| /******************************************************************************* |
| |
| Intel(R) Gigabit Ethernet Linux driver |
| Copyright(c) 2007-2012 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/bitops.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pagemap.h> |
| #include <linux/netdevice.h> |
| #include <linux/ipv6.h> |
| #include <linux/slab.h> |
| #include <net/checksum.h> |
| #include <net/ip6_checksum.h> |
| #include <linux/net_tstamp.h> |
| #include <linux/mii.h> |
| #include <linux/ethtool.h> |
| #include <linux/if.h> |
| #include <linux/if_vlan.h> |
| #include <linux/pci.h> |
| #include <linux/pci-aspm.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/sctp.h> |
| #include <linux/if_ether.h> |
| #include <linux/aer.h> |
| #include <linux/prefetch.h> |
| #include <linux/pm_runtime.h> |
| #ifdef CONFIG_IGB_DCA |
| #include <linux/dca.h> |
| #endif |
| #include "igb.h" |
| |
| #define MAJ 3 |
| #define MIN 2 |
| #define BUILD 10 |
| #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ |
| __stringify(BUILD) "-k" |
| char igb_driver_name[] = "igb"; |
| char igb_driver_version[] = DRV_VERSION; |
| static const char igb_driver_string[] = |
| "Intel(R) Gigabit Ethernet Network Driver"; |
| static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation."; |
| |
| static const struct e1000_info *igb_info_tbl[] = { |
| [board_82575] = &e1000_82575_info, |
| }; |
| |
| static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = { |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, |
| /* required last entry */ |
| {0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, igb_pci_tbl); |
| |
| void igb_reset(struct igb_adapter *); |
| static int igb_setup_all_tx_resources(struct igb_adapter *); |
| static int igb_setup_all_rx_resources(struct igb_adapter *); |
| static void igb_free_all_tx_resources(struct igb_adapter *); |
| static void igb_free_all_rx_resources(struct igb_adapter *); |
| static void igb_setup_mrqc(struct igb_adapter *); |
| static int igb_probe(struct pci_dev *, const struct pci_device_id *); |
| static void __devexit igb_remove(struct pci_dev *pdev); |
| static void igb_init_hw_timer(struct igb_adapter *adapter); |
| static int igb_sw_init(struct igb_adapter *); |
| static int igb_open(struct net_device *); |
| static int igb_close(struct net_device *); |
| static void igb_configure_tx(struct igb_adapter *); |
| static void igb_configure_rx(struct igb_adapter *); |
| static void igb_clean_all_tx_rings(struct igb_adapter *); |
| static void igb_clean_all_rx_rings(struct igb_adapter *); |
| static void igb_clean_tx_ring(struct igb_ring *); |
| static void igb_clean_rx_ring(struct igb_ring *); |
| static void igb_set_rx_mode(struct net_device *); |
| static void igb_update_phy_info(unsigned long); |
| static void igb_watchdog(unsigned long); |
| static void igb_watchdog_task(struct work_struct *); |
| static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); |
| static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, |
| struct rtnl_link_stats64 *stats); |
| static int igb_change_mtu(struct net_device *, int); |
| static int igb_set_mac(struct net_device *, void *); |
| static void igb_set_uta(struct igb_adapter *adapter); |
| static irqreturn_t igb_intr(int irq, void *); |
| static irqreturn_t igb_intr_msi(int irq, void *); |
| static irqreturn_t igb_msix_other(int irq, void *); |
| static irqreturn_t igb_msix_ring(int irq, void *); |
| #ifdef CONFIG_IGB_DCA |
| static void igb_update_dca(struct igb_q_vector *); |
| static void igb_setup_dca(struct igb_adapter *); |
| #endif /* CONFIG_IGB_DCA */ |
| static int igb_poll(struct napi_struct *, int); |
| static bool igb_clean_tx_irq(struct igb_q_vector *); |
| static bool igb_clean_rx_irq(struct igb_q_vector *, int); |
| static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); |
| static void igb_tx_timeout(struct net_device *); |
| static void igb_reset_task(struct work_struct *); |
| static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features); |
| static int igb_vlan_rx_add_vid(struct net_device *, u16); |
| static int igb_vlan_rx_kill_vid(struct net_device *, u16); |
| static void igb_restore_vlan(struct igb_adapter *); |
| static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); |
| static void igb_ping_all_vfs(struct igb_adapter *); |
| static void igb_msg_task(struct igb_adapter *); |
| static void igb_vmm_control(struct igb_adapter *); |
| static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); |
| static void igb_restore_vf_multicasts(struct igb_adapter *adapter); |
| static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); |
| static int igb_ndo_set_vf_vlan(struct net_device *netdev, |
| int vf, u16 vlan, u8 qos); |
| static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate); |
| static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, |
| struct ifla_vf_info *ivi); |
| static void igb_check_vf_rate_limit(struct igb_adapter *); |
| |
| #ifdef CONFIG_PCI_IOV |
| static int igb_vf_configure(struct igb_adapter *adapter, int vf); |
| static int igb_find_enabled_vfs(struct igb_adapter *adapter); |
| static int igb_check_vf_assignment(struct igb_adapter *adapter); |
| #endif |
| |
| #ifdef CONFIG_PM |
| #ifdef CONFIG_PM_SLEEP |
| static int igb_suspend(struct device *); |
| #endif |
| static int igb_resume(struct device *); |
| #ifdef CONFIG_PM_RUNTIME |
| static int igb_runtime_suspend(struct device *dev); |
| static int igb_runtime_resume(struct device *dev); |
| static int igb_runtime_idle(struct device *dev); |
| #endif |
| static const struct dev_pm_ops igb_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) |
| SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, |
| igb_runtime_idle) |
| }; |
| #endif |
| static void igb_shutdown(struct pci_dev *); |
| #ifdef CONFIG_IGB_DCA |
| static int igb_notify_dca(struct notifier_block *, unsigned long, void *); |
| static struct notifier_block dca_notifier = { |
| .notifier_call = igb_notify_dca, |
| .next = NULL, |
| .priority = 0 |
| }; |
| #endif |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* for netdump / net console */ |
| static void igb_netpoll(struct net_device *); |
| #endif |
| #ifdef CONFIG_PCI_IOV |
| static unsigned int max_vfs = 0; |
| module_param(max_vfs, uint, 0); |
| MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate " |
| "per physical function"); |
| #endif /* CONFIG_PCI_IOV */ |
| |
| static pci_ers_result_t igb_io_error_detected(struct pci_dev *, |
| pci_channel_state_t); |
| static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); |
| static void igb_io_resume(struct pci_dev *); |
| |
| static struct pci_error_handlers igb_err_handler = { |
| .error_detected = igb_io_error_detected, |
| .slot_reset = igb_io_slot_reset, |
| .resume = igb_io_resume, |
| }; |
| |
| static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); |
| |
| static struct pci_driver igb_driver = { |
| .name = igb_driver_name, |
| .id_table = igb_pci_tbl, |
| .probe = igb_probe, |
| .remove = __devexit_p(igb_remove), |
| #ifdef CONFIG_PM |
| .driver.pm = &igb_pm_ops, |
| #endif |
| .shutdown = igb_shutdown, |
| .err_handler = &igb_err_handler |
| }; |
| |
| MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); |
| MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| |
| struct igb_reg_info { |
| u32 ofs; |
| char *name; |
| }; |
| |
| static const struct igb_reg_info igb_reg_info_tbl[] = { |
| |
| /* General Registers */ |
| {E1000_CTRL, "CTRL"}, |
| {E1000_STATUS, "STATUS"}, |
| {E1000_CTRL_EXT, "CTRL_EXT"}, |
| |
| /* Interrupt Registers */ |
| {E1000_ICR, "ICR"}, |
| |
| /* RX Registers */ |
| {E1000_RCTL, "RCTL"}, |
| {E1000_RDLEN(0), "RDLEN"}, |
| {E1000_RDH(0), "RDH"}, |
| {E1000_RDT(0), "RDT"}, |
| {E1000_RXDCTL(0), "RXDCTL"}, |
| {E1000_RDBAL(0), "RDBAL"}, |
| {E1000_RDBAH(0), "RDBAH"}, |
| |
| /* TX Registers */ |
| {E1000_TCTL, "TCTL"}, |
| {E1000_TDBAL(0), "TDBAL"}, |
| {E1000_TDBAH(0), "TDBAH"}, |
| {E1000_TDLEN(0), "TDLEN"}, |
| {E1000_TDH(0), "TDH"}, |
| {E1000_TDT(0), "TDT"}, |
| {E1000_TXDCTL(0), "TXDCTL"}, |
| {E1000_TDFH, "TDFH"}, |
| {E1000_TDFT, "TDFT"}, |
| {E1000_TDFHS, "TDFHS"}, |
| {E1000_TDFPC, "TDFPC"}, |
| |
| /* List Terminator */ |
| {} |
| }; |
| |
| /* |
| * igb_regdump - register printout routine |
| */ |
| static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) |
| { |
| int n = 0; |
| char rname[16]; |
| u32 regs[8]; |
| |
| switch (reginfo->ofs) { |
| case E1000_RDLEN(0): |
| for (n = 0; n < 4; n++) |
| regs[n] = rd32(E1000_RDLEN(n)); |
| break; |
| case E1000_RDH(0): |
| for (n = 0; n < 4; n++) |
| regs[n] = rd32(E1000_RDH(n)); |
| break; |
| case E1000_RDT(0): |
| for (n = 0; n < 4; n++) |
| regs[n] = rd32(E1000_RDT(n)); |
| break; |
| case E1000_RXDCTL(0): |
| for (n = 0; n < 4; n++) |
| regs[n] = rd32(E1000_RXDCTL(n)); |
| break; |
| case E1000_RDBAL(0): |
| for (n = 0; n < 4; n++) |
| regs[n] = rd32(E1000_RDBAL(n)); |
| break; |
| case E1000_RDBAH(0): |
| for (n = 0; n < 4; n++) |
| regs[n] = rd32(E1000_RDBAH(n)); |
| break; |
| case E1000_TDBAL(0): |
| for (n = 0; n < 4; n++) |
| regs[n] = rd32(E1000_RDBAL(n)); |
| break; |
| case E1000_TDBAH(0): |
| for (n = 0; n < 4; n++) |
| regs[n] = rd32(E1000_TDBAH(n)); |
| break; |
| case E1000_TDLEN(0): |
| for (n = 0; n < 4; n++) |
| regs[n] = rd32(E1000_TDLEN(n)); |
| break; |
| case E1000_TDH(0): |
| for (n = 0; n < 4; n++) |
| regs[n] = rd32(E1000_TDH(n)); |
| break; |
| case E1000_TDT(0): |
| for (n = 0; n < 4; n++) |
| regs[n] = rd32(E1000_TDT(n)); |
| break; |
| case E1000_TXDCTL(0): |
| for (n = 0; n < 4; n++) |
| regs[n] = rd32(E1000_TXDCTL(n)); |
| break; |
| default: |
| pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); |
| return; |
| } |
| |
| snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); |
| pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], |
| regs[2], regs[3]); |
| } |
| |
| /* |
| * igb_dump - Print registers, tx-rings and rx-rings |
| */ |
| static void igb_dump(struct igb_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| struct igb_reg_info *reginfo; |
| struct igb_ring *tx_ring; |
| union e1000_adv_tx_desc *tx_desc; |
| struct my_u0 { u64 a; u64 b; } *u0; |
| struct igb_ring *rx_ring; |
| union e1000_adv_rx_desc *rx_desc; |
| u32 staterr; |
| u16 i, n; |
| |
| if (!netif_msg_hw(adapter)) |
| return; |
| |
| /* Print netdevice Info */ |
| if (netdev) { |
| dev_info(&adapter->pdev->dev, "Net device Info\n"); |
| pr_info("Device Name state trans_start " |
| "last_rx\n"); |
| pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, |
| netdev->state, netdev->trans_start, netdev->last_rx); |
| } |
| |
| /* Print Registers */ |
| dev_info(&adapter->pdev->dev, "Register Dump\n"); |
| pr_info(" Register Name Value\n"); |
| for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; |
| reginfo->name; reginfo++) { |
| igb_regdump(hw, reginfo); |
| } |
| |
| /* Print TX Ring Summary */ |
| if (!netdev || !netif_running(netdev)) |
| goto exit; |
| |
| dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); |
| pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); |
| for (n = 0; n < adapter->num_tx_queues; n++) { |
| struct igb_tx_buffer *buffer_info; |
| tx_ring = adapter->tx_ring[n]; |
| buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; |
| pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", |
| n, tx_ring->next_to_use, tx_ring->next_to_clean, |
| (u64)buffer_info->dma, |
| buffer_info->length, |
| buffer_info->next_to_watch, |
| (u64)buffer_info->time_stamp); |
| } |
| |
| /* Print TX Rings */ |
| if (!netif_msg_tx_done(adapter)) |
| goto rx_ring_summary; |
| |
| dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); |
| |
| /* Transmit Descriptor Formats |
| * |
| * Advanced Transmit Descriptor |
| * +--------------------------------------------------------------+ |
| * 0 | Buffer Address [63:0] | |
| * +--------------------------------------------------------------+ |
| * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | |
| * +--------------------------------------------------------------+ |
| * 63 46 45 40 39 38 36 35 32 31 24 15 0 |
| */ |
| |
| for (n = 0; n < adapter->num_tx_queues; n++) { |
| tx_ring = adapter->tx_ring[n]; |
| pr_info("------------------------------------\n"); |
| pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); |
| pr_info("------------------------------------\n"); |
| pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] " |
| "[bi->dma ] leng ntw timestamp " |
| "bi->skb\n"); |
| |
| for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { |
| const char *next_desc; |
| struct igb_tx_buffer *buffer_info; |
| tx_desc = IGB_TX_DESC(tx_ring, i); |
| buffer_info = &tx_ring->tx_buffer_info[i]; |
| u0 = (struct my_u0 *)tx_desc; |
| if (i == tx_ring->next_to_use && |
| i == tx_ring->next_to_clean) |
| next_desc = " NTC/U"; |
| else if (i == tx_ring->next_to_use) |
| next_desc = " NTU"; |
| else if (i == tx_ring->next_to_clean) |
| next_desc = " NTC"; |
| else |
| next_desc = ""; |
| |
| pr_info("T [0x%03X] %016llX %016llX %016llX" |
| " %04X %p %016llX %p%s\n", i, |
| le64_to_cpu(u0->a), |
| le64_to_cpu(u0->b), |
| (u64)buffer_info->dma, |
| buffer_info->length, |
| buffer_info->next_to_watch, |
| (u64)buffer_info->time_stamp, |
| buffer_info->skb, next_desc); |
| |
| if (netif_msg_pktdata(adapter) && buffer_info->dma != 0) |
| print_hex_dump(KERN_INFO, "", |
| DUMP_PREFIX_ADDRESS, |
| 16, 1, phys_to_virt(buffer_info->dma), |
| buffer_info->length, true); |
| } |
| } |
| |
| /* Print RX Rings Summary */ |
| rx_ring_summary: |
| dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); |
| pr_info("Queue [NTU] [NTC]\n"); |
| for (n = 0; n < adapter->num_rx_queues; n++) { |
| rx_ring = adapter->rx_ring[n]; |
| pr_info(" %5d %5X %5X\n", |
| n, rx_ring->next_to_use, rx_ring->next_to_clean); |
| } |
| |
| /* Print RX Rings */ |
| if (!netif_msg_rx_status(adapter)) |
| goto exit; |
| |
| dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); |
| |
| /* Advanced Receive Descriptor (Read) Format |
| * 63 1 0 |
| * +-----------------------------------------------------+ |
| * 0 | Packet Buffer Address [63:1] |A0/NSE| |
| * +----------------------------------------------+------+ |
| * 8 | Header Buffer Address [63:1] | DD | |
| * +-----------------------------------------------------+ |
| * |
| * |
| * Advanced Receive Descriptor (Write-Back) Format |
| * |
| * 63 48 47 32 31 30 21 20 17 16 4 3 0 |
| * +------------------------------------------------------+ |
| * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | |
| * | Checksum Ident | | | | Type | Type | |
| * +------------------------------------------------------+ |
| * 8 | VLAN Tag | Length | Extended Error | Extended Status | |
| * +------------------------------------------------------+ |
| * 63 48 47 32 31 20 19 0 |
| */ |
| |
| for (n = 0; n < adapter->num_rx_queues; n++) { |
| rx_ring = adapter->rx_ring[n]; |
| pr_info("------------------------------------\n"); |
| pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); |
| pr_info("------------------------------------\n"); |
| pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] " |
| "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); |
| pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----" |
| "----------- [bi->skb] <-- Adv Rx Write-Back format\n"); |
| |
| for (i = 0; i < rx_ring->count; i++) { |
| const char *next_desc; |
| struct igb_rx_buffer *buffer_info; |
| buffer_info = &rx_ring->rx_buffer_info[i]; |
| rx_desc = IGB_RX_DESC(rx_ring, i); |
| u0 = (struct my_u0 *)rx_desc; |
| staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| |
| if (i == rx_ring->next_to_use) |
| next_desc = " NTU"; |
| else if (i == rx_ring->next_to_clean) |
| next_desc = " NTC"; |
| else |
| next_desc = ""; |
| |
| if (staterr & E1000_RXD_STAT_DD) { |
| /* Descriptor Done */ |
| pr_info("%s[0x%03X] %016llX %016llX -------" |
| "--------- %p%s\n", "RWB", i, |
| le64_to_cpu(u0->a), |
| le64_to_cpu(u0->b), |
| buffer_info->skb, next_desc); |
| } else { |
| pr_info("%s[0x%03X] %016llX %016llX %016llX" |
| " %p%s\n", "R ", i, |
| le64_to_cpu(u0->a), |
| le64_to_cpu(u0->b), |
| (u64)buffer_info->dma, |
| buffer_info->skb, next_desc); |
| |
| if (netif_msg_pktdata(adapter)) { |
| print_hex_dump(KERN_INFO, "", |
| DUMP_PREFIX_ADDRESS, |
| 16, 1, |
| phys_to_virt(buffer_info->dma), |
| IGB_RX_HDR_LEN, true); |
| print_hex_dump(KERN_INFO, "", |
| DUMP_PREFIX_ADDRESS, |
| 16, 1, |
| phys_to_virt( |
| buffer_info->page_dma + |
| buffer_info->page_offset), |
| PAGE_SIZE/2, true); |
| } |
| } |
| } |
| } |
| |
| exit: |
| return; |
| } |
| |
| |
| /** |
| * igb_read_clock - read raw cycle counter (to be used by time counter) |
| */ |
| static cycle_t igb_read_clock(const struct cyclecounter *tc) |
| { |
| struct igb_adapter *adapter = |
| container_of(tc, struct igb_adapter, cycles); |
| struct e1000_hw *hw = &adapter->hw; |
| u64 stamp = 0; |
| int shift = 0; |
| |
| /* |
| * The timestamp latches on lowest register read. For the 82580 |
| * the lowest register is SYSTIMR instead of SYSTIML. However we never |
| * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it. |
| */ |
| if (hw->mac.type >= e1000_82580) { |
| stamp = rd32(E1000_SYSTIMR) >> 8; |
| shift = IGB_82580_TSYNC_SHIFT; |
| } |
| |
| stamp |= (u64)rd32(E1000_SYSTIML) << shift; |
| stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32); |
| return stamp; |
| } |
| |
| /** |
| * igb_get_hw_dev - return device |
| * used by hardware layer to print debugging information |
| **/ |
| struct net_device *igb_get_hw_dev(struct e1000_hw *hw) |
| { |
| struct igb_adapter *adapter = hw->back; |
| return adapter->netdev; |
| } |
| |
| /** |
| * igb_init_module - Driver Registration Routine |
| * |
| * igb_init_module is the first routine called when the driver is |
| * loaded. All it does is register with the PCI subsystem. |
| **/ |
| static int __init igb_init_module(void) |
| { |
| int ret; |
| pr_info("%s - version %s\n", |
| igb_driver_string, igb_driver_version); |
| |
| pr_info("%s\n", igb_copyright); |
| |
| #ifdef CONFIG_IGB_DCA |
| dca_register_notify(&dca_notifier); |
| #endif |
| ret = pci_register_driver(&igb_driver); |
| return ret; |
| } |
| |
| module_init(igb_init_module); |
| |
| /** |
| * igb_exit_module - Driver Exit Cleanup Routine |
| * |
| * igb_exit_module is called just before the driver is removed |
| * from memory. |
| **/ |
| static void __exit igb_exit_module(void) |
| { |
| #ifdef CONFIG_IGB_DCA |
| dca_unregister_notify(&dca_notifier); |
| #endif |
| pci_unregister_driver(&igb_driver); |
| } |
| |
| module_exit(igb_exit_module); |
| |
| #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) |
| /** |
| * igb_cache_ring_register - Descriptor ring to register mapping |
| * @adapter: board private structure to initialize |
| * |
| * Once we know the feature-set enabled for the device, we'll cache |
| * the register offset the descriptor ring is assigned to. |
| **/ |
| static void igb_cache_ring_register(struct igb_adapter *adapter) |
| { |
| int i = 0, j = 0; |
| u32 rbase_offset = adapter->vfs_allocated_count; |
| |
| switch (adapter->hw.mac.type) { |
| case e1000_82576: |
| /* The queues are allocated for virtualization such that VF 0 |
| * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. |
| * In order to avoid collision we start at the first free queue |
| * and continue consuming queues in the same sequence |
| */ |
| if (adapter->vfs_allocated_count) { |
| for (; i < adapter->rss_queues; i++) |
| adapter->rx_ring[i]->reg_idx = rbase_offset + |
| Q_IDX_82576(i); |
| } |
| case e1000_82575: |
| case e1000_82580: |
| case e1000_i350: |
| default: |
| for (; i < adapter->num_rx_queues; i++) |
| adapter->rx_ring[i]->reg_idx = rbase_offset + i; |
| for (; j < adapter->num_tx_queues; j++) |
| adapter->tx_ring[j]->reg_idx = rbase_offset + j; |
| break; |
| } |
| } |
| |
| static void igb_free_queues(struct igb_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) { |
| kfree(adapter->tx_ring[i]); |
| adapter->tx_ring[i] = NULL; |
| } |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| kfree(adapter->rx_ring[i]); |
| adapter->rx_ring[i] = NULL; |
| } |
| adapter->num_rx_queues = 0; |
| adapter->num_tx_queues = 0; |
| } |
| |
| /** |
| * igb_alloc_queues - Allocate memory for all rings |
| * @adapter: board private structure to initialize |
| * |
| * We allocate one ring per queue at run-time since we don't know the |
| * number of queues at compile-time. |
| **/ |
| static int igb_alloc_queues(struct igb_adapter *adapter) |
| { |
| struct igb_ring *ring; |
| int i; |
| int orig_node = adapter->node; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) { |
| if (orig_node == -1) { |
| int cur_node = next_online_node(adapter->node); |
| if (cur_node == MAX_NUMNODES) |
| cur_node = first_online_node; |
| adapter->node = cur_node; |
| } |
| ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL, |
| adapter->node); |
| if (!ring) |
| ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL); |
| if (!ring) |
| goto err; |
| ring->count = adapter->tx_ring_count; |
| ring->queue_index = i; |
| ring->dev = &adapter->pdev->dev; |
| ring->netdev = adapter->netdev; |
| ring->numa_node = adapter->node; |
| /* For 82575, context index must be unique per ring. */ |
| if (adapter->hw.mac.type == e1000_82575) |
| set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); |
| adapter->tx_ring[i] = ring; |
| } |
| /* Restore the adapter's original node */ |
| adapter->node = orig_node; |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| if (orig_node == -1) { |
| int cur_node = next_online_node(adapter->node); |
| if (cur_node == MAX_NUMNODES) |
| cur_node = first_online_node; |
| adapter->node = cur_node; |
| } |
| ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL, |
| adapter->node); |
| if (!ring) |
| ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL); |
| if (!ring) |
| goto err; |
| ring->count = adapter->rx_ring_count; |
| ring->queue_index = i; |
| ring->dev = &adapter->pdev->dev; |
| ring->netdev = adapter->netdev; |
| ring->numa_node = adapter->node; |
| /* set flag indicating ring supports SCTP checksum offload */ |
| if (adapter->hw.mac.type >= e1000_82576) |
| set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); |
| |
| /* On i350, loopback VLAN packets have the tag byte-swapped. */ |
| if (adapter->hw.mac.type == e1000_i350) |
| set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); |
| |
| adapter->rx_ring[i] = ring; |
| } |
| /* Restore the adapter's original node */ |
| adapter->node = orig_node; |
| |
| igb_cache_ring_register(adapter); |
| |
| return 0; |
| |
| err: |
| /* Restore the adapter's original node */ |
| adapter->node = orig_node; |
| igb_free_queues(adapter); |
| |
| return -ENOMEM; |
| } |
| |
| /** |
| * igb_write_ivar - configure ivar for given MSI-X vector |
| * @hw: pointer to the HW structure |
| * @msix_vector: vector number we are allocating to a given ring |
| * @index: row index of IVAR register to write within IVAR table |
| * @offset: column offset of in IVAR, should be multiple of 8 |
| * |
| * This function is intended to handle the writing of the IVAR register |
| * for adapters 82576 and newer. The IVAR table consists of 2 columns, |
| * each containing an cause allocation for an Rx and Tx ring, and a |
| * variable number of rows depending on the number of queues supported. |
| **/ |
| static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, |
| int index, int offset) |
| { |
| u32 ivar = array_rd32(E1000_IVAR0, index); |
| |
| /* clear any bits that are currently set */ |
| ivar &= ~((u32)0xFF << offset); |
| |
| /* write vector and valid bit */ |
| ivar |= (msix_vector | E1000_IVAR_VALID) << offset; |
| |
| array_wr32(E1000_IVAR0, index, ivar); |
| } |
| |
| #define IGB_N0_QUEUE -1 |
| static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| struct e1000_hw *hw = &adapter->hw; |
| int rx_queue = IGB_N0_QUEUE; |
| int tx_queue = IGB_N0_QUEUE; |
| u32 msixbm = 0; |
| |
| if (q_vector->rx.ring) |
| rx_queue = q_vector->rx.ring->reg_idx; |
| if (q_vector->tx.ring) |
| tx_queue = q_vector->tx.ring->reg_idx; |
| |
| switch (hw->mac.type) { |
| case e1000_82575: |
| /* The 82575 assigns vectors using a bitmask, which matches the |
| bitmask for the EICR/EIMS/EIMC registers. To assign one |
| or more queues to a vector, we write the appropriate bits |
| into the MSIXBM register for that vector. */ |
| if (rx_queue > IGB_N0_QUEUE) |
| msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; |
| if (tx_queue > IGB_N0_QUEUE) |
| msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; |
| if (!adapter->msix_entries && msix_vector == 0) |
| msixbm |= E1000_EIMS_OTHER; |
| array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); |
| q_vector->eims_value = msixbm; |
| break; |
| case e1000_82576: |
| /* |
| * 82576 uses a table that essentially consists of 2 columns |
| * with 8 rows. The ordering is column-major so we use the |
| * lower 3 bits as the row index, and the 4th bit as the |
| * column offset. |
| */ |
| if (rx_queue > IGB_N0_QUEUE) |
| igb_write_ivar(hw, msix_vector, |
| rx_queue & 0x7, |
| (rx_queue & 0x8) << 1); |
| if (tx_queue > IGB_N0_QUEUE) |
| igb_write_ivar(hw, msix_vector, |
| tx_queue & 0x7, |
| ((tx_queue & 0x8) << 1) + 8); |
| q_vector->eims_value = 1 << msix_vector; |
| break; |
| case e1000_82580: |
| case e1000_i350: |
| /* |
| * On 82580 and newer adapters the scheme is similar to 82576 |
| * however instead of ordering column-major we have things |
| * ordered row-major. So we traverse the table by using |
| * bit 0 as the column offset, and the remaining bits as the |
| * row index. |
| */ |
| if (rx_queue > IGB_N0_QUEUE) |
| igb_write_ivar(hw, msix_vector, |
| rx_queue >> 1, |
| (rx_queue & 0x1) << 4); |
| if (tx_queue > IGB_N0_QUEUE) |
| igb_write_ivar(hw, msix_vector, |
| tx_queue >> 1, |
| ((tx_queue & 0x1) << 4) + 8); |
| q_vector->eims_value = 1 << msix_vector; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| |
