(pcu->udev, gamepad->phys, sizeof(gamepad->phys));
strlcat(gamepad->phys, "/input1", sizeof(gamepad->phys));
input->name = gamepad->name;
input->phys = gamepad->phys;
usb_to_input_id(pcu->udev, &input->id);
input->dev.parent = &pcu->ctrl_intf->dev;
__set_bit(EV_KEY, input->evbit);
__set_bit(BTN_A, input->keybit);
__set_bit(BTN_B, input->keybit);
__set_bit(BTN_X, input->keybit);
__set_bit(BTN_Y, input->keybit);
__set_bit(BTN_START, input->keybit);
__set_bit(BTN_SELECT, input->keybit);
__set_bit(EV_ABS, input->evbit);
input_set_abs_params(input, ABS_X, -1, 1, 0, 0);
input_set_abs_params(input, ABS_Y, -1, 1, 0, 0);
error = input_register_device(input);
if (error) {
dev_err(pcu->dev,
"Failed to register gamepad input device: %d\n",
error);
goto err_free_mem;
}
pcu->gamepad = gamepad;
return 0;
err_free_mem:
input_free_device(input);
kfree(gamepad);
return -ENOMEM;
}
static void ims_pcu_destroy_gamepad(struct ims_pcu *pcu)
{
struct ims_pcu_gamepad *gamepad = pcu->gamepad;
input_unregister_device(gamepad->input);
kfree(gamepad);
}
/*********************************************************************
* PCU Communication protocol handling *
*********************************************************************/
#define IMS_PCU_PROTOCOL_STX 0x02
#define IMS_PCU_PROTOCOL_ETX 0x03
#define IMS_PCU_PROTOCOL_DLE 0x10
/* PCU commands */
#define IMS_PCU_CMD_STATUS 0xa0
#define IMS_PCU_CMD_PCU_RESET 0xa1
#define IMS_PCU_CMD_RESET_REASON 0xa2
#define IMS_PCU_CMD_SEND_BUTTONS 0xa3
#define IMS_PCU_CMD_JUMP_TO_BTLDR 0xa4
#define IMS_PCU_CMD_GET_INFO 0xa5
#define IMS_PCU_CMD_SET_BRIGHTNESS 0xa6
#define IMS_PCU_CMD_EEPROM 0xa7
#define IMS_PCU_CMD_GET_FW_VERSION 0xa8
#define IMS_PCU_CMD_GET_BL_VERSION 0xa9
#define IMS_PCU_CMD_SET_INFO 0xab
#define IMS_PCU_CMD_GET_BRIGHTNESS 0xac
#define IMS_PCU_CMD_GET_DEVICE_ID 0xae
#define IMS_PCU_CMD_SPECIAL_INFO 0xb0
#define IMS_PCU_CMD_BOOTLOADER 0xb1 /* Pass data to bootloader */
#define IMS_PCU_CMD_OFN_SET_CONFIG 0xb3
#define IMS_PCU_CMD_OFN_GET_CONFIG 0xb4
/* PCU responses */
#define IMS_PCU_RSP_STATUS 0xc0
#define IMS_PCU_RSP_PCU_RESET 0 /* Originally 0xc1 */
#define IMS_PCU_RSP_RESET_REASON 0xc2
#define IMS_PCU_RSP_SEND_BUTTONS 0xc3
#define IMS_PCU_RSP_JUMP_TO_BTLDR 0 /* Originally 0xc4 */
#define IMS_PCU_RSP_GET_INFO 0xc5
#define IMS_PCU_RSP_SET_BRIGHTNESS 0xc6
#define IMS_PCU_RSP_EEPROM 0xc7
#define IMS_PCU_RSP_GET_FW_VERSION 0xc8
#define IMS_PCU_RSP_GET_BL_VERSION 0xc9
#define IMS_PCU_RSP_SET_INFO 0xcb
#define IMS_PCU_RSP_GET_BRIGHTNESS 0xcc
#define IMS_PCU_RSP_CMD_INVALID 0xcd
#define IMS_PCU_RSP_GET_DEVICE_ID 0xce
#define IMS_PCU_RSP_SPECIAL_INFO 0xd0
#define IMS_PCU_RSP_BOOTLOADER 0xd1 /* Bootloader response */
#define IMS_PCU_RSP_OFN_SET_CONFIG 0xd2
#define IMS_PCU_RSP_OFN_GET_CONFIG 0xd3
#define IMS_PCU_RSP_EVNT_BUTTONS 0xe0 /* Unsolicited, button state */
#define IMS_PCU_GAMEPAD_MASK 0x0001ff80UL /* Bits 7 through 16 */
#define IMS_PCU_MIN_PACKET_LEN 3
#define IMS_PCU_DATA_OFFSET 2
#define IMS_PCU_CMD_WRITE_TIMEOUT 100 /* msec */
#define IMS_PCU_CMD_RESPONSE_TIMEOUT 500 /* msec */
static void ims_pcu_report_events(struct ims_pcu *pcu)
{
u32 data = get_unaligned_be32(&pcu->read_buf[3]);
ims_pcu_buttons_report(pcu, data & ~IMS_PCU_GAMEPAD_MASK);
if (pcu->gamepad)
ims_pcu_gamepad_report(pcu, data);
}
static void ims_pcu_handle_response(struct ims_pcu *pcu)
{
switch (pcu->read_buf[0]) {
case IMS_PCU_RSP_EVNT_BUTTONS:
if (likely(pcu->setup_complete))
ims_pcu_report_events(pcu);
break;
default:
/*
* See if we got command completion.
* If both the sequence and response code match save
* the data and signal completion.
