| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> |
| <http://rt2x00.serialmonkey.com> |
| |
| */ |
| |
| /* |
| Module: rt2500usb |
| Abstract: rt2500usb device specific routines. |
| Supported chipsets: RT2570. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/etherdevice.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/usb.h> |
| |
| #include "rt2x00.h" |
| #include "rt2x00usb.h" |
| #include "rt2500usb.h" |
| |
| /* |
| * Allow hardware encryption to be disabled. |
| */ |
| static bool modparam_nohwcrypt; |
| module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444); |
| MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); |
| |
| /* |
| * Register access. |
| * All access to the CSR registers will go through the methods |
| * rt2500usb_register_read and rt2500usb_register_write. |
| * BBP and RF register require indirect register access, |
| * and use the CSR registers BBPCSR and RFCSR to achieve this. |
| * These indirect registers work with busy bits, |
| * and we will try maximal REGISTER_USB_BUSY_COUNT times to access |
| * the register while taking a REGISTER_BUSY_DELAY us delay |
| * between each attampt. When the busy bit is still set at that time, |
| * the access attempt is considered to have failed, |
| * and we will print an error. |
| * If the csr_mutex is already held then the _lock variants must |
| * be used instead. |
| */ |
| static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev, |
| const unsigned int offset) |
| { |
| __le16 reg; |
| rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ, |
| USB_VENDOR_REQUEST_IN, offset, |
| ®, sizeof(reg)); |
| return le16_to_cpu(reg); |
| } |
| |
| static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev, |
| const unsigned int offset) |
| { |
| __le16 reg; |
| rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ, |
| USB_VENDOR_REQUEST_IN, offset, |
| ®, sizeof(reg), REGISTER_TIMEOUT); |
| return le16_to_cpu(reg); |
| } |
| |
| static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int offset, |
| u16 value) |
| { |
| __le16 reg = cpu_to_le16(value); |
| rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, |
| USB_VENDOR_REQUEST_OUT, offset, |
| ®, sizeof(reg)); |
| } |
| |
| static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev, |
| const unsigned int offset, |
| u16 value) |
| { |
| __le16 reg = cpu_to_le16(value); |
| rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE, |
| USB_VENDOR_REQUEST_OUT, offset, |
| ®, sizeof(reg), REGISTER_TIMEOUT); |
| } |
| |
| static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev, |
| const unsigned int offset, |
| void *value, const u16 length) |
| { |
| rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, |
| USB_VENDOR_REQUEST_OUT, offset, |
| value, length); |
| } |
| |
| static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev, |
| const unsigned int offset, |
| struct rt2x00_field16 field, |
| u16 *reg) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { |
| *reg = rt2500usb_register_read_lock(rt2x00dev, offset); |
| if (!rt2x00_get_field16(*reg, field)) |
| return 1; |
| udelay(REGISTER_BUSY_DELAY); |
| } |
| |
| rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n", |
| offset, *reg); |
| *reg = ~0; |
| |
| return 0; |
| } |
| |
| #define WAIT_FOR_BBP(__dev, __reg) \ |
| rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg)) |
| #define WAIT_FOR_RF(__dev, __reg) \ |
| rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg)) |
| |
| static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u8 value) |
| { |
| u16 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the BBP becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_BBP(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field16(®, PHY_CSR7_DATA, value); |
| rt2x00_set_field16(®, PHY_CSR7_REG_ID, word); |
| rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 0); |
| |
| rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word) |
| { |
| u16 reg; |
| u8 value; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the BBP becomes available, afterwards we |
| * can safely write the read request into the register. |
| * After the data has been written, we wait until hardware |
| * returns the correct value, if at any time the register |
| * doesn't become available in time, reg will be 0xffffffff |
| * which means we return 0xff to the caller. |