| /* add q_vector eims value to global eims_enable_mask */ |
| adapter->eims_enable_mask |= q_vector->eims_value; |
| |
| /* configure q_vector to set itr on first interrupt */ |
| q_vector->set_itr = 1; |
| } |
| |
| /** |
| * igb_configure_msix - Configure MSI-X hardware |
| * |
| * igb_configure_msix sets up the hardware to properly |
| * generate MSI-X interrupts. |
| **/ |
| static void igb_configure_msix(struct igb_adapter *adapter) |
| { |
| u32 tmp; |
| int i, vector = 0; |
| struct e1000_hw *hw = &adapter->hw; |
| |
| adapter->eims_enable_mask = 0; |
| |
| /* set vector for other causes, i.e. link changes */ |
| switch (hw->mac.type) { |
| case e1000_82575: |
| tmp = rd32(E1000_CTRL_EXT); |
| /* enable MSI-X PBA support*/ |
| tmp |= E1000_CTRL_EXT_PBA_CLR; |
| |
| /* Auto-Mask interrupts upon ICR read. */ |
| tmp |= E1000_CTRL_EXT_EIAME; |
| tmp |= E1000_CTRL_EXT_IRCA; |
| |
| wr32(E1000_CTRL_EXT, tmp); |
| |
| /* enable msix_other interrupt */ |
| array_wr32(E1000_MSIXBM(0), vector++, |
| E1000_EIMS_OTHER); |
| adapter->eims_other = E1000_EIMS_OTHER; |
| |
| break; |
| |
| case e1000_82576: |
| case e1000_82580: |
| case e1000_i350: |
| /* Turn on MSI-X capability first, or our settings |
| * won't stick. And it will take days to debug. */ |
| wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | |
| E1000_GPIE_PBA | E1000_GPIE_EIAME | |
| E1000_GPIE_NSICR); |
| |
| /* enable msix_other interrupt */ |
| adapter->eims_other = 1 << vector; |
| tmp = (vector++ | E1000_IVAR_VALID) << 8; |
| |
| wr32(E1000_IVAR_MISC, tmp); |
| break; |
| default: |
| /* do nothing, since nothing else supports MSI-X */ |
| break; |
| } /* switch (hw->mac.type) */ |
| |
| adapter->eims_enable_mask |= adapter->eims_other; |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) |
| igb_assign_vector(adapter->q_vector[i], vector++); |
| |
| wrfl(); |
| } |
| |
| /** |
| * igb_request_msix - Initialize MSI-X interrupts |
| * |
| * igb_request_msix allocates MSI-X vectors and requests interrupts from the |
| * kernel. |
| **/ |
| static int igb_request_msix(struct igb_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| int i, err = 0, vector = 0; |
| |
| err = request_irq(adapter->msix_entries[vector].vector, |
| igb_msix_other, 0, netdev->name, adapter); |
| if (err) |
| goto out; |
| vector++; |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) { |
| struct igb_q_vector *q_vector = adapter->q_vector[i]; |
| |
| q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); |
| |
| if (q_vector->rx.ring && q_vector->tx.ring) |
| sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, |
| q_vector->rx.ring->queue_index); |
| else if (q_vector->tx.ring) |
| sprintf(q_vector->name, "%s-tx-%u", netdev->name, |
| q_vector->tx.ring->queue_index); |
| else if (q_vector->rx.ring) |
| sprintf(q_vector->name, "%s-rx-%u", netdev->name, |
| q_vector->rx.ring->queue_index); |
| else |
| sprintf(q_vector->name, "%s-unused", netdev->name); |
| |
| err = request_irq(adapter->msix_entries[vector].vector, |
| igb_msix_ring, 0, q_vector->name, |
| q_vector); |
| if (err) |
| goto out; |
| vector++; |
| } |
| |
| igb_configure_msix(adapter); |
| return 0; |
| out: |
| return err; |
| } |
| |
| static void igb_reset_interrupt_capability(struct igb_adapter *adapter) |
| { |
| if (adapter->msix_entries) { |
| pci_disable_msix(adapter->pdev); |
| kfree(adapter->msix_entries); |
| adapter->msix_entries = NULL; |
| } else if (adapter->flags & IGB_FLAG_HAS_MSI) { |
| pci_disable_msi(adapter->pdev); |
| } |
| } |
| |
| /** |
| * igb_free_q_vectors - Free memory allocated for interrupt vectors |
| * @adapter: board private structure to initialize |
| * |
| * This function frees the memory allocated to the q_vectors. In addition if |
| * NAPI is enabled it will delete any references to the NAPI struct prior |
| * to freeing the q_vector. |
| **/ |
| static void igb_free_q_vectors(struct igb_adapter *adapter) |
| { |
| int v_idx; |
| |
| for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) { |
| struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; |
| adapter->q_vector[v_idx] = NULL; |
| if (!q_vector) |
| continue; |
| netif_napi_del(&q_vector->napi); |
| kfree(q_vector); |
| } |
| adapter->num_q_vectors = 0; |
| } |
| |
| /** |
| * igb_clear_interrupt_scheme - reset the device to a state of no interrupts |
| * |
| * This function resets the device so that it has 0 rx queues, tx queues, and |
| * MSI-X interrupts allocated. |
| */ |
| static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) |
| { |
| igb_free_queues(adapter); |
| igb_free_q_vectors(adapter); |
| igb_reset_interrupt_capability(adapter); |
| } |
| |
| /** |
| * igb_set_interrupt_capability - set MSI or MSI-X if supported |
| * |
| * Attempt to configure interrupts using the best available |
| * capabilities of the hardware and kernel. |
| **/ |
| static int igb_set_interrupt_capability(struct igb_adapter *adapter) |
| { |
| int err; |
| int numvecs, i; |
| |
| /* Number of supported queues. */ |
| adapter->num_rx_queues = adapter->rss_queues; |
| if (adapter->vfs_allocated_count) |
| adapter->num_tx_queues = 1; |
| else |
| adapter->num_tx_queues = adapter->rss_queues; |
| |
| /* start with one vector for every rx queue */ |
| numvecs = adapter->num_rx_queues; |
| |
| /* if tx handler is separate add 1 for every tx queue */ |
| if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) |
| numvecs += adapter->num_tx_queues; |
| |
| /* store the number of vectors reserved for queues */ |
| adapter->num_q_vectors = numvecs; |
| |
| /* add 1 vector for link status interrupts */ |
| numvecs++; |
| adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), |
| GFP_KERNEL); |
| if (!adapter->msix_entries) |
| goto msi_only; |
| |
| for (i = 0; i < numvecs; i++) |
| adapter->msix_entries[i].entry = i; |
| |
| err = pci_enable_msix(adapter->pdev, |
| adapter->msix_entries, |
| numvecs); |
| if (err == 0) |
| goto out; |
| |
| igb_reset_interrupt_capability(adapter); |
| |
| /* If we can't do MSI-X, try MSI */ |
| msi_only: |
| #ifdef CONFIG_PCI_IOV |
| /* disable SR-IOV for non MSI-X configurations */ |
| if (adapter->vf_data) { |
| struct e1000_hw *hw = &adapter->hw; |
| /* disable iov and allow time for transactions to clear */ |
| pci_disable_sriov(adapter->pdev); |
| msleep(500); |
| |
| kfree(adapter->vf_data); |
| adapter->vf_data = NULL; |
| wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); |
| wrfl(); |
| msleep(100); |
| dev_info(&adapter->pdev->dev, "IOV Disabled\n"); |
| } |
| #endif |
| adapter->vfs_allocated_count = 0; |
| adapter->rss_queues = 1; |
| adapter->flags |= IGB_FLAG_QUEUE_PAIRS; |
| adapter->num_rx_queues = 1; |
| adapter->num_tx_queues = 1; |
| adapter->num_q_vectors = 1; |
| if (!pci_enable_msi(adapter->pdev)) |
| adapter->flags |= IGB_FLAG_HAS_MSI; |
| out: |
| /* Notify the stack of the (possibly) reduced queue counts. */ |
| netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues); |
| return netif_set_real_num_rx_queues(adapter->netdev, |
| adapter->num_rx_queues); |
| } |
| |
| /** |
| * igb_alloc_q_vectors - Allocate memory for interrupt vectors |
| * @adapter: board private structure to initialize |
| * |
| * We allocate one q_vector per queue interrupt. If allocation fails we |
| * return -ENOMEM. |
| **/ |
| static int igb_alloc_q_vectors(struct igb_adapter *adapter) |
| { |
| struct igb_q_vector *q_vector; |
| struct e1000_hw *hw = &adapter->hw; |
| int v_idx; |
| int orig_node = adapter->node; |
| |
| for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) { |
| if ((adapter->num_q_vectors == (adapter->num_rx_queues + |
| adapter->num_tx_queues)) && |
| (adapter->num_rx_queues == v_idx)) |
| adapter->node = orig_node; |
| if (orig_node == -1) { |
| int cur_node = next_online_node(adapter->node); |
| if (cur_node == MAX_NUMNODES) |
| cur_node = first_online_node; |
| adapter->node = cur_node; |
| } |
| q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL, |
| adapter->node); |
| if (!q_vector) |
| q_vector = kzalloc(sizeof(struct igb_q_vector), |
| GFP_KERNEL); |
| if (!q_vector) |
| goto err_out; |
| q_vector->adapter = adapter; |
| q_vector->itr_register = hw->hw_addr + E1000_EITR(0); |
| q_vector->itr_val = IGB_START_ITR; |
| netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64); |
| adapter->q_vector[v_idx] = q_vector; |
| } |
| /* Restore the adapter's original node */ |
| adapter->node = orig_node; |
| |
| return 0; |
| |
| err_out: |
| /* Restore the adapter's original node */ |
| adapter->node = orig_node; |
| igb_free_q_vectors(adapter); |
| return -ENOMEM; |
| } |
| |
| static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter, |
| int ring_idx, int v_idx) |
| { |
| struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; |
| |
| q_vector->rx.ring = adapter->rx_ring[ring_idx]; |
| q_vector->rx.ring->q_vector = q_vector; |
| q_vector->rx.count++; |
| q_vector->itr_val = adapter->rx_itr_setting; |
| if (q_vector->itr_val && q_vector->itr_val <= 3) |
| q_vector->itr_val = IGB_START_ITR; |
| } |
| |
| static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter, |
| int ring_idx, int v_idx) |
| { |
| struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; |
| |
| q_vector->tx.ring = adapter->tx_ring[ring_idx]; |
| q_vector->tx.ring->q_vector = q_vector; |
| q_vector->tx.count++; |
| q_vector->itr_val = adapter->tx_itr_setting; |
| q_vector->tx.work_limit = adapter->tx_work_limit; |
| if (q_vector->itr_val && q_vector->itr_val <= 3) |
| q_vector->itr_val = IGB_START_ITR; |
| } |
| |
| /** |
| * igb_map_ring_to_vector - maps allocated queues to vectors |
| * |
| * This function maps the recently allocated queues to vectors. |
| **/ |
| static int igb_map_ring_to_vector(struct igb_adapter *adapter) |
| { |
| int i; |
| int v_idx = 0; |
| |
| if ((adapter->num_q_vectors < adapter->num_rx_queues) || |
| (adapter->num_q_vectors < adapter->num_tx_queues)) |
| return -ENOMEM; |
| |
| if (adapter->num_q_vectors >= |
| (adapter->num_rx_queues + adapter->num_tx_queues)) { |
| for (i = 0; i < adapter->num_rx_queues; i++) |
| igb_map_rx_ring_to_vector(adapter, i, v_idx++); |
| for (i = 0; i < adapter->num_tx_queues; i++) |
| igb_map_tx_ring_to_vector(adapter, i, v_idx++); |
| } else { |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| if (i < adapter->num_tx_queues) |
| igb_map_tx_ring_to_vector(adapter, i, v_idx); |
| igb_map_rx_ring_to_vector(adapter, i, v_idx++); |
| } |
| for (; i < adapter->num_tx_queues; i++) |
| igb_map_tx_ring_to_vector(adapter, i, v_idx++); |
| } |
| return 0; |
| } |
| |
| /** |
| * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors |
| * |
| * This function initializes the interrupts and allocates all of the queues. |
| **/ |
| static int igb_init_interrupt_scheme(struct igb_adapter *adapter) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| int err; |
| |
| err = igb_set_interrupt_capability(adapter); |
| if (err) |
| return err; |
| |
| err = igb_alloc_q_vectors(adapter); |
| if (err) { |
| dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); |
| goto err_alloc_q_vectors; |
| } |
| |
| err = igb_alloc_queues(adapter); |
| if (err) { |
| dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); |
| goto err_alloc_queues; |
| } |
| |
| err = igb_map_ring_to_vector(adapter); |
| if (err) { |
| dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n"); |
| goto err_map_queues; |
| } |
| |
| |
| return 0; |
| err_map_queues: |
| igb_free_queues(adapter); |
| err_alloc_queues: |
| igb_free_q_vectors(adapter); |
| err_alloc_q_vectors: |
| igb_reset_interrupt_capability(adapter); |
| return err; |
| } |
| |
| /** |
| * igb_request_irq - initialize interrupts |
| * |
| * Attempts to configure interrupts using the best available |
| * capabilities of the hardware and kernel. |
| **/ |
| static int igb_request_irq(struct igb_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| int err = 0; |
| |
| if (adapter->msix_entries) { |
| err = igb_request_msix(adapter); |
| if (!err) |
| goto request_done; |
| /* fall back to MSI */ |
| igb_clear_interrupt_scheme(adapter); |
| if (!pci_enable_msi(pdev)) |
| adapter->flags |= IGB_FLAG_HAS_MSI; |
| igb_free_all_tx_resources(adapter); |
| igb_free_all_rx_resources(adapter); |
| adapter->num_tx_queues = 1; |
| adapter->num_rx_queues = 1; |
| adapter->num_q_vectors = 1; |
| err = igb_alloc_q_vectors(adapter); |
| if (err) { |
| dev_err(&pdev->dev, |
| "Unable to allocate memory for vectors\n"); |
| goto request_done; |
| } |
| err = igb_alloc_queues(adapter); |
| if (err) { |
| dev_err(&pdev->dev, |
| "Unable to allocate memory for queues\n"); |
| igb_free_q_vectors(adapter); |
| goto request_done; |
| } |
| igb_setup_all_tx_resources(adapter); |
| igb_setup_all_rx_resources(adapter); |
| } |
| |
| igb_assign_vector(adapter->q_vector[0], 0); |
| |
| if (adapter->flags & IGB_FLAG_HAS_MSI) { |
| err = request_irq(pdev->irq, igb_intr_msi, 0, |
| netdev->name, adapter); |
| if (!err) |
| goto request_done; |
| |
| /* fall back to legacy interrupts */ |
| igb_reset_interrupt_capability(adapter); |
| adapter->flags &= ~IGB_FLAG_HAS_MSI; |
| } |
| |
| err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, |
| netdev->name, adapter); |
| |
| if (err) |
| dev_err(&pdev->dev, "Error %d getting interrupt\n", |
| err); |
| |
| request_done: |
| return err; |
| } |
| |
| static void igb_free_irq(struct igb_adapter *adapter) |
| { |
| if (adapter->msix_entries) { |
| int vector = 0, i; |
| |
| free_irq(adapter->msix_entries[vector++].vector, adapter); |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) |
| free_irq(adapter->msix_entries[vector++].vector, |
| adapter->q_vector[i]); |
| } else { |
| free_irq(adapter->pdev->irq, adapter); |
| } |
| } |
| |
| /** |
| * igb_irq_disable - Mask off interrupt generation on the NIC |
| * @adapter: board private structure |
| **/ |
| static void igb_irq_disable(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* |
| * we need to be careful when disabling interrupts. The VFs are also |
| * mapped into these registers and so clearing the bits can cause |
| * issues on the VF drivers so we only need to clear what we set |
| */ |
| if (adapter->msix_entries) { |
| u32 regval = rd32(E1000_EIAM); |
| wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); |
| wr32(E1000_EIMC, adapter->eims_enable_mask); |
| regval = rd32(E1000_EIAC); |
| wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); |
| } |
| |
| wr32(E1000_IAM, 0); |
| wr32(E1000_IMC, ~0); |
| wrfl(); |
| if (adapter->msix_entries) { |
| int i; |
| for (i = 0; i < adapter->num_q_vectors; i++) |
| synchronize_irq(adapter->msix_entries[i].vector); |
| } else { |
| synchronize_irq(adapter->pdev->irq); |
| } |
| } |
| |
| /** |
| * igb_irq_enable - Enable default interrupt generation settings |
| * @adapter: board private structure |
| **/ |
| static void igb_irq_enable(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (adapter->msix_entries) { |
| u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; |
| u32 regval = rd32(E1000_EIAC); |
| wr32(E1000_EIAC, regval | adapter->eims_enable_mask); |
| regval = rd32(E1000_EIAM); |
| wr32(E1000_EIAM, regval | adapter->eims_enable_mask); |
| wr32(E1000_EIMS, adapter->eims_enable_mask); |
| if (adapter->vfs_allocated_count) { |
| wr32(E1000_MBVFIMR, 0xFF); |
| ims |= E1000_IMS_VMMB; |
| } |
| wr32(E1000_IMS, ims); |
| } else { |
| wr32(E1000_IMS, IMS_ENABLE_MASK | |
| E1000_IMS_DRSTA); |
| wr32(E1000_IAM, IMS_ENABLE_MASK | |
| E1000_IMS_DRSTA); |
| } |
| } |
| |
| static void igb_update_mng_vlan(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u16 vid = adapter->hw.mng_cookie.vlan_id; |
| u16 old_vid = adapter->mng_vlan_id; |
| |
| if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { |
| /* add VID to filter table */ |
| igb_vfta_set(hw, vid, true); |
| adapter->mng_vlan_id = vid; |
| } else { |
| adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; |
| } |
| |
| if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && |
| (vid != old_vid) && |
| !test_bit(old_vid, adapter->active_vlans)) { |
| /* remove VID from filter table */ |
| igb_vfta_set(hw, old_vid, false); |
| } |
| } |
| |
| /** |
| * igb_release_hw_control - release control of the h/w to f/w |
| * @adapter: address of board private structure |
| * |
| * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. |
| * For ASF and Pass Through versions of f/w this means that the |
| * driver is no longer loaded. |
| * |
| **/ |
| static void igb_release_hw_control(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl_ext; |
| |
| /* Let firmware take over control of h/w */ |
| ctrl_ext = rd32(E1000_CTRL_EXT); |
| wr32(E1000_CTRL_EXT, |
| ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
| } |
| |
| /** |
| * igb_get_hw_control - get control of the h/w from f/w |
| * @adapter: address of board private structure |
| * |
| * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. |
| * For ASF and Pass Through versions of f/w this means that |
| * the driver is loaded. |
| * |
| **/ |
| static void igb_get_hw_control(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl_ext; |
| |
| /* Let firmware know the driver has taken over */ |
| ctrl_ext = rd32(E1000_CTRL_EXT); |
| wr32(E1000_CTRL_EXT, |
| ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
| } |
| |
| /** |
| * igb_configure - configure the hardware for RX and TX |
| * @adapter: private board structure |
| **/ |
| static void igb_configure(struct igb_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| int i; |
| |
| igb_get_hw_control(adapter); |
| igb_set_rx_mode(netdev); |
| |
| igb_restore_vlan(adapter); |
| |
| igb_setup_tctl(adapter); |
| igb_setup_mrqc(adapter); |
| igb_setup_rctl(adapter); |
| |
| igb_configure_tx(adapter); |
| igb_configure_rx(adapter); |
| |
| igb_rx_fifo_flush_82575(&adapter->hw); |
| |
| /* call igb_desc_unused which always leaves |
| * at least 1 descriptor unused to make sure |
| * next_to_use != next_to_clean */ |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| struct igb_ring *ring = adapter->rx_ring[i]; |
| igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); |
| } |
| } |
| |
| /** |
| * igb_power_up_link - Power up the phy/serdes link |
| * @adapter: address of board private structure |
| **/ |
| void igb_power_up_link(struct igb_adapter *adapter) |
| { |
| if (adapter->hw.phy.media_type == e1000_media_type_copper) |
| igb_power_up_phy_copper(&adapter->hw); |
| else |
| igb_power_up_serdes_link_82575(&adapter->hw); |
| igb_reset_phy(&adapter->hw); |
| } |
| |
| /** |
| * igb_power_down_link - Power down the phy/serdes link |
| * @adapter: address of board private structure |
| */ |
| static void igb_power_down_link(struct igb_adapter *adapter) |
| { |
| if (adapter->hw.phy.media_type == e1000_media_type_copper) |
| igb_power_down_phy_copper_82575(&adapter->hw); |
| else |
| igb_shutdown_serdes_link_82575(&adapter->hw); |
| } |
| |
| /** |
| * igb_up - Open the interface and prepare it to handle traffic |
| * @adapter: board private structure |
| **/ |
| int igb_up(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| int i; |
| |
| /* hardware has been reset, we need to reload some things */ |
| igb_configure(adapter); |
| |
| clear_bit(__IGB_DOWN, &adapter->state); |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) |
| napi_enable(&(adapter->q_vector[i]->napi)); |
| |
| if (adapter->msix_entries) |
| igb_configure_msix(adapter); |
| else |
| igb_assign_vector(adapter->q_vector[0], 0); |
| |
| /* Clear any pending interrupts. */ |
| rd32(E1000_ICR); |
| igb_irq_enable(adapter); |
| |
| /* notify VFs that reset has been completed */ |
| if (adapter->vfs_allocated_count) { |
| u32 reg_data = rd32(E1000_CTRL_EXT); |
| reg_data |= E1000_CTRL_EXT_PFRSTD; |
| wr32(E1000_CTRL_EXT, reg_data); |
| } |
| |
| netif_tx_start_all_queues(adapter->netdev); |
| |
| /* start the watchdog. */ |
| hw->mac.get_link_status = 1; |
| schedule_work(&adapter->watchdog_task); |
| |
| return 0; |
| } |
| |
| void igb_down(struct igb_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 tctl, rctl; |
| int i; |
| |
| /* signal that we're down so the interrupt handler does not |
| * reschedule our watchdog timer */ |
| set_bit(__IGB_DOWN, &adapter->state); |
| |
| /* disable receives in the hardware */ |
| rctl = rd32(E1000_RCTL); |
| wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); |
| /* flush and sleep below */ |
| |
| netif_tx_stop_all_queues(netdev); |
| |
| /* disable transmits in the hardware */ |
| tctl = rd32(E1000_TCTL); |
| tctl &= ~E1000_TCTL_EN; |
| wr32(E1000_TCTL, tctl); |
| /* flush both disables and wait for them to finish */ |
| wrfl(); |
| msleep(10); |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) |
| napi_disable(&(adapter->q_vector[i]->napi)); |
| |
| igb_irq_disable(adapter); |
| |
| del_timer_sync(&adapter->watchdog_timer); |
| del_timer_sync(&adapter->phy_info_timer); |
| |
| netif_carrier_off(netdev); |
| |
| /* record the stats before reset*/ |
| spin_lock(&adapter->stats64_lock); |
| igb_update_stats(adapter, &adapter->stats64); |
| spin_unlock(&adapter->stats64_lock); |
| |
| adapter->link_speed = 0; |
| adapter->link_duplex = 0; |
| |
| if (!pci_channel_offline(adapter->pdev)) |
| igb_reset(adapter); |
| igb_clean_all_tx_rings(adapter); |
| igb_clean_all_rx_rings(adapter); |
| #ifdef CONFIG_IGB_DCA |
| |
| /* since we reset the hardware DCA settings were cleared */ |
| igb_setup_dca(adapter); |
| #endif |
| } |
| |
| void igb_reinit_locked(struct igb_adapter *adapter) |
| { |
| WARN_ON(in_interrupt()); |
| while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) |
| msleep(1); |
| igb_down(adapter); |
| igb_up(adapter); |
| clear_bit(__IGB_RESETTING, &adapter->state); |
| } |
| |
| void igb_reset(struct igb_adapter *adapter) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_mac_info *mac = &hw->mac; |
| struct e1000_fc_info *fc = &hw->fc; |
| u32 pba = 0, tx_space, min_tx_space, min_rx_space; |
| u16 hwm; |
| |
| /* Repartition Pba for greater than 9k mtu |
| * To take effect CTRL.RST is required. |
| */ |
| switch (mac->type) { |
| case e1000_i350: |
| case e1000_82580: |
| pba = rd32(E1000_RXPBS); |
| pba = igb_rxpbs_adjust_82580(pba); |
| break; |
| case e1000_82576: |
| pba = rd32(E1000_RXPBS); |
| pba &= E1000_RXPBS_SIZE_MASK_82576; |
| break; |
| case e1000_82575: |
| default: |
| pba = E1000_PBA_34K; |
| break; |
| } |
| |
| if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && |
| (mac->type < e1000_82576)) { |
| /* adjust PBA for jumbo frames */ |
| wr32(E1000_PBA, pba); |
| |
| /* To maintain wire speed transmits, the Tx FIFO should be |
| * large enough to accommodate two full transmit packets, |
| * rounded up to the next 1KB and expressed in KB. Likewise, |
| * the Rx FIFO should be large enough to accommodate at least |
| * one full receive packet and is similarly rounded up and |
| * expressed in KB. */ |
| pba = rd32(E1000_PBA); |
| /* upper 16 bits has Tx packet buffer allocation size in KB */ |
| tx_space = pba >> 16; |
| /* lower 16 bits has Rx packet buffer allocation size in KB */ |
| pba &= 0xffff; |
| /* the tx fifo also stores 16 bytes of information about the tx |
| * but don't include ethernet FCS because hardware appends it */ |
| min_tx_space = (adapter->max_frame_size + |
| sizeof(union e1000_adv_tx_desc) - |
| ETH_FCS_LEN) * 2; |
| min_tx_space = ALIGN(min_tx_space, 1024); |
| min_tx_space >>= 10; |
| /* software strips receive CRC, so leave room for it */ |
| min_rx_space = adapter->max_frame_size; |
| min_rx_space = ALIGN(min_rx_space, 1024); |
| min_rx_space >>= 10; |
| |
| /* If current Tx allocation is less than the min Tx FIFO size, |
| * and the min Tx FIFO size is less than the current Rx FIFO |
| * allocation, take space away from current Rx allocation */ |
| if (tx_space < min_tx_space && |
| ((min_tx_space - tx_space) < pba)) { |
| pba = pba - (min_tx_space - tx_space); |
| |
| /* if short on rx space, rx wins and must trump tx |
| * adjustment */ |
| if (pba < min_rx_space) |
| pba = min_rx_space; |
| } |
| wr32(E1000_PBA, pba); |
| } |
| |
| /* flow control settings */ |
| /* The high water mark must be low enough to fit one full frame |
| * (or the size used for early receive) above it in the Rx FIFO. |
| * Set it to the lower of: |
| * - 90% of the Rx FIFO size, or |
| * - the full Rx FIFO size minus one full frame */ |
| hwm = min(((pba << 10) * 9 / 10), |
| ((pba << 10) - 2 * adapter->max_frame_size)); |
| |
| fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */ |
| fc->low_water = fc->high_water - 16; |
| fc->pause_time = 0xFFFF; |
| fc->send_xon = 1; |
| fc->current_mode = fc->requested_mode; |
| |
| /* disable receive for all VFs and wait one second */ |
| if (adapter->vfs_allocated_count) { |
| int i; |
| for (i = 0 ; i < adapter->vfs_allocated_count; i++) |
| adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; |
| |
| /* ping all the active vfs to let them know we are going down */ |
| igb_ping_all_vfs(adapter); |
| |
| /* disable transmits and receives */ |
| wr32(E1000_VFRE, 0); |
| wr32(E1000_VFTE, 0); |
| } |
| |
| /* Allow time for pending master requests to run */ |
| hw->mac.ops.reset_hw(hw); |
| wr32(E1000_WUC, 0); |
| |
| if (hw->mac.ops.init_hw(hw)) |
| dev_err(&pdev->dev, "Hardware Error\n"); |
| |
| igb_init_dmac(adapter, pba); |
| if (!netif_running(adapter->netdev)) |
| igb_power_down_link(adapter); |
| |
| igb_update_mng_vlan(adapter); |
| |
| /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
| wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); |
| |
| igb_get_phy_info(hw); |
| } |
| |
| static netdev_features_t igb_fix_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| /* |
| * Since there is no support for separate rx/tx vlan accel |
| * enable/disable make sure tx flag is always in same state as rx. |
| */ |
| if (features & NETIF_F_HW_VLAN_RX) |
| features |= NETIF_F_HW_VLAN_TX; |
| else |
| features &= ~NETIF_F_HW_VLAN_TX; |
| |
| return features; |
| } |
| |