*/
if (pcu->read_buf[0] == pcu->expected_response &&
pcu->read_buf[1] == pcu->ack_id - 1) {
memcpy(pcu->cmd_buf, pcu->read_buf, pcu->read_pos);
pcu->cmd_buf_len = pcu->read_pos;
complete(&pcu->cmd_done);
}
break;
}
}
static void ims_pcu_process_data(struct ims_pcu *pcu, struct urb *urb)
{
int i;
for (i = 0; i < urb->actual_length; i++) {
u8 data = pcu->urb_in_buf[i];
/* Skip everything until we get Start Xmit */
if (!pcu->have_stx && data != IMS_PCU_PROTOCOL_STX)
continue;
if (pcu->have_dle) {
pcu->have_dle = false;
pcu->read_buf[pcu->read_pos++] = data;
pcu->check_sum += data;
continue;
}
switch (data) {
case IMS_PCU_PROTOCOL_STX:
if (pcu->have_stx)
dev_warn(pcu->dev,
"Unexpected STX at byte %d, discarding old data\n",
pcu->read_pos);
pcu->have_stx = true;
pcu->have_dle = false;
pcu->read_pos = 0;
pcu->check_sum = 0;
break;
case IMS_PCU_PROTOCOL_DLE:
pcu->have_dle = true;
break;
case IMS_PCU_PROTOCOL_ETX:
if (pcu->read_pos < IMS_PCU_MIN_PACKET_LEN) {
dev_warn(pcu->dev,
"Short packet received (%d bytes), ignoring\n",
pcu->read_pos);
} else if (pcu->check_sum != 0) {
dev_warn(pcu->dev,
"Invalid checksum in packet (%d bytes), ignoring\n",
pcu->read_pos);
} else {
ims_pcu_handle_response(pcu);
}
pcu->have_stx = false;
pcu->have_dle = false;
pcu->read_pos = 0;
break;
default:
pcu->read_buf[pcu->read_pos++] = data;
pcu->check_sum += data;
break;
}
}
}
static bool ims_pcu_byte_needs_escape(u8 byte)
{
return byte == IMS_PCU_PROTOCOL_STX ||
byte == IMS_PCU_PROTOCOL_ETX ||
byte == IMS_PCU_PROTOCOL_DLE;
}
static int ims_pcu_send_cmd_chunk(struct ims_pcu *pcu,
u8 command, int chunk, int len)
{
int error;
error = usb_bulk_msg(pcu->udev,
usb_sndbulkpipe(pcu->udev,
pcu->ep_out->bEndpointAddress),
pcu->urb_out_buf, len,
NULL, IMS_PCU_CMD_WRITE_TIMEOUT);
if (error < 0) {
dev_dbg(pcu->dev,
"Sending 0x%02x command failed at chunk %d: %d\n",
command, chunk, error);
return error;
}
return 0;
}
static int ims_pcu_send_command(struct ims_pcu *pcu,
u8 command, const u8 *data, int len)
{
int count = 0;
int chunk = 0;
int delta;
int i;
int error;
u8 csum = 0;
u8 ack_id;
pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_STX;
/* We know the command need not be escaped */
pcu->urb_out_buf[count++] = command;
csum += command;
ack_id = pcu->ack_id++;
if (ack_id == 0xff)
ack_id = pcu->ack_id++;
if (ims_pcu_byte_needs_escape(ack_id))
pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE;
pcu->urb_out_buf[count++] = ack_id;
csum += ack_id;
for (i = 0; i < len; i++) {
delta = ims_pcu_byte_needs_escape(data[i]) ? 2 : 1;
if (count + delta >= pcu->max_out_size) {
error = ims_pcu_send_cmd_chunk(pcu, command,
++chunk, count);
if (error)
return error;
count = 0;
}
if (delta == 2)
pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE;
pcu->urb_out_buf[count++] = data[i];
csum += data[i];
}
csum = 1 + ~csum;
delta = ims_pcu_byte_needs_escape(csum) ? 3 : 2;
if (count + delta >= pcu->max_out_size) {
error = ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count);
if (error)
return error;
count = 0;
}
if (delta == 3)
pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE;
pcu->urb_out_buf[count++] = csum;
pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_ETX;
return ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count);
}
static int __ims_pcu_execute_command(struct ims_pcu *pcu,
u8 command, const void *data, size_t len,
u8 expected_response, int response_time)
{
int error;
pcu->expected_response = expected_response;
init_completion(&pcu->cmd_done);
error = ims_pcu_send_command(pcu, command, data, len);
if (error)
return error;
if (expected_response &&
!wait_for_completion_timeout(&pcu->cmd_done,
msecs_to_jiffies(response_time))) {
dev_dbg(pcu->dev, "Command 0x%02x timed out\n", command);
return -ETIMEDOUT;
}
return 0;
}
#define ims_pcu_execute_command(pcu, code, data, len) \
__ims_pcu_execute_command(pcu, \
IMS_PCU_CMD_##code, data, len, \
IMS_PCU_RSP_##code, \
IMS_PCU_CMD_RESPONSE_TIMEOUT)
#define ims_pcu_execute_query(pcu, code) \
ims_pcu_execute_command(pcu, code, NULL, 0)
/* Bootloader commands */
#define IMS_PCU_BL_CMD_QUERY_DEVICE 0xa1
#define IMS_PCU_BL_CMD_UNLOCK_CONFIG 0xa2
#define IMS_PCU_BL_CMD_ERASE_APP 0xa3
#define IMS_PCU_BL_CMD_PROGRAM_DEVICE 0xa4
#define IMS_PCU_BL_CMD_PROGRAM_COMPLETE 0xa5
#define IMS_PCU_BL_CMD_READ_APP 0xa6
#define IMS_PCU_BL_CMD_RESET_DEVICE 0xa7
#define IMS_PCU_BL_CMD_LAUNCH_APP 0xa8
/* Bootloader commands */
#define IMS_PCU_BL_RSP_QUERY_DEVICE 0xc1
#define IMS_PCU_BL_RSP_UNLOCK_CONFIG 0xc2
#define IMS_PCU_BL_RSP_ERASE_APP 0xc3
#define IMS_PCU_BL_RSP_PROGRAM_DEVICE 0xc4
#define IMS_PCU_BL_RSP_PROGRAM_COMPLETE 0xc5
#define IMS_PCU_BL_RSP_READ_APP 0xc6
#define IMS_PCU_BL_RSP_RESET_DEVICE 0 /* originally 0xa7 */
#define IMS_PCU_BL_RSP_LAUNCH_APP 0 /* originally 0xa8 */
#define IMS_PCU_BL_DATA_OFFSET 3
static int __ims_pcu_execute_bl_command(struct ims_pcu *pcu,
u8 command, const void *data, size_t len,
u8 expected_response, int response_time)
{
int error;
pcu->cmd_buf[0] = command;
if (data)
memcpy(&pcu->cmd_buf[1], data, len);
error = __ims_pcu_execute_command(pcu,
IMS_PCU_CMD_BOOTLOADER, pcu->cmd_buf, len + 1,
expected_response ? IMS_PCU_RSP_BOOTLOADER : 0,
response_time);
if (error) {
dev_err(pcu->dev,
"Failure when sending 0x%02x command to bootloader, error: %d\n",
pcu->cmd_buf[0], error);
return error;
}
if (expected_response && pcu->cmd_buf[2] != expected_response) {
dev_err(pcu->dev,
"Unexpected response from bootloader: 0x%02x, wanted 0x%02x\n",
pcu->cmd_buf[2], expected_response);
return -EINVAL;
}
return 0;
}
#define ims_pcu_execute_bl_command(pcu, code, data, len, timeout) \
__ims_pcu_execute_bl_command(pcu, \
IMS_PCU_BL_CMD_##code, data, len, \
IMS_PCU_BL_RSP_##code, timeout) \
#define IMS_PCU_INFO_PART_OFFSET 2
#define IMS_PCU_INFO_DOM_OFFSET 17
#define IMS_PCU_INFO_SERIAL_OFFSET 25
#define IMS_PCU_SET_INFO_SIZE 31
static int ims_pcu_get_info(struct ims_pcu *pcu)
{
int error;
error = ims_pcu_execute_query(pcu, GET_INFO);
if (error) {
dev_err(pcu->dev,
"GET_INFO command failed, error: %d\n", error);
return error;
}
memcpy(pcu->part_number,
&pcu->cmd_buf[IMS_PCU_INFO_PART_OFFSET],
sizeof(pcu->part_number));
memcpy(pcu->date_of_manufacturing,
&pcu->cmd_buf[IMS_PCU_INFO_DOM_OFFSET],
sizeof(pcu->date_of_manufacturing));
memcpy(pcu->serial_number,
&pcu->cmd_buf[IMS_PCU_INFO_SERIAL_OFFSET],
sizeof(pcu->serial_number));
return 0;
}
static int ims_pcu_set_info(struct ims_pcu *pcu)
{
int error;
memcpy(&pcu->cmd_buf[IMS_PCU_INFO_PART_OFFSET],
pcu->part_number, sizeof(pcu->part_number));
memcpy(&pcu->cmd_buf[IMS_PCU_INFO_DOM_OFFSET],
pcu->date_of_manufacturing, sizeof(pcu->date_of_manufacturing));
memcpy(&pcu->cmd_buf[IMS_PCU_INFO_SERIAL_OFFSET],
pcu->serial_number, sizeof(pcu->serial_number));
error = ims_pcu_execute_command(pcu, SET_INFO,
&pcu->cmd_buf[IMS_PCU_DATA_OFFSET],
IMS_PCU_SET_INFO_SIZE);
if (error) {
dev_err(pcu->dev,
"Failed to update device information, error: %d\n",
error);
return error;
}
return 0;
}
static int ims_pcu_switch_to_bootloader(struct ims_pcu *pcu)
{
int error;
/* Execute jump to the bootoloader */
error = ims_pcu_execute_command(pcu, JUMP_TO_BTLDR, NULL, 0);
if (error) {
dev_err(pcu->dev,
"Failure when sending JUMP TO BOOLTLOADER command, error: %d\n",
error);
return error;
}
return 0;
}
/*********************************************************************
* Firmware Update handling *
*********************************************************************/
#define IMS_PCU_FIRMWARE_NAME "imspcu.fw"
struct ims_pcu_flash_fmt {
__le32 addr;
u8 len;
u8 data[];
};
static unsigned int ims_pcu_count_fw_records(const struct firmware *fw)
{
const struct ihex_binrec *rec = (const struct ihex_binrec *)fw->data;
unsigned int count = 0;
while (rec) {
count++;
rec = ihex_next_binrec(rec);
}
return count;
}
static int ims_pcu_verify_block(struct ims_pcu *pcu,
u32 addr, u8 len, const u8 *data)
{
struct ims_pcu_flash_fmt *fragment;
int error;
fragment = (void *)&pcu->cmd_buf[1];
put_unaligned_le32(addr, &fragment->addr);
fragment->len = len;
error = ims_pcu_execute_bl_command(pcu, READ_APP, NULL, 5,
IMS_PCU_CMD_RESPONSE_TIMEOUT);
if (error) {
dev_err(pcu->dev,
"Failed to retrieve block at 0x%08x, len %d, error: %d\n",
addr, len, error);
return error;
}
fragment = (void *)&pcu->cmd_buf[IMS_PCU_BL_DATA_OFFSET];
if (get_unaligned_le32(&fragment->addr) != addr ||
fragment->len != len) {
dev_err(pcu->dev,
"Wrong block when retrieving 0x%08x (0x%08x), len %d (%d)\n",
addr, get_unaligned_le32(&fragment->addr),
len, fragment->len);
return -EINVAL;
}
if (memcmp(fragment->data, data, len)) {
dev_err(pcu->dev,
"Mismatch in block at 0x%08x, len %d\n",
addr, len);
return -EINVAL;
}
return 0;
}
static int ims_pcu_flash_firmware(struct ims_pcu *pcu,
const struct firmware *fw,
unsigned int n_fw_records)
{
const struct ihex_binrec *rec = (const struct ihex_binrec *)fw->data;
struct ims_pcu_flash_fmt *fragment;
unsigned int count = 0;
u32 addr;
u8 len;
int error;
error = ims_pcu_execute_bl_command(pcu, ERASE_APP, NULL, 0, 2000);
if (error) {
dev_err(pcu->dev,
"Failed to erase application image, error: %d\n",
error);
return error;
}
while (rec) {
/*
* The firmware format is messed up for some reason.
* The address twice that of what is needed for some
* reason and we end up overwriting half of the data
* with the next record.
*/
addr = be32_to_cpu(rec->addr) / 2;
len = be16_to_cpu(rec->len);
fragment = (void *)&pcu->cmd_buf[1];
put_unaligned_le32(addr, &fragment->addr);
fragment->len = len;
memcpy(fragment->data, rec->data, len);
error = ims_pcu_execute_bl_command(pcu, PROGRAM_DEVICE,
NULL, len + 5,
IMS_PCU_CMD_RESPONSE_TIMEOUT);
if (error) {
dev_err(pcu->dev,
"Failed to write block at 0x%08x, len %d, error: %d\n",
addr, len, error);
return error;
}
if (addr >= pcu->fw_start_addr && addr < pcu->fw_end_addr) {
error = ims_pcu_verify_block(pcu, addr, len, rec->data);
if (error)
return error;
}
count++;
pcu->update_firmware_status = (count * 100) / n_fw_records;
rec = ihex_next_binrec(rec);
}
error = ims_pcu_execute_bl_command(pcu, PROGRAM_COMPLETE,
NULL, 0, 2000);
if (error)
dev_err(pcu->dev,
"Failed to send PROGRAM_COMPLETE, error: %d\n",
error);
return 0;
}
static int ims_pcu_handle_firmware_update(struct ims_pcu *pcu,
const struct firmware *fw)
{
unsigned int n_fw_records;
int retval;
dev_info(pcu->dev, "Updating firmware %s, size: %zu\n",
IMS_PCU_FIRMWARE_NAME, fw->size);
n_fw_records = ims_pcu_count_fw_records(fw);
retval = ims_pcu_flash_firmware(pcu, fw, n_fw_records);
if (retval)
goto out;
retval = ims_pcu_execute_bl_command(pcu, LAUNCH_APP, NULL, 0, 0);
if (retval)
dev_err(pcu->dev,
"Failed to start application image, error: %d\n",
retval);
out:
pcu->update_firmware_status = retval;
sysfs_notify(&pcu->dev->kobj, NULL, "update_firmware_status");
return retval;
}
static void ims_pcu_process_async_firmware(const struct firmware *fw,
void *context)
{
struct ims_pcu *pcu = context;
int error;
if (!fw) {
dev_err(pcu->dev, "Failed to get firmware %s\n",
IMS_PCU_FIRMWARE_NAME);
goto out;
}
error = ihex_validate_fw(fw);
if (error) {
dev_err(pcu->dev, "Firmware %s is invalid\n",
IMS_PCU_FIRMWARE_NAME);
goto out;
}
mutex_lock(&pcu->cmd_mutex);
ims_pcu_handle_firmware_update(pcu, fw);
mutex_unlock(&pcu->cmd_mutex);
release_firmware(fw);
out:
complete(&pcu->async_firmware_done);
}
/*********************************************************************
* Backlight LED device support *
*********************************************************************/
#define IMS_PCU_MAX_BRIGHTNESS 31998
static int ims_pcu_backlight_set_brightness(struct led_classdev *cdev,
enum led_brightness value)
{
struct ims_pcu_backlight *backlight =
container_of(cdev, struct ims_pcu_backlight, cdev);
struct ims_pcu *pcu =
container_of(backlight, struct ims_pcu, backlight);
__le16 br_val = cpu_to_le16(value);
int error;
mutex_lock(&pcu->cmd_mutex);
error = ims_pcu_execute_command(pcu, SET_BRIGHTNESS,
&br_val, sizeof(br_val));
if (error && error != -ENODEV)
dev_warn(pcu->dev,
"Failed to set desired brightness %u, error: %d\n",
value, error);
mutex_unlock(&pcu->cmd_mutex);
return error;
}
static enum led_brightness
ims_pcu_backlight_get_brightness(struct led_classdev *cdev)
{
struct ims_pcu_backlight *backlight =
container_of(cdev, struct ims_pcu_backlight, cdev);
struct ims_pcu *pcu =
container_of(backlight, struct ims_pcu, backlight);
int brightness;
int error;
mutex_lock(&pcu->cmd_mutex);
error = ims_pcu_execute_query(pcu, GET_BRIGHTNESS);
if (error) {
dev_warn(pcu->dev,
"Failed to get current brightness, error: %d\n",
error);
/* Assume the LED is OFF */
brightness = LED_OFF;
} else {
brightness =
get_unaligned_le16(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET]);
}
mutex_unlock(&pcu->cmd_mutex);
return brightness;
}
static int ims_pcu_setup_backlight(struct ims_pcu *pcu)
{
struct ims_pcu_backlight *backlight = &pcu->backlight;
int error;
snprintf(backlight->name, sizeof(backlight->name),
"pcu%d::kbd_backlight", pcu->device_no);
backlight->cdev.name = backlight->name;
backlight->cdev.max_brightness = IMS_PCU_MAX_BRIGHTNESS;
backlight->cdev.brightness_get = ims_pcu_backlight_get_brightness;
backlight->cdev.brightness_set_blocking =
ims_pcu_backlight_set_brightness;
error = led_classdev_register(pcu->dev, &backlight->cdev);
if (error) {
dev_err(pcu->dev,
"Failed to register backlight LED device, error: %d\n",
error);
return error;
}
return 0;
}
static void ims_pcu_destroy_backlight(struct ims_pcu *pcu)
{
struct ims_pcu_backlight *backlight = &pcu->backlight;
led_classdev_unregister(&backlight->cdev);
}
/*********************************************************************
* Sysfs attributes handling *
*********************************************************************/
struct ims_pcu_attribute {
struct device_attribute dattr;
size_t field_offset;
int field_length;
};
static ssize_t ims_pcu_attribute_show(struct device *dev,
struct device_attribute *dattr,
char *buf)
{
struct usb_interface *intf = to_usb_interface(dev);
struct ims_pcu *pcu = usb_get_intfdata(intf);
struct ims_pcu_attribute *attr =
container_of(dattr, struct ims_pcu_attribute, dattr);
char *field = (char *)pcu + attr->field_offset;
return scnprintf(buf, PAGE_SIZE, "%.*s\n", attr->field_length, field);
}
static ssize_t ims_pcu_attribute_store(struct device *dev,
struct device_attribute *dattr,
const char *buf, size_t count)
{
struct usb_interface *intf = to_usb_interface(dev);
struct ims_pcu *pcu = usb_get_intfdata(intf);
struct ims_pcu_attribute *attr =
container_of(dattr, struct ims_pcu_attribute, dattr);
char *field = (char *)pcu + attr->field_offset;
size_t data_len;
int error;
if (count > attr->field_length)
return -EINVAL;
data_len = strnlen(buf, attr->field_length);
if (data_len > attr->field_length)
return -EINVAL;
error = mutex_lock_interruptible(&pcu->cmd_mutex);
if (error)
return error;
memset(field, 0, attr->field_length);
memcpy(field, buf, data_len);
error = ims_pcu_set_info(pcu);
/*
* Even if update failed, let's fetch the info again as we just
* clobbered one of the fields.
*/
ims_pcu_get_info(pcu);
mutex_unlock(&pcu->cmd_mutex);
return error < 0 ? error : count;
}
#define IMS_PCU_ATTR(_field, _mode) \
struct ims_pcu_attribute ims_pcu_attr_##_field = { \
.dattr = __ATTR(_field, _mode, \
ims_pcu_attribute_show, \
ims_pcu_attribute_store), \
.field_offset = offsetof(struct ims_pcu, _field), \
.field_length = sizeof(((struct ims_pcu *)NULL)->_field), \
}
#define IMS_PCU_RO_ATTR(_field) \
IMS_PCU_ATTR(_field, S_IRUGO)
#define IMS_PCU_RW_ATTR(_field) \
IMS_PCU_ATTR(_field, S_IRUGO | S_IWUSR)
static IMS_PCU_RW_ATTR(part_number);
static IMS_PCU_RW_ATTR(serial_number);
static IMS_PCU_RW_ATTR(date_of_manufacturing);
static IMS_PCU_RO_ATTR(fw_version);
static IMS_PCU_RO_ATTR(bl_version);
static IMS_PCU_RO_ATTR(reset_reason);
static ssize_t ims_pcu_reset_device(struct device *dev,
struct device_attribute *dattr,
const char *buf, size_t count)
{
static const u8 reset_byte = 1;
struct usb_interface *intf = to_usb_interface(dev);
struct ims_pcu *pcu = usb_get_intfdata(intf);
int value;
int error;
error = kstrtoint(buf, 0, &value);
if (error)
return error;
if (value != 1)
return -EINVAL;
dev_info(pcu->dev, "Attempting to reset device\n");
error = ims_pcu_execute_command(pcu, PCU_RESET, &reset_byte, 1);
if (error) {
dev_info(pcu->dev,
"Failed to reset device, error: %d\n",
error);
return error;
}
return count;
}
static DEVICE_ATTR(reset_device, S_IWUSR, NULL, ims_pcu_reset_device);
static ssize_t ims_pcu_update_firmware_store(struct device *dev,
struct device_attribute *dattr,
const char *buf, size_t count)
{
struct usb_interface *intf = to_usb_interface(dev);
struct ims_pcu *pcu = usb_get_intfdata(intf);
const struct firmware *fw = NULL;
int value;
int error;
error = kstrtoint(buf, 0, &value);
if (error)
return error;
if (value != 1)
return -EINVAL;
error = mutex_lock_interruptible(&pcu->cmd_mutex);
if (error)
return error;
error = request_ihex_firmware(&fw, IMS_PCU_FIRMWARE_NAME, pcu->dev);
if (error) {
dev_err(pcu->dev, "Failed to request firmware %s, error: %d\n",
IMS_PCU_FIRMWARE_NAME, error);
goto out;
}
/*
* If we are already in bootloader mode we can proceed with
* flashing the firmware.
*
* If we are in application mode, then we need to switch into
* bootloader mode, which will cause the device to disconnect
* and reconnect as different device.
*/
if (pcu->bootloader_mode)
error = ims_pcu_handle_firmware_update(pcu, fw);
else
error = ims_pcu_switch_to_bootloader(pcu);
release_firmware(fw);
out:
mutex_unlock(&pcu->cmd_mutex);
return error ?: count;
}
static DEVICE_ATTR(update_firmware, S_IWUSR,
NULL, ims_pcu_update_firmware_store);
static ssize_t
ims_pcu_update_firmware_status_show(struct device *dev,
struct device_attribute *dattr,
char *buf)
{
struct usb_interface *intf = to_usb_interface(dev);
struct ims_pcu *pcu = usb_get_intfdata(intf);
return scnprintf(buf, PAGE_SIZE, "%d\n", pcu->update_firmware_status);
}
static DEVICE_ATTR(update_firmware_status, S_IRUGO,
ims_pcu_update_firmware_status_show, NULL);
static struct attribute *ims_pcu_attrs[] = {
&ims_pcu_attr_part_number.dattr.attr,
&ims_pcu_attr_serial_number.dattr.attr,
&ims_pcu_attr_date_of_manufacturing.dattr.attr,
&ims_pcu_attr_fw_version.dattr.attr,
&ims_pcu_attr_bl_version.dattr.attr,
&ims_pcu_attr_reset_reason.dattr.attr,
&dev_attr_reset_device.attr,
&dev_attr_update_firmware.attr,
&dev_attr_update_firmware_status.attr,
NULL
};
static umode_t ims_pcu_is_attr_visible(struct kobject *kobj,
struct attribute *attr, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct usb_interface *intf = to_usb_interface(dev);
struct ims_pcu *pcu = usb_get_intfdata(intf);
umode_t mode = attr->mode;
if (pcu->bootloader_mode) {
if (attr != &dev_attr_update_firmware_status.attr &&
attr != &dev_attr_update_firmware.attr &&
attr != &dev_attr_reset_device.attr) {
mode = 0;
}
} else {
if (attr == &dev_attr_update_firmware_status.attr)
mode = 0;
}
return mode;
}
static const struct attribute_group ims_pcu_attr_group = {
.is_visible = ims_pcu_is_attr_visible,
.attrs = ims_pcu_attrs,
};
/* Support for a separate OFN attribute group */
#define OFN_REG_RESULT_OFFSET 2
static int ims_pcu_read_ofn_config(struct ims_pcu *pcu, u8 addr, u8 *data)
{
int error;
s16 result;
error = ims_pcu_execute_command(pcu, OFN_GET_CONFIG,
&addr, sizeof(addr));
if (error)
return error;
result = (s16)get_unaligned_le16(pcu->cmd_buf + OFN_REG_RESULT_OFFSET);
if (result < 0)
return -EIO;
/* We only need LSB */
*data = pcu->cmd_buf[OFN_REG_RESULT_OFFSET];
return 0;
}
static int ims_pcu_write_ofn_config(struct ims_pcu *pcu, u8 addr, u8 data)
{
u8 buffer[] = { addr, data };
int error;
s16 result;
error = ims_pcu_execute_command(pcu, OFN_SET_CONFIG,
&buffer, sizeof(buffer));
if (error)
return error;
result = (s16)get_unaligned_le16(pcu->cmd_buf + OFN_REG_RESULT_OFFSET);
if (result < 0)
return -EIO;
return 0;
}
static ssize_t ims_pcu_ofn_reg_data_show(struct device *dev,
struct device_attribute *dattr,
char *buf)
{
struct usb_interface *intf = to_usb_interface(dev);
struct ims_pcu *pcu = usb_get_intfdata(intf);
int error;
u8 data;
mutex_lock(&pcu->cmd_mutex);
error = ims_pcu_read_ofn_config(pcu, pcu->ofn_reg_addr, &data);
mutex_unlock(&pcu->cmd_mutex);
if (error)
return error;
return scnprintf(buf, PAGE_SIZE, "%x\n", data);
}
static ssize_t ims_pcu_ofn_reg_data_store(struct device *dev,
struct device_attribute *dattr,
const char *buf, size_t count)
{
struct usb_interface *intf = to_usb_interface(dev);
struct ims_pcu *pcu = usb_get_intfdata(intf);
int error;
u8 value;
error = kstrtou8(buf, 0, &value);
if (error)
return error;
mutex_lock(&pcu->cmd_mutex);
error = ims_pcu_write_ofn_config(pcu, pcu->ofn_reg_addr, value);
mutex_unlock(&pcu->cmd_mutex);
return error ?: count;
}
static DEVICE_ATTR(reg_data, S_IRUGO | S_IWUSR,
ims_pcu_ofn_reg_data_show, ims_pcu_ofn_reg_data_store);
static ssize_t ims_pcu_ofn_reg_addr_show(struct device *dev,
struct device_attribute *dattr,
char *buf)
{
struct usb_interface *intf = to_usb_interface(dev);
struct ims_pcu *pcu = usb_get_intfdata(intf);
int error;
mutex_lock(&pcu->cmd_mutex);
error = scnprintf(buf, PAGE_SIZE, "%x\n", pcu->ofn_reg_addr);
mutex_unlock(&pcu->cmd_mutex);
return error;
}
static ssize_t ims_pcu_ofn_reg_addr_store(struct device *dev,
struct device_attribute *dattr,
const char *buf, size_t count)
{
struct usb_interface *intf = to_usb_interface(dev);
struct ims_pcu *pcu = usb_get_intfdata(intf);
int error;
u8 value;
error = kstrtou8(buf, 0, &value);
if (error)
return error;
mutex_lock(&pcu->cmd_mutex);
pcu->ofn_reg_addr = value;
mutex_unlock(&pcu->cmd_mutex);
return count;
}
static DEVICE_ATTR(reg_addr, S_IRUGO | S_IWUSR,
ims_pcu_ofn_reg_addr_show, ims_pcu_ofn_reg_addr_store);
struct ims_pcu_ofn_bit_attribute {
struct device_attribute dattr;
u8 addr;
u8 nr;
};
static ssize_t ims_pcu_ofn_bit_show(struct device *dev,
struct device_attribute *dattr,
char *buf)
{
struct usb_interface *intf = to_usb_interface(dev);
struct ims_pcu *pcu = usb_get_intfdata(intf);
struct ims_pcu_ofn_bit_attribute *attr =
container_of(dattr, struct ims_pcu_ofn_bit_attribute, dattr);
int error;
u8 data;
mutex_lock(&pcu->cmd_mutex);
error = ims_pcu_read_ofn_config(pcu, attr->addr, &data);
mutex_unlock(&pcu->cmd_mutex);
if (error)
return error;
return scnprintf(buf, PAGE_SIZE, "%d\n", !!(data & (1 << attr->nr)));
}
static ssize_t ims_pcu_ofn_bit_store(struct device *dev,
struct device_attribute *dattr,
const char *buf, size_t count)
{
struct usb_interface *intf = to_usb_interface(dev);
struct ims_pcu *pcu = usb_get_intfdata(intf);
struct ims_pcu_ofn_bit_attribute *attr =
container_of(dattr, struct ims_pcu_ofn_bit_attribute, dattr);
int error;
int value;
u8 data;
error = kstrtoint(buf, 0, &value);
if (error)
return error;
if (value > 1)
return -EINVAL;
mutex_lock(&pcu->cmd_mutex);
error = ims_pcu_read_ofn_config(pcu, attr->addr, &data);
if (!error) {
if (value)
data |= 1U << attr->nr;
else
data &= ~(1U << attr->nr);
error = ims_pcu_write_ofn_config(pcu, attr->addr, data);
}
mutex_unlock(&pcu->cmd_mutex);
return error ?: count;
}
#define IMS_PCU_OFN_BIT_ATTR(_field, _addr, _nr) \
struct ims_pcu_ofn_bit_attribute ims_pcu_ofn_attr_##_field = { \
.dattr = __ATTR(_field, S_IWUSR | S_IRUGO, \
ims_pcu_ofn_bit_show, ims_pcu_ofn_bit_store), \
.addr = _addr, \
.nr = _nr, \
}
static IMS_PCU_OFN_BIT_ATTR(engine_enable, 0x60, 7);
static IMS_PCU_OFN_BIT_ATTR(speed_enable, 0x60, 6);
static IMS_PCU_OFN_BIT_ATTR(assert_enable, 0x60, 5);
static IMS_PCU_OFN_BIT_ATTR(xyquant_enable, 0x60, 4);
static IMS_PCU_OFN_BIT_ATTR(xyscale_enable, 0x60, 1);
static IMS_PCU_OFN_BIT_ATTR(scale_x2, 0x63, 6);
static IMS_PCU_OFN_BIT_ATTR(scale_y2, 0x63, 7);
static struct attribute *ims_pcu_ofn_attrs[] = {
&dev_attr_reg_data.attr,
&dev_attr_reg_addr.attr,
&ims_pcu_ofn_attr_engine_enable.dattr.attr,
&ims_pcu_ofn_attr_speed_enable.dattr.attr,
&ims_pcu_ofn_attr_assert_enable.dattr.attr,
&ims_pcu_ofn_attr_xyquant_enable.dattr.attr,
&ims_pcu_ofn_attr_xyscale_enable.dattr.attr,
&ims_pcu_ofn_attr_scale_x2.dattr.attr,
&ims_pcu_ofn_attr_scale_y2.dattr.attr,
NULL
};
static const struct attribute_group ims_pcu_ofn_attr_group = {
.name = "ofn",
.attrs = ims_pcu_ofn_attrs,
};
static void ims_pcu_irq(struct urb *urb)
{
struct ims_pcu *pcu = urb->context;
int retval, status;
status = urb->status;
switch (status) {
case 0:
/* success */
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
/* this urb is terminated, clean up */
dev_dbg(pcu->dev, "%s - urb shutting down with status: %d\n",
__func__, status);
return;
default:
dev_dbg(pcu->dev, "%s - nonzero urb status received: %d\n",
__func__, status);
goto exit;
}
dev_dbg(pcu->dev, "%s: received %d: %*ph\n", __func__,
urb->actual_length, urb->actual_length, pcu->urb_in_buf);
if (urb == pcu->urb_in)
ims_pcu_process_data(pcu, urb);
exit:
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval && retval != -ENODEV)
dev_err(pcu->dev, "%s - usb_submit_urb failed with result %d\n",
__func__, retval);
}
static int ims_pcu_buffers_alloc(struct ims_pcu *pcu)
{
int error;
pcu->urb_in_buf = usb_alloc_coherent(pcu->udev, pcu->max_in_size,
GFP_KERNEL, &pcu->read_dma);
if (!pcu->urb_in_buf) {
dev_err(pcu->dev,
"Failed to allocate memory for read buffer\n");
return -ENOMEM;
}
pcu->urb_in = usb_alloc_urb(0, GFP_KERNEL);
if (!pcu->urb_in) {
dev_err(pcu->dev, "Failed to allocate input URB\n");
error = -ENOMEM;
goto err_free_urb_in_buf;
}
pcu->urb_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
pcu->urb_in->transfer_dma = pcu->read_dma;
usb_fill_bulk_urb(pcu->urb_in, pcu->udev,
usb_rcvbulkpipe(pcu->udev,
pcu->ep_in->bEndpointAddress),
pcu->urb_in_buf, pcu->max_in_size,
ims_pcu_irq, pcu);
/*
* We are using usb_bulk_msg() for sending so there is no point
* in allocating memory with usb_alloc_coherent().
*/
pcu->urb_out_buf = kmalloc(pcu->max_out_size, GFP_KERNEL);
if (!pcu->urb_out_buf) {
dev_err(pcu->dev, "Failed to allocate memory for write buffer\n");
error = -ENOMEM;
goto err_free_in_urb;
}
pcu->urb_ctrl_buf = usb_alloc_coherent(pcu->udev, pcu->max_ctrl_size,
GFP_KERNEL, &pcu->ctrl_dma);
if (!pcu->urb_ctrl_buf) {
dev_err(pcu->dev,
"Failed to allocate memory for read buffer\n");
error = -ENOMEM;
goto err_free_urb_out_buf;
}
pcu->urb_ctrl = usb_alloc_urb(0, GFP_KERNEL);
if (!pcu->urb_ctrl) {
dev_err(pcu->dev, "Failed to allocate input URB\n");
error = -ENOMEM;
goto err_free_urb_ctrl_buf;
}
pcu->urb_ctrl->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
pcu->urb_ctrl->transfer_dma = pcu->ctrl_dma;
usb_fill_int_urb(pcu->urb_ctrl, pcu->udev,
usb_rcvintpipe(pcu->udev,
pcu->ep_ctrl->bEndpointAddress),
pcu->urb_ctrl_buf, pcu->max_ctrl_size,
ims_pcu_irq, pcu, pcu->ep_ctrl->bInterval);
return 0;
err_free_urb_ctrl_buf:
usb_free_coherent(pcu->udev, pcu->max_ctrl_size,
pcu->urb_ctrl_buf, pcu->ctrl_dma);
err_free_urb_out_buf:
kfree(pcu->urb_out_buf);
err_free_in_urb:
usb_free_urb(pcu->urb_in);
err_free_urb_in_buf:
usb_free_coherent(pcu->udev, pcu->max_in_size,
pcu->urb_in_buf, pcu->read_dma);
return error;
}
static void ims_pcu_buffers_free(struct ims_pcu *pcu)
{
usb_kill_urb(pcu->urb_in);
usb_free_urb(pcu->urb_in);
usb_free_coherent(pcu->udev, pcu->max_out_size,
pcu->urb_in_buf, pcu->read_dma);
kfree(pcu->urb_out_buf);
usb_kill_urb(pcu->urb_ctrl);
usb_free_urb(pcu->urb_ctrl);
usb_free_coherent(pcu->udev, pcu->max_ctrl_size,
pcu->urb_ctrl_buf, pcu->ctrl_dma);
}
static const struct usb_cdc_union_desc *
ims_pcu_get_cdc_union_desc(struct usb_interface *intf)
{
const void *buf = intf->altsetting->extra;
size_t buflen = intf->altsetting->extralen;
struct usb_cdc_union_desc *union_desc;
if (!buf) {
dev_err(&intf->dev, "Missing descriptor data\n");
return NULL;
}
if (!buflen) {
dev_err(&intf->dev, "Zero length descriptor\n");
return NULL;
}
while (buflen >= sizeof(*union_desc)) {
union_desc = (struct usb_cdc_union_desc *)buf;
if (union_desc->bLength > buflen) {
dev_err(&intf->dev, "Too large descriptor\n");
return NULL;
}
if (union_desc->bDescriptorType == USB_DT_CS_INTERFACE &&
union_desc->bDescriptorSubType == USB_CDC_UNION_TYPE) {
dev_dbg(&intf->dev, "Found union header\n");
if (union_desc->bLength >= sizeof(*union_desc))
return union_desc;
dev_err(&intf->dev,
"Union descriptor too short (%d vs %zd)\n",
union_desc->bLength, sizeof(*union_desc));
return NULL;
}
buflen -= union_desc->bLength;
buf += union_desc->bLength;
}
dev_err(&intf->dev, "Missing CDC union descriptor\n");
return NULL;
}
static int ims_pcu_parse_cdc_data(struct usb_interface *intf, struct ims_pcu *pcu)
{
const struct usb_cdc_union_desc *union_desc;
struct usb_host_interface *alt;
union_desc = ims_pcu_get_cdc_union_desc(intf);
if (!union_desc)
return -EINVAL;
pcu->ctrl_intf = usb_ifnum_to_if(pcu->udev,
union_desc->bMasterInterface0);
if (!pcu->ctrl_intf)
return -EINVAL;
alt = pcu->ctrl_intf->cur_altsetting;
if (alt->desc.bNumEndpoints < 1)
return -ENODEV;
pcu->ep_ctrl = &alt->endpoint[0].desc;
pcu->max_ctrl_size = usb_endpoint_maxp(pcu->ep_ctrl);
pcu->data_intf = usb_ifnum_to_if(pcu->udev,
union_desc->bSlaveInterface0);
if (!pcu->data_intf)
return -EINVAL;
alt = pcu->data_intf->cur_altsetting;
if (alt->desc.bNumEndpoints != 2) {
dev_err(pcu->dev,
"Incorrect number of endpoints on data interface (%d)\n",
alt->desc.bNumEndpoints);
return -EINVAL;
}
pcu->ep_out = &alt->endpoint[0].desc;
if (!usb_endpoint_is_bulk_out(pcu->ep_out)) {
dev_err(pcu->dev,
"First endpoint on data interface is not BULK OUT\n");
return -EINVAL;
}
pcu->max_out_size = usb_endpoint_maxp(pcu->ep_out);
if (pcu->max_out_size < 8) {
dev_err(pcu->dev,
"Max OUT packet size is too small (%zd)\n",
pcu->max_out_size);
return -EINVAL;
}
pcu->ep_in = &alt->endpoint[1].desc;
if (!usb_endpoint_is_bulk_in(pcu->ep_in)) {
dev_err(pcu->dev,
"Second endpoint on data interface is not BULK IN\n");
return -EINVAL;
}
pcu->max_in_size = usb_endpoint_maxp(pcu->ep_in);
if (pcu->max_in_size < 8) {
dev_err(pcu->dev,
"Max IN packet size is too small (%zd)\n",
pcu->max_in_size);
return -EINVAL;
}
return 0;
}
static int ims_pcu_start_io(struct ims_pcu *pcu)
{
int error;
error = usb_submit_urb(pcu->urb_ctrl, GFP_KERNEL);
if (error) {
dev_err(pcu->dev,
"Failed to start control IO - usb_submit_urb failed with result: %d\n",
error);
return -EIO;
}
error = usb_submit_urb(pcu->urb_in, GFP_KERNEL);
if (error) {
dev_err(pcu->dev,
"Failed to start IO - usb_submit_urb failed with result: %d\n",
error);
usb_kill_urb(pcu->urb_ctrl);
return -EIO;
}
return 0;
}
static void ims_pcu_stop_io(struct ims_pcu *pcu)
{
usb_kill_urb(pcu->urb_in);
usb_kill_urb(pcu->urb_ctrl);
}
static int ims_pcu_line_setup(struct ims_pcu *pcu)
{
struct usb_host_interface *interface = pcu->ctrl_intf->cur_altsetting;
struct usb_cdc_line_coding *line = (void *)pcu->cmd_buf;
int error;
memset(line, 0, sizeof(*line));
line->dwDTERate = cpu_to_le32(57600);
line->bDataBits = 8;
error = usb_control_msg(pcu->udev, usb_sndctrlpipe(pcu->udev, 0),
USB_CDC_REQ_SET_LINE_CODING,
USB_TYPE_CLASS | USB_RECIP_INTERFACE,
0, interface->desc.bInterfaceNumber,
line, sizeof(struct usb_cdc_line_coding),
5000);
if (error < 0) {
dev_err(pcu->dev, "Failed to set line coding, error: %d\n",
error);
return error;
}
error = usb_control_msg(pcu->udev, usb_sndctrlpipe(pcu->udev, 0),
USB_CDC_REQ_SET_CONTROL_LINE_STATE,
USB_TYPE_CLASS | USB_RECIP_INTERFACE,
0x03, interface->desc.bInterfaceNumber,
NULL, 0, 5000);
if (error < 0) {
dev_err(pcu->dev, "Failed to set line state, error: %d\n",
error);
return error;
}
return 0;
}
static int ims_pcu_get_device_info(struct ims_pcu *pcu)
{
int error;
error = ims_pcu_get_info(pcu);
if (error)
return error;
error = ims_pcu_execute_query(pcu, GET_FW_VERSION);
if (error) {
dev_err(pcu->dev,
"GET_FW_VERSION command failed, error: %d\n", error);
return error;
}
snprintf(pcu->fw_version, sizeof(pcu->fw_version),
"%02d%02d%02d%02d.%c%c",
pcu->cmd_buf[2], pcu->cmd_buf[3], pcu->cmd_buf[4], pcu->cmd_buf[5],
pcu->cmd_buf[6], pcu->cmd_buf[7]);
error = ims_pcu_execute_query(pcu, GET_BL_VERSION);
if (error) {
dev_err(pcu->dev,
"GET_BL_VERSION command failed, error: %d\n", error);
return error;
}
snprintf(pcu->bl_version, sizeof(pcu->bl_version),
"%02d%02d%02d%02d.%c%c",
pcu->cmd_buf[2], pcu->cmd_buf[3], pcu->cmd_buf[4], pcu->cmd_buf[5],
pcu->cmd_buf[6], pcu->cmd_buf[7]);
error = ims_pcu_execute_query(pcu, RESET_REASON);
if (error) {
dev_err(pcu->dev,
"RESET_REASON command failed, error: %d\n", error);
return error;
}
snprintf(pcu->reset_reason, sizeof(pcu->reset_reason),
"%02x", pcu->cmd_buf[IMS_PCU_DATA_OFFSET]);
dev_dbg(pcu->dev,
"P/N: %s, MD: %s, S/N: %s, FW: %s, BL: %s, RR: %s\n",
pcu->part_number,
pcu->date_of_manufacturing,
pcu->serial_number,
pcu->fw_version,
pcu->bl_version,
pcu->reset_reason);
return 0;
}
static int ims_pcu_identify_type(struct ims_pcu *pcu, u8 *device_id)
{
int error;
error = ims_pcu_execute_query(pcu, GET_DEVICE_ID);
if (error) {
dev_err(pcu->dev,
"GET_DEVICE_ID command failed, error: %d\n", error);
return error;
}
*device_id = pcu->cmd_buf[IMS_PCU_DATA_OFFSET];
dev_dbg(pcu->dev, "Detected device ID: %d\n", *device_id);
return 0;
}
static int ims_pcu_init_application_mode(struct ims_pcu *pcu)
{
static atomic_t device_no = ATOMIC_INIT(-1);
const struct ims_pcu_device_info *info;
int error;
error = ims_pcu_get_device_info(pcu);
if (error) {
/* Device does not respond to basic queries, hopeless */
return error;
}
error = ims_pcu_identify_type(pcu, &pcu->device_id);
if (error) {
dev_err(pcu->dev,
"Failed to identify device, error: %d\n", error);
/*
* Do not signal error, but do not create input nor
* backlight devices either, let userspace figure this
* out (flash a new firmware?).
*/
return 0;
}
if (pcu->device_id >= ARRAY_SIZE(ims_pcu_device_info) ||
!ims_pcu_device_info[pcu->device_id].keymap) {
dev_err(pcu->dev, "Device ID %d is not valid\n", pcu->device_id);
/* Same as above, punt to userspace */
return 0;
}
/* Device appears to be operable, complete initialization */
pcu->device_no = atomic_inc_return(&device_no);
/*
* PCU-B devices, both GEN_1 and GEN_2 do not have OFN sensor
*/
if (pcu->device_id != IMS_PCU_PCU_B_DEVICE_ID) {
error = sysfs_create_group(&pcu->dev->kobj,
&ims_pcu_ofn_attr_group);
if (error)
return error;
}
error = ims_pcu_setup_backlight(pcu);
if (error)
return error;
info = &ims_pcu_device_info[pcu->device_id];
error = ims_pcu_setup_buttons(pcu, info->keymap, info->keymap_len);
if (error)
goto err_destroy_backlight;
if (info->has_gamepad) {
error = ims_pcu_setup_gamepad(pcu);
if (error)
goto err_destroy_buttons;
}
pcu->setup_complete = true;
return 0;
err_destroy_buttons:
ims_pcu_destroy_buttons(pcu);
err_destroy_backlight:
ims_pcu_destroy_backlight(pcu);
return error;
}
static void ims_pcu_destroy_application_mode(struct ims_pcu *pcu)
{
if (pcu->setup_complete) {
pcu->setup_complete = false;
mb(); /* make sure flag setting is not reordered */
if (pcu->gamepad)
ims_pcu_destroy_gamepad(pcu);
ims_pcu_destroy_buttons(pcu);
ims_pcu_destroy_backlight(pcu);
if (pcu->device_id != IMS_PCU_PCU_B_DEVICE_ID)
sysfs_remove_group(&pcu->dev->kobj,
&ims_pcu_ofn_attr_group);
}
}
static int ims_pcu_init_bootloader_mode(struct ims_pcu *pcu)
{
int error;
error = ims_pcu_execute_bl_command(pcu, QUERY_DEVICE, NULL, 0,
IMS_PCU_CMD_RESPONSE_TIMEOUT);
if (error) {
dev_err(pcu->dev, "Bootloader does not respond, aborting\n");
return error;
}
pcu->fw_start_addr =
get_unaligned_le32(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET + 11]);
pcu->fw_end_addr =
get_unaligned_le32(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET + 15]);
dev_info(pcu->dev,
"Device is in bootloader mode (addr 0x%08x-0x%08x), requesting firmware\n",
pcu->fw_start_addr, pcu->fw_end_addr);
error = request_firmware_nowait(THIS_MODULE, true,
IMS_PCU_FIRMWARE_NAME,
pcu->dev, GFP_KERNEL, pcu,
ims_pcu_process_async_firmware);
if (error) {
/* This error is not fatal, let userspace have another chance */
complete(&pcu->async_firmware_done);
}
return 0;
}
static void ims_pcu_destroy_bootloader_mode(struct ims_pcu *pcu)
{
/* Make sure our initial firmware request has completed */
wait_for_completion(&pcu->async_firmware_done);
}
#define IMS_PCU_APPLICATION_MODE 0
#define IMS_PCU_BOOTLOADER_MODE 1
static struct usb_driver ims_pcu_driver;
static int ims_pcu_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct ims_pcu *pcu;
int error;
pcu = kzalloc(sizeof(struct ims_pcu), GFP_KERNEL);
if (!pcu)
return -ENOMEM;
pcu->dev = &intf->dev;
pcu->udev = udev;
pcu->bootloader_mode = id->driver_info == IMS_PCU_BOOTLOADER_MODE;
mutex_init(&pcu->cmd_mutex);
init_completion(&pcu->cmd_done);
init_completion(&pcu->async_firmware_done);
error = ims_pcu_parse_cdc_data(intf, pcu);
if (error)
goto err_free_mem;
error = usb_driver_claim_interface(&ims_pcu_driver,
pcu->data_intf, pcu);
if (error) {
dev_err(&intf->dev,
"Unable to claim corresponding data interface: %d\n",
error);
goto err_free_mem;
}
usb_set_intfdata(pcu->ctrl_intf, pcu);
usb_set_intfdata(pcu->data_intf, pcu);
error = ims_pcu_buffers_alloc(pcu);
if (error)
goto err_unclaim_intf;
error = ims_pcu_start_io(pcu);
if (error)
goto err_free_buffers;
error = ims_pcu_line_setup(pcu);
if (error)
goto err_stop_io;
error = sysfs_create_group(&intf->dev.kobj, &ims_pcu_attr_group);
if (error)
goto err_stop_io;
error = pcu->bootloader_mode ?
ims_pcu_init_bootloader_mode(pcu) :
ims_pcu_init_application_mode(pcu);
if (error)
goto err_remove_sysfs;
return 0;
err_remove_sysfs:
sysfs_remove_group(&intf->dev.kobj, &ims_pcu_attr_group);
err_stop_io:
ims_pcu_stop_io(pcu);
err_free_buffers:
ims_pcu_buffers_free(pcu);
err_unclaim_intf:
usb_driver_release_interface(&ims_pcu_driver, pcu->data_intf);
err_free_mem:
kfree(pcu);
return error;
}
static void ims_pcu_disconnect(struct usb_interface *intf)
{
struct ims_pcu *pcu = usb_get_intfdata(intf);
struct usb_host_interface *alt = intf->cur_altsetting;
usb_set_intfdata(intf, NULL);
/*
* See if we are dealing with control or data interface. The cleanup
* happens when we unbind primary (control) interface.
*/
if (alt->desc.bInterfaceClass != USB_CLASS_COMM)
return;
sysfs_remove_group(&intf->dev.kobj, &ims_pcu_attr_group);
ims_pcu_stop_io(pcu);
if (pcu->bootloader_mode)
ims_pcu_destroy_bootloader_mode(pcu);
else
ims_pcu_destroy_application_mode(pcu);
ims_pcu_buffers_free(pcu);
kfree(pcu);
}
#ifdef CONFIG_PM
static int ims_pcu_suspend(struct usb_interface *intf,
pm_message_t message)
{
struct ims_pcu *pcu = usb_get_intfdata(intf);
struct usb_host_interface *alt = intf->cur_altsetting;
if (alt->desc.bInterfaceClass == USB_CLASS_COMM)
ims_pcu_stop_io(pcu);
return 0;
}
static int ims_pcu_resume(struct usb_interface *intf)
{
struct ims_pcu *pcu = usb_get_intfdata(intf);
struct usb_host_interface *alt = intf->cur_altsetting;
int retval = 0;
if (alt->desc.bInterfaceClass == USB_CLASS_COMM) {
retval = ims_pcu_start_io(pcu);
if (retval == 0)
retval = ims_pcu_line_setup(pcu);
}
return retval;
}
#endif
static const struct usb_device_id ims_pcu_id_table[] = {
{
USB_DEVICE_AND_INTERFACE_INFO(0x04d8, 0x0082,
USB_CLASS_COMM,
USB_CDC_SUBCLASS_ACM,
USB_CDC_ACM_PROTO_AT_V25TER),
.driver_info = IMS_PCU_APPLICATION_MODE,
},
{
USB_DEVICE_AND_INTERFACE_INFO(0x04d8, 0x0083,
USB_CLASS_COMM,
USB_CDC_SUBCLASS_ACM,
USB_CDC_ACM_PROTO_AT_V25TER),
.driver_info = IMS_PCU_BOOTLOADER_MODE,
},
{ }
};
static struct usb_driver ims_pcu_driver = {
.name = "ims_pcu",
.id_table = ims_pcu_id_table,
.probe = ims_pcu_probe,
.disconnect = ims_pcu_disconnect,
#ifdef CONFIG_PM
.suspend = ims_pcu_suspend,
.resume = ims_pcu_resume,
.reset_resume = ims_pcu_resume,
#endif
};
module_usb_driver(ims_pcu_driver);
MODULE_DESCRIPTION("IMS Passenger Control Unit driver");
MODULE_AUTHOR("Dmitry Torokhov <dmitry.torokhov@gmail.com>");
MODULE_LICENSE("GPL");