| */ |
| if (WAIT_FOR_BBP(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field16(®, PHY_CSR7_REG_ID, word); |
| rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 1); |
| |
| rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg); |
| |
| if (WAIT_FOR_BBP(rt2x00dev, ®)) |
| reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7); |
| } |
| |
| value = rt2x00_get_field16(reg, PHY_CSR7_DATA); |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| |
| return value; |
| } |
| |
| static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u32 value) |
| { |
| u16 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the RF becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_RF(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field16(®, PHY_CSR9_RF_VALUE, value); |
| rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg); |
| |
| reg = 0; |
| rt2x00_set_field16(®, PHY_CSR10_RF_VALUE, value >> 16); |
| rt2x00_set_field16(®, PHY_CSR10_RF_NUMBER_OF_BITS, 20); |
| rt2x00_set_field16(®, PHY_CSR10_RF_IF_SELECT, 0); |
| rt2x00_set_field16(®, PHY_CSR10_RF_BUSY, 1); |
| |
| rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg); |
| rt2x00_rf_write(rt2x00dev, word, value); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev, |
| const unsigned int offset) |
| { |
| return rt2500usb_register_read(rt2x00dev, offset); |
| } |
| |
| static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int offset, |
| u32 value) |
| { |
| rt2500usb_register_write(rt2x00dev, offset, value); |
| } |
| |
| static const struct rt2x00debug rt2500usb_rt2x00debug = { |
| .owner = THIS_MODULE, |
| .csr = { |
| .read = _rt2500usb_register_read, |
| .write = _rt2500usb_register_write, |
| .flags = RT2X00DEBUGFS_OFFSET, |
| .word_base = CSR_REG_BASE, |
| .word_size = sizeof(u16), |
| .word_count = CSR_REG_SIZE / sizeof(u16), |
| }, |
| .eeprom = { |
| .read = rt2x00_eeprom_read, |
| .write = rt2x00_eeprom_write, |
| .word_base = EEPROM_BASE, |
| .word_size = sizeof(u16), |
| .word_count = EEPROM_SIZE / sizeof(u16), |
| }, |
| .bbp = { |
| .read = rt2500usb_bbp_read, |
| .write = rt2500usb_bbp_write, |
| .word_base = BBP_BASE, |
| .word_size = sizeof(u8), |
| .word_count = BBP_SIZE / sizeof(u8), |
| }, |
| .rf = { |
| .read = rt2x00_rf_read, |
| .write = rt2500usb_rf_write, |
| .word_base = RF_BASE, |
| .word_size = sizeof(u32), |
| .word_count = RF_SIZE / sizeof(u32), |
| }, |
| }; |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| |
| static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev) |
| { |
| u16 reg; |
| |
| reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19); |
| return rt2x00_get_field16(reg, MAC_CSR19_VAL7); |
| } |
| |
| #ifdef CONFIG_RT2X00_LIB_LEDS |
| static void rt2500usb_brightness_set(struct led_classdev *led_cdev, |
| enum led_brightness brightness) |
| { |
| struct rt2x00_led *led = |
| container_of(led_cdev, struct rt2x00_led, led_dev); |
| unsigned int enabled = brightness != LED_OFF; |
| u16 reg; |
| |
| reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20); |
| |
| if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) |
| rt2x00_set_field16(®, MAC_CSR20_LINK, enabled); |
| else if (led->type == LED_TYPE_ACTIVITY) |
| rt2x00_set_field16(®, MAC_CSR20_ACTIVITY, enabled); |
| |
| rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg); |
| } |
| |
| static int rt2500usb_blink_set(struct led_classdev *led_cdev, |
| unsigned long *delay_on, |
| unsigned long *delay_off) |
| { |
| struct rt2x00_led *led = |
| container_of(led_cdev, struct rt2x00_led, led_dev); |
| u16 reg; |
| |
| reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21); |
| rt2x00_set_field16(®, MAC_CSR21_ON_PERIOD, *delay_on); |
| rt2x00_set_field16(®, MAC_CSR21_OFF_PERIOD, *delay_off); |
| rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg); |
| |
| return 0; |
| } |
| |
| static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00_led *led, |
| enum led_type type) |
| { |
| led->rt2x00dev = rt2x00dev; |
| led->type = type; |
| led->led_dev.brightness_set = rt2500usb_brightness_set; |
| led->led_dev.blink_set = rt2500usb_blink_set; |
| led->flags = LED_INITIALIZED; |
| } |
| #endif /* CONFIG_RT2X00_LIB_LEDS */ |
| |
| /* |
| * Configuration handlers. |
| */ |
| |
| /* |
| * rt2500usb does not differentiate between shared and pairwise |