| static int igb_set_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| netdev_features_t changed = netdev->features ^ features; |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| |
| if (changed & NETIF_F_HW_VLAN_RX) |
| igb_vlan_mode(netdev, features); |
| |
| if (!(changed & NETIF_F_RXALL)) |
| return 0; |
| |
| netdev->features = features; |
| |
| if (netif_running(netdev)) |
| igb_reinit_locked(adapter); |
| else |
| igb_reset(adapter); |
| |
| return 0; |
| } |
| |
| static const struct net_device_ops igb_netdev_ops = { |
| .ndo_open = igb_open, |
| .ndo_stop = igb_close, |
| .ndo_start_xmit = igb_xmit_frame, |
| .ndo_get_stats64 = igb_get_stats64, |
| .ndo_set_rx_mode = igb_set_rx_mode, |
| .ndo_set_mac_address = igb_set_mac, |
| .ndo_change_mtu = igb_change_mtu, |
| .ndo_do_ioctl = igb_ioctl, |
| .ndo_tx_timeout = igb_tx_timeout, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, |
| .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, |
| .ndo_set_vf_mac = igb_ndo_set_vf_mac, |
| .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, |
| .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw, |
| .ndo_get_vf_config = igb_ndo_get_vf_config, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = igb_netpoll, |
| #endif |
| .ndo_fix_features = igb_fix_features, |
| .ndo_set_features = igb_set_features, |
| }; |
| |
| /** |
| * igb_probe - Device Initialization Routine |
| * @pdev: PCI device information struct |
| * @ent: entry in igb_pci_tbl |
| * |
| * Returns 0 on success, negative on failure |
| * |
| * igb_probe initializes an adapter identified by a pci_dev structure. |
| * The OS initialization, configuring of the adapter private structure, |
| * and a hardware reset occur. |
| **/ |
| static int __devinit igb_probe(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct net_device *netdev; |
| struct igb_adapter *adapter; |
| struct e1000_hw *hw; |
| u16 eeprom_data = 0; |
| s32 ret_val; |
| static int global_quad_port_a; /* global quad port a indication */ |
| const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; |
| unsigned long mmio_start, mmio_len; |
| int err, pci_using_dac; |
| u16 eeprom_apme_mask = IGB_EEPROM_APME; |
| u8 part_str[E1000_PBANUM_LENGTH]; |
| |
| /* Catch broken hardware that put the wrong VF device ID in |
| * the PCIe SR-IOV capability. |
| */ |
| if (pdev->is_virtfn) { |
| WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", |
| pci_name(pdev), pdev->vendor, pdev->device); |
| return -EINVAL; |
| } |
| |
| err = pci_enable_device_mem(pdev); |
| if (err) |
| return err; |
| |
| pci_using_dac = 0; |
| err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); |
| if (!err) { |
| err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); |
| if (!err) |
| pci_using_dac = 1; |
| } else { |
| err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); |
| if (err) { |
| err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); |
| if (err) { |
| dev_err(&pdev->dev, "No usable DMA " |
| "configuration, aborting\n"); |
| goto err_dma; |
| } |
| } |
| } |
| |
| err = pci_request_selected_regions(pdev, pci_select_bars(pdev, |
| IORESOURCE_MEM), |
| igb_driver_name); |
| if (err) |
| goto err_pci_reg; |
| |
| pci_enable_pcie_error_reporting(pdev); |
| |
| pci_set_master(pdev); |
| pci_save_state(pdev); |
| |
| err = -ENOMEM; |
| netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), |
| IGB_MAX_TX_QUEUES); |
| if (!netdev) |
| goto err_alloc_etherdev; |
| |
| SET_NETDEV_DEV(netdev, &pdev->dev); |
| |
| pci_set_drvdata(pdev, netdev); |
| adapter = netdev_priv(netdev); |
| adapter->netdev = netdev; |
| adapter->pdev = pdev; |
| hw = &adapter->hw; |
| hw->back = adapter; |
| adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE; |
| |
| mmio_start = pci_resource_start(pdev, 0); |
| mmio_len = pci_resource_len(pdev, 0); |
| |
| err = -EIO; |
| hw->hw_addr = ioremap(mmio_start, mmio_len); |
| if (!hw->hw_addr) |
| goto err_ioremap; |
| |
| netdev->netdev_ops = &igb_netdev_ops; |
| igb_set_ethtool_ops(netdev); |
| netdev->watchdog_timeo = 5 * HZ; |
| |
| strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
| |
| netdev->mem_start = mmio_start; |
| netdev->mem_end = mmio_start + mmio_len; |
| |
| /* PCI config space info */ |
| hw->vendor_id = pdev->vendor; |
| hw->device_id = pdev->device; |
| hw->revision_id = pdev->revision; |
| hw->subsystem_vendor_id = pdev->subsystem_vendor; |
| hw->subsystem_device_id = pdev->subsystem_device; |
| |
| /* Copy the default MAC, PHY and NVM function pointers */ |
| memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); |
| memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); |
| memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); |
| /* Initialize skew-specific constants */ |
| err = ei->get_invariants(hw); |
| if (err) |
| goto err_sw_init; |
| |
| /* setup the private structure */ |
| err = igb_sw_init(adapter); |
| if (err) |
| goto err_sw_init; |
| |
| igb_get_bus_info_pcie(hw); |
| |
| hw->phy.autoneg_wait_to_complete = false; |
| |
| /* Copper options */ |
| if (hw->phy.media_type == e1000_media_type_copper) { |
| hw->phy.mdix = AUTO_ALL_MODES; |
| hw->phy.disable_polarity_correction = false; |
| hw->phy.ms_type = e1000_ms_hw_default; |
| } |
| |
| if (igb_check_reset_block(hw)) |
| dev_info(&pdev->dev, |
| "PHY reset is blocked due to SOL/IDER session.\n"); |
| |
| /* |
| * features is initialized to 0 in allocation, it might have bits |
| * set by igb_sw_init so we should use an or instead of an |
| * assignment. |
| */ |
| netdev->features |= NETIF_F_SG | |
| NETIF_F_IP_CSUM | |
| NETIF_F_IPV6_CSUM | |
| NETIF_F_TSO | |
| NETIF_F_TSO6 | |
| NETIF_F_RXHASH | |
| NETIF_F_RXCSUM | |
| NETIF_F_HW_VLAN_RX | |
| NETIF_F_HW_VLAN_TX; |
| |
| /* copy netdev features into list of user selectable features */ |
| netdev->hw_features |= netdev->features; |
| netdev->hw_features |= NETIF_F_RXALL; |
| |
| /* set this bit last since it cannot be part of hw_features */ |
| netdev->features |= NETIF_F_HW_VLAN_FILTER; |
| |
| netdev->vlan_features |= NETIF_F_TSO | |
| NETIF_F_TSO6 | |
| NETIF_F_IP_CSUM | |
| NETIF_F_IPV6_CSUM | |
| NETIF_F_SG; |
| |
| netdev->priv_flags |= IFF_SUPP_NOFCS; |
| |
| if (pci_using_dac) { |
| netdev->features |= NETIF_F_HIGHDMA; |
| netdev->vlan_features |= NETIF_F_HIGHDMA; |
| } |
| |
| if (hw->mac.type >= e1000_82576) { |
| netdev->hw_features |= NETIF_F_SCTP_CSUM; |
| netdev->features |= NETIF_F_SCTP_CSUM; |
| } |
| |
| netdev->priv_flags |= IFF_UNICAST_FLT; |
| |
| adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); |
| |
| /* before reading the NVM, reset the controller to put the device in a |
| * known good starting state */ |
| hw->mac.ops.reset_hw(hw); |
| |
| /* make sure the NVM is good */ |
| if (hw->nvm.ops.validate(hw) < 0) { |
| dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); |
| err = -EIO; |
| goto err_eeprom; |
| } |
| |
| /* copy the MAC address out of the NVM */ |
| if (hw->mac.ops.read_mac_addr(hw)) |
| dev_err(&pdev->dev, "NVM Read Error\n"); |
| |
| memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); |
| memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len); |
| |
| if (!is_valid_ether_addr(netdev->perm_addr)) { |
| dev_err(&pdev->dev, "Invalid MAC Address\n"); |
| err = -EIO; |
| goto err_eeprom; |
| } |
| |
| setup_timer(&adapter->watchdog_timer, igb_watchdog, |
| (unsigned long) adapter); |
| setup_timer(&adapter->phy_info_timer, igb_update_phy_info, |
| (unsigned long) adapter); |
| |
| INIT_WORK(&adapter->reset_task, igb_reset_task); |
| INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); |
| |
| /* Initialize link properties that are user-changeable */ |
| adapter->fc_autoneg = true; |
| hw->mac.autoneg = true; |
| hw->phy.autoneg_advertised = 0x2f; |
| |
| hw->fc.requested_mode = e1000_fc_default; |
| hw->fc.current_mode = e1000_fc_default; |
| |
| igb_validate_mdi_setting(hw); |
| |
| /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM, |
| * enable the ACPI Magic Packet filter |
| */ |
| |
| if (hw->bus.func == 0) |
| hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
| else if (hw->mac.type >= e1000_82580) |
| hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + |
| NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, |
| &eeprom_data); |
| else if (hw->bus.func == 1) |
| hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
| |
| if (eeprom_data & eeprom_apme_mask) |
| adapter->eeprom_wol |= E1000_WUFC_MAG; |
| |
| /* now that we have the eeprom settings, apply the special cases where |
| * the eeprom may be wrong or the board simply won't support wake on |
| * lan on a particular port */ |
| switch (pdev->device) { |
| case E1000_DEV_ID_82575GB_QUAD_COPPER: |
| adapter->eeprom_wol = 0; |
| break; |
| case E1000_DEV_ID_82575EB_FIBER_SERDES: |
| case E1000_DEV_ID_82576_FIBER: |
| case E1000_DEV_ID_82576_SERDES: |
| /* Wake events only supported on port A for dual fiber |
| * regardless of eeprom setting */ |
| if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) |
| adapter->eeprom_wol = 0; |
| break; |
| case E1000_DEV_ID_82576_QUAD_COPPER: |
| case E1000_DEV_ID_82576_QUAD_COPPER_ET2: |
| /* if quad port adapter, disable WoL on all but port A */ |
| if (global_quad_port_a != 0) |
| adapter->eeprom_wol = 0; |
| else |
| adapter->flags |= IGB_FLAG_QUAD_PORT_A; |
| /* Reset for multiple quad port adapters */ |
| if (++global_quad_port_a == 4) |
| global_quad_port_a = 0; |
| break; |
| } |
| |
| /* initialize the wol settings based on the eeprom settings */ |
| adapter->wol = adapter->eeprom_wol; |
| device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
| |
| /* reset the hardware with the new settings */ |
| igb_reset(adapter); |
| |
| /* let the f/w know that the h/w is now under the control of the |
| * driver. */ |
| igb_get_hw_control(adapter); |
| |
| strcpy(netdev->name, "eth%d"); |
| err = register_netdev(netdev); |
| if (err) |
| goto err_register; |
| |
| /* carrier off reporting is important to ethtool even BEFORE open */ |
| netif_carrier_off(netdev); |
| |
| #ifdef CONFIG_IGB_DCA |
| if (dca_add_requester(&pdev->dev) == 0) { |
| adapter->flags |= IGB_FLAG_DCA_ENABLED; |
| dev_info(&pdev->dev, "DCA enabled\n"); |
| igb_setup_dca(adapter); |
| } |
| |
| #endif |
| /* do hw tstamp init after resetting */ |
| igb_init_hw_timer(adapter); |
| |
| dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); |
| /* print bus type/speed/width info */ |
| dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", |
| netdev->name, |
| ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : |
| (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : |
| "unknown"), |
| ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : |
| (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" : |
| (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" : |
| "unknown"), |
| netdev->dev_addr); |
| |
| ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH); |
| if (ret_val) |
| strcpy(part_str, "Unknown"); |
| dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); |
| dev_info(&pdev->dev, |
| "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", |
| adapter->msix_entries ? "MSI-X" : |
| (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", |
| adapter->num_rx_queues, adapter->num_tx_queues); |
| switch (hw->mac.type) { |
| case e1000_i350: |
| igb_set_eee_i350(hw); |
| break; |
| default: |
| break; |
| } |
| |
| pm_runtime_put_noidle(&pdev->dev); |
| return 0; |
| |
| err_register: |
| igb_release_hw_control(adapter); |
| err_eeprom: |
| if (!igb_check_reset_block(hw)) |
| igb_reset_phy(hw); |
| |
| if (hw->flash_address) |
| iounmap(hw->flash_address); |
| err_sw_init: |
| igb_clear_interrupt_scheme(adapter); |
| iounmap(hw->hw_addr); |
| err_ioremap: |
| free_netdev(netdev); |
| err_alloc_etherdev: |
| pci_release_selected_regions(pdev, |
| pci_select_bars(pdev, IORESOURCE_MEM)); |
| err_pci_reg: |
| err_dma: |
| pci_disable_device(pdev); |
| return err; |
| } |
| |
| /** |
| * igb_remove - Device Removal Routine |
| * @pdev: PCI device information struct |
| * |
| * igb_remove is called by the PCI subsystem to alert the driver |
| * that it should release a PCI device. The could be caused by a |
| * Hot-Plug event, or because the driver is going to be removed from |
| * memory. |
| **/ |
| static void __devexit igb_remove(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| pm_runtime_get_noresume(&pdev->dev); |
| |
| /* |
| * The watchdog timer may be rescheduled, so explicitly |
| * disable watchdog from being rescheduled. |
| */ |
| set_bit(__IGB_DOWN, &adapter->state); |
| del_timer_sync(&adapter->watchdog_timer); |
| del_timer_sync(&adapter->phy_info_timer); |
| |
| cancel_work_sync(&adapter->reset_task); |
| cancel_work_sync(&adapter->watchdog_task); |
| |
| #ifdef CONFIG_IGB_DCA |
| if (adapter->flags & IGB_FLAG_DCA_ENABLED) { |
| dev_info(&pdev->dev, "DCA disabled\n"); |
| dca_remove_requester(&pdev->dev); |
| adapter->flags &= ~IGB_FLAG_DCA_ENABLED; |
| wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); |
| } |
| #endif |
| |
| /* Release control of h/w to f/w. If f/w is AMT enabled, this |
| * would have already happened in close and is redundant. */ |
| igb_release_hw_control(adapter); |
| |
| unregister_netdev(netdev); |
| |
| igb_clear_interrupt_scheme(adapter); |
| |
| #ifdef CONFIG_PCI_IOV |
| /* reclaim resources allocated to VFs */ |
| if (adapter->vf_data) { |
| /* disable iov and allow time for transactions to clear */ |
| if (!igb_check_vf_assignment(adapter)) { |
| pci_disable_sriov(pdev); |
| msleep(500); |
| } else { |
| dev_info(&pdev->dev, "VF(s) assigned to guests!\n"); |
| } |
| |
| kfree(adapter->vf_data); |
| adapter->vf_data = NULL; |
| wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); |
| wrfl(); |
| msleep(100); |
| dev_info(&pdev->dev, "IOV Disabled\n"); |
| } |
| #endif |
| |
| iounmap(hw->hw_addr); |
| if (hw->flash_address) |
| iounmap(hw->flash_address); |
| pci_release_selected_regions(pdev, |
| pci_select_bars(pdev, IORESOURCE_MEM)); |
| |
| kfree(adapter->shadow_vfta); |
| free_netdev(netdev); |
| |
| pci_disable_pcie_error_reporting(pdev); |
| |
| pci_disable_device(pdev); |
| } |
| |
| /** |
| * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space |
| * @adapter: board private structure to initialize |
| * |
| * This function initializes the vf specific data storage and then attempts to |
| * allocate the VFs. The reason for ordering it this way is because it is much |
| * mor expensive time wise to disable SR-IOV than it is to allocate and free |
| * the memory for the VFs. |
| **/ |
| static void __devinit igb_probe_vfs(struct igb_adapter * adapter) |
| { |
| #ifdef CONFIG_PCI_IOV |
| struct pci_dev *pdev = adapter->pdev; |
| int old_vfs = igb_find_enabled_vfs(adapter); |
| int i; |
| |
| if (old_vfs) { |
| dev_info(&pdev->dev, "%d pre-allocated VFs found - override " |
| "max_vfs setting of %d\n", old_vfs, max_vfs); |
| adapter->vfs_allocated_count = old_vfs; |
| } |
| |
| if (!adapter->vfs_allocated_count) |
| return; |
| |
| adapter->vf_data = kcalloc(adapter->vfs_allocated_count, |
| sizeof(struct vf_data_storage), GFP_KERNEL); |
| /* if allocation failed then we do not support SR-IOV */ |
| if (!adapter->vf_data) { |
| adapter->vfs_allocated_count = 0; |
| dev_err(&pdev->dev, "Unable to allocate memory for VF " |
| "Data Storage\n"); |
| goto out; |
| } |
| |
| if (!old_vfs) { |
| if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) |
| goto err_out; |
| } |
| dev_info(&pdev->dev, "%d VFs allocated\n", |
| adapter->vfs_allocated_count); |
| for (i = 0; i < adapter->vfs_allocated_count; i++) |
| igb_vf_configure(adapter, i); |
| |
| /* DMA Coalescing is not supported in IOV mode. */ |
| adapter->flags &= ~IGB_FLAG_DMAC; |
| goto out; |
| err_out: |
| kfree(adapter->vf_data); |
| adapter->vf_data = NULL; |
| adapter->vfs_allocated_count = 0; |
| out: |
| return; |
| #endif /* CONFIG_PCI_IOV */ |
| } |
| |
| /** |
| * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp |
| * @adapter: board private structure to initialize |
| * |
| * igb_init_hw_timer initializes the function pointer and values for the hw |
| * timer found in hardware. |
| **/ |
| static void igb_init_hw_timer(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| switch (hw->mac.type) { |
| case e1000_i350: |
| case e1000_82580: |
| memset(&adapter->cycles, 0, sizeof(adapter->cycles)); |
| adapter->cycles.read = igb_read_clock; |
| adapter->cycles.mask = CLOCKSOURCE_MASK(64); |
| adapter->cycles.mult = 1; |
| /* |
| * The 82580 timesync updates the system timer every 8ns by 8ns |
| * and the value cannot be shifted. Instead we need to shift |
| * the registers to generate a 64bit timer value. As a result |
| * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by |
| * 24 in order to generate a larger value for synchronization. |
| */ |
| adapter->cycles.shift = IGB_82580_TSYNC_SHIFT; |
| /* disable system timer temporarily by setting bit 31 */ |
| wr32(E1000_TSAUXC, 0x80000000); |
| wrfl(); |
| |
| /* Set registers so that rollover occurs soon to test this. */ |
| wr32(E1000_SYSTIMR, 0x00000000); |
| wr32(E1000_SYSTIML, 0x80000000); |
| wr32(E1000_SYSTIMH, 0x000000FF); |
| wrfl(); |
| |
| /* enable system timer by clearing bit 31 */ |
| wr32(E1000_TSAUXC, 0x0); |
| wrfl(); |
| |
| timecounter_init(&adapter->clock, |
| &adapter->cycles, |
| ktime_to_ns(ktime_get_real())); |
| /* |
| * Synchronize our NIC clock against system wall clock. NIC |
| * time stamp reading requires ~3us per sample, each sample |
| * was pretty stable even under load => only require 10 |
| * samples for each offset comparison. |
| */ |
| memset(&adapter->compare, 0, sizeof(adapter->compare)); |
| adapter->compare.source = &adapter->clock; |
| adapter->compare.target = ktime_get_real; |
| adapter->compare.num_samples = 10; |
| timecompare_update(&adapter->compare, 0); |
| break; |
| case e1000_82576: |
| /* |
| * Initialize hardware timer: we keep it running just in case |
| * that some program needs it later on. |
| */ |
| memset(&adapter->cycles, 0, sizeof(adapter->cycles)); |
| adapter->cycles.read = igb_read_clock; |
| adapter->cycles.mask = CLOCKSOURCE_MASK(64); |
| adapter->cycles.mult = 1; |
| /** |
| * Scale the NIC clock cycle by a large factor so that |
| * relatively small clock corrections can be added or |
| * subtracted at each clock tick. The drawbacks of a large |
| * factor are a) that the clock register overflows more quickly |
| * (not such a big deal) and b) that the increment per tick has |
| * to fit into 24 bits. As a result we need to use a shift of |
| * 19 so we can fit a value of 16 into the TIMINCA register. |
| */ |
| adapter->cycles.shift = IGB_82576_TSYNC_SHIFT; |
| wr32(E1000_TIMINCA, |
| (1 << E1000_TIMINCA_16NS_SHIFT) | |
| (16 << IGB_82576_TSYNC_SHIFT)); |
| |
| /* Set registers so that rollover occurs soon to test this. */ |
| wr32(E1000_SYSTIML, 0x00000000); |
| wr32(E1000_SYSTIMH, 0xFF800000); |
| wrfl(); |
| |
| timecounter_init(&adapter->clock, |
| &adapter->cycles, |
| ktime_to_ns(ktime_get_real())); |
| /* |
| * Synchronize our NIC clock against system wall clock. NIC |
| * time stamp reading requires ~3us per sample, each sample |
| * was pretty stable even under load => only require 10 |
| * samples for each offset comparison. |
| */ |
| memset(&adapter->compare, 0, sizeof(adapter->compare)); |
| adapter->compare.source = &adapter->clock; |
| adapter->compare.target = ktime_get_real; |
| adapter->compare.num_samples = 10; |
| timecompare_update(&adapter->compare, 0); |
| break; |
| case e1000_82575: |
| /* 82575 does not support timesync */ |
| default: |
| break; |
| } |
| |
| } |
| |
| /** |
| * igb_sw_init - Initialize general software structures (struct igb_adapter) |
| * @adapter: board private structure to initialize |
| * |
| * igb_sw_init initializes the Adapter private data structure. |
| * Fields are initialized based on PCI device information and |
| * OS network device settings (MTU size). |
| **/ |
| static int __devinit igb_sw_init(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| |
| pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); |
| |
| /* set default ring sizes */ |
| adapter->tx_ring_count = IGB_DEFAULT_TXD; |
| adapter->rx_ring_count = IGB_DEFAULT_RXD; |
| |
| /* set default ITR values */ |
| adapter->rx_itr_setting = IGB_DEFAULT_ITR; |
| adapter->tx_itr_setting = IGB_DEFAULT_ITR; |
| |
| /* set default work limits */ |
| adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; |
| |
| adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + |
| VLAN_HLEN; |
| adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; |
| |
| adapter->node = -1; |
| |
| spin_lock_init(&adapter->stats64_lock); |
| #ifdef CONFIG_PCI_IOV |
| switch (hw->mac.type) { |
| case e1000_82576: |
| case e1000_i350: |
| if (max_vfs > 7) { |
| dev_warn(&pdev->dev, |
| "Maximum of 7 VFs per PF, using max\n"); |
| adapter->vfs_allocated_count = 7; |
| } else |
| adapter->vfs_allocated_count = max_vfs; |
| break; |
| default: |
| break; |
| } |
| #endif /* CONFIG_PCI_IOV */ |
| adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus()); |
| /* i350 cannot do RSS and SR-IOV at the same time */ |
| if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count) |
| adapter->rss_queues = 1; |
| |
| /* |
| * if rss_queues > 4 or vfs are going to be allocated with rss_queues |
| * then we should combine the queues into a queue pair in order to |
| * conserve interrupts due to limited supply |
| */ |
| if ((adapter->rss_queues > 4) || |
| ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6))) |
| adapter->flags |= IGB_FLAG_QUEUE_PAIRS; |
| |
| /* Setup and initialize a copy of the hw vlan table array */ |
| adapter->shadow_vfta = kzalloc(sizeof(u32) * |
| E1000_VLAN_FILTER_TBL_SIZE, |
| GFP_ATOMIC); |
| |
| /* This call may decrease the number of queues */ |
| if (igb_init_interrupt_scheme(adapter)) { |
| dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); |
| return -ENOMEM; |
| } |
| |
| igb_probe_vfs(adapter); |
| |
| /* Explicitly disable IRQ since the NIC can be in any state. */ |
| igb_irq_disable(adapter); |
| |
| if (hw->mac.type == e1000_i350) |
| adapter->flags &= ~IGB_FLAG_DMAC; |
| |
| set_bit(__IGB_DOWN, &adapter->state); |
| return 0; |
| } |
| |
| /** |
| * igb_open - Called when a network interface is made active |
| * @netdev: network interface device structure |
| * |
| * Returns 0 on success, negative value on failure |
| * |
| * The open entry point is called when a network interface is made |
| * active by the system (IFF_UP). At this point all resources needed |
| * for transmit and receive operations are allocated, the interrupt |
| * handler is registered with the OS, the watchdog timer is started, |
| * and the stack is notified that the interface is ready. |
| **/ |
| static int __igb_open(struct net_device *netdev, bool resuming) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct pci_dev *pdev = adapter->pdev; |
| int err; |
| int i; |
| |
| /* disallow open during test */ |
| if (test_bit(__IGB_TESTING, &adapter->state)) { |
| WARN_ON(resuming); |
| return -EBUSY; |
| } |
| |
| if (!resuming) |
| pm_runtime_get_sync(&pdev->dev); |
| |
| netif_carrier_off(netdev); |
| |
| /* allocate transmit descriptors */ |
| err = igb_setup_all_tx_resources(adapter); |
| if (err) |
| goto err_setup_tx; |
| |
| /* allocate receive descriptors */ |
| err = igb_setup_all_rx_resources(adapter); |
| if (err) |
| goto err_setup_rx; |
| |
| igb_power_up_link(adapter); |
| |
| /* before we allocate an interrupt, we must be ready to handle it. |
| * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
| * as soon as we call pci_request_irq, so we have to setup our |
| * clean_rx handler before we do so. */ |
| igb_configure(adapter); |
| |
| err = igb_request_irq(adapter); |
| if (err) |
| goto err_req_irq; |
| |
| /* From here on the code is the same as igb_up() */ |
| clear_bit(__IGB_DOWN, &adapter->state); |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) |
| napi_enable(&(adapter->q_vector[i]->napi)); |
| |
| /* Clear any pending interrupts. */ |
| rd32(E1000_ICR); |
| |
| igb_irq_enable(adapter); |
| |
| /* notify VFs that reset has been completed */ |
| if (adapter->vfs_allocated_count) { |
| u32 reg_data = rd32(E1000_CTRL_EXT); |
| reg_data |= E1000_CTRL_EXT_PFRSTD; |
| wr32(E1000_CTRL_EXT, reg_data); |
| } |
| |
| netif_tx_start_all_queues(netdev); |
| |
| if (!resuming) |
| pm_runtime_put(&pdev->dev); |
| |
| /* start the watchdog. */ |
| hw->mac.get_link_status = 1; |
| schedule_work(&adapter->watchdog_task); |
| |
| return 0; |
| |
| err_req_irq: |
| igb_release_hw_control(adapter); |
| igb_power_down_link(adapter); |
| igb_free_all_rx_resources(adapter); |
| err_setup_rx: |
| igb_free_all_tx_resources(adapter); |
| err_setup_tx: |
| igb_reset(adapter); |
| if (!resuming) |
| pm_runtime_put(&pdev->dev); |
| |
| return err; |
| } |
| |
| static int igb_open(struct net_device *netdev) |
| { |
| return __igb_open(netdev, false); |
| } |
| |
| /** |
| * igb_close - Disables a network interface |
| * @netdev: network interface device structure |
| * |
| * Returns 0, this is not allowed to fail |
| * |
| * The close entry point is called when an interface is de-activated |
| * by the OS. The hardware is still under the driver's control, but |
| * needs to be disabled. A global MAC reset is issued to stop the |
| * hardware, and all transmit and receive resources are freed. |
| **/ |
| static int __igb_close(struct net_device *netdev, bool suspending) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct pci_dev *pdev = adapter->pdev; |
| |
| WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); |
| |
| if (!suspending) |
| pm_runtime_get_sync(&pdev->dev); |
| |
| igb_down(adapter); |
| igb_free_irq(adapter); |
| |
| igb_free_all_tx_resources(adapter); |
| igb_free_all_rx_resources(adapter); |
| |
| if (!suspending) |
| pm_runtime_put_sync(&pdev->dev); |
| return 0; |
| } |
| |
| static int igb_close(struct net_device *netdev) |
| { |
| return __igb_close(netdev, false); |
| } |
| |
| /** |
| * igb_setup_tx_resources - allocate Tx resources (Descriptors) |
| * @tx_ring: tx descriptor ring (for a specific queue) to setup |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| int igb_setup_tx_resources(struct igb_ring *tx_ring) |
| { |
| struct device *dev = tx_ring->dev; |
| int orig_node = dev_to_node(dev); |
| int size; |
| |
| size = sizeof(struct igb_tx_buffer) * tx_ring->count; |
| tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node); |
| if (!tx_ring->tx_buffer_info) |
| tx_ring->tx_buffer_info = vzalloc(size); |
| if (!tx_ring->tx_buffer_info) |
| goto err; |
| |
| /* round up to nearest 4K */ |
| tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); |
| tx_ring->size = ALIGN(tx_ring->size, 4096); |
| |
| set_dev_node(dev, tx_ring->numa_node); |
| tx_ring->desc = dma_alloc_coherent(dev, |
| tx_ring->size, |
| &tx_ring->dma, |
| GFP_KERNEL); |
| set_dev_node(dev, orig_node); |
| if (!tx_ring->desc) |
| tx_ring->desc = dma_alloc_coherent(dev, |
| tx_ring->size, |
| &tx_ring->dma, |
| GFP_KERNEL); |
| |
| if (!tx_ring->desc) |
| goto err; |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| |
| return 0; |
| |
| err: |
| vfree(tx_ring->tx_buffer_info); |
| dev_err(dev, |
| "Unable to allocate memory for the transmit descriptor ring\n"); |
| return -ENOMEM; |
| } |
| |
| /** |
| * igb_setup_all_tx_resources - wrapper to allocate Tx resources |
| * (Descriptors) for all queues |
| * @adapter: board private structure |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| static int igb_setup_all_tx_resources(struct igb_adapter *adapter) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| int i, err = 0; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) { |
| err = igb_setup_tx_resources(adapter->tx_ring[i]); |
| if (err) { |
| dev_err(&pdev->dev, |
| "Allocation for Tx Queue %u failed\n", i); |
| for (i--; i >= 0; i--) |
| igb_free_tx_resources(adapter->tx_ring[i]); |
| break; |
| } |
| } |
| |
| return err; |
| } |
| |
| /** |
| * igb_setup_tctl - configure the transmit control registers |
| * @adapter: Board private structure |
| **/ |
| void igb_setup_tctl(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 tctl; |
| |
| /* disable queue 0 which is enabled by default on 82575 and 82576 */ |
| wr32(E1000_TXDCTL(0), 0); |
| |
| /* Program the Transmit Control Register */ |
| tctl = rd32(E1000_TCTL); |
| tctl &= ~E1000_TCTL_CT; |
| tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
| (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
| |
| igb_config_collision_dist(hw); |
| |
| /* Enable transmits */ |
| tctl |= E1000_TCTL_EN; |
| |
| wr32(E1000_TCTL, tctl); |
| } |
| |
| /** |
| * igb_configure_tx_ring - Configure transmit ring after Reset |
| * @adapter: board private structure |
| * @ring: tx ring to configure |
| * |
| * Configure a transmit ring after a reset. |
| **/ |
| void igb_configure_tx_ring(struct igb_adapter *adapter, |
| struct igb_ring *ring) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 txdctl = 0; |
| u64 tdba = ring->dma; |
| int reg_idx = ring->reg_idx; |
| |
| /* disable the queue */ |
| wr32(E1000_TXDCTL(reg_idx), 0); |
| wrfl(); |
| mdelay(10); |
| |
| wr32(E1000_TDLEN(reg_idx), |
| ring->count * sizeof(union e1000_adv_tx_desc)); |
| wr32(E1000_TDBAL(reg_idx), |
| tdba & 0x00000000ffffffffULL); |
| wr32(E1000_TDBAH(reg_idx), tdba >> 32); |
| |
| ring->tail = hw->hw_addr + E1000_TDT(reg_idx); |
| wr32(E1000_TDH(reg_idx), 0); |
| writel(0, ring->tail); |
| |
| txdctl |= IGB_TX_PTHRESH; |
| txdctl |= IGB_TX_HTHRESH << 8; |
| txdctl |= IGB_TX_WTHRESH << 16; |
| |
| txdctl |= E1000_TXDCTL_QUEUE_ENABLE; |
| wr32(E1000_TXDCTL(reg_idx), txdctl); |
| |
| netdev_tx_reset_queue(txring_txq(ring)); |
| } |
| |
| /** |
| * igb_configure_tx - Configure transmit Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Tx unit of the MAC after a reset. |
| **/ |
| static void igb_configure_tx(struct igb_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) |
| igb_configure_tx_ring(adapter, adapter->tx_ring[i]); |
| } |
| |
| /** |
| * igb_setup_rx_resources - allocate Rx resources (Descriptors) |
| * @rx_ring: rx descriptor ring (for a specific queue) to setup |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| int igb_setup_rx_resources(struct igb_ring *rx_ring) |
| { |
| struct device *dev = rx_ring->dev; |
| int orig_node = dev_to_node(dev); |
| int size, desc_len; |
| |
| size = sizeof(struct igb_rx_buffer) * rx_ring->count; |
| rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node); |
| if (!rx_ring->rx_buffer_info) |
| rx_ring->rx_buffer_info = vzalloc(size); |
| if (!rx_ring->rx_buffer_info) |
| goto err; |
| |
| desc_len = sizeof(union e1000_adv_rx_desc); |
| |
| /* Round up to nearest 4K */ |
| rx_ring->size = rx_ring->count * desc_len; |
| rx_ring->size = ALIGN(rx_ring->size, 4096); |
| |
| set_dev_node(dev, rx_ring->numa_node); |
| rx_ring->desc = dma_alloc_coherent(dev, |
| rx_ring->size, |
| &rx_ring->dma, |
| GFP_KERNEL); |
| set_dev_node(dev, orig_node); |
| if (!rx_ring->desc) |
| rx_ring->desc = dma_alloc_coherent(dev, |
| rx_ring->size, |
| &rx_ring->dma, |
| GFP_KERNEL); |
| |
| if (!rx_ring->desc) |
| goto err; |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| |
| return 0; |
| |
| err: |
| vfree(rx_ring->rx_buffer_info); |
| rx_ring->rx_buffer_info = NULL; |
| dev_err(dev, "Unable to allocate memory for the receive descriptor" |
| " ring\n"); |
| return -ENOMEM; |
| } |
| |
| /** |
| * igb_setup_all_rx_resources - wrapper to allocate Rx resources |
| * (Descriptors) for all queues |
| * @adapter: board private structure |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| static int igb_setup_all_rx_resources(struct igb_adapter *adapter) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| int i, err = 0; |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| err = igb_setup_rx_resources(adapter->rx_ring[i]); |
| if (err) { |
| dev_err(&pdev->dev, |
| "Allocation for Rx Queue %u failed\n", i); |
| for (i--; i >= 0; i--) |
| igb_free_rx_resources(adapter->rx_ring[i]); |
| break; |
| } |
| } |
| |
| return err; |
| } |
| |
| /** |
| * igb_setup_mrqc - configure the multiple receive queue control registers |
| * @adapter: Board private structure |
| **/ |
| static void igb_setup_mrqc(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 mrqc, rxcsum; |
| u32 j, num_rx_queues, shift = 0, shift2 = 0; |
| union e1000_reta { |
| u32 dword; |
| u8 bytes[4]; |
| } reta; |
| static const u8 rsshash[40] = { |
| 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67, |
| 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb, |
| 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, |
| 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa }; |
| |
| /* Fill out hash function seeds */ |
| for (j = 0; j < 10; j++) { |
| u32 rsskey = rsshash[(j * 4)]; |
| rsskey |= rsshash[(j * 4) + 1] << 8; |
| rsskey |= rsshash[(j * 4) + 2] << 16; |
| rsskey |= rsshash[(j * 4) + 3] << 24; |
| array_wr32(E1000_RSSRK(0), j, rsskey); |
| } |
| |
| num_rx_queues = adapter->rss_queues; |
| |
| if (adapter->vfs_allocated_count) { |
| /* 82575 and 82576 supports 2 RSS queues for VMDq */ |
| switch (hw->mac.type) { |
| case e1000_i350: |
| case e1000_82580: |
| num_rx_queues = 1; |
| shift = 0; |
| break; |
| case e1000_82576: |
| shift = 3; |
| num_rx_queues = 2; |
| break; |
| case e1000_82575: |
| shift = 2; |
| shift2 = 6; |
| default: |
| break; |
| } |
| } else { |
| if (hw->mac.type == e1000_82575) |
| shift = 6; |
| } |
| |
| for (j = 0; j < (32 * 4); j++) { |
| reta.bytes[j & 3] = (j % num_rx_queues) << shift; |
| if (shift2) |
| reta.bytes[j & 3] |= num_rx_queues << shift2; |
| if ((j & 3) == 3) |
| wr32(E1000_RETA(j >> 2), reta.dword); |
| } |
| |
| /* |
| * Disable raw packet checksumming so that RSS hash is placed in |
| * descriptor on writeback. No need to enable TCP/UDP/IP checksum |
| * offloads as they are enabled by default |
| */ |
| rxcsum = rd32(E1000_RXCSUM); |
| rxcsum |= E1000_RXCSUM_PCSD; |
| |
| if (adapter->hw.mac.type >= e1000_82576) |
| /* Enable Receive Checksum Offload for SCTP */ |
| rxcsum |= E1000_RXCSUM_CRCOFL; |
| |
| /* Don't need to set TUOFL or IPOFL, they default to 1 */ |
| wr32(E1000_RXCSUM, rxcsum); |
| |
| /* If VMDq is enabled then we set the appropriate mode for that, else |
| * we default to RSS so that an RSS hash is calculated per packet even |
| * if we are only using one queue */ |
| if (adapter->vfs_allocated_count) { |
| if (hw->mac.type > e1000_82575) { |
| /* Set the default pool for the PF's first queue */ |
| u32 vtctl = rd32(E1000_VT_CTL); |
| vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | |
| E1000_VT_CTL_DISABLE_DEF_POOL); |
| vtctl |= adapter->vfs_allocated_count << |
| E1000_VT_CTL_DEFAULT_POOL_SHIFT; |
| wr32(E1000_VT_CTL, vtctl); |
| } |
| if (adapter->rss_queues > 1) |
| mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q; |
| else |
| mrqc = E1000_MRQC_ENABLE_VMDQ; |
| } else { |
| mrqc = E1000_MRQC_ENABLE_RSS_4Q; |
| } |
| igb_vmm_control(adapter); |
| |
| /* |
| * Generate RSS hash based on TCP port numbers and/or |
| * IPv4/v6 src and dst addresses since UDP cannot be |
| * hashed reliably due to IP fragmentation |
| */ |
| mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | |
| E1000_MRQC_RSS_FIELD_IPV4_TCP | |
| E1000_MRQC_RSS_FIELD_IPV6 | |
| E1000_MRQC_RSS_FIELD_IPV6_TCP | |
| E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; |
| |
| wr32(E1000_MRQC, mrqc); |
| } |
| |
| /** |
| * igb_setup_rctl - configure the receive control registers |
| * @adapter: Board private structure |
| **/ |
| void igb_setup_rctl(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl; |
| |
| rctl = rd32(E1000_RCTL); |
| |
| rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
| rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); |
| |
| rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | |
| (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); |
| |
| /* |
| * enable stripping of CRC. It's unlikely this will break BMC |
| * redirection as it did with e1000. Newer features require |
| * that the HW strips the CRC. |
| */ |
| rctl |= E1000_RCTL_SECRC; |
| |
| /* disable store bad packets and clear size bits. */ |
| rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); |
| |
| /* enable LPE to prevent packets larger than max_frame_size */ |
| rctl |= E1000_RCTL_LPE; |
| |
| /* disable queue 0 to prevent tail write w/o re-config */ |
| wr32(E1000_RXDCTL(0), 0); |
| |
| /* Attention!!! For SR-IOV PF driver operations you must enable |
| * queue drop for all VF and PF queues to prevent head of line blocking |
| * if an un-trusted VF does not provide descriptors to hardware. |
| */ |
| if (adapter->vfs_allocated_count) { |
| /* set all queue drop enable bits */ |
| wr32(E1000_QDE, ALL_QUEUES); |
| } |
| |
| /* This is useful for sniffing bad packets. */ |
| if (adapter->netdev->features & NETIF_F_RXALL) { |
| /* UPE and MPE will be handled by normal PROMISC logic |
| * in e1000e_set_rx_mode */ |
| rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ |
| E1000_RCTL_BAM | /* RX All Bcast Pkts */ |
| E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ |
| |
| rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ |
| E1000_RCTL_DPF | /* Allow filtered pause */ |
| E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ |
| /* Do not mess with E1000_CTRL_VME, it affects transmit as well, |
| * and that breaks VLANs. |
| */ |
| } |
| |
| wr32(E1000_RCTL, rctl); |
| } |
| |
| static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, |
| int vfn) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 vmolr; |
| |
| /* if it isn't the PF check to see if VFs are enabled and |
| * increase the size to support vlan tags */ |
| if (vfn < adapter->vfs_allocated_count && |
| adapter->vf_data[vfn].vlans_enabled) |
| size += VLAN_TAG_SIZE; |
| |
| vmolr = rd32(E1000_VMOLR(vfn)); |
| vmolr &= ~E1000_VMOLR_RLPML_MASK; |
| vmolr |= size | E1000_VMOLR_LPE; |
| wr32(E1000_VMOLR(vfn), vmolr); |
| |
| return 0; |
| } |
| |
| /** |
| * igb_rlpml_set - set maximum receive packet size |
| * @adapter: board private structure |
| * |
| * Configure maximum receivable packet size. |
| **/ |
| static void igb_rlpml_set(struct igb_adapter *adapter) |
| { |
| u32 max_frame_size = adapter->max_frame_size; |
| struct e1000_hw *hw = &adapter->hw; |
| u16 pf_id = adapter->vfs_allocated_count; |
| |
| if (pf_id) { |
| igb_set_vf_rlpml(adapter, max_frame_size, pf_id); |
| /* |
| * If we're in VMDQ or SR-IOV mode, then set global RLPML |
| * to our max jumbo frame size, in case we need to enable |
| * jumbo frames on one of the rings later. |
| * This will not pass over-length frames into the default |
| * queue because it's gated by the VMOLR.RLPML. |
| */ |
| max_frame_size = MAX_JUMBO_FRAME_SIZE; |
| } |
| |
| wr32(E1000_RLPML, max_frame_size); |
| } |
| |
| static inline void igb_set_vmolr(struct igb_adapter *adapter, |
| int vfn, bool aupe) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 vmolr; |
| |
| /* |
| * This register exists only on 82576 and newer so if we are older then |
| * we should exit and do nothing |
| */ |
| if (hw->mac.type < e1000_82576) |
| return; |
| |
| vmolr = rd32(E1000_VMOLR(vfn)); |
| vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */ |
| if (aupe) |
| vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ |
| else |
| vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ |
| |
| /* clear all bits that might not be set */ |
| vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); |
| |
| if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) |
| vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ |
| /* |
| * for VMDq only allow the VFs and pool 0 to accept broadcast and |
| * multicast packets |
| */ |
| if (vfn <= adapter->vfs_allocated_count) |
| vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ |
| |
| wr32(E1000_VMOLR(vfn), vmolr); |
| } |
| |
| /** |
| * igb_configure_rx_ring - Configure a receive ring after Reset |
| * @adapter: board private structure |
| * @ring: receive ring to be configured |
| * |
| * Configure the Rx unit of the MAC after a reset. |
| **/ |
| void igb_configure_rx_ring(struct igb_adapter *adapter, |
| struct igb_ring *ring) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u64 rdba = ring->dma; |
| int reg_idx = ring->reg_idx; |
| u32 srrctl = 0, rxdctl = 0; |
| |
| /* disable the queue */ |
| wr32(E1000_RXDCTL(reg_idx), 0); |
| |
| /* Set DMA base address registers */ |
| wr32(E1000_RDBAL(reg_idx), |
| rdba & 0x00000000ffffffffULL); |
| wr32(E1000_RDBAH(reg_idx), rdba >> 32); |
| wr32(E1000_RDLEN(reg_idx), |
| ring->count * sizeof(union e1000_adv_rx_desc)); |
| |
| /* initialize head and tail */ |
| ring->tail = hw->hw_addr + E1000_RDT(reg_idx); |
| wr32(E1000_RDH(reg_idx), 0); |
| writel(0, ring->tail); |
| |
| /* set descriptor configuration */ |
| srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; |
| #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384 |
| srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT; |
| #else |
| srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT; |
| #endif |
| srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; |
| if (hw->mac.type >= e1000_82580) |
| srrctl |= E1000_SRRCTL_TIMESTAMP; |
| /* Only set Drop Enable if we are supporting multiple queues */ |
| if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) |
| srrctl |= E1000_SRRCTL_DROP_EN; |
| |
| wr32(E1000_SRRCTL(reg_idx), srrctl); |
| |
| /* set filtering for VMDQ pools */ |
| igb_set_vmolr(adapter, reg_idx & 0x7, true); |
| |
| rxdctl |= IGB_RX_PTHRESH; |
| rxdctl |= IGB_RX_HTHRESH << 8; |
| rxdctl |= IGB_RX_WTHRESH << 16; |
| |
| /* enable receive descriptor fetching */ |
| rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; |
| wr32(E1000_RXDCTL(reg_idx), rxdctl); |
| } |
| |
| /** |
| * igb_configure_rx - Configure receive Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Rx unit of the MAC after a reset. |
| **/ |
| static void igb_configure_rx(struct igb_adapter *adapter) |
| { |
| int i; |
| |
| /* set UTA to appropriate mode */ |
| igb_set_uta(adapter); |
| |
| /* set the correct pool for the PF default MAC address in entry 0 */ |
| igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, |
| adapter->vfs_allocated_count); |
| |
| /* Setup the HW Rx Head and Tail Descriptor Pointers and |
| * the Base and Length of the Rx Descriptor Ring */ |
| for (i = 0; i < adapter->num_rx_queues; i++) |
| igb_configure_rx_ring(adapter, adapter->rx_ring[i]); |
| } |
| |
| /** |
| * igb_free_tx_resources - Free Tx Resources per Queue |
| * @tx_ring: Tx descriptor ring for a specific queue |
| * |
| * Free all transmit software resources |
| **/ |
| void igb_free_tx_resources(struct igb_ring *tx_ring) |
| { |
| igb_clean_tx_ring(tx_ring); |
| |
| vfree(tx_ring->tx_buffer_info); |
| tx_ring->tx_buffer_info = NULL; |
| |
| /* if not set, then don't free */ |
| if (!tx_ring->desc) |
| return; |
| |
| dma_free_coherent(tx_ring->dev, tx_ring->size, |
| tx_ring->desc, tx_ring->dma); |
| |
| tx_ring->desc = NULL; |
| } |
| |
| /** |
| * igb_free_all_tx_resources - Free Tx Resources for All Queues |
| * @adapter: board private structure |
| * |
| * Free all transmit software resources |
| **/ |
| static void igb_free_all_tx_resources(struct igb_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) |
| igb_free_tx_resources(adapter->tx_ring[i]); |
| } |
| |
| void igb_unmap_and_free_tx_resource(struct igb_ring *ring, |
| struct igb_tx_buffer *tx_buffer) |
| { |
| if (tx_buffer->skb) { |
| dev_kfree_skb_any(tx_buffer->skb); |
| if (tx_buffer->dma) |
| dma_unmap_single(ring->dev, |
| tx_buffer->dma, |
| tx_buffer->length, |
| DMA_TO_DEVICE); |
| } else if (tx_buffer->dma) { |
| dma_unmap_page(ring->dev, |
| tx_buffer->dma, |
| tx_buffer->length, |
| DMA_TO_DEVICE); |
| } |
| tx_buffer->next_to_watch = NULL; |
| tx_buffer->skb = NULL; |
| tx_buffer->dma = 0; |
| /* buffer_info must be completely set up in the transmit path */ |
| } |
| |
| /** |
| * igb_clean_tx_ring - Free Tx Buffers |
| * @tx_ring: ring to be cleaned |
| **/ |
| static void igb_clean_tx_ring(struct igb_ring *tx_ring) |
| { |
| struct igb_tx_buffer *buffer_info; |
| unsigned long size; |
| u16 i; |
| |
| if (!tx_ring->tx_buffer_info) |
| return; |
| /* Free all the Tx ring sk_buffs */ |
| |
| for (i = 0; i < tx_ring->count; i++) { |
| buffer_info = &tx_ring->tx_buffer_info[i]; |
| igb_unmap_and_free_tx_resource(tx_ring, buffer_info); |
| } |
| |
| size = sizeof(struct igb_tx_buffer) * tx_ring->count; |
| memset(tx_ring->tx_buffer_info, 0, size); |
| |
| /* Zero out the descriptor ring */ |
| memset(tx_ring->desc, 0, tx_ring->size); |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| } |
| |
| /** |
| * igb_clean_all_tx_rings - Free Tx Buffers for all queues |
| * @adapter: board private structure |
| **/ |
| static void igb_clean_all_tx_rings(struct igb_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) |
| igb_clean_tx_ring(adapter->tx_ring[i]); |
| } |
| |
| /** |
| * igb_free_rx_resources - Free Rx Resources |
| * @rx_ring: ring to clean the resources from |
| * |
| * Free all receive software resources |
| **/ |
| void igb_free_rx_resources(struct igb_ring *rx_ring) |
| { |
| igb_clean_rx_ring(rx_ring); |
| |
| vfree(rx_ring->rx_buffer_info); |
| rx_ring->rx_buffer_info = NULL; |
| |
| /* if not set, then don't free */ |
| if (!rx_ring->desc) |
| return; |
| |
| dma_free_coherent(rx_ring->dev, rx_ring->size, |
| rx_ring->desc, rx_ring->dma); |
| |
| rx_ring->desc = NULL; |
| } |
| |
| /** |
| * igb_free_all_rx_resources - Free Rx Resources for All Queues |
| * @adapter: board private structure |
| * |
| * Free all receive software resources |
| **/ |
| static void igb_free_all_rx_resources(struct igb_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) |
| igb_free_rx_resources(adapter->rx_ring[i]); |
| } |
| |
| /** |
| * igb_clean_rx_ring - Free Rx Buffers per Queue |
| * @rx_ring: ring to free buffers from |
| **/ |
| static void igb_clean_rx_ring(struct igb_ring *rx_ring) |
| { |
| unsigned long size; |
| u16 i; |
| |
| if (!rx_ring->rx_buffer_info) |
| return; |
| |
| /* Free all the Rx ring sk_buffs */ |
| for (i = 0; i < rx_ring->count; i++) { |
| struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; |
| if (buffer_info->dma) { |
| dma_unmap_single(rx_ring->dev, |
| buffer_info->dma, |
| IGB_RX_HDR_LEN, |
| DMA_FROM_DEVICE); |
| buffer_info->dma = 0; |
| } |
| |
| if (buffer_info->skb) { |
| dev_kfree_skb(buffer_info->skb); |
| buffer_info->skb = NULL; |
| } |
| if (buffer_info->page_dma) { |
| dma_unmap_page(rx_ring->dev, |
| buffer_info->page_dma, |
| PAGE_SIZE / 2, |
| DMA_FROM_DEVICE); |
| buffer_info->page_dma = 0; |
| } |
| if (buffer_info->page) { |
| put_page(buffer_info->page); |
| buffer_info->page = NULL; |
| buffer_info->page_offset = 0; |
| } |
| } |
| |
| size = sizeof(struct igb_rx_buffer) * rx_ring->count; |
| memset(rx_ring->rx_buffer_info, 0, size); |
| |
| /* Zero out the descriptor ring */ |
| memset(rx_ring->desc, 0, rx_ring->size); |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| } |
| |
| /** |
| * igb_clean_all_rx_rings - Free Rx Buffers for all queues |
| * @adapter: board private structure |
| **/ |
| static void igb_clean_all_rx_rings(struct igb_adapter *adapter) |
| { |
| int i; |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) |
| igb_clean_rx_ring(adapter->rx_ring[i]); |
| } |
| |
| /** |
| * igb_set_mac - Change the Ethernet Address of the NIC |
| * @netdev: network interface device structure |
| * @p: pointer to an address structure |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| static int igb_set_mac(struct net_device *netdev, void *p) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct sockaddr *addr = p; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
| memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); |
| |
| /* set the correct pool for the new PF MAC address in entry 0 */ |
| igb_rar_set_qsel(adapter, hw->mac.addr, 0, |
| adapter->vfs_allocated_count); |
| |
| return 0; |
| } |
| |
| /** |
| * igb_write_mc_addr_list - write multicast addresses to MTA |
| * @netdev: network interface device structure |
| * |
| * Writes multicast address list to the MTA hash table. |
| * Returns: -ENOMEM on failure |
| * 0 on no addresses written |
| * X on writing X addresses to MTA |
| **/ |
| static int igb_write_mc_addr_list(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct netdev_hw_addr *ha; |
| u8 *mta_list; |
| int i; |
| |
| if (netdev_mc_empty(netdev)) { |
| /* nothing to program, so clear mc list */ |
| igb_update_mc_addr_list(hw, NULL, 0); |
| igb_restore_vf_multicasts(adapter); |
| return 0; |
| } |
| |
| mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); |
| if (!mta_list) |
| return -ENOMEM; |
| |
| /* The shared function expects a packed array of only addresses. */ |
| i = 0; |
| netdev_for_each_mc_addr(ha, netdev) |
| memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); |
| |
| igb_update_mc_addr_list(hw, mta_list, i); |
| kfree(mta_list); |
| |
| return netdev_mc_count(netdev); |
| } |
| |
| /** |
| * igb_write_uc_addr_list - write unicast addresses to RAR table |
| * @netdev: network interface device structure |
| * |
| * Writes unicast address list to the RAR table. |
| * Returns: -ENOMEM on failure/insufficient address space |
| * 0 on no addresses written |
| * X on writing X addresses to the RAR table |
| **/ |
| static int igb_write_uc_addr_list(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| unsigned int vfn = adapter->vfs_allocated_count; |
| unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); |
| int count = 0; |
| |
| /* return ENOMEM indicating insufficient memory for addresses */ |
| if (netdev_uc_count(netdev) > rar_entries) |
| return -ENOMEM; |
| |
| if (!netdev_uc_empty(netdev) && rar_entries) { |
| struct netdev_hw_addr *ha; |
| |
| netdev_for_each_uc_addr(ha, netdev) { |
| if (!rar_entries) |
| break; |
| igb_rar_set_qsel(adapter, ha->addr, |
| rar_entries--, |
| vfn); |
| count++; |
| } |
| } |
| /* write the addresses in reverse order to avoid write combining */ |
| for (; rar_entries > 0 ; rar_entries--) { |
| wr32(E1000_RAH(rar_entries), 0); |
| wr32(E1000_RAL(rar_entries), 0); |
| } |
| wrfl(); |
| |
| return count; |
| } |
| |
| /** |
| * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set |
| * @netdev: network interface device structure |
| * |
| * The set_rx_mode entry point is called whenever the unicast or multicast |
| * address lists or the network interface flags are updated. This routine is |
| * responsible for configuring the hardware for proper unicast, multicast, |
| * promiscuous mode, and all-multi behavior. |
| **/ |
| static void igb_set_rx_mode(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| unsigned int vfn = adapter->vfs_allocated_count; |
| u32 rctl, vmolr = 0; |
| int count; |
| |
| /* Check for Promiscuous and All Multicast modes */ |
| rctl = rd32(E1000_RCTL); |
| |
| /* clear the effected bits */ |
| rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); |
| |
| if (netdev->flags & IFF_PROMISC) { |
| rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
| vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); |
| } else { |
| if (netdev->flags & IFF_ALLMULTI) { |
| rctl |= E1000_RCTL_MPE; |
| vmolr |= E1000_VMOLR_MPME; |
| } else { |
| /* |
| * Write addresses to the MTA, if the attempt fails |
| * then we should just turn on promiscuous mode so |
| * that we can at least receive multicast traffic |
| */ |
| count = igb_write_mc_addr_list(netdev); |
| if (count < 0) { |
| rctl |= E1000_RCTL_MPE; |
| vmolr |= E1000_VMOLR_MPME; |
| } else if (count) { |
| vmolr |= E1000_VMOLR_ROMPE; |
| } |
| } |
| /* |
| * Write addresses to available RAR registers, if there is not |
| * sufficient space to store all the addresses then enable |
| * unicast promiscuous mode |
| */ |
| count = igb_write_uc_addr_list(netdev); |
| if (count < 0) { |
| rctl |= E1000_RCTL_UPE; |
| vmolr |= E1000_VMOLR_ROPE; |
| } |
| rctl |= E1000_RCTL_VFE; |
| } |
| wr32(E1000_RCTL, rctl); |
| |
| /* |
| * In order to support SR-IOV and eventually VMDq it is necessary to set |
| * the VMOLR to enable the appropriate modes. Without this workaround |
| * we will have issues with VLAN tag stripping not being done for frames |
| * that are only arriving because we are the default pool |
| */ |
| if (hw->mac.type < e1000_82576) |
| return; |
| |
| vmolr |= rd32(E1000_VMOLR(vfn)) & |
| ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); |
| wr32(E1000_VMOLR(vfn), vmolr); |
| igb_restore_vf_multicasts(adapter); |
| } |
| |
| static void igb_check_wvbr(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 wvbr = 0; |
| |
| switch (hw->mac.type) { |
| case e1000_82576: |
| case e1000_i350: |
| if (!(wvbr = rd32(E1000_WVBR))) |
| return; |
| break; |
| default: |
| break; |
| } |
| |
| adapter->wvbr |= wvbr; |
| } |
| |
| #define IGB_STAGGERED_QUEUE_OFFSET 8 |
| |
| static void igb_spoof_check(struct igb_adapter *adapter) |
| { |
| int j; |
| |
| if (!adapter->wvbr) |
| return; |
| |
| for(j = 0; j < adapter->vfs_allocated_count; j++) { |
| if (adapter->wvbr & (1 << j) || |
| adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { |
| dev_warn(&adapter->pdev->dev, |
| "Spoof event(s) detected on VF %d\n", j); |
| adapter->wvbr &= |
| ~((1 << j) | |
| (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); |
| } |
| } |
| } |
| |
| /* Need to wait a few seconds after link up to get diagnostic information from |
| * the phy */ |
| static void igb_update_phy_info(unsigned long data) |
| { |
| struct igb_adapter *adapter = (struct igb_adapter *) data; |
| igb_get_phy_info(&adapter->hw); |
| } |
| |
| /** |
| * igb_has_link - check shared code for link and determine up/down |
| * @adapter: pointer to driver private info |
| **/ |
| bool igb_has_link(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| bool link_active = false; |
| s32 ret_val = 0; |
| |
| /* get_link_status is set on LSC (link status) interrupt or |
| * rx sequence error interrupt. get_link_status will stay |
| * false until the e1000_check_for_link establishes link |
| * for copper adapters ONLY |
| */ |
| switch (hw->phy.media_type) { |
| case e1000_media_type_copper: |
| if (hw->mac.get_link_status) { |
| ret_val = hw->mac.ops.check_for_link(hw); |
| link_active = !hw->mac.get_link_status; |
| } else { |
| link_active = true; |
| } |
| break; |
| case e1000_media_type_internal_serdes: |
| ret_val = hw->mac.ops.check_for_link(hw); |
| link_active = hw->mac.serdes_has_link; |
| break; |
| default: |
| case e1000_media_type_unknown: |
| break; |
| } |
| |
| return link_active; |
| } |
| |
| static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) |
| { |
| bool ret = false; |
| u32 ctrl_ext, thstat; |
| |
| /* check for thermal sensor event on i350, copper only */ |
| if (hw->mac.type == e1000_i350) { |
| thstat = rd32(E1000_THSTAT); |
| ctrl_ext = rd32(E1000_CTRL_EXT); |
| |
| if ((hw->phy.media_type == e1000_media_type_copper) && |
| !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) { |
| ret = !!(thstat & event); |
| } |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * igb_watchdog - Timer Call-back |
| * @data: pointer to adapter cast into an unsigned long |
| **/ |
| static void igb_watchdog(unsigned long data) |
| { |
| struct igb_adapter *adapter = (struct igb_adapter *)data; |
| /* Do the rest outside of interrupt context */ |
| schedule_work(&adapter->watchdog_task); |
| } |
| |
| static void igb_watchdog_task(struct work_struct *work) |
| { |
| struct igb_adapter *adapter = container_of(work, |
| struct igb_adapter, |
| watchdog_task); |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| u32 link; |
| int i; |
| |
| link = igb_has_link(adapter); |
| if (link) { |
| /* Cancel scheduled suspend requests. */ |
| pm_runtime_resume(netdev->dev.parent); |
| |
| if (!netif_carrier_ok(netdev)) { |
| u32 ctrl; |
| hw->mac.ops.get_speed_and_duplex(hw, |
| &adapter->link_speed, |
| &adapter->link_duplex); |
| |
| ctrl = rd32(E1000_CTRL); |
| /* Links status message must follow this format */ |
| printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s " |
| "Duplex, Flow Control: %s\n", |
| netdev->name, |
| adapter->link_speed, |
| adapter->link_duplex == FULL_DUPLEX ? |
| "Full" : "Half", |
| (ctrl & E1000_CTRL_TFCE) && |
| (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : |
| (ctrl & E1000_CTRL_RFCE) ? "RX" : |
| (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); |
| |
| /* check for thermal sensor event */ |
| if (igb_thermal_sensor_event(hw, |
| E1000_THSTAT_LINK_THROTTLE)) { |
| netdev_info(netdev, "The network adapter link " |
| "speed was downshifted because it " |
| "overheated\n"); |
| } |
| |
| /* adjust timeout factor according to speed/duplex */ |
| adapter->tx_timeout_factor = 1; |
| switch (adapter->link_speed) { |
| case SPEED_10: |
| adapter->tx_timeout_factor = 14; |
| break; |
| case SPEED_100: |
| /* maybe add some timeout factor ? */ |
| break; |
| } |
| |
| netif_carrier_on(netdev); |
| |
| igb_ping_all_vfs(adapter); |
| igb_check_vf_rate_limit(adapter); |
| |
| /* link state has changed, schedule phy info update */ |
| if (!test_bit(__IGB_DOWN, &adapter->state)) |
| mod_timer(&adapter->phy_info_timer, |
| round_jiffies(jiffies + 2 * HZ)); |
| } |
| } else { |
| if (netif_carrier_ok(netdev)) { |
| adapter->link_speed = 0; |
| adapter->link_duplex = 0; |
| |
| /* check for thermal sensor event */ |
| if (igb_thermal_sensor_event(hw, |
| E1000_THSTAT_PWR_DOWN)) { |
| netdev_err(netdev, "The network adapter was " |
| "stopped because it overheated\n"); |
| } |
| |
| /* Links status message must follow this format */ |
| printk(KERN_INFO "igb: %s NIC Link is Down\n", |
| netdev->name); |
| netif_carrier_off(netdev); |
| |
| igb_ping_all_vfs(adapter); |
| |
| /* link state has changed, schedule phy info update */ |
| if (!test_bit(__IGB_DOWN, &adapter->state)) |
| mod_timer(&adapter->phy_info_timer, |
| round_jiffies(jiffies + 2 * HZ)); |
| |
| pm_schedule_suspend(netdev->dev.parent, |
| MSEC_PER_SEC * 5); |
| } |
| } |
| |
| spin_lock(&adapter->stats64_lock); |
| igb_update_stats(adapter, &adapter->stats64); |
| spin_unlock(&adapter->stats64_lock); |
| |
| for (i = 0; i < adapter->num_tx_queues; i++) { |
| struct igb_ring *tx_ring = adapter->tx_ring[i]; |
| if (!netif_carrier_ok(netdev)) { |
| /* We've lost link, so the controller stops DMA, |
| * but we've got queued Tx work that's never going |
| * to get done, so reset controller to flush Tx. |
| * (Do the reset outside of interrupt context). */ |
| if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { |
| adapter->tx_timeout_count++; |
| schedule_work(&adapter->reset_task); |
| /* return immediately since reset is imminent */ |
| return; |
| } |
| } |
| |
| /* Force detection of hung controller every watchdog period */ |
| set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); |
| } |
| |
| /* Cause software interrupt to ensure rx ring is cleaned */ |
| if (adapter->msix_entries) { |
| u32 eics = 0; |
| for (i = 0; i < adapter->num_q_vectors; i++) |
| eics |= adapter->q_vector[i]->eims_value; |
| wr32(E1000_EICS, eics); |
| } else { |
| wr32(E1000_ICS, E1000_ICS_RXDMT0); |
| } |
| |
| igb_spoof_check(adapter); |
| |
| /* Reset the timer */ |
| if (!test_bit(__IGB_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, |
| round_jiffies(jiffies + 2 * HZ)); |
| } |
| |
| enum latency_range { |
| lowest_latency = 0, |
| low_latency = 1, |
| bulk_latency = 2, |
| latency_invalid = 255 |
| }; |
| |
| /** |
| * igb_update_ring_itr - update the dynamic ITR value based on packet size |
| * |
| * Stores a new ITR value based on strictly on packet size. This |
| * algorithm is less sophisticated than that used in igb_update_itr, |
| * due to the difficulty of synchronizing statistics across multiple |
| * receive rings. The divisors and thresholds used by this function |
| * were determined based on theoretical maximum wire speed and testing |
| * data, in order to minimize response time while increasing bulk |
| * throughput. |
| * This functionality is controlled by the InterruptThrottleRate module |
| * parameter (see igb_param.c) |
| * NOTE: This function is called only when operating in a multiqueue |
| * receive environment. |
| * @q_vector: pointer to q_vector |
| **/ |
| static void igb_update_ring_itr(struct igb_q_vector *q_vector) |
| { |
| int new_val = q_vector->itr_val; |
| int avg_wire_size = 0; |
| struct igb_adapter *adapter = q_vector->adapter; |
| unsigned int packets; |
| |
| /* For non-gigabit speeds, just fix the interrupt rate at 4000 |
| * ints/sec - ITR timer value of 120 ticks. |
| */ |
| if (adapter->link_speed != SPEED_1000) { |
| new_val = IGB_4K_ITR; |
| goto set_itr_val; |
| } |
| |
| packets = q_vector->rx.total_packets; |
| if (packets) |
| avg_wire_size = q_vector->rx.total_bytes / packets; |
| |
| packets = q_vector->tx.total_packets; |
| if (packets) |
| avg_wire_size = max_t(u32, avg_wire_size, |
| q_vector->tx.total_bytes / packets); |
| |
| /* if avg_wire_size isn't set no work was done */ |
| if (!avg_wire_size) |
| goto clear_counts; |
| |
| /* Add 24 bytes to size to account for CRC, preamble, and gap */ |
| avg_wire_size += 24; |
| |
| /* Don't starve jumbo frames */ |
| avg_wire_size = min(avg_wire_size, 3000); |
| |
| /* Give a little boost to mid-size frames */ |
| if ((avg_wire_size > 300) && (avg_wire_size < 1200)) |
| new_val = avg_wire_size / 3; |
| else |
| new_val = avg_wire_size / 2; |
| |
| /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
| if (new_val < IGB_20K_ITR && |
| ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || |
| (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) |
| new_val = IGB_20K_ITR; |
| |
| set_itr_val: |
| if (new_val != q_vector->itr_val) { |
| q_vector->itr_val = new_val; |
| q_vector->set_itr = 1; |
| } |
| clear_counts: |
| q_vector->rx.total_bytes = 0; |
| q_vector->rx.total_packets = 0; |
| q_vector->tx.total_bytes = 0; |
| q_vector->tx.total_packets = 0; |
| } |
| |
| /** |
| * igb_update_itr - update the dynamic ITR value based on statistics |
| * Stores a new ITR value based on packets and byte |
| * counts during the last interrupt. The advantage of per interrupt |
| * computation is faster updates and more accurate ITR for the current |
| * traffic pattern. Constants in this function were computed |
| * based on theoretical maximum wire speed and thresholds were set based |
| * on testing data as well as attempting to minimize response time |
| * while increasing bulk throughput. |
| * this functionality is controlled by the InterruptThrottleRate module |
| * parameter (see igb_param.c) |
| * NOTE: These calculations are only valid when operating in a single- |
| * queue environment. |
| * @q_vector: pointer to q_vector |
| * @ring_container: ring info to update the itr for |
| **/ |
| static void igb_update_itr(struct igb_q_vector *q_vector, |
| struct igb_ring_container *ring_container) |
| { |
| unsigned int packets = ring_container->total_packets; |
| unsigned int bytes = ring_container->total_bytes; |
| u8 itrval = ring_container->itr; |
| |
| /* no packets, exit with status unchanged */ |
| if (packets == 0) |
| return; |
| |
| switch (itrval) { |
| case lowest_latency: |
| /* handle TSO and jumbo frames */ |
| if (bytes/packets > 8000) |
| itrval = bulk_latency; |
| else if ((packets < 5) && (bytes > 512)) |
| itrval = low_latency; |
| break; |
| case low_latency: /* 50 usec aka 20000 ints/s */ |
| if (bytes > 10000) { |
| /* this if handles the TSO accounting */ |
| if (bytes/packets > 8000) { |
| itrval = bulk_latency; |
| } else if ((packets < 10) || ((bytes/packets) > 1200)) { |
| itrval = bulk_latency; |
| } else if ((packets > 35)) { |
| itrval = lowest_latency; |
| } |
| } else if (bytes/packets > 2000) { |
| itrval = bulk_latency; |
| } else if (packets <= 2 && bytes < 512) { |
| itrval = lowest_latency; |
| } |
| break; |
| case bulk_latency: /* 250 usec aka 4000 ints/s */ |
| if (bytes > 25000) { |
| if (packets > 35) |
| itrval = low_latency; |
| } else if (bytes < 1500) { |
| itrval = low_latency; |
| } |
| break; |
| } |
| |
| /* clear work counters since we have the values we need */ |
| ring_container->total_bytes = 0; |
| ring_container->total_packets = 0; |
| |
| /* write updated itr to ring container */ |
| ring_container->itr = itrval; |
| } |
| |
| static void igb_set_itr(struct igb_q_vector *q_vector) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| u32 new_itr = q_vector->itr_val; |
| u8 current_itr = 0; |
| |
| /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
| if (adapter->link_speed != SPEED_1000) { |
| current_itr = 0; |
| new_itr = IGB_4K_ITR; |
| goto set_itr_now; |
| } |
| |
| igb_update_itr(q_vector, &q_vector->tx); |
| igb_update_itr(q_vector, &q_vector->rx); |
| |
| current_itr = max(q_vector->rx.itr, q_vector->tx.itr); |
| |
| /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
| if (current_itr == lowest_latency && |
| ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || |
| (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) |
| current_itr = low_latency; |
| |
| switch (current_itr) { |
| /* counts and packets in update_itr are dependent on these numbers */ |
| case lowest_latency: |
| new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ |
| break; |
| case low_latency: |
| new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ |
| break; |
| case bulk_latency: |
| new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ |
| break; |
| default: |
| break; |
| } |
| |
| set_itr_now: |
| if (new_itr != q_vector->itr_val) { |
| /* this attempts to bias the interrupt rate towards Bulk |
| * by adding intermediate steps when interrupt rate is |
| * increasing */ |
| new_itr = new_itr > q_vector->itr_val ? |
| max((new_itr * q_vector->itr_val) / |
| (new_itr + (q_vector->itr_val >> 2)), |
| new_itr) : |
| new_itr; |
| /* Don't write the value here; it resets the adapter's |
| * internal timer, and causes us to delay far longer than |
| * we should between interrupts. Instead, we write the ITR |
| * value at the beginning of the next interrupt so the timing |
| * ends up being correct. |
| */ |
| q_vector->itr_val = new_itr; |
| q_vector->set_itr = 1; |
| } |
| } |
| |
| static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens, |
| u32 type_tucmd, u32 mss_l4len_idx) |
| { |
| struct e1000_adv_tx_context_desc *context_desc; |
| u16 i = tx_ring->next_to_use; |
| |
| context_desc = IGB_TX_CTXTDESC(tx_ring, i); |
| |
| i++; |
| tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
| |
| /* set bits to identify this as an advanced context descriptor */ |
| type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; |
| |
| /* For 82575, context index must be unique per ring. */ |
| if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) |
| mss_l4len_idx |= tx_ring->reg_idx << 4; |
| |
| context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); |
| context_desc->seqnum_seed = 0; |
| context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); |
| context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); |
| } |
| |
| static int igb_tso(struct igb_ring *tx_ring, |
| struct igb_tx_buffer *first, |
| u8 *hdr_len) |
| { |
| struct sk_buff *skb = first->skb; |
| u32 vlan_macip_lens, type_tucmd; |
| u32 mss_l4len_idx, l4len; |
| |
| if (!skb_is_gso(skb)) |
| return 0; |
| |
| if (skb_header_cloned(skb)) { |
| int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
| if (err) |
| return err; |
| } |
| |
| /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ |
| type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; |
| |
| if (first->protocol == __constant_htons(ETH_P_IP)) { |
| struct iphdr *iph = ip_hdr(skb); |
| iph->tot_len = 0; |
| iph->check = 0; |
| tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
| iph->daddr, 0, |
| IPPROTO_TCP, |
| 0); |
| type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; |
| first->tx_flags |= IGB_TX_FLAGS_TSO | |
| IGB_TX_FLAGS_CSUM | |
| IGB_TX_FLAGS_IPV4; |
| } else if (skb_is_gso_v6(skb)) { |
| ipv6_hdr(skb)->payload_len = 0; |
| tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
| &ipv6_hdr(skb)->daddr, |
| 0, IPPROTO_TCP, 0); |
| first->tx_flags |= IGB_TX_FLAGS_TSO | |
| IGB_TX_FLAGS_CSUM; |
| } |
| |
| /* compute header lengths */ |
| l4len = tcp_hdrlen(skb); |
| *hdr_len = skb_transport_offset(skb) + l4len; |
| |
| /* update gso size and bytecount with header size */ |
| first->gso_segs = skb_shinfo(skb)->gso_segs; |
| first->bytecount += (first->gso_segs - 1) * *hdr_len; |
| |
| /* MSS L4LEN IDX */ |
| mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT; |
| mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; |
| |
| /* VLAN MACLEN IPLEN */ |
| vlan_macip_lens = skb_network_header_len(skb); |
| vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; |
| vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; |
| |
| igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); |
| |
| return 1; |
| } |
| |
| static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) |
| { |
| struct sk_buff *skb = first->skb; |
| u32 vlan_macip_lens = 0; |
| u32 mss_l4len_idx = 0; |
| u32 type_tucmd = 0; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) { |
| if (!(first->tx_flags & IGB_TX_FLAGS_VLAN)) |
| return; |
| } else { |
| u8 l4_hdr = 0; |
| switch (first->protocol) { |
| case __constant_htons(ETH_P_IP): |
| vlan_macip_lens |= skb_network_header_len(skb); |
| type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; |
| l4_hdr = ip_hdr(skb)->protocol; |
| break; |
| case __constant_htons(ETH_P_IPV6): |
| vlan_macip_lens |= skb_network_header_len(skb); |
| l4_hdr = ipv6_hdr(skb)->nexthdr; |
| break; |
| default: |
| if (unlikely(net_ratelimit())) { |
| dev_warn(tx_ring->dev, |
| "partial checksum but proto=%x!\n", |
| first->protocol); |
| } |
| break; |
| } |
| |
| switch (l4_hdr) { |
| case IPPROTO_TCP: |
| type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP; |
| mss_l4len_idx = tcp_hdrlen(skb) << |
| E1000_ADVTXD_L4LEN_SHIFT; |
| break; |
| case IPPROTO_SCTP: |
| type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; |
| mss_l4len_idx = sizeof(struct sctphdr) << |
| E1000_ADVTXD_L4LEN_SHIFT; |
| break; |
| case IPPROTO_UDP: |
| mss_l4len_idx = sizeof(struct udphdr) << |
| E1000_ADVTXD_L4LEN_SHIFT; |
| break; |
| default: |
| if (unlikely(net_ratelimit())) { |
| dev_warn(tx_ring->dev, |
| "partial checksum but l4 proto=%x!\n", |
| l4_hdr); |
| } |
| break; |
| } |
| |
| /* update TX checksum flag */ |
| first->tx_flags |= IGB_TX_FLAGS_CSUM; |
| } |
| |
| vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; |
| vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; |
| |
| igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); |
| } |
| |
| static __le32 igb_tx_cmd_type(u32 tx_flags) |
| { |
| /* set type for advanced descriptor with frame checksum insertion */ |
| __le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA | |
| E1000_ADVTXD_DCMD_IFCS | |
| E1000_ADVTXD_DCMD_DEXT); |
| |
| /* set HW vlan bit if vlan is present */ |
| if (tx_flags & IGB_TX_FLAGS_VLAN) |
| cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE); |
| |
| /* set timestamp bit if present */ |
| if (tx_flags & IGB_TX_FLAGS_TSTAMP) |
| cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP); |
| |
| /* set segmentation bits for TSO */ |
| if (tx_flags & IGB_TX_FLAGS_TSO) |
| cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE); |
| |
| return cmd_type; |
| } |
| |
| static void igb_tx_olinfo_status(struct igb_ring *tx_ring, |
| union e1000_adv_tx_desc *tx_desc, |
| u32 tx_flags, unsigned int paylen) |
| { |
| u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; |
| |
| /* 82575 requires a unique index per ring if any offload is enabled */ |
| if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) && |
| test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) |
| olinfo_status |= tx_ring->reg_idx << 4; |
| |
| /* insert L4 checksum */ |
| if (tx_flags & IGB_TX_FLAGS_CSUM) { |
| olinfo_status |= E1000_TXD_POPTS_TXSM << 8; |
| |
| /* insert IPv4 checksum */ |
| if (tx_flags & IGB_TX_FLAGS_IPV4) |
| olinfo_status |= E1000_TXD_POPTS_IXSM << 8; |
| } |
| |
| tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); |
| } |
| |
| /* |
| * The largest size we can write to the descriptor is 65535. In order to |
| * maintain a power of two alignment we have to limit ourselves to 32K. |
| */ |
| #define IGB_MAX_TXD_PWR 15 |
| #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR) |
| |
| static void igb_tx_map(struct igb_ring *tx_ring, |
| struct igb_tx_buffer *first, |
| const u8 hdr_len) |
| { |
| struct sk_buff *skb = first->skb; |
| struct igb_tx_buffer *tx_buffer_info; |
| union e1000_adv_tx_desc *tx_desc; |
| dma_addr_t dma; |
| struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; |
| unsigned int data_len = skb->data_len; |
| unsigned int size = skb_headlen(skb); |
| unsigned int paylen = skb->len - hdr_len; |
| __le32 cmd_type; |
| u32 tx_flags = first->tx_flags; |
| u16 i = tx_ring->next_to_use; |
| |
| tx_desc = IGB_TX_DESC(tx_ring, i); |
| |
| igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen); |
| cmd_type = igb_tx_cmd_type(tx_flags); |
| |
| dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); |
| if (dma_mapping_error(tx_ring->dev, dma)) |
| goto dma_error; |
| |
| /* record length, and DMA address */ |
| first->length = size; |
| first->dma = dma; |
| tx_desc->read.buffer_addr = cpu_to_le64(dma); |
| |
| for (;;) { |
| while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { |
| tx_desc->read.cmd_type_len = |
| cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD); |
| |
| i++; |
| tx_desc++; |
| if (i == tx_ring->count) { |
| tx_desc = IGB_TX_DESC(tx_ring, 0); |
| i = 0; |
| } |
| |
| dma += IGB_MAX_DATA_PER_TXD; |
| size -= IGB_MAX_DATA_PER_TXD; |
| |
| tx_desc->read.olinfo_status = 0; |
| tx_desc->read.buffer_addr = cpu_to_le64(dma); |
| } |
| |
| if (likely(!data_len)) |
| break; |
| |
| tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); |
| |
| i++; |
| tx_desc++; |
| if (i == tx_ring->count) { |
| tx_desc = IGB_TX_DESC(tx_ring, 0); |
| i = 0; |
| } |
| |
| size = skb_frag_size(frag); |
| data_len -= size; |
| |
| dma = skb_frag_dma_map(tx_ring->dev, frag, 0, |
| size, DMA_TO_DEVICE); |
| if (dma_mapping_error(tx_ring->dev, dma)) |
| goto dma_error; |
| |
| tx_buffer_info = &tx_ring->tx_buffer_info[i]; |
| tx_buffer_info->length = size; |
| tx_buffer_info->dma = dma; |
| |
| tx_desc->read.olinfo_status = 0; |
| tx_desc->read.buffer_addr = cpu_to_le64(dma); |
| |
| frag++; |
| } |
| |
| netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); |
| |
| /* write last descriptor with RS and EOP bits */ |
| cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD); |
| if (unlikely(skb->no_fcs)) |
| cmd_type &= ~(cpu_to_le32(E1000_ADVTXD_DCMD_IFCS)); |
| tx_desc->read.cmd_type_len = cmd_type; |
| |
| /* set the timestamp */ |
| first->time_stamp = jiffies; |
| |
| /* |
| * Force memory writes to complete before letting h/w know there |
| * are new descriptors to fetch. (Only applicable for weak-ordered |
| * memory model archs, such as IA-64). |
| * |
| * We also need this memory barrier to make certain all of the |
| * status bits have been updated before next_to_watch is written. |
| */ |
| wmb(); |
| |
| /* set next_to_watch value indicating a packet is present */ |
| first->next_to_watch = tx_desc; |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| |
| tx_ring->next_to_use = i; |
| |
| writel(i, tx_ring->tail); |
| |
| /* we need this if more than one processor can write to our tail |
| * at a time, it syncronizes IO on IA64/Altix systems */ |
| mmiowb(); |
| |
| return; |
| |
| dma_error: |
| dev_err(tx_ring->dev, "TX DMA map failed\n"); |
| |
| /* clear dma mappings for failed tx_buffer_info map */ |
| for (;;) { |
| tx_buffer_info = &tx_ring->tx_buffer_info[i]; |
| igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); |
| if (tx_buffer_info == first) |
| break; |
| if (i == 0) |
| i = tx_ring->count; |
| i--; |
| } |
| |
| tx_ring->next_to_use = i; |
| } |
| |
| static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) |
| { |
| struct net_device *netdev = tx_ring->netdev; |
| |
| netif_stop_subqueue(netdev, tx_ring->queue_index); |
| |
| /* Herbert's original patch had: |
| * smp_mb__after_netif_stop_queue(); |
| * but since that doesn't exist yet, just open code it. */ |
| smp_mb(); |
| |
| /* We need to check again in a case another CPU has just |
| * made room available. */ |
| if (igb_desc_unused(tx_ring) < size) |
| return -EBUSY; |
| |
| /* A reprieve! */ |
| netif_wake_subqueue(netdev, tx_ring->queue_index); |
| |
| u64_stats_update_begin(&tx_ring->tx_syncp2); |
| tx_ring->tx_stats.restart_queue2++; |
| u64_stats_update_end(&tx_ring->tx_syncp2); |
| |
| return 0; |
| } |
| |
| static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) |
| { |
| if (igb_desc_unused(tx_ring) >= size) |
| return 0; |
| return __igb_maybe_stop_tx(tx_ring, size); |
| } |
| |
| netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, |
| struct igb_ring *tx_ring) |
| { |
| struct igb_tx_buffer *first; |
| int tso; |
| u32 tx_flags = 0; |
| __be16 protocol = vlan_get_protocol(skb); |
| u8 hdr_len = 0; |
| |
| /* need: 1 descriptor per page, |
| * + 2 desc gap to keep tail from touching head, |
| * + 1 desc for skb->data, |
| * + 1 desc for context descriptor, |
| * otherwise try next time */ |
| if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) { |
| /* this is a hard error */ |
| return NETDEV_TX_BUSY; |
| } |
| |
| /* record the location of the first descriptor for this packet */ |
| first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; |
| first->skb = skb; |
| first->bytecount = skb->len; |
| first->gso_segs = 1; |
| |
| if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { |
| skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| tx_flags |= IGB_TX_FLAGS_TSTAMP; |
| } |
| |
| if (vlan_tx_tag_present(skb)) { |
| tx_flags |= IGB_TX_FLAGS_VLAN; |
| tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); |
| } |
| |
| /* record initial flags and protocol */ |
| first->tx_flags = tx_flags; |
| first->protocol = protocol; |
| |
| tso = igb_tso(tx_ring, first, &hdr_len); |
| if (tso < 0) |
| goto out_drop; |
| else if (!tso) |
| igb_tx_csum(tx_ring, first); |
| |
| igb_tx_map(tx_ring, first, hdr_len); |
| |
| /* Make sure there is space in the ring for the next send. */ |
| igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4); |
| |
| return NETDEV_TX_OK; |
| |
| out_drop: |
| igb_unmap_and_free_tx_resource(tx_ring, first); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, |
| struct sk_buff *skb) |
| { |
| unsigned int r_idx = skb->queue_mapping; |
| |
| if (r_idx >= adapter->num_tx_queues) |
| r_idx = r_idx % adapter->num_tx_queues; |
| |
| return adapter->tx_ring[r_idx]; |
| } |
| |
| static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, |
| struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| |
| if (test_bit(__IGB_DOWN, &adapter->state)) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| if (skb->len <= 0) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /* |
| * The minimum packet size with TCTL.PSP set is 17 so pad the skb |
| * in order to meet this minimum size requirement. |
| */ |
| if (skb->len < 17) { |
| if (skb_padto(skb, 17)) |
| return NETDEV_TX_OK; |
| skb->len = 17; |
| } |
| |
| return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); |
| } |
| |
| /** |
| * igb_tx_timeout - Respond to a Tx Hang |
| * @netdev: network interface device structure |
| **/ |
| static void igb_tx_timeout(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* Do the reset outside of interrupt context */ |
| adapter->tx_timeout_count++; |
| |
| if (hw->mac.type >= e1000_82580) |
| hw->dev_spec._82575.global_device_reset = true; |
| |
| schedule_work(&adapter->reset_task); |
| wr32(E1000_EICS, |
| (adapter->eims_enable_mask & ~adapter->eims_other)); |
| } |
| |
| static void igb_reset_task(struct work_struct *work) |
| { |
| struct igb_adapter *adapter; |
| adapter = container_of(work, struct igb_adapter, reset_task); |
| |
| igb_dump(adapter); |
| netdev_err(adapter->netdev, "Reset adapter\n"); |
| igb_reinit_locked(adapter); |
| } |
| |
| /** |
| * igb_get_stats64 - Get System Network Statistics |
| * @netdev: network interface device structure |
| * @stats: rtnl_link_stats64 pointer |
| * |
| **/ |
| static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, |
| struct rtnl_link_stats64 *stats) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| |
| spin_lock(&adapter->stats64_lock); |
| igb_update_stats(adapter, &adapter->stats64); |
| memcpy(stats, &adapter->stats64, sizeof(*stats)); |
| spin_unlock(&adapter->stats64_lock); |
| |
| return stats; |
| } |
| |
| /** |
| * igb_change_mtu - Change the Maximum Transfer Unit |
| * @netdev: network interface device structure |
| * @new_mtu: new value for maximum frame size |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| static int igb_change_mtu(struct net_device *netdev, int new_mtu) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct pci_dev *pdev = adapter->pdev; |
| int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; |
| |
| if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { |
| dev_err(&pdev->dev, "Invalid MTU setting\n"); |
| return -EINVAL; |
| } |
| |
| #define MAX_STD_JUMBO_FRAME_SIZE 9238 |
| if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { |
| dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); |
| return -EINVAL; |
| } |
| |
| while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) |
| msleep(1); |
| |
| /* igb_down has a dependency on max_frame_size */ |
| adapter->max_frame_size = max_frame; |
| |
| if (netif_running(netdev)) |
| igb_down(adapter); |
| |
| dev_info(&pdev->dev, "changing MTU from %d to %d\n", |
| netdev->mtu, new_mtu); |
| netdev->mtu = new_mtu; |
| |
| if (netif_running(netdev)) |
| igb_up(adapter); |
| else |
| igb_reset(adapter); |
| |
| clear_bit(__IGB_RESETTING, &adapter->state); |
| |
| return 0; |
| } |
| |
| /** |
| * igb_update_stats - Update the board statistics counters |
| * @adapter: board private structure |
| **/ |
| |
| void igb_update_stats(struct igb_adapter *adapter, |
| struct rtnl_link_stats64 *net_stats) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct pci_dev *pdev = adapter->pdev; |
| u32 reg, mpc; |
| u16 phy_tmp; |
| int i; |
| u64 bytes, packets; |
| unsigned int start; |
| u64 _bytes, _packets; |
| |
| #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF |
| |
| /* |
| * Prevent stats update while adapter is being reset, or if the pci |
| * connection is down. |
| */ |
| if (adapter->link_speed == 0) |
| return; |
| if (pci_channel_offline(pdev)) |
| return; |
| |
| bytes = 0; |
| packets = 0; |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF; |
| struct igb_ring *ring = adapter->rx_ring[i]; |
| |
| ring->rx_stats.drops += rqdpc_tmp; |
| net_stats->rx_fifo_errors += rqdpc_tmp; |
| |
| do { |
| start = u64_stats_fetch_begin_bh(&ring->rx_syncp); |
| _bytes = ring->rx_stats.bytes; |
| _packets = ring->rx_stats.packets; |
| } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); |
| bytes += _bytes; |
| packets += _packets; |
| } |
| |
| net_stats->rx_bytes = bytes; |
| net_stats->rx_packets = packets; |
| |
| bytes = 0; |
| packets = 0; |
| for (i = 0; i < adapter->num_tx_queues; i++) { |
| struct igb_ring *ring = adapter->tx_ring[i]; |
| do { |
| start = u64_stats_fetch_begin_bh(&ring->tx_syncp); |
| _bytes = ring->tx_stats.bytes; |
| _packets = ring->tx_stats.packets; |
| } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); |
| bytes += _bytes; |
| packets += _packets; |
| } |
| net_stats->tx_bytes = bytes; |
| net_stats->tx_packets = packets; |
| |
| /* read stats registers */ |
| adapter->stats.crcerrs += rd32(E1000_CRCERRS); |
| adapter->stats.gprc += rd32(E1000_GPRC); |
| adapter->stats.gorc += rd32(E1000_GORCL); |
| rd32(E1000_GORCH); /* clear GORCL */ |
| adapter->stats.bprc += rd32(E1000_BPRC); |
| adapter->stats.mprc += rd32(E1000_MPRC); |
| adapter->stats.roc += rd32(E1000_ROC); |
| |
| adapter->stats.prc64 += rd32(E1000_PRC64); |
| adapter->stats.prc127 += rd32(E1000_PRC127); |
| adapter->stats.prc255 += rd32(E1000_PRC255); |
| adapter->stats.prc511 += rd32(E1000_PRC511); |
| adapter->stats.prc1023 += rd32(E1000_PRC1023); |
| adapter->stats.prc1522 += rd32(E1000_PRC1522); |
| adapter->stats.symerrs += rd32(E1000_SYMERRS); |
| adapter->stats.sec += rd32(E1000_SEC); |
| |
| mpc = rd32(E1000_MPC); |
| adapter->stats.mpc += mpc; |
| net_stats->rx_fifo_errors += mpc; |
| adapter->stats.scc += rd32(E1000_SCC); |
| adapter->stats.ecol += rd32(E1000_ECOL); |
| adapter->stats.mcc += rd32(E1000_MCC); |
| adapter->stats.latecol += rd32(E1000_LATECOL); |
| adapter->stats.dc += rd32(E1000_DC); |
| adapter->stats.rlec += rd32(E1000_RLEC); |
| adapter->stats.xonrxc += rd32(E1000_XONRXC); |
| adapter->stats.xontxc += rd32(E1000_XONTXC); |
| adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); |
| adapter->stats.xofftxc += rd32(E1000_XOFFTXC); |
| adapter->stats.fcruc += rd32(E1000_FCRUC); |
| adapter->stats.gptc += rd32(E1000_GPTC); |
| adapter->stats.gotc += rd32(E1000_GOTCL); |
| rd32(E1000_GOTCH); /* clear GOTCL */ |
| adapter->stats.rnbc += rd32(E1000_RNBC); |
| adapter->stats.ruc += rd32(E1000_RUC); |
| adapter->stats.rfc += rd32(E1000_RFC); |
| adapter->stats.rjc += rd32(E1000_RJC); |
| adapter->stats.tor += rd32(E1000_TORH); |
| adapter->stats.tot += rd32(E1000_TOTH); |
| adapter->stats.tpr += rd32(E1000_TPR); |
| |
| adapter->stats.ptc64 += rd32(E1000_PTC64); |
| adapter->stats.ptc127 += rd32(E1000_PTC127); |
| adapter->stats.ptc255 += rd32(E1000_PTC255); |
| adapter->stats.ptc511 += rd32(E1000_PTC511); |
| adapter->stats.ptc1023 += rd32(E1000_PTC1023); |
| adapter->stats.ptc1522 += rd32(E1000_PTC1522); |
| |
| adapter->stats.mptc += rd32(E1000_MPTC); |
| adapter->stats.bptc += rd32(E1000_BPTC); |
| |
| adapter->stats.tpt += rd32(E1000_TPT); |
| adapter->stats.colc += rd32(E1000_COLC); |
| |
| adapter->stats.algnerrc += rd32(E1000_ALGNERRC); |
| /* read internal phy specific stats */ |
| reg = rd32(E1000_CTRL_EXT); |
| if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { |
| adapter->stats.rxerrc += rd32(E1000_RXERRC); |
| adapter->stats.tncrs += rd32(E1000_TNCRS); |
| } |
| |
| adapter->stats.tsctc += rd32(E1000_TSCTC); |
| adapter->stats.tsctfc += rd32(E1000_TSCTFC); |
| |
| adapter->stats.iac += rd32(E1000_IAC); |
| adapter->stats.icrxoc += rd32(E1000_ICRXOC); |
| adapter->stats.icrxptc += rd32(E1000_ICRXPTC); |
| adapter->stats.icrxatc += rd32(E1000_ICRXATC); |
| adapter->stats.ictxptc += rd32(E1000_ICTXPTC); |
| adapter->stats.ictxatc += rd32(E1000_ICTXATC); |
| adapter->stats.ictxqec += rd32(E1000_ICTXQEC); |
| adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); |
| adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); |
| |
| /* Fill out the OS statistics structure */ |
| net_stats->multicast = adapter->stats.mprc; |
| net_stats->collisions = adapter->stats.colc; |
| |
| /* Rx Errors */ |
| |
| /* RLEC on some newer hardware can be incorrect so build |
| * our own version based on RUC and ROC */ |
| net_stats->rx_errors = adapter->stats.rxerrc + |
| adapter->stats.crcerrs + adapter->stats.algnerrc + |
| adapter->stats.ruc + adapter->stats.roc + |
| adapter->stats.cexterr; |
| net_stats->rx_length_errors = adapter->stats.ruc + |
| adapter->stats.roc; |
| net_stats->rx_crc_errors = adapter->stats.crcerrs; |
| net_stats->rx_frame_errors = adapter->stats.algnerrc; |
| net_stats->rx_missed_errors = adapter->stats.mpc; |
| |
| /* Tx Errors */ |
| net_stats->tx_errors = adapter->stats.ecol + |
| adapter->stats.latecol; |
| net_stats->tx_aborted_errors = adapter->stats.ecol; |
| net_stats->tx_window_errors = adapter->stats.latecol; |
| net_stats->tx_carrier_errors = adapter->stats.tncrs; |
| |
| /* Tx Dropped needs to be maintained elsewhere */ |
| |
| /* Phy Stats */ |
| if (hw->phy.media_type == e1000_media_type_copper) { |
| if ((adapter->link_speed == SPEED_1000) && |
| (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { |
| phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; |
| adapter->phy_stats.idle_errors += phy_tmp; |
| } |
| } |
| |
| /* Management Stats */ |
| adapter->stats.mgptc += rd32(E1000_MGTPTC); |
| adapter->stats.mgprc += rd32(E1000_MGTPRC); |
| adapter->stats.mgpdc += rd32(E1000_MGTPDC); |
| |
| /* OS2BMC Stats */ |
| reg = rd32(E1000_MANC); |
| if (reg & E1000_MANC_EN_BMC2OS) { |
| adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); |
| adapter->stats.o2bspc += rd32(E1000_O2BSPC); |
| adapter->stats.b2ospc += rd32(E1000_B2OSPC); |
| adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); |
| } |
| } |
| |
| static irqreturn_t igb_msix_other(int irq, void *data) |
| { |
| struct igb_adapter *adapter = data; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 icr = rd32(E1000_ICR); |
| /* reading ICR causes bit 31 of EICR to be cleared */ |
| |
| if (icr & E1000_ICR_DRSTA) |
| schedule_work(&adapter->reset_task); |
| |
| if (icr & E1000_ICR_DOUTSYNC) { |
| /* HW is reporting DMA is out of sync */ |
| adapter->stats.doosync++; |
| /* The DMA Out of Sync is also indication of a spoof event |
| * in IOV mode. Check the Wrong VM Behavior register to |
| * see if it is really a spoof event. */ |
| igb_check_wvbr(adapter); |
| } |
| |
| /* Check for a mailbox event */ |
| if (icr & E1000_ICR_VMMB) |
| igb_msg_task(adapter); |
| |
| if (icr & E1000_ICR_LSC) { |
| hw->mac.get_link_status = 1; |
| /* guard against interrupt when we're going down */ |
| if (!test_bit(__IGB_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| } |
| |
| wr32(E1000_EIMS, adapter->eims_other); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void igb_write_itr(struct igb_q_vector *q_vector) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| u32 itr_val = q_vector->itr_val & 0x7FFC; |
| |
| if (!q_vector->set_itr) |
| return; |
| |
| if (!itr_val) |
| itr_val = 0x4; |
| |
| if (adapter->hw.mac.type == e1000_82575) |
| itr_val |= itr_val << 16; |
| else |
| itr_val |= E1000_EITR_CNT_IGNR; |
| |
| writel(itr_val, q_vector->itr_register); |
| q_vector->set_itr = 0; |
| } |
| |
| static irqreturn_t igb_msix_ring(int irq, void *data) |
| { |
| struct igb_q_vector *q_vector = data; |
| |
| /* Write the ITR value calculated from the previous interrupt. */ |
| igb_write_itr(q_vector); |
| |
| napi_schedule(&q_vector->napi); |
| |
| return IRQ_HANDLED; |
| } |
| |
| #ifdef CONFIG_IGB_DCA |
| static void igb_update_dca(struct igb_q_vector *q_vector) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| struct e1000_hw *hw = &adapter->hw; |
| int cpu = get_cpu(); |
| |
| if (q_vector->cpu == cpu) |
| goto out_no_update; |
| |
| if (q_vector->tx.ring) { |
| int q = q_vector->tx.ring->reg_idx; |
| u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q)); |
| if (hw->mac.type == e1000_82575) { |
| dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK; |
| dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu); |
| } else { |
| dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576; |
| dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) << |
| E1000_DCA_TXCTRL_CPUID_SHIFT; |
| } |
| dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN; |
| wr32(E1000_DCA_TXCTRL(q), dca_txctrl); |
| } |
| if (q_vector->rx.ring) { |
| int q = q_vector->rx.ring->reg_idx; |
| u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q)); |
| if (hw->mac.type == e1000_82575) { |
| dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK; |
| dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu); |
| } else { |
| dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576; |
| dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) << |
| E1000_DCA_RXCTRL_CPUID_SHIFT; |
| } |
| dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN; |
| dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN; |
| dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN; |
| wr32(E1000_DCA_RXCTRL(q), dca_rxctrl); |
| } |
| q_vector->cpu = cpu; |
| out_no_update: |
| put_cpu(); |
| } |
| |
| static void igb_setup_dca(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| int i; |
| |
| if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) |
| return; |
| |
| /* Always use CB2 mode, difference is masked in the CB driver. */ |
| wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) { |
| adapter->q_vector[i]->cpu = -1; |
| igb_update_dca(adapter->q_vector[i]); |
| } |
| } |
| |
| static int __igb_notify_dca(struct device *dev, void *data) |
| { |
| struct net_device *netdev = dev_get_drvdata(dev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_hw *hw = &adapter->hw; |
| unsigned long event = *(unsigned long *)data; |
| |
| switch (event) { |
| case DCA_PROVIDER_ADD: |
| /* if already enabled, don't do it again */ |
| if (adapter->flags & IGB_FLAG_DCA_ENABLED) |
| break; |
| if (dca_add_requester(dev) == 0) { |
| adapter->flags |= IGB_FLAG_DCA_ENABLED; |
| dev_info(&pdev->dev, "DCA enabled\n"); |
| igb_setup_dca(adapter); |
| break; |
| } |
| /* Fall Through since DCA is disabled. */ |
| case DCA_PROVIDER_REMOVE: |
| if (adapter->flags & IGB_FLAG_DCA_ENABLED) { |
| /* without this a class_device is left |
| * hanging around in the sysfs model */ |
| dca_remove_requester(dev); |
| dev_info(&pdev->dev, "DCA disabled\n"); |
| adapter->flags &= ~IGB_FLAG_DCA_ENABLED; |
| wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int igb_notify_dca(struct notifier_block *nb, unsigned long event, |
| void *p) |
| { |
| int ret_val; |
| |
| ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, |
| __igb_notify_dca); |
| |
| return ret_val ? NOTIFY_BAD : NOTIFY_DONE; |
| } |
| #endif /* CONFIG_IGB_DCA */ |
| |
| #ifdef CONFIG_PCI_IOV |
| static int igb_vf_configure(struct igb_adapter *adapter, int vf) |
| { |
| unsigned char mac_addr[ETH_ALEN]; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_hw *hw = &adapter->hw; |
| struct pci_dev *pvfdev; |
| unsigned int device_id; |
| u16 thisvf_devfn; |
| |
| random_ether_addr(mac_addr); |
| igb_set_vf_mac(adapter, vf, mac_addr); |
| |
| switch (adapter->hw.mac.type) { |
| case e1000_82576: |
| device_id = IGB_82576_VF_DEV_ID; |
| /* VF Stride for 82576 is 2 */ |
| thisvf_devfn = (pdev->devfn + 0x80 + (vf << 1)) | |
| (pdev->devfn & 1); |
| break; |
| case e1000_i350: |
| device_id = IGB_I350_VF_DEV_ID; |
| /* VF Stride for I350 is 4 */ |
| thisvf_devfn = (pdev->devfn + 0x80 + (vf << 2)) | |
| (pdev->devfn & 3); |
| break; |
| default: |
| device_id = 0; |
| thisvf_devfn = 0; |
| break; |
| } |
| |
| pvfdev = pci_get_device(hw->vendor_id, device_id, NULL); |
| while (pvfdev) { |
| if (pvfdev->devfn == thisvf_devfn) |
| break; |
| pvfdev = pci_get_device(hw->vendor_id, |
| device_id, pvfdev); |
| } |
| |
| if (pvfdev) |
| adapter->vf_data[vf].vfdev = pvfdev; |
| else |
| dev_err(&pdev->dev, |
| "Couldn't find pci dev ptr for VF %4.4x\n", |
| thisvf_devfn); |
| return pvfdev != NULL; |
| } |
| |
| static int igb_find_enabled_vfs(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct pci_dev *pdev = adapter->pdev; |
| struct pci_dev *pvfdev; |
| u16 vf_devfn = 0; |
| u16 vf_stride; |
| unsigned int device_id; |
| int vfs_found = 0; |
| |
| switch (adapter->hw.mac.type) { |
| case e1000_82576: |
| device_id = IGB_82576_VF_DEV_ID; |
| /* VF Stride for 82576 is 2 */ |
| vf_stride = 2; |
| break; |
| case e1000_i350: |
| device_id = IGB_I350_VF_DEV_ID; |
| /* VF Stride for I350 is 4 */ |
| vf_stride = 4; |
| break; |
| default: |
| device_id = 0; |
| vf_stride = 0; |
| break; |
| } |
| |
| vf_devfn = pdev->devfn + 0x80; |
| pvfdev = pci_get_device(hw->vendor_id, device_id, NULL); |
| while (pvfdev) { |
| if (pvfdev->devfn == vf_devfn && |
| (pvfdev->bus->number >= pdev->bus->number)) |
| vfs_found++; |
| vf_devfn += vf_stride; |
| pvfdev = pci_get_device(hw->vendor_id, |
| device_id, pvfdev); |
| } |
| |
| return vfs_found; |
| } |
| |
| static int igb_check_vf_assignment(struct igb_adapter *adapter) |
| { |
| int i; |
| for (i = 0; i < adapter->vfs_allocated_count; i++) { |
| if (adapter->vf_data[i].vfdev) { |
| if (adapter->vf_data[i].vfdev->dev_flags & |
| PCI_DEV_FLAGS_ASSIGNED) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| #endif |
| static void igb_ping_all_vfs(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ping; |
| int i; |
| |
| for (i = 0 ; i < adapter->vfs_allocated_count; i++) { |
| ping = E1000_PF_CONTROL_MSG; |
| if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) |
| ping |= E1000_VT_MSGTYPE_CTS; |
| igb_write_mbx(hw, &ping, 1, i); |
| } |
| } |
| |
| static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 vmolr = rd32(E1000_VMOLR(vf)); |
| struct vf_data_storage *vf_data = &adapter->vf_data[vf]; |
| |
| vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | |
| IGB_VF_FLAG_MULTI_PROMISC); |
| vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); |
| |
| if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { |
| vmolr |= E1000_VMOLR_MPME; |
| vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; |
| *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; |
| } else { |
| /* |
| * if we have hashes and we are clearing a multicast promisc |
| * flag we need to write the hashes to the MTA as this step |
| * was previously skipped |
| */ |
| if (vf_data->num_vf_mc_hashes > 30) { |
| vmolr |= E1000_VMOLR_MPME; |
| } else if (vf_data->num_vf_mc_hashes) { |
| int j; |
| vmolr |= E1000_VMOLR_ROMPE; |
| for (j = 0; j < vf_data->num_vf_mc_hashes; j++) |
| igb_mta_set(hw, vf_data->vf_mc_hashes[j]); |
| } |
| } |
| |
| wr32(E1000_VMOLR(vf), vmolr); |
| |
| /* there are flags left unprocessed, likely not supported */ |
| if (*msgbuf & E1000_VT_MSGINFO_MASK) |
| return -EINVAL; |
| |
| return 0; |
| |
| } |
| |
| static int igb_set_vf_multicasts(struct igb_adapter *adapter, |
| u32 *msgbuf, u32 vf) |
| { |
| int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; |
| u16 *hash_list = (u16 *)&msgbuf[1]; |
| struct vf_data_storage *vf_data = &adapter->vf_data[vf]; |
| int i; |
| |
| /* salt away the number of multicast addresses assigned |
| * to this VF for later use to restore when the PF multi cast |
| * list changes |
| */ |
| vf_data->num_vf_mc_hashes = n; |
| |
| /* only up to 30 hash values supported */ |
| if (n > 30) |
| n = 30; |
| |
| /* store the hashes for later use */ |
| for (i = 0; i < n; i++) |
| vf_data->vf_mc_hashes[i] = hash_list[i]; |
| |
| /* Flush and reset the mta with the new values */ |
| igb_set_rx_mode(adapter->netdev); |
| |
| return 0; |
| } |
| |
| static void igb_restore_vf_multicasts(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct vf_data_storage *vf_data; |
| int i, j; |
| |
| for (i = 0; i < adapter->vfs_allocated_count; i++) { |
| u32 vmolr = rd32(E1000_VMOLR(i)); |
| vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); |
| |
| vf_data = &adapter->vf_data[i]; |
| |
| if ((vf_data->num_vf_mc_hashes > 30) || |
| (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { |
| vmolr |= E1000_VMOLR_MPME; |
| } else if (vf_data->num_vf_mc_hashes) { |
| vmolr |= E1000_VMOLR_ROMPE; |
| for (j = 0; j < vf_data->num_vf_mc_hashes; j++) |
| igb_mta_set(hw, vf_data->vf_mc_hashes[j]); |
| } |
| wr32(E1000_VMOLR(i), vmolr); |
| } |
| } |
| |
| static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 pool_mask, reg, vid; |
| int i; |
| |
| pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); |
| |
| /* Find the vlan filter for this id */ |
| for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { |
| reg = rd32(E1000_VLVF(i)); |
| |
| /* remove the vf from the pool */ |
| reg &= ~pool_mask; |
| |
| /* if pool is empty then remove entry from vfta */ |
| if (!(reg & E1000_VLVF_POOLSEL_MASK) && |
| (reg & E1000_VLVF_VLANID_ENABLE)) { |
| reg = 0; |
| vid = reg & E1000_VLVF_VLANID_MASK; |
| igb_vfta_set(hw, vid, false); |
| } |
| |
| wr32(E1000_VLVF(i), reg); |
| } |
| |
| adapter->vf_data[vf].vlans_enabled = 0; |
| } |
| |
| static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 reg, i; |
| |
| /* The vlvf table only exists on 82576 hardware and newer */ |
| if (hw->mac.type < e1000_82576) |
| return -1; |
| |
| /* we only need to do this if VMDq is enabled */ |
| if (!adapter->vfs_allocated_count) |
| return -1; |
| |
| /* Find the vlan filter for this id */ |
| for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { |
| reg = rd32(E1000_VLVF(i)); |
| if ((reg & E1000_VLVF_VLANID_ENABLE) && |
| vid == (reg & E1000_VLVF_VLANID_MASK)) |
| break; |
| } |
| |
| if (add) { |
| if (i == E1000_VLVF_ARRAY_SIZE) { |
| /* Did not find a matching VLAN ID entry that was |
| * enabled. Search for a free filter entry, i.e. |
| * one without the enable bit set |
| */ |
| for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { |
| reg = rd32(E1000_VLVF(i)); |
| if (!(reg & E1000_VLVF_VLANID_ENABLE)) |
| break; |
| } |
| } |
| if (i < E1000_VLVF_ARRAY_SIZE) { |
| /* Found an enabled/available entry */ |
| reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); |
| |
| /* if !enabled we need to set this up in vfta */ |
| if (!(reg & E1000_VLVF_VLANID_ENABLE)) { |
| /* add VID to filter table */ |
| igb_vfta_set(hw, vid, true); |
| reg |= E1000_VLVF_VLANID_ENABLE; |
| } |
| reg &= ~E1000_VLVF_VLANID_MASK; |
| reg |= vid; |
| wr32(E1000_VLVF(i), reg); |
| |
| /* do not modify RLPML for PF devices */ |
| if (vf >= adapter->vfs_allocated_count) |
| return 0; |
| |
| if (!adapter->vf_data[vf].vlans_enabled) { |
| u32 size; |
| reg = rd32(E1000_VMOLR(vf)); |
| size = reg & E1000_VMOLR_RLPML_MASK; |
| size += 4; |
| reg &= ~E1000_VMOLR_RLPML_MASK; |
| reg |= size; |
| wr32(E1000_VMOLR(vf), reg); |
| } |
| |
| adapter->vf_data[vf].vlans_enabled++; |
| } |
| } else { |
| if (i < E1000_VLVF_ARRAY_SIZE) { |
| /* remove vf from the pool */ |
| reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); |
| /* if pool is empty then remove entry from vfta */ |
| if (!(reg & E1000_VLVF_POOLSEL_MASK)) { |
| reg = 0; |
| igb_vfta_set(hw, vid, false); |
| } |
| wr32(E1000_VLVF(i), reg); |
| |
| /* do not modify RLPML for PF devices */ |
| if (vf >= adapter->vfs_allocated_count) |
| return 0; |
| |
| adapter->vf_data[vf].vlans_enabled--; |
| if (!adapter->vf_data[vf].vlans_enabled) { |
| u32 size; |
| reg = rd32(E1000_VMOLR(vf)); |
| size = reg & E1000_VMOLR_RLPML_MASK; |
| size -= 4; |
| reg &= ~E1000_VMOLR_RLPML_MASK; |
| reg |= size; |
| wr32(E1000_VMOLR(vf), reg); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (vid) |
| wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); |
| else |
| wr32(E1000_VMVIR(vf), 0); |
| } |
| |
| static int igb_ndo_set_vf_vlan(struct net_device *netdev, |
| int vf, u16 vlan, u8 qos) |
| { |
| int err = 0; |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| |
| if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) |
| return -EINVAL; |
| if (vlan || qos) { |
| err = igb_vlvf_set(adapter, vlan, !!vlan, vf); |
| if (err) |
| goto out; |
| igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); |
| igb_set_vmolr(adapter, vf, !vlan); |
| adapter->vf_data[vf].pf_vlan = vlan; |
| adapter->vf_data[vf].pf_qos = qos; |
| dev_info(&adapter->pdev->dev, |
| "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); |
| if (test_bit(__IGB_DOWN, &adapter->state)) { |
| dev_warn(&adapter->pdev->dev, |
| "The VF VLAN has been set," |
| " but the PF device is not up.\n"); |
| dev_warn(&adapter->pdev->dev, |
| "Bring the PF device up before" |
| " attempting to use the VF device.\n"); |
| } |
| } else { |
| igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, |
| false, vf); |
| igb_set_vmvir(adapter, vlan, vf); |
| igb_set_vmolr(adapter, vf, true); |
| adapter->vf_data[vf].pf_vlan = 0; |
| adapter->vf_data[vf].pf_qos = 0; |
| } |
| out: |
| return err; |
| } |
| |
| static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) |
| { |
| int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; |
| int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); |
| |
| return igb_vlvf_set(adapter, vid, add, vf); |
| } |
| |
| static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) |
| { |
| /* clear flags - except flag that indicates PF has set the MAC */ |
| adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; |
| adapter->vf_data[vf].last_nack = jiffies; |
| |
| /* reset offloads to defaults */ |
| igb_set_vmolr(adapter, vf, true); |
| |
| /* reset vlans for device */ |
| igb_clear_vf_vfta(adapter, vf); |
| if (adapter->vf_data[vf].pf_vlan) |
| igb_ndo_set_vf_vlan(adapter->netdev, vf, |
| adapter->vf_data[vf].pf_vlan, |
| adapter->vf_data[vf].pf_qos); |
| else |
| igb_clear_vf_vfta(adapter, vf); |
| |
| /* reset multicast table array for vf */ |
| adapter->vf_data[vf].num_vf_mc_hashes = 0; |
| |
| /* Flush and reset the mta with the new values */ |
| igb_set_rx_mode(adapter->netdev); |
| } |
| |
| static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) |
| { |
| unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; |
| |
| /* generate a new mac address as we were hotplug removed/added */ |
| if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) |
| random_ether_addr(vf_mac); |
| |
| /* process remaining reset events */ |
| igb_vf_reset(adapter, vf); |
| } |
| |
| static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; |
| int rar_entry = hw->mac.rar_entry_count - (vf + 1); |
| u32 reg, msgbuf[3]; |
| u8 *addr = (u8 *)(&msgbuf[1]); |
| |
| /* process all the same items cleared in a function level reset */ |
| igb_vf_reset(adapter, vf); |
| |
| /* set vf mac address */ |
| igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); |
| |
| /* enable transmit and receive for vf */ |
| reg = rd32(E1000_VFTE); |
| wr32(E1000_VFTE, reg | (1 << vf)); |
| reg = rd32(E1000_VFRE); |
| wr32(E1000_VFRE, reg | (1 << vf)); |
| |
| adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; |
| |
| /* reply to reset with ack and vf mac address */ |
| msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; |
| memcpy(addr, vf_mac, 6); |
| igb_write_mbx(hw, msgbuf, 3, vf); |
| } |
| |
| static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) |
| { |
| /* |
| * The VF MAC Address is stored in a packed array of bytes |
| * starting at the second 32 bit word of the msg array |
| */ |
| unsigned char *addr = (char *)&msg[1]; |
| int err = -1; |
| |
| if (is_valid_ether_addr(addr)) |
| err = igb_set_vf_mac(adapter, vf, addr); |
| |
| return err; |
| } |
| |
| static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct vf_data_storage *vf_data = &adapter->vf_data[vf]; |
| u32 msg = E1000_VT_MSGTYPE_NACK; |
| |
| /* if device isn't clear to send it shouldn't be reading either */ |
| if (!(vf_data->flags & IGB_VF_FLAG_CTS) && |
| time_after(jiffies, vf_data->last_nack + (2 * HZ))) { |
| igb_write_mbx(hw, &msg, 1, vf); |
| vf_data->last_nack = jiffies; |
| } |
| } |
| |
| static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| u32 msgbuf[E1000_VFMAILBOX_SIZE]; |
| struct e1000_hw *hw = &adapter->hw; |
| struct vf_data_storage *vf_data = &adapter->vf_data[vf]; |
| s32 retval; |
| |
| retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); |
| |
| if (retval) { |
| /* if receive failed revoke VF CTS stats and restart init */ |
| dev_err(&pdev->dev, "Error receiving message from VF\n"); |
| vf_data->flags &= ~IGB_VF_FLAG_CTS; |
| if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) |
| return; |
| goto out; |
| } |
| |
| /* this is a message we already processed, do nothing */ |
| if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) |
| return; |
| |
| /* |
| * until the vf completes a reset it should not be |
| * allowed to start any configuration. |
| */ |
| |
| if (msgbuf[0] == E1000_VF_RESET) { |
| igb_vf_reset_msg(adapter, vf); |
| return; |
| } |
| |
| if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { |
| if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) |
| return; |
| retval = -1; |
| goto out; |
| } |
| |
| switch ((msgbuf[0] & 0xFFFF)) { |
| case E1000_VF_SET_MAC_ADDR: |
| retval = -EINVAL; |
| if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) |
| retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); |
| else |
| dev_warn(&pdev->dev, |
| "VF %d attempted to override administratively " |
| "set MAC address\nReload the VF driver to " |
| "resume operations\n", vf); |
| break; |
| case E1000_VF_SET_PROMISC: |
| retval = igb_set_vf_promisc(adapter, msgbuf, vf); |
| break; |
| case E1000_VF_SET_MULTICAST: |
| retval = igb_set_vf_multicasts(adapter, msgbuf, vf); |
| break; |
| case E1000_VF_SET_LPE: |
| retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); |
| break; |
| case E1000_VF_SET_VLAN: |
| retval = -1; |
| if (vf_data->pf_vlan) |
| dev_warn(&pdev->dev, |
| "VF %d attempted to override administratively " |
| "set VLAN tag\nReload the VF driver to " |
| "resume operations\n", vf); |
| else |
| retval = igb_set_vf_vlan(adapter, msgbuf, vf); |
| break; |
| default: |
| dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); |
| retval = -1; |
| break; |
| } |
| |
| msgbuf[0] |= E1000_VT_MSGTYPE_CTS; |
| out: |
| /* notify the VF of the results of what it sent us */ |
| if (retval) |
| msgbuf[0] |= E1000_VT_MSGTYPE_NACK; |
| else |
| msgbuf[0] |= E1000_VT_MSGTYPE_ACK; |
| |
| igb_write_mbx(hw, msgbuf, 1, vf); |
| } |
| |
| static void igb_msg_task(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 vf; |
| |
| for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { |
| /* process any reset requests */ |
| if (!igb_check_for_rst(hw, vf)) |
| igb_vf_reset_event(adapter, vf); |
| |
| /* process any messages pending */ |
| if (!igb_check_for_msg(hw, vf)) |
| igb_rcv_msg_from_vf(adapter, vf); |
| |
| /* process any acks */ |
| if (!igb_check_for_ack(hw, vf)) |
| igb_rcv_ack_from_vf(adapter, vf); |
| } |
| } |
| |
| /** |
| * igb_set_uta - Set unicast filter table address |
| * @adapter: board private structure |
| * |
| * The unicast table address is a register array of 32-bit registers. |
| * The table is meant to be used in a way similar to how the MTA is used |
| * however due to certain limitations in the hardware it is necessary to |
| * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous |
| * enable bit to allow vlan tag stripping when promiscuous mode is enabled |
| **/ |
| static void igb_set_uta(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| int i; |
| |
| /* The UTA table only exists on 82576 hardware and newer */ |
| if (hw->mac.type < e1000_82576) |
| return; |
| |
| /* we only need to do this if VMDq is enabled */ |
| if (!adapter->vfs_allocated_count) |
| return; |
| |
| for (i = 0; i < hw->mac.uta_reg_count; i++) |
| array_wr32(E1000_UTA, i, ~0); |
| } |
| |
| /** |
| * igb_intr_msi - Interrupt Handler |
| * @irq: interrupt number |
| * @data: pointer to a network interface device structure |
| **/ |
| static irqreturn_t igb_intr_msi(int irq, void *data) |
| { |
| struct igb_adapter *adapter = data; |
| struct igb_q_vector *q_vector = adapter->q_vector[0]; |
| struct e1000_hw *hw = &adapter->hw; |
| /* read ICR disables interrupts using IAM */ |
| u32 icr = rd32(E1000_ICR); |
| |
| igb_write_itr(q_vector); |
| |
| if (icr & E1000_ICR_DRSTA) |
| schedule_work(&adapter->reset_task); |
| |
| if (icr & E1000_ICR_DOUTSYNC) { |
| /* HW is reporting DMA is out of sync */ |
| adapter->stats.doosync++; |
| } |
| |
| if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { |
| hw->mac.get_link_status = 1; |
| if (!test_bit(__IGB_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| } |
| |
| napi_schedule(&q_vector->napi); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * igb_intr - Legacy Interrupt Handler |
| * @irq: interrupt number |
| * @data: pointer to a network interface device structure |
| **/ |
| static irqreturn_t igb_intr(int irq, void *data) |
| { |
| struct igb_adapter *adapter = data; |
| struct igb_q_vector *q_vector = adapter->q_vector[0]; |
| struct e1000_hw *hw = &adapter->hw; |
| /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No |
| * need for the IMC write */ |
| u32 icr = rd32(E1000_ICR); |
| |
| /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is |
| * not set, then the adapter didn't send an interrupt */ |
| if (!(icr & E1000_ICR_INT_ASSERTED)) |
| return IRQ_NONE; |
| |
| igb_write_itr(q_vector); |
| |
| if (icr & E1000_ICR_DRSTA) |
| schedule_work(&adapter->reset_task); |
| |
| if (icr & E1000_ICR_DOUTSYNC) { |
| /* HW is reporting DMA is out of sync */ |
| adapter->stats.doosync++; |
| } |
| |
| if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { |
| hw->mac.get_link_status = 1; |
| /* guard against interrupt when we're going down */ |
| if (!test_bit(__IGB_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| } |
| |
| napi_schedule(&q_vector->napi); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void igb_ring_irq_enable(struct igb_q_vector *q_vector) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || |
| (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { |
| if ((adapter->num_q_vectors == 1) && !adapter->vf_data) |
| igb_set_itr(q_vector); |
| else |
| igb_update_ring_itr(q_vector); |
| } |
| |
| if (!test_bit(__IGB_DOWN, &adapter->state)) { |
| if (adapter->msix_entries) |
| wr32(E1000_EIMS, q_vector->eims_value); |
| else |
| igb_irq_enable(adapter); |
| } |
| } |
| |
| /** |
| * igb_poll - NAPI Rx polling callback |
| * @napi: napi polling structure |
| * @budget: count of how many packets we should handle |
| **/ |
| static int igb_poll(struct napi_struct *napi, int budget) |
| { |
| struct igb_q_vector *q_vector = container_of(napi, |
| struct igb_q_vector, |
| napi); |
| bool clean_complete = true; |
| |
| #ifdef CONFIG_IGB_DCA |
| if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) |
| igb_update_dca(q_vector); |
| #endif |
| if (q_vector->tx.ring) |
| clean_complete = igb_clean_tx_irq(q_vector); |
| |
| if (q_vector->rx.ring) |
| clean_complete &= igb_clean_rx_irq(q_vector, budget); |
| |
| /* If all work not completed, return budget and keep polling */ |
| if (!clean_complete) |
| return budget; |
| |
| /* If not enough Rx work done, exit the polling mode */ |
| napi_complete(napi); |
| igb_ring_irq_enable(q_vector); |
| |
| return 0; |
| } |
| |
| /** |
| * igb_systim_to_hwtstamp - convert system time value to hw timestamp |
| * @adapter: board private structure |
| * @shhwtstamps: timestamp structure to update |
| * @regval: unsigned 64bit system time value. |
| * |
| * We need to convert the system time value stored in the RX/TXSTMP registers |
| * into a hwtstamp which can be used by the upper level timestamping functions |
| */ |
| static void igb_systim_to_hwtstamp(struct igb_adapter *adapter, |
| struct skb_shared_hwtstamps *shhwtstamps, |
| u64 regval) |
| { |
| u64 ns; |
| |
| /* |
| * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to |
| * 24 to match clock shift we setup earlier. |
| */ |
| if (adapter->hw.mac.type >= e1000_82580) |
| regval <<= IGB_82580_TSYNC_SHIFT; |
| |
| ns = timecounter_cyc2time(&adapter->clock, regval); |
| timecompare_update(&adapter->compare, ns); |
| memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps)); |
| shhwtstamps->hwtstamp = ns_to_ktime(ns); |
| shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns); |
| } |
| |
| /** |
| * igb_tx_hwtstamp - utility function which checks for TX time stamp |
| * @q_vector: pointer to q_vector containing needed info |
| * @buffer: pointer to igb_tx_buffer structure |
| * |
| * If we were asked to do hardware stamping and such a time stamp is |
| * available, then it must have been for this skb here because we only |
| * allow only one such packet into the queue. |
| */ |
| static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, |
| struct igb_tx_buffer *buffer_info) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| struct e1000_hw *hw = &adapter->hw; |
| struct skb_shared_hwtstamps shhwtstamps; |
| u64 regval; |
| |
| /* if skb does not support hw timestamp or TX stamp not valid exit */ |
| if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) || |
| !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID)) |
| return; |
| |
| regval = rd32(E1000_TXSTMPL); |
| regval |= (u64)rd32(E1000_TXSTMPH) << 32; |
| |
| igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval); |
| skb_tstamp_tx(buffer_info->skb, &shhwtstamps); |
| } |
| |
| /** |
| * igb_clean_tx_irq - Reclaim resources after transmit completes |
| * @q_vector: pointer to q_vector containing needed info |
| * returns true if ring is completely cleaned |
| **/ |
| static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| struct igb_ring *tx_ring = q_vector->tx.ring; |
| struct igb_tx_buffer *tx_buffer; |
| union e1000_adv_tx_desc *tx_desc, *eop_desc; |
| unsigned int total_bytes = 0, total_packets = 0; |
| unsigned int budget = q_vector->tx.work_limit; |
| unsigned int i = tx_ring->next_to_clean; |
| |
| if (test_bit(__IGB_DOWN, &adapter->state)) |
| return true; |
| |
| tx_buffer = &tx_ring->tx_buffer_info[i]; |
| tx_desc = IGB_TX_DESC(tx_ring, i); |
| i -= tx_ring->count; |
| |
| for (; budget; budget--) { |
| eop_desc = tx_buffer->next_to_watch; |
| |
| /* prevent any other reads prior to eop_desc */ |
| rmb(); |
| |
| /* if next_to_watch is not set then there is no work pending */ |
| if (!eop_desc) |
| break; |
| |
| /* if DD is not set pending work has not been completed */ |
| if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) |
| break; |
| |
| /* clear next_to_watch to prevent false hangs */ |
| tx_buffer->next_to_watch = NULL; |
| |
| /* update the statistics for this packet */ |
| total_bytes += tx_buffer->bytecount; |
| total_packets += tx_buffer->gso_segs; |
| |
| /* retrieve hardware timestamp */ |
| igb_tx_hwtstamp(q_vector, tx_buffer); |
| |
| /* free the skb */ |
| dev_kfree_skb_any(tx_buffer->skb); |
| tx_buffer->skb = NULL; |
| |
| /* unmap skb header data */ |
| dma_unmap_single(tx_ring->dev, |
| tx_buffer->dma, |
| tx_buffer->length, |
| DMA_TO_DEVICE); |
| |
| /* clear last DMA location and unmap remaining buffers */ |
| while (tx_desc != eop_desc) { |
| tx_buffer->dma = 0; |
| |
| tx_buffer++; |
| tx_desc++; |
| i++; |
| if (unlikely(!i)) { |
| i -= tx_ring->count; |
| tx_buffer = tx_ring->tx_buffer_info; |
| tx_desc = IGB_TX_DESC(tx_ring, 0); |
| } |
| |
| /* unmap any remaining paged data */ |
| if (tx_buffer->dma) { |
| dma_unmap_page(tx_ring->dev, |
| tx_buffer->dma, |
| tx_buffer->length, |
| DMA_TO_DEVICE); |
| } |
| } |
| |
| /* clear last DMA location */ |
| tx_buffer->dma = 0; |
| |
| /* move us one more past the eop_desc for start of next pkt */ |
| tx_buffer++; |
| tx_desc++; |
| i++; |
| if (unlikely(!i)) { |
| i -= tx_ring->count; |
| tx_buffer = tx_ring->tx_buffer_info; |
| tx_desc = IGB_TX_DESC(tx_ring, 0); |
| } |
| } |
| |
| netdev_tx_completed_queue(txring_txq(tx_ring), |
| total_packets, total_bytes); |
| i += tx_ring->count; |
| tx_ring->next_to_clean = i; |
| u64_stats_update_begin(&tx_ring->tx_syncp); |
| tx_ring->tx_stats.bytes += total_bytes; |
| tx_ring->tx_stats.packets += total_packets; |
| u64_stats_update_end(&tx_ring->tx_syncp); |
| q_vector->tx.total_bytes += total_bytes; |
| q_vector->tx.total_packets += total_packets; |
| |
| if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| eop_desc = tx_buffer->next_to_watch; |
| |
| /* Detect a transmit hang in hardware, this serializes the |
| * check with the clearing of time_stamp and movement of i */ |
| clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); |
| if (eop_desc && |
| time_after(jiffies, tx_buffer->time_stamp + |
| (adapter->tx_timeout_factor * HZ)) && |
| !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { |
| |
| /* detected Tx unit hang */ |
| dev_err(tx_ring->dev, |
| "Detected Tx Unit Hang\n" |
| " Tx Queue <%d>\n" |
| " TDH <%x>\n" |
| " TDT <%x>\n" |
| " next_to_use <%x>\n" |
| " next_to_clean <%x>\n" |
| "buffer_info[next_to_clean]\n" |
| " time_stamp <%lx>\n" |
| " next_to_watch <%p>\n" |
| " jiffies <%lx>\n" |
| " desc.status <%x>\n", |
| tx_ring->queue_index, |
| rd32(E1000_TDH(tx_ring->reg_idx)), |
| readl(tx_ring->tail), |
| tx_ring->next_to_use, |
| tx_ring->next_to_clean, |
| tx_buffer->time_stamp, |
| eop_desc, |
| jiffies, |
| eop_desc->wb.status); |
| netif_stop_subqueue(tx_ring->netdev, |
| tx_ring->queue_index); |
| |
| /* we are about to reset, no point in enabling stuff */ |
| return true; |
| } |
| } |
| |
| if (unlikely(total_packets && |
| netif_carrier_ok(tx_ring->netdev) && |
| igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) { |
| /* Make sure that anybody stopping the queue after this |
| * sees the new next_to_clean. |
| */ |
| smp_mb(); |
| if (__netif_subqueue_stopped(tx_ring->netdev, |
| tx_ring->queue_index) && |
| !(test_bit(__IGB_DOWN, &adapter->state))) { |
| netif_wake_subqueue(tx_ring->netdev, |
| tx_ring->queue_index); |
| |
| u64_stats_update_begin(&tx_ring->tx_syncp); |
| tx_ring->tx_stats.restart_queue++; |
| u64_stats_update_end(&tx_ring->tx_syncp); |
| } |
| } |
| |
| return !!budget; |
| } |
| |
| static inline void igb_rx_checksum(struct igb_ring *ring, |
| union e1000_adv_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| skb_checksum_none_assert(skb); |
| |
| /* Ignore Checksum bit is set */ |
| if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) |
| return; |
| |
| /* Rx checksum disabled via ethtool */ |
| if (!(ring->netdev->features & NETIF_F_RXCSUM)) |
| return; |
| |
| /* TCP/UDP checksum error bit is set */ |
| if (igb_test_staterr(rx_desc, |
| E1000_RXDEXT_STATERR_TCPE | |
| E1000_RXDEXT_STATERR_IPE)) { |
| /* |
| * work around errata with sctp packets where the TCPE aka |
| * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) |
| * packets, (aka let the stack check the crc32c) |
| */ |
| if (!((skb->len == 60) && |
| test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { |
| u64_stats_update_begin(&ring->rx_syncp); |
| ring->rx_stats.csum_err++; |
| u64_stats_update_end(&ring->rx_syncp); |
| } |
| /* let the stack verify checksum errors */ |
| return; |
| } |
| /* It must be a TCP or UDP packet with a valid checksum */ |
| if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | |
| E1000_RXD_STAT_UDPCS)) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| dev_dbg(ring->dev, "cksum success: bits %08X\n", |
| le32_to_cpu(rx_desc->wb.upper.status_error)); |
| } |
| |
| static inline void igb_rx_hash(struct igb_ring *ring, |
| union e1000_adv_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| if (ring->netdev->features & NETIF_F_RXHASH) |
| skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss); |
| } |
| |
| static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, |
| union e1000_adv_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| struct e1000_hw *hw = &adapter->hw; |
| u64 regval; |
| |
| if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP | |
| E1000_RXDADV_STAT_TS)) |
| return; |
| |
| /* |
| * If this bit is set, then the RX registers contain the time stamp. No |
| * other packet will be time stamped until we read these registers, so |
| * read the registers to make them available again. Because only one |
| * packet can be time stamped at a time, we know that the register |
| * values must belong to this one here and therefore we don't need to |
| * compare any of the additional attributes stored for it. |
| * |
| * If nothing went wrong, then it should have a shared tx_flags that we |
| * can turn into a skb_shared_hwtstamps. |
| */ |
| if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { |
| u32 *stamp = (u32 *)skb->data; |
| regval = le32_to_cpu(*(stamp + 2)); |
| regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32; |
| skb_pull(skb, IGB_TS_HDR_LEN); |
| } else { |
| if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) |
| return; |
| |
| regval = rd32(E1000_RXSTMPL); |
| regval |= (u64)rd32(E1000_RXSTMPH) << 32; |
| } |
| |
| igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); |
| } |
| |
| static void igb_rx_vlan(struct igb_ring *ring, |
| union e1000_adv_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { |
| u16 vid; |
| if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && |
| test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags)) |
| vid = be16_to_cpu(rx_desc->wb.upper.vlan); |
| else |
| vid = le16_to_cpu(rx_desc->wb.upper.vlan); |
| |
| __vlan_hwaccel_put_tag(skb, vid); |
| } |
| } |
| |
| static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc) |
| { |
| /* HW will not DMA in data larger than the given buffer, even if it |
| * parses the (NFS, of course) header to be larger. In that case, it |
| * fills the header buffer and spills the rest into the page. |
| */ |
| u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) & |
| E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT; |
| if (hlen > IGB_RX_HDR_LEN) |
| hlen = IGB_RX_HDR_LEN; |
| return hlen; |
| } |
| |
| static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget) |
| { |
| struct igb_ring *rx_ring = q_vector->rx.ring; |
| union e1000_adv_rx_desc *rx_desc; |
| const int current_node = numa_node_id(); |
| unsigned int total_bytes = 0, total_packets = 0; |
| u16 cleaned_count = igb_desc_unused(rx_ring); |
| u16 i = rx_ring->next_to_clean; |
| |
| rx_desc = IGB_RX_DESC(rx_ring, i); |
| |
| while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) { |
| struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; |
| struct sk_buff *skb = buffer_info->skb; |
| union e1000_adv_rx_desc *next_rxd; |
| |
| buffer_info->skb = NULL; |
| prefetch(skb->data); |
| |
| i++; |
| if (i == rx_ring->count) |
| i = 0; |
| |
| next_rxd = IGB_RX_DESC(rx_ring, i); |
| prefetch(next_rxd); |
| |
| /* |
| * This memory barrier is needed to keep us from reading |
| * any other fields out of the rx_desc until we know the |
| * RXD_STAT_DD bit is set |
| */ |
| rmb(); |
| |
| if (!skb_is_nonlinear(skb)) { |
| __skb_put(skb, igb_get_hlen(rx_desc)); |
| dma_unmap_single(rx_ring->dev, buffer_info->dma, |
| IGB_RX_HDR_LEN, |
| DMA_FROM_DEVICE); |
| buffer_info->dma = 0; |
| } |
| |
| if (rx_desc->wb.upper.length) { |
| u16 length = le16_to_cpu(rx_desc->wb.upper.length); |
| |
| skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, |
| buffer_info->page, |
| buffer_info->page_offset, |
| length); |
| |
| skb->len += length; |
| skb->data_len += length; |
| skb->truesize += PAGE_SIZE / 2; |
| |
| if ((page_count(buffer_info->page) != 1) || |
| (page_to_nid(buffer_info->page) != current_node)) |
| buffer_info->page = NULL; |
| else |
| get_page(buffer_info->page); |
| |
| dma_unmap_page(rx_ring->dev, buffer_info->page_dma, |
| PAGE_SIZE / 2, DMA_FROM_DEVICE); |
| buffer_info->page_dma = 0; |
| } |
| |
| if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) { |
| struct igb_rx_buffer *next_buffer; |
| next_buffer = &rx_ring->rx_buffer_info[i]; |
| buffer_info->skb = next_buffer->skb; |
| buffer_info->dma = next_buffer->dma; |
| next_buffer->skb = skb; |
| next_buffer->dma = 0; |
| goto next_desc; |
| } |
| |
| if (unlikely((igb_test_staterr(rx_desc, |
| E1000_RXDEXT_ERR_FRAME_ERR_MASK)) |
| && !(rx_ring->netdev->features & NETIF_F_RXALL))) { |
| dev_kfree_skb_any(skb); |
| goto next_desc; |
| } |
| |
| igb_rx_hwtstamp(q_vector, rx_desc, skb); |
| igb_rx_hash(rx_ring, rx_desc, skb); |
| igb_rx_checksum(rx_ring, rx_desc, skb); |
| igb_rx_vlan(rx_ring, rx_desc, skb); |
| |
| total_bytes += skb->len; |
| total_packets++; |
| |
| skb->protocol = eth_type_trans(skb, rx_ring->netdev); |
| |
| napi_gro_receive(&q_vector->napi, skb); |
| |
| budget--; |
| next_desc: |
| if (!budget) |
| break; |
| |
| cleaned_count++; |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (cleaned_count >= IGB_RX_BUFFER_WRITE) { |
| igb_alloc_rx_buffers(rx_ring, cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| /* use prefetched values */ |
| rx_desc = next_rxd; |
| } |
| |
| rx_ring->next_to_clean = i; |
| u64_stats_update_begin(&rx_ring->rx_syncp); |
| rx_ring->rx_stats.packets += total_packets; |
| rx_ring->rx_stats.bytes += total_bytes; |
| u64_stats_update_end(&rx_ring->rx_syncp); |
| q_vector->rx.total_packets += total_packets; |
| q_vector->rx.total_bytes += total_bytes; |
| |
| if (cleaned_count) |
| igb_alloc_rx_buffers(rx_ring, cleaned_count); |
| |
| return !!budget; |
| } |
| |
| static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring, |
| struct igb_rx_buffer *bi) |
| { |
| struct sk_buff *skb = bi->skb; |
| dma_addr_t dma = bi->dma; |
| |
| if (dma) |
| return true; |
| |
| if (likely(!skb)) { |
| skb = netdev_alloc_skb_ip_align(rx_ring->netdev, |
| IGB_RX_HDR_LEN); |
| bi->skb = skb; |
| if (!skb) { |
| rx_ring->rx_stats.alloc_failed++; |
| return false; |
| } |
| |
| /* initialize skb for ring */ |
| skb_record_rx_queue(skb, rx_ring->queue_index); |
| } |
| |
| dma = dma_map_single(rx_ring->dev, skb->data, |
| IGB_RX_HDR_LEN, DMA_FROM_DEVICE); |
| |
| if (dma_mapping_error(rx_ring->dev, dma)) { |
| rx_ring->rx_stats.alloc_failed++; |
| return false; |
| } |
| |
| bi->dma = dma; |
| return true; |
| } |
| |
| static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, |
| struct igb_rx_buffer *bi) |
| { |
| struct page *page = bi->page; |
| dma_addr_t page_dma = bi->page_dma; |
| unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2); |
| |
| if (page_dma) |
| return true; |
| |
| if (!page) { |
| page = alloc_page(GFP_ATOMIC | __GFP_COLD); |
| bi->page = page; |
| if (unlikely(!page)) { |
| rx_ring->rx_stats.alloc_failed++; |
| return false; |
| } |
| } |
| |
| page_dma = dma_map_page(rx_ring->dev, page, |
| page_offset, PAGE_SIZE / 2, |
| DMA_FROM_DEVICE); |
| |
| if (dma_mapping_error(rx_ring->dev, page_dma)) { |
| rx_ring->rx_stats.alloc_failed++; |
| return false; |
| } |
| |
| bi->page_dma = page_dma; |
| bi->page_offset = page_offset; |
| return true; |
| } |
| |
| /** |
| * igb_alloc_rx_buffers - Replace used receive buffers; packet split |
| * @adapter: address of board private structure |
| **/ |
| void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) |
| { |
| union e1000_adv_rx_desc *rx_desc; |
| struct igb_rx_buffer *bi; |
| u16 i = rx_ring->next_to_use; |
| |
| rx_desc = IGB_RX_DESC(rx_ring, i); |
| bi = &rx_ring->rx_buffer_info[i]; |
| i -= rx_ring->count; |
| |
| while (cleaned_count--) { |
| if (!igb_alloc_mapped_skb(rx_ring, bi)) |
| break; |
| |
| /* Refresh the desc even if buffer_addrs didn't change |
| * because each write-back erases this info. */ |
| rx_desc->read.hdr_addr = cpu_to_le64(bi->dma); |
| |
| if (!igb_alloc_mapped_page(rx_ring, bi)) |
| break; |
| |
| rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma); |
| |
| rx_desc++; |
| bi++; |
| i++; |
| if (unlikely(!i)) { |
| rx_desc = IGB_RX_DESC(rx_ring, 0); |
| bi = rx_ring->rx_buffer_info; |
| i -= rx_ring->count; |
| } |
| |
| /* clear the hdr_addr for the next_to_use descriptor */ |
| rx_desc->read.hdr_addr = 0; |
| } |
| |
| i += rx_ring->count; |
| |
| if (rx_ring->next_to_use != i) { |
| rx_ring->next_to_use = i; |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). */ |
| wmb(); |
| writel(i, rx_ring->tail); |
| } |
| } |
| |
| /** |
| * igb_mii_ioctl - |
| * @netdev: |
| * @ifreq: |
| * @cmd: |
| **/ |
| static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct mii_ioctl_data *data = if_mii(ifr); |
| |
| if (adapter->hw.phy.media_type != e1000_media_type_copper) |
| return -EOPNOTSUPP; |
| |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| data->phy_id = adapter->hw.phy.addr; |
| break; |
| case SIOCGMIIREG: |
| if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, |
| &data->val_out)) |
| return -EIO; |
| break; |
| case SIOCSMIIREG: |
| default: |
| return -EOPNOTSUPP; |
| } |
| return 0; |
| } |
| |
| /** |
| * igb_hwtstamp_ioctl - control hardware time stamping |
| * @netdev: |
| * @ifreq: |
| * @cmd: |
| * |
| * Outgoing time stamping can be enabled and disabled. Play nice and |
| * disable it when requested, although it shouldn't case any overhead |
| * when no packet needs it. At most one packet in the queue may be |
| * marked for time stamping, otherwise it would be impossible to tell |
| * for sure to which packet the hardware time stamp belongs. |
| * |
| * Incoming time stamping has to be configured via the hardware |
| * filters. Not all combinations are supported, in particular event |
| * type has to be specified. Matching the kind of event packet is |
| * not supported, with the exception of "all V2 events regardless of |
| * level 2 or 4". |
| * |
| **/ |
| static int igb_hwtstamp_ioctl(struct net_device *netdev, |
| struct ifreq *ifr, int cmd) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct hwtstamp_config config; |
| u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; |
| u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; |
| u32 tsync_rx_cfg = 0; |
| bool is_l4 = false; |
| bool is_l2 = false; |
| u32 regval; |
| |
| if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| return -EFAULT; |
| |
| /* reserved for future extensions */ |
| if (config.flags) |
| return -EINVAL; |
| |
| switch (config.tx_type) { |
| case HWTSTAMP_TX_OFF: |
| tsync_tx_ctl = 0; |
| case HWTSTAMP_TX_ON: |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| switch (config.rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| tsync_rx_ctl = 0; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| case HWTSTAMP_FILTER_ALL: |
| /* |
| * register TSYNCRXCFG must be set, therefore it is not |
| * possible to time stamp both Sync and Delay_Req messages |
| * => fall back to time stamping all packets |
| */ |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; |
| config.rx_filter = HWTSTAMP_FILTER_ALL; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; |
| tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; |
| tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; |
| tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE; |
| is_l2 = true; |
| is_l4 = true; |
| config.rx_filter = HWTSTAMP_FILTER_SOME; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; |
| tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE; |
| is_l2 = true; |
| is_l4 = true; |
| config.rx_filter = HWTSTAMP_FILTER_SOME; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; |
| config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; |
| is_l2 = true; |
| is_l4 = true; |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| if (hw->mac.type == e1000_82575) { |
| if (tsync_rx_ctl | tsync_tx_ctl) |
| return -EINVAL; |
| return 0; |
| } |
| |
| /* |
| * Per-packet timestamping only works if all packets are |
| * timestamped, so enable timestamping in all packets as |
| * long as one rx filter was configured. |
| */ |
| if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) { |
| tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; |
| } |
| |
| /* enable/disable TX */ |
| regval = rd32(E1000_TSYNCTXCTL); |
| regval &= ~E1000_TSYNCTXCTL_ENABLED; |
| regval |= tsync_tx_ctl; |
| wr32(E1000_TSYNCTXCTL, regval); |
| |
| /* enable/disable RX */ |
| regval = rd32(E1000_TSYNCRXCTL); |
| regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); |
| regval |= tsync_rx_ctl; |
| wr32(E1000_TSYNCRXCTL, regval); |
| |
| /* define which PTP packets are time stamped */ |
| wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); |
| |
| /* define ethertype filter for timestamped packets */ |
| if (is_l2) |
| wr32(E1000_ETQF(3), |
| (E1000_ETQF_FILTER_ENABLE | /* enable filter */ |
| E1000_ETQF_1588 | /* enable timestamping */ |
| ETH_P_1588)); /* 1588 eth protocol type */ |
| else |
| wr32(E1000_ETQF(3), 0); |
| |
| #define PTP_PORT 319 |
| /* L4 Queue Filter[3]: filter by destination port and protocol */ |
| if (is_l4) { |
| u32 ftqf = (IPPROTO_UDP /* UDP */ |
| | E1000_FTQF_VF_BP /* VF not compared */ |
| | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ |
| | E1000_FTQF_MASK); /* mask all inputs */ |
| ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ |
| |
| wr32(E1000_IMIR(3), htons(PTP_PORT)); |
| wr32(E1000_IMIREXT(3), |
| (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); |
| if (hw->mac.type == e1000_82576) { |
| /* enable source port check */ |
| wr32(E1000_SPQF(3), htons(PTP_PORT)); |
| ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; |
| } |
| wr32(E1000_FTQF(3), ftqf); |
| } else { |
| wr32(E1000_FTQF(3), E1000_FTQF_MASK); |
| } |
| wrfl(); |
| |
| adapter->hwtstamp_config = config; |
| |
| /* clear TX/RX time stamp registers, just to be sure */ |
| regval = rd32(E1000_TXSTMPH); |
| regval = rd32(E1000_RXSTMPH); |
| |
| return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| -EFAULT : 0; |
| } |
| |
| /** |
| * igb_ioctl - |
| * @netdev: |
| * @ifreq: |
| * @cmd: |
| **/ |
| static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| { |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| case SIOCGMIIREG: |
| case SIOCSMIIREG: |
| return igb_mii_ioctl(netdev, ifr, cmd); |
| case SIOCSHWTSTAMP: |
| return igb_hwtstamp_ioctl(netdev, ifr, cmd); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) |
| { |
| struct igb_adapter *adapter = hw->back; |
| u16 cap_offset; |
| |
| cap_offset = adapter->pdev->pcie_cap; |
| if (!cap_offset) |
| return -E1000_ERR_CONFIG; |
| |
| pci_read_config_word(adapter->pdev, cap_offset + reg, value); |
| |
| return 0; |
| } |
| |
| s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) |
| { |
| struct igb_adapter *adapter = hw->back; |
| u16 cap_offset; |
| |
| cap_offset = adapter->pdev->pcie_cap; |
| if (!cap_offset) |
| return -E1000_ERR_CONFIG; |
| |
| pci_write_config_word(adapter->pdev, cap_offset + reg, *value); |
| |
| return 0; |
| } |
| |
| static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl, rctl; |
| bool enable = !!(features & NETIF_F_HW_VLAN_RX); |
| |
| if (enable) { |
| /* enable VLAN tag insert/strip */ |
| ctrl = rd32(E1000_CTRL); |
| ctrl |= E1000_CTRL_VME; |
| wr32(E1000_CTRL, ctrl); |
| |
| /* Disable CFI check */ |
| rctl = rd32(E1000_RCTL); |
| rctl &= ~E1000_RCTL_CFIEN; |
| wr32(E1000_RCTL, rctl); |
| } else { |
| /* disable VLAN tag insert/strip */ |
| ctrl = rd32(E1000_CTRL); |
| ctrl &= ~E1000_CTRL_VME; |
| wr32(E1000_CTRL, ctrl); |
| } |
| |
| igb_rlpml_set(adapter); |
| } |
| |
| static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| int pf_id = adapter->vfs_allocated_count; |
| |
| /* attempt to add filter to vlvf array */ |
| igb_vlvf_set(adapter, vid, true, pf_id); |
| |
| /* add the filter since PF can receive vlans w/o entry in vlvf */ |
| igb_vfta_set(hw, vid, true); |
| |
| set_bit(vid, adapter->active_vlans); |
| |
| return 0; |
| } |
| |
| static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| int pf_id = adapter->vfs_allocated_count; |
| s32 err; |
| |
| /* remove vlan from VLVF table array */ |
| err = igb_vlvf_set(adapter, vid, false, pf_id); |
| |
| /* if vid was not present in VLVF just remove it from table */ |
| if (err) |
| igb_vfta_set(hw, vid, false); |
| |
| clear_bit(vid, adapter->active_vlans); |
| |
| return 0; |
| } |
| |
| static void igb_restore_vlan(struct igb_adapter *adapter) |
| { |
| u16 vid; |
| |
| igb_vlan_mode(adapter->netdev, adapter->netdev->features); |
| |
| for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) |
| igb_vlan_rx_add_vid(adapter->netdev, vid); |
| } |
| |
| int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_mac_info *mac = &adapter->hw.mac; |
| |
| mac->autoneg = 0; |
| |
| /* Make sure dplx is at most 1 bit and lsb of speed is not set |
| * for the switch() below to work */ |
| if ((spd & 1) || (dplx & ~1)) |
| goto err_inval; |
| |
| /* Fiber NIC's only allow 1000 Gbps Full duplex */ |
| if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) && |
| spd != SPEED_1000 && |
| dplx != DUPLEX_FULL) |
| goto err_inval; |
| |
| switch (spd + dplx) { |
| case SPEED_10 + DUPLEX_HALF: |
| mac->forced_speed_duplex = ADVERTISE_10_HALF; |
| break; |
| case SPEED_10 + DUPLEX_FULL: |
| mac->forced_speed_duplex = ADVERTISE_10_FULL; |
| break; |
| case SPEED_100 + DUPLEX_HALF: |
| mac->forced_speed_duplex = ADVERTISE_100_HALF; |
| break; |
| case SPEED_100 + DUPLEX_FULL: |
| mac->forced_speed_duplex = ADVERTISE_100_FULL; |
| break; |
| case SPEED_1000 + DUPLEX_FULL: |
| mac->autoneg = 1; |
| adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; |
| break; |
| case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
| default: |
| goto err_inval; |
| } |
| return 0; |
| |
| err_inval: |
| dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); |
| return -EINVAL; |
| } |
| |
| static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, |
| bool runtime) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl, rctl, status; |
| u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; |
| #ifdef CONFIG_PM |
| int retval = 0; |
| #endif |
| |
| netif_device_detach(netdev); |
| |
| if (netif_running(netdev)) |
| __igb_close(netdev, true); |
| |
| igb_clear_interrupt_scheme(adapter); |
| |
| #ifdef CONFIG_PM |
| retval = pci_save_state(pdev); |
| if (retval) |
| return retval; |
| #endif |
| |
| status = rd32(E1000_STATUS); |
| if (status & E1000_STATUS_LU) |
| wufc &= ~E1000_WUFC_LNKC; |
| |
| if (wufc) { |
| igb_setup_rctl(adapter); |
| igb_set_rx_mode(netdev); |
| |
| /* turn on all-multi mode if wake on multicast is enabled */ |
| if (wufc & E1000_WUFC_MC) { |
| rctl = rd32(E1000_RCTL); |
| rctl |= E1000_RCTL_MPE; |
| wr32(E1000_RCTL, rctl); |
| } |
| |
| ctrl = rd32(E1000_CTRL); |
| /* advertise wake from D3Cold */ |
| #define E1000_CTRL_ADVD3WUC 0x00100000 |
| /* phy power management enable */ |
| #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
| ctrl |= E1000_CTRL_ADVD3WUC; |
| wr32(E1000_CTRL, ctrl); |
| |
| /* Allow time for pending master requests to run */ |
| igb_disable_pcie_master(hw); |
| |
| wr32(E1000_WUC, E1000_WUC_PME_EN); |
| wr32(E1000_WUFC, wufc); |
| } else { |
| wr32(E1000_WUC, 0); |
| wr32(E1000_WUFC, 0); |
| } |
| |
| *enable_wake = wufc || adapter->en_mng_pt; |
| if (!*enable_wake) |
| igb_power_down_link(adapter); |
| else |
| igb_power_up_link(adapter); |
| |
| /* Release control of h/w to f/w. If f/w is AMT enabled, this |
| * would have already happened in close and is redundant. */ |
| igb_release_hw_control(adapter); |
| |
| pci_disable_device(pdev); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| #ifdef CONFIG_PM_SLEEP |
| static int igb_suspend(struct device *dev) |
| { |
| int retval; |
| bool wake; |
| struct pci_dev *pdev = to_pci_dev(dev); |
| |
| retval = __igb_shutdown(pdev, &wake, 0); |
| if (retval) |
| return retval; |
| |
| if (wake) { |
| pci_prepare_to_sleep(pdev); |
| } else { |
| pci_wake_from_d3(pdev, false); |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| |
| return 0; |
| } |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| static int igb_resume(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 err; |
| |
| pci_set_power_state(pdev, PCI_D0); |
| pci_restore_state(pdev); |
| pci_save_state(pdev); |
| |
| err = pci_enable_device_mem(pdev); |
| if (err) { |
| dev_err(&pdev->dev, |
| "igb: Cannot enable PCI device from suspend\n"); |
| return err; |
| } |
| pci_set_master(pdev); |
| |
| pci_enable_wake(pdev, PCI_D3hot, 0); |
| pci_enable_wake(pdev, PCI_D3cold, 0); |
| |
| if (!rtnl_is_locked()) { |
| /* |
| * shut up ASSERT_RTNL() warning in |
| * netif_set_real_num_tx/rx_queues. |
| */ |
| rtnl_lock(); |
| err = igb_init_interrupt_scheme(adapter); |
| rtnl_unlock(); |
| } else { |
| err = igb_init_interrupt_scheme(adapter); |
| } |
| if (err) { |
| dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); |
| return -ENOMEM; |
| } |
| |
| igb_reset(adapter); |
| |
| /* let the f/w know that the h/w is now under the control of the |
| * driver. */ |
| igb_get_hw_control(adapter); |
| |
| wr32(E1000_WUS, ~0); |
| |
| if (netdev->flags & IFF_UP) { |
| err = __igb_open(netdev, true); |
| if (err) |
| return err; |
| } |
| |
| netif_device_attach(netdev); |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM_RUNTIME |
| static int igb_runtime_idle(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| |
| if (!igb_has_link(adapter)) |
| pm_schedule_suspend(dev, MSEC_PER_SEC * 5); |
| |
| return -EBUSY; |
| } |
| |
| static int igb_runtime_suspend(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| int retval; |
| bool wake; |
| |
| retval = __igb_shutdown(pdev, &wake, 1); |
| if (retval) |
| return retval; |
| |
| if (wake) { |
| pci_prepare_to_sleep(pdev); |
| } else { |
| pci_wake_from_d3(pdev, false); |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| |
| return 0; |
| } |
| |
| static int igb_runtime_resume(struct device *dev) |
| { |
| return igb_resume(dev); |
| } |
| #endif /* CONFIG_PM_RUNTIME */ |
| #endif |
| |
| static void igb_shutdown(struct pci_dev *pdev) |
| { |
| bool wake; |
| |
| __igb_shutdown(pdev, &wake, 0); |
| |
| if (system_state == SYSTEM_POWER_OFF) { |
| pci_wake_from_d3(pdev, wake); |
| pci_set_power_state(pdev, PCI_D3hot); |
| } |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* |
| * Polling 'interrupt' - used by things like netconsole to send skbs |
| * without having to re-enable interrupts. It's not called while |
| * the interrupt routine is executing. |
| */ |
| static void igb_netpoll(struct net_device *netdev) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct igb_q_vector *q_vector; |
| int i; |
| |
| for (i = 0; i < adapter->num_q_vectors; i++) { |
| q_vector = adapter->q_vector[i]; |
| if (adapter->msix_entries) |
| wr32(E1000_EIMC, q_vector->eims_value); |
| else |
| igb_irq_disable(adapter); |
| napi_schedule(&q_vector->napi); |
| } |
| } |
| #endif /* CONFIG_NET_POLL_CONTROLLER */ |
| |
| /** |
| * igb_io_error_detected - called when PCI error is detected |
| * @pdev: Pointer to PCI device |
| * @state: The current pci connection state |
| * |
| * This function is called after a PCI bus error affecting |
| * this device has been detected. |
| */ |
| static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| |
| netif_device_detach(netdev); |
| |
| if (state == pci_channel_io_perm_failure) |
| return PCI_ERS_RESULT_DISCONNECT; |
| |
| if (netif_running(netdev)) |
| igb_down(adapter); |
| pci_disable_device(pdev); |
| |
| /* Request a slot slot reset. */ |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| /** |
| * igb_io_slot_reset - called after the pci bus has been reset. |
| * @pdev: Pointer to PCI device |
| * |
| * Restart the card from scratch, as if from a cold-boot. Implementation |
| * resembles the first-half of the igb_resume routine. |
| */ |
| static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| pci_ers_result_t result; |
| int err; |
| |
| if (pci_enable_device_mem(pdev)) { |
| dev_err(&pdev->dev, |
| "Cannot re-enable PCI device after reset.\n"); |
| result = PCI_ERS_RESULT_DISCONNECT; |
| } else { |
| pci_set_master(pdev); |
| pci_restore_state(pdev); |
| pci_save_state(pdev); |
| |
| pci_enable_wake(pdev, PCI_D3hot, 0); |
| pci_enable_wake(pdev, PCI_D3cold, 0); |
| |
| igb_reset(adapter); |
| wr32(E1000_WUS, ~0); |
| result = PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| err = pci_cleanup_aer_uncorrect_error_status(pdev); |
| if (err) { |
| dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status " |
| "failed 0x%0x\n", err); |
| /* non-fatal, continue */ |
| } |
| |
| return result; |
| } |
| |
| /** |
| * igb_io_resume - called when traffic can start flowing again. |
| * @pdev: Pointer to PCI device |
| * |
| * This callback is called when the error recovery driver tells us that |
| * its OK to resume normal operation. Implementation resembles the |
| * second-half of the igb_resume routine. |
| */ |
| static void igb_io_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| |
| if (netif_running(netdev)) { |
| if (igb_up(adapter)) { |
| dev_err(&pdev->dev, "igb_up failed after reset\n"); |
| return; |
| } |
| } |
| |
| netif_device_attach(netdev); |
| |
| /* let the f/w know that the h/w is now under the control of the |
| * driver. */ |
| igb_get_hw_control(adapter); |
| } |
| |
| static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, |
| u8 qsel) |
| { |
| u32 rar_low, rar_high; |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* HW expects these in little endian so we reverse the byte order |
| * from network order (big endian) to little endian |
| */ |
| rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | |
| ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); |
| rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); |
| |
| /* Indicate to hardware the Address is Valid. */ |
| rar_high |= E1000_RAH_AV; |
| |
| if (hw->mac.type == e1000_82575) |
| rar_high |= E1000_RAH_POOL_1 * qsel; |
| else |
| rar_high |= E1000_RAH_POOL_1 << qsel; |
| |
| wr32(E1000_RAL(index), rar_low); |
| wrfl(); |
| wr32(E1000_RAH(index), rar_high); |
| wrfl(); |
| } |
| |
| static int igb_set_vf_mac(struct igb_adapter *adapter, |
| int vf, unsigned char *mac_addr) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| /* VF MAC addresses start at end of receive addresses and moves |
| * torwards the first, as a result a collision should not be possible */ |
| int rar_entry = hw->mac.rar_entry_count - (vf + 1); |
| |
| memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); |
| |
| igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); |
| |
| return 0; |
| } |
| |
| static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) |
| return -EINVAL; |
| adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; |
| dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); |
| dev_info(&adapter->pdev->dev, "Reload the VF driver to make this" |
| " change effective."); |
| if (test_bit(__IGB_DOWN, &adapter->state)) { |
| dev_warn(&adapter->pdev->dev, "The VF MAC address has been set," |
| " but the PF device is not up.\n"); |
| dev_warn(&adapter->pdev->dev, "Bring the PF device up before" |
| " attempting to use the VF device.\n"); |
| } |
| return igb_set_vf_mac(adapter, vf, mac); |
| } |
| |
| static int igb_link_mbps(int internal_link_speed) |
| { |
| switch (internal_link_speed) { |
| case SPEED_100: |
| return 100; |
| case SPEED_1000: |
| return 1000; |
| default: |
| return 0; |
| } |
| } |
| |
| static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, |
| int link_speed) |
| { |
| int rf_dec, rf_int; |
| u32 bcnrc_val; |
| |
| if (tx_rate != 0) { |
| /* Calculate the rate factor values to set */ |
| rf_int = link_speed / tx_rate; |
| rf_dec = (link_speed - (rf_int * tx_rate)); |
| rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate; |
| |
| bcnrc_val = E1000_RTTBCNRC_RS_ENA; |
| bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) & |
| E1000_RTTBCNRC_RF_INT_MASK); |
| bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); |
| } else { |
| bcnrc_val = 0; |
| } |
| |
| wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ |
| wr32(E1000_RTTBCNRC, bcnrc_val); |
| } |
| |
| static void igb_check_vf_rate_limit(struct igb_adapter *adapter) |
| { |
| int actual_link_speed, i; |
| bool reset_rate = false; |
| |
| /* VF TX rate limit was not set or not supported */ |
| if ((adapter->vf_rate_link_speed == 0) || |
| (adapter->hw.mac.type != e1000_82576)) |
| return; |
| |
| actual_link_speed = igb_link_mbps(adapter->link_speed); |
| if (actual_link_speed != adapter->vf_rate_link_speed) { |
| reset_rate = true; |
| adapter->vf_rate_link_speed = 0; |
| dev_info(&adapter->pdev->dev, |
| "Link speed has been changed. VF Transmit " |
| "rate is disabled\n"); |
| } |
| |
| for (i = 0; i < adapter->vfs_allocated_count; i++) { |
| if (reset_rate) |
| adapter->vf_data[i].tx_rate = 0; |
| |
| igb_set_vf_rate_limit(&adapter->hw, i, |
| adapter->vf_data[i].tx_rate, |
| actual_link_speed); |
| } |
| } |
| |
| static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| int actual_link_speed; |
| |
| if (hw->mac.type != e1000_82576) |
| return -EOPNOTSUPP; |
| |
| actual_link_speed = igb_link_mbps(adapter->link_speed); |
| if ((vf >= adapter->vfs_allocated_count) || |
| (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || |
| (tx_rate < 0) || (tx_rate > actual_link_speed)) |
| return -EINVAL; |
| |
| adapter->vf_rate_link_speed = actual_link_speed; |
| adapter->vf_data[vf].tx_rate = (u16)tx_rate; |
| igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed); |
| |
| return 0; |
| } |
| |
| static int igb_ndo_get_vf_config(struct net_device *netdev, |
| int vf, struct ifla_vf_info *ivi) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| if (vf >= adapter->vfs_allocated_count) |
| return -EINVAL; |
| ivi->vf = vf; |
| memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); |
| ivi->tx_rate = adapter->vf_data[vf].tx_rate; |
| ivi->vlan = adapter->vf_data[vf].pf_vlan; |
| ivi->qos = adapter->vf_data[vf].pf_qos; |
| return 0; |
| } |
| |
| static void igb_vmm_control(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 reg; |
| |
| switch (hw->mac.type) { |
| case e1000_82575: |
| default: |
| /* replication is not supported for 82575 */ |
| return; |
| case e1000_82576: |
| /* notify HW that the MAC is adding vlan tags */ |
| reg = rd32(E1000_DTXCTL); |
| reg |= E1000_DTXCTL_VLAN_ADDED; |
| wr32(E1000_DTXCTL, reg); |
| case e1000_82580: |
| /* enable replication vlan tag stripping */ |
| reg = rd32(E1000_RPLOLR); |
| reg |= E1000_RPLOLR_STRVLAN; |
| wr32(E1000_RPLOLR, reg); |
| case e1000_i350: |
| /* none of the above registers are supported by i350 */ |
| break; |
| } |
| |
| if (adapter->vfs_allocated_count) { |
| igb_vmdq_set_loopback_pf(hw, true); |
| igb_vmdq_set_replication_pf(hw, true); |
| igb_vmdq_set_anti_spoofing_pf(hw, true, |
| adapter->vfs_allocated_count); |
| } else { |
| igb_vmdq_set_loopback_pf(hw, false); |
| igb_vmdq_set_replication_pf(hw, false); |
| } |
| } |
| |
| static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 dmac_thr; |
| u16 hwm; |
| |
| if (hw->mac.type > e1000_82580) { |
| if (adapter->flags & IGB_FLAG_DMAC) { |
| u32 reg; |
| |
| /* force threshold to 0. */ |
| wr32(E1000_DMCTXTH, 0); |
| |
| /* |
| * DMA Coalescing high water mark needs to be greater |
| * than the Rx threshold. Set hwm to PBA - max frame |
| * size in 16B units, capping it at PBA - 6KB. |
| */ |
| hwm = 64 * pba - adapter->max_frame_size / 16; |
| if (hwm < 64 * (pba - 6)) |
| hwm = 64 * (pba - 6); |
| reg = rd32(E1000_FCRTC); |
| reg &= ~E1000_FCRTC_RTH_COAL_MASK; |
| reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) |
| & E1000_FCRTC_RTH_COAL_MASK); |
| wr32(E1000_FCRTC, reg); |
| |
| /* |
| * Set the DMA Coalescing Rx threshold to PBA - 2 * max |
| * frame size, capping it at PBA - 10KB. |
| */ |
| dmac_thr = pba - adapter->max_frame_size / 512; |
| if (dmac_thr < pba - 10) |
| dmac_thr = pba - 10; |
| reg = rd32(E1000_DMACR); |
| reg &= ~E1000_DMACR_DMACTHR_MASK; |
| reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) |
| & E1000_DMACR_DMACTHR_MASK); |
| |
| /* transition to L0x or L1 if available..*/ |
| reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); |
| |
| /* watchdog timer= +-1000 usec in 32usec intervals */ |
| reg |= (1000 >> 5); |
| wr32(E1000_DMACR, reg); |
| |
| /* |
| * no lower threshold to disable |
| * coalescing(smart fifb)-UTRESH=0 |
| */ |
| wr32(E1000_DMCRTRH, 0); |
| |
| reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); |
| |
| wr32(E1000_DMCTLX, reg); |
| |
| /* |
| * free space in tx packet buffer to wake from |
| * DMA coal |
| */ |
| wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - |
| (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); |
| |
| /* |
| * make low power state decision controlled |
| * by DMA coal |
| */ |
| reg = rd32(E1000_PCIEMISC); |
| reg &= ~E1000_PCIEMISC_LX_DECISION; |
| wr32(E1000_PCIEMISC, reg); |
| } /* endif adapter->dmac is not disabled */ |
| } else if (hw->mac.type == e1000_82580) { |
| u32 reg = rd32(E1000_PCIEMISC); |
| wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); |
| wr32(E1000_DMACR, 0); |
| } |
| } |
| |
| /* igb_main.c */ |