blob: e1edb6186beeae41a2b7f456bbc12c491acfaba6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include <linux/string.h>
#include <linux/elf.h>
#include <asm/boot_data.h>
#include <asm/sections.h>
#include <asm/maccess.h>
#include <asm/cpu_mf.h>
#include <asm/setup.h>
#include <asm/kasan.h>
#include <asm/kexec.h>
#include <asm/sclp.h>
#include <asm/diag.h>
#include <asm/uv.h>
#include <asm/abs_lowcore.h>
#include <asm/physmem_info.h>
#include "decompressor.h"
#include "boot.h"
#include "uv.h"
unsigned long __bootdata_preserved(__kaslr_offset);
unsigned long __bootdata_preserved(__abs_lowcore);
unsigned long __bootdata_preserved(__memcpy_real_area);
pte_t *__bootdata_preserved(memcpy_real_ptep);
unsigned long __bootdata_preserved(VMALLOC_START);
unsigned long __bootdata_preserved(VMALLOC_END);
struct page *__bootdata_preserved(vmemmap);
unsigned long __bootdata_preserved(vmemmap_size);
unsigned long __bootdata_preserved(MODULES_VADDR);
unsigned long __bootdata_preserved(MODULES_END);
unsigned long __bootdata(ident_map_size);
u64 __bootdata_preserved(stfle_fac_list[16]);
u64 __bootdata_preserved(alt_stfle_fac_list[16]);
struct oldmem_data __bootdata_preserved(oldmem_data);
struct machine_info machine;
void error(char *x)
{
sclp_early_printk("\n\n");
sclp_early_printk(x);
sclp_early_printk("\n\n -- System halted");
disabled_wait();
}
static void detect_facilities(void)
{
if (test_facility(8)) {
machine.has_edat1 = 1;
__ctl_set_bit(0, 23);
}
if (test_facility(78))
machine.has_edat2 = 1;
if (!noexec_disabled && test_facility(130)) {
machine.has_nx = 1;
__ctl_set_bit(0, 20);
}
}
static void setup_lpp(void)
{
S390_lowcore.current_pid = 0;
S390_lowcore.lpp = LPP_MAGIC;
if (test_facility(40))
lpp(&S390_lowcore.lpp);
}
#ifdef CONFIG_KERNEL_UNCOMPRESSED
unsigned long mem_safe_offset(void)
{
return vmlinux.default_lma + vmlinux.image_size + vmlinux.bss_size;
}
#endif
static void rescue_initrd(unsigned long min, unsigned long max)
{
unsigned long old_addr, addr, size;
if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
return;
if (!get_physmem_reserved(RR_INITRD, &addr, &size))
return;
if (addr >= min && addr + size <= max)
return;
old_addr = addr;
physmem_free(RR_INITRD);
addr = physmem_alloc_top_down(RR_INITRD, size, 0);
memmove((void *)addr, (void *)old_addr, size);
}
static void copy_bootdata(void)
{
if (__boot_data_end - __boot_data_start != vmlinux.bootdata_size)
error(".boot.data section size mismatch");
memcpy((void *)vmlinux.bootdata_off, __boot_data_start, vmlinux.bootdata_size);
if (__boot_data_preserved_end - __boot_data_preserved_start != vmlinux.bootdata_preserved_size)
error(".boot.preserved.data section size mismatch");
memcpy((void *)vmlinux.bootdata_preserved_off, __boot_data_preserved_start, vmlinux.bootdata_preserved_size);
}
static void handle_relocs(unsigned long offset)
{
Elf64_Rela *rela_start, *rela_end, *rela;
int r_type, r_sym, rc;
Elf64_Addr loc, val;
Elf64_Sym *dynsym;
rela_start = (Elf64_Rela *) vmlinux.rela_dyn_start;
rela_end = (Elf64_Rela *) vmlinux.rela_dyn_end;
dynsym = (Elf64_Sym *) vmlinux.dynsym_start;
for (rela = rela_start; rela < rela_end; rela++) {
loc = rela->r_offset + offset;
val = rela->r_addend;
r_sym = ELF64_R_SYM(rela->r_info);
if (r_sym) {
if (dynsym[r_sym].st_shndx != SHN_UNDEF)
val += dynsym[r_sym].st_value + offset;
} else {
/*
* 0 == undefined symbol table index (STN_UNDEF),
* used for R_390_RELATIVE, only add KASLR offset
*/
val += offset;
}
r_type = ELF64_R_TYPE(rela->r_info);
rc = arch_kexec_do_relocs(r_type, (void *) loc, val, 0);
if (rc)
error("Unknown relocation type");
}
}
/*
* Merge information from several sources into a single ident_map_size value.
* "ident_map_size" represents the upper limit of physical memory we may ever
* reach. It might not be all online memory, but also include standby (offline)
* memory. "ident_map_size" could be lower then actual standby or even online
* memory present, due to limiting factors. We should never go above this limit.
* It is the size of our identity mapping.
*
* Consider the following factors:
* 1. max_physmem_end - end of physical memory online or standby.
* Always >= end of the last online memory range (get_physmem_online_end()).
* 2. CONFIG_MAX_PHYSMEM_BITS - the maximum size of physical memory the
* kernel is able to support.
* 3. "mem=" kernel command line option which limits physical memory usage.
* 4. OLDMEM_BASE which is a kdump memory limit when the kernel is executed as
* crash kernel.
* 5. "hsa" size which is a memory limit when the kernel is executed during
* zfcp/nvme dump.
*/
static void setup_ident_map_size(unsigned long max_physmem_end)
{
unsigned long hsa_size;
ident_map_size = max_physmem_end;
if (memory_limit)
ident_map_size = min(ident_map_size, memory_limit);
ident_map_size = min(ident_map_size, 1UL << MAX_PHYSMEM_BITS);
#ifdef CONFIG_CRASH_DUMP
if (oldmem_data.start) {
__kaslr_enabled = 0;
ident_map_size = min(ident_map_size, oldmem_data.size);
} else if (ipl_block_valid && is_ipl_block_dump()) {
__kaslr_enabled = 0;
if (!sclp_early_get_hsa_size(&hsa_size) && hsa_size)
ident_map_size = min(ident_map_size, hsa_size);
}
#endif
}
static unsigned long setup_kernel_memory_layout(void)
{
unsigned long vmemmap_start;
unsigned long asce_limit;
unsigned long rte_size;
unsigned long pages;
unsigned long vmax;
pages = ident_map_size / PAGE_SIZE;
/* vmemmap contains a multiple of PAGES_PER_SECTION struct pages */
vmemmap_size = SECTION_ALIGN_UP(pages) * sizeof(struct page);
/* choose kernel address space layout: 4 or 3 levels. */
vmemmap_start = round_up(ident_map_size, _REGION3_SIZE);
if (IS_ENABLED(CONFIG_KASAN) ||
vmalloc_size > _REGION2_SIZE ||
vmemmap_start + vmemmap_size + vmalloc_size + MODULES_LEN >
_REGION2_SIZE) {
asce_limit = _REGION1_SIZE;
rte_size = _REGION2_SIZE;
} else {
asce_limit = _REGION2_SIZE;
rte_size = _REGION3_SIZE;
}
/*
* forcing modules and vmalloc area under the ultravisor
* secure storage limit, so that any vmalloc allocation
* we do could be used to back secure guest storage.
*/
vmax = adjust_to_uv_max(asce_limit);
#ifdef CONFIG_KASAN
/* force vmalloc and modules below kasan shadow */
vmax = min(vmax, KASAN_SHADOW_START);
#endif
__memcpy_real_area = round_down(vmax - PAGE_SIZE, PAGE_SIZE);
__abs_lowcore = round_down(__memcpy_real_area - ABS_LOWCORE_MAP_SIZE,
sizeof(struct lowcore));
MODULES_END = round_down(__abs_lowcore, _SEGMENT_SIZE);
MODULES_VADDR = MODULES_END - MODULES_LEN;
VMALLOC_END = MODULES_VADDR;
/* allow vmalloc area to occupy up to about 1/2 of the rest virtual space left */
vmalloc_size = min(vmalloc_size, round_down(VMALLOC_END / 2, _REGION3_SIZE));
VMALLOC_START = VMALLOC_END - vmalloc_size;
/* split remaining virtual space between 1:1 mapping & vmemmap array */
pages = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
pages = SECTION_ALIGN_UP(pages);
/* keep vmemmap_start aligned to a top level region table entry */
vmemmap_start = round_down(VMALLOC_START - pages * sizeof(struct page), rte_size);
/* vmemmap_start is the future VMEM_MAX_PHYS, make sure it is within MAX_PHYSMEM */
vmemmap_start = min(vmemmap_start, 1UL << MAX_PHYSMEM_BITS);
/* make sure identity map doesn't overlay with vmemmap */
ident_map_size = min(ident_map_size, vmemmap_start);
vmemmap_size = SECTION_ALIGN_UP(ident_map_size / PAGE_SIZE) * sizeof(struct page);
/* make sure vmemmap doesn't overlay with vmalloc area */
VMALLOC_START = max(vmemmap_start + vmemmap_size, VMALLOC_START);
vmemmap = (struct page *)vmemmap_start;
return asce_limit;
}
/*
* This function clears the BSS section of the decompressed Linux kernel and NOT the decompressor's.
*/
static void clear_bss_section(unsigned long vmlinux_lma)
{
memset((void *)vmlinux_lma + vmlinux.image_size, 0, vmlinux.bss_size);
}
/*
* Set vmalloc area size to an 8th of (potential) physical memory
* size, unless size has been set by kernel command line parameter.
*/
static void setup_vmalloc_size(void)
{
unsigned long size;
if (vmalloc_size_set)
return;
size = round_up(ident_map_size / 8, _SEGMENT_SIZE);
vmalloc_size = max(size, vmalloc_size);
}
static void offset_vmlinux_info(unsigned long offset)
{
*(unsigned long *)(&vmlinux.entry) += offset;
vmlinux.bootdata_off += offset;
vmlinux.bootdata_preserved_off += offset;
vmlinux.rela_dyn_start += offset;
vmlinux.rela_dyn_end += offset;
vmlinux.dynsym_start += offset;
vmlinux.init_mm_off += offset;
vmlinux.swapper_pg_dir_off += offset;
vmlinux.invalid_pg_dir_off += offset;
#ifdef CONFIG_KASAN
vmlinux.kasan_early_shadow_page_off += offset;
vmlinux.kasan_early_shadow_pte_off += offset;
vmlinux.kasan_early_shadow_pmd_off += offset;
vmlinux.kasan_early_shadow_pud_off += offset;
vmlinux.kasan_early_shadow_p4d_off += offset;
#endif
}
void startup_kernel(void)
{
unsigned long max_physmem_end;
unsigned long vmlinux_lma = 0;
unsigned long asce_limit;
unsigned long safe_addr;
void *img;
psw_t psw;
setup_lpp();
safe_addr = mem_safe_offset();
/*
* reserve decompressor memory together with decompression heap, buffer and
* memory which might be occupied by uncompressed kernel at default 1Mb
* position (if KASLR is off or failed).
*/
physmem_reserve(RR_DECOMPRESSOR, 0, safe_addr);
if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && parmarea.initrd_size)
physmem_reserve(RR_INITRD, parmarea.initrd_start, parmarea.initrd_size);
oldmem_data.start = parmarea.oldmem_base;
oldmem_data.size = parmarea.oldmem_size;
store_ipl_parmblock();
read_ipl_report();
uv_query_info();
sclp_early_read_info();
setup_boot_command_line();
parse_boot_command_line();
detect_facilities();
sanitize_prot_virt_host();
max_physmem_end = detect_max_physmem_end();
setup_ident_map_size(max_physmem_end);
setup_vmalloc_size();
asce_limit = setup_kernel_memory_layout();
/* got final ident_map_size, physmem allocations could be performed now */
physmem_set_usable_limit(ident_map_size);
detect_physmem_online_ranges(max_physmem_end);
save_ipl_cert_comp_list();
rescue_initrd(safe_addr, ident_map_size);
if (kaslr_enabled()) {
vmlinux_lma = get_random_base();
if (vmlinux_lma) {
__kaslr_offset = vmlinux_lma - vmlinux.default_lma;
offset_vmlinux_info(__kaslr_offset);
}
}
vmlinux_lma = vmlinux_lma ?: vmlinux.default_lma;
physmem_reserve(RR_VMLINUX, vmlinux_lma, vmlinux.image_size + vmlinux.bss_size);
if (!IS_ENABLED(CONFIG_KERNEL_UNCOMPRESSED)) {
img = decompress_kernel();
memmove((void *)vmlinux_lma, img, vmlinux.image_size);
} else if (__kaslr_offset) {
img = (void *)vmlinux.default_lma;
memmove((void *)vmlinux_lma, img, vmlinux.image_size);
memset(img, 0, vmlinux.image_size);
}
/* vmlinux decompression is done, shrink reserved low memory */
physmem_reserve(RR_DECOMPRESSOR, 0, (unsigned long)_decompressor_end);
physmem_alloc_range(RR_AMODE31, vmlinux.amode31_size, PAGE_SIZE, 0, SZ_2G, true);
/*
* The order of the following operations is important:
*
* - handle_relocs() must follow clear_bss_section() to establish static
* memory references to data in .bss to be used by setup_vmem()
* (i.e init_mm.pgd)
*
* - setup_vmem() must follow handle_relocs() to be able using
* static memory references to data in .bss (i.e init_mm.pgd)
*
* - copy_bootdata() must follow setup_vmem() to propagate changes to
* bootdata made by setup_vmem()
*/
clear_bss_section(vmlinux_lma);
handle_relocs(__kaslr_offset);
setup_vmem(asce_limit);
copy_bootdata();
/*
* Save KASLR offset for early dumps, before vmcore_info is set.
* Mark as uneven to distinguish from real vmcore_info pointer.
*/
S390_lowcore.vmcore_info = __kaslr_offset ? __kaslr_offset | 0x1UL : 0;
/*
* Jump to the decompressed kernel entry point and switch DAT mode on.
*/
psw.addr = vmlinux.entry;
psw.mask = PSW_KERNEL_BITS;
__load_psw(psw);
}