| * keys, so we should use the same function for both key types. |
| */ |
| static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_crypto *crypto, |
| struct ieee80211_key_conf *key) |
| { |
| u32 mask; |
| u16 reg; |
| enum cipher curr_cipher; |
| |
| if (crypto->cmd == SET_KEY) { |
| /* |
| * Disallow to set WEP key other than with index 0, |
| * it is known that not work at least on some hardware. |
| * SW crypto will be used in that case. |
| */ |
| if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 || |
| key->cipher == WLAN_CIPHER_SUITE_WEP104) && |
| key->keyidx != 0) |
| return -EOPNOTSUPP; |
| |
| /* |
| * Pairwise key will always be entry 0, but this |
| * could collide with a shared key on the same |
| * position... |
| */ |
| mask = TXRX_CSR0_KEY_ID.bit_mask; |
| |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0); |
| curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM); |
| reg &= mask; |
| |
| if (reg && reg == mask) |
| return -ENOSPC; |
| |
| reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID); |
| |
| key->hw_key_idx += reg ? ffz(reg) : 0; |
| /* |
| * Hardware requires that all keys use the same cipher |
| * (e.g. TKIP-only, AES-only, but not TKIP+AES). |
| * If this is not the first key, compare the cipher with the |
| * first one and fall back to SW crypto if not the same. |
| */ |
| if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher) |
| return -EOPNOTSUPP; |
| |
| rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx), |
| crypto->key, sizeof(crypto->key)); |
| |
| /* |
| * The driver does not support the IV/EIV generation |
| * in hardware. However it demands the data to be provided |
| * both separately as well as inside the frame. |
| * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib |
| * to ensure rt2x00lib will not strip the data from the |
| * frame after the copy, now we must tell mac80211 |
| * to generate the IV/EIV data. |
| */ |
| key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; |
| key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; |
| } |
| |
| /* |
| * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate |
| * a particular key is valid. |
| */ |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0); |
| rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, crypto->cipher); |
| rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER); |
| |
| mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID); |
| if (crypto->cmd == SET_KEY) |
| mask |= 1 << key->hw_key_idx; |
| else if (crypto->cmd == DISABLE_KEY) |
| mask &= ~(1 << key->hw_key_idx); |
| rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, mask); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg); |
| |
| return 0; |
| } |
| |
| static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev, |
| const unsigned int filter_flags) |
| { |
| u16 reg; |
| |
| /* |
| * Start configuration steps. |
| * Note that the version error will always be dropped |
| * and broadcast frames will always be accepted since |
| * there is no filter for it at this time. |
| */ |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2); |
| rt2x00_set_field16(®, TXRX_CSR2_DROP_CRC, |
| !(filter_flags & FIF_FCSFAIL)); |
| rt2x00_set_field16(®, TXRX_CSR2_DROP_PHYSICAL, |
| !(filter_flags & FIF_PLCPFAIL)); |
| rt2x00_set_field16(®, TXRX_CSR2_DROP_CONTROL, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00_set_field16(®, TXRX_CSR2_DROP_NOT_TO_ME, |
| !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); |
| rt2x00_set_field16(®, TXRX_CSR2_DROP_TODS, |
| !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && |
| !rt2x00dev->intf_ap_count); |
| rt2x00_set_field16(®, TXRX_CSR2_DROP_VERSION_ERROR, 1); |
| rt2x00_set_field16(®, TXRX_CSR2_DROP_MULTICAST, |
| !(filter_flags & FIF_ALLMULTI)); |
| rt2x00_set_field16(®, TXRX_CSR2_DROP_BROADCAST, 0); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); |
| } |
| |
| static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00_intf *intf, |
| struct rt2x00intf_conf *conf, |
| const unsigned int flags) |
| { |
| unsigned int bcn_preload; |
| u16 reg; |
| |
| if (flags & CONFIG_UPDATE_TYPE) { |
| /* |
| * Enable beacon config |
| */ |
| bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20); |
| rt2x00_set_field16(®, TXRX_CSR20_OFFSET, bcn_preload >> 6); |
| rt2x00_set_field16(®, TXRX_CSR20_BCN_EXPECT_WINDOW, |
| 2 * (conf->type != NL80211_IFTYPE_STATION)); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg); |
| |
| /* |
| * Enable synchronisation. |
| */ |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18); |
| rt2x00_set_field16(®, TXRX_CSR18_OFFSET, 0); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg); |
| |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); |
| rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, conf->sync); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); |
| } |
| |
| if (flags & CONFIG_UPDATE_MAC) |
| rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac, |
| (3 * sizeof(__le16))); |
| |
| if (flags & CONFIG_UPDATE_BSSID) |
| rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid, |
| (3 * sizeof(__le16))); |
| } |
| |
| static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_erp *erp, |
| u32 changed) |
| { |
| u16 reg; |
| |
| if (changed & BSS_CHANGED_ERP_PREAMBLE) { |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10); |
| rt2x00_set_field16(®, TXRX_CSR10_AUTORESPOND_PREAMBLE, |
| !!erp->short_preamble); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg); |
| } |
| |
| if (changed & BSS_CHANGED_BASIC_RATES) |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR11, |
| erp->basic_rates); |
| |
| if (changed & BSS_CHANGED_BEACON_INT) { |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18); |
| rt2x00_set_field16(®, TXRX_CSR18_INTERVAL, |
| erp->beacon_int * 4); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg); |
| } |
| |
| if (changed & BSS_CHANGED_ERP_SLOT) { |
| rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs); |
| } |
| } |
| |
| static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev, |
| struct antenna_setup *ant) |
| { |
| u8 r2; |
| u8 r14; |
| u16 csr5; |
| u16 csr6; |
| |
| /* |
| * We should never come here because rt2x00lib is supposed |
| * to catch this and send us the correct antenna explicitely. |
| */ |
| BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || |
| ant->tx == ANTENNA_SW_DIVERSITY); |
| |
| r2 = rt2500usb_bbp_read(rt2x00dev, 2); |
| r14 = rt2500usb_bbp_read(rt2x00dev, 14); |
| csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5); |
| csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6); |
| |
| /* |
| * Configure the TX antenna. |
| */ |
| switch (ant->tx) { |
| case ANTENNA_HW_DIVERSITY: |
| rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1); |
| rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1); |
| rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1); |
| break; |
| case ANTENNA_A: |
| rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); |
| rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0); |
| rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0); |
| break; |
| case ANTENNA_B: |
| default: |
| rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); |
| rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2); |
| rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2); |
| break; |
| } |
| |
| /* |
| * Configure the RX antenna. |
| */ |
| switch (ant->rx) { |
| case ANTENNA_HW_DIVERSITY: |
| rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1); |
| break; |
| case ANTENNA_A: |
| rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); |
| break; |
| case ANTENNA_B: |
| default: |
| rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); |
| break; |
| } |
| |
| /* |
| * RT2525E and RT5222 need to flip TX I/Q |
| */ |
| if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) { |
| rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); |
| rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1); |
| rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1); |
| |
| /* |
| * RT2525E does not need RX I/Q Flip. |
| */ |
| if (rt2x00_rf(rt2x00dev, RF2525E)) |
| rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); |
| } else { |
| rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0); |
| rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0); |
| } |
| |
| rt2500usb_bbp_write(rt2x00dev, 2, r2); |
| rt2500usb_bbp_write(rt2x00dev, 14, r14); |
| rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5); |
| rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6); |
| } |
| |
| static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev, |
| struct rf_channel *rf, const int txpower) |
| { |
| /* |
| * Set TXpower. |
| */ |
| rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); |
| |
| /* |
| * For RT2525E we should first set the channel to half band higher. |
| */ |
| if (rt2x00_rf(rt2x00dev, RF2525E)) { |
| static const u32 vals[] = { |
| 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2, |
| 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba, |
| 0x000008ba, 0x000008be, 0x000008b7, 0x00000902, |
| 0x00000902, 0x00000906 |
| }; |
| |
| rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]); |
| if (rf->rf4) |
| rt2500usb_rf_write(rt2x00dev, 4, rf->rf4); |
| } |
| |
| rt2500usb_rf_write(rt2x00dev, 1, rf->rf1); |
| rt2500usb_rf_write(rt2x00dev, 2, rf->rf2); |
| rt2500usb_rf_write(rt2x00dev, 3, rf->rf3); |
| if (rf->rf4) |
| rt2500usb_rf_write(rt2x00dev, 4, rf->rf4); |
| } |
| |
| static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev, |
| const int txpower) |
| { |
| u32 rf3; |
| |
| rf3 = rt2x00_rf_read(rt2x00dev, 3); |
| rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); |
| rt2500usb_rf_write(rt2x00dev, 3, rf3); |
| } |
| |
| static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| enum dev_state state = |
| (libconf->conf->flags & IEEE80211_CONF_PS) ? |
| STATE_SLEEP : STATE_AWAKE; |
| u16 reg; |
| |
| if (state == STATE_SLEEP) { |
| reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18); |
| rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, |
| rt2x00dev->beacon_int - 20); |
| rt2x00_set_field16(®, MAC_CSR18_BEACONS_BEFORE_WAKEUP, |
| libconf->conf->listen_interval - 1); |
| |
| /* We must first disable autowake before it can be enabled */ |
| rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); |
| |
| rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 1); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); |
| } else { |
| reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18); |
| rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); |
| } |
| |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); |
| } |
| |
| static void rt2500usb_config(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf, |
| const unsigned int flags) |
| { |
| if (flags & IEEE80211_CONF_CHANGE_CHANNEL) |
| rt2500usb_config_channel(rt2x00dev, &libconf->rf, |
| libconf->conf->power_level); |
| if ((flags & IEEE80211_CONF_CHANGE_POWER) && |
| !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) |
| rt2500usb_config_txpower(rt2x00dev, |
| libconf->conf->power_level); |
| if (flags & IEEE80211_CONF_CHANGE_PS) |
| rt2500usb_config_ps(rt2x00dev, libconf); |
| } |
| |
| /* |
| * Link tuning |
| */ |
| static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual) |
| { |
| u16 reg; |
| |
| /* |
| * Update FCS error count from register. |
| */ |
| reg = rt2500usb_register_read(rt2x00dev, STA_CSR0); |
| qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR); |
| |
| /* |
| * Update False CCA count from register. |
| */ |
| reg = rt2500usb_register_read(rt2x00dev, STA_CSR3); |
| qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR); |
| } |
| |
| static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual) |
| { |
| u16 eeprom; |
| u16 value; |
| |
| eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24); |
| value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW); |
| rt2500usb_bbp_write(rt2x00dev, 24, value); |
| |
| eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25); |
| value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW); |
| rt2500usb_bbp_write(rt2x00dev, 25, value); |
| |
| eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61); |
| value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW); |
| rt2500usb_bbp_write(rt2x00dev, 61, value); |
| |
| eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC); |
| value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER); |
| rt2500usb_bbp_write(rt2x00dev, 17, value); |
| |
| qual->vgc_level = value; |
| } |
| |
| /* |
| * Queue handlers. |
| */ |
| static void rt2500usb_start_queue(struct data_queue *queue) |
| { |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| u16 reg; |
| |
| switch (queue->qid) { |
| case QID_RX: |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2); |
| rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 0); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); |
| break; |
| case QID_BEACON: |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); |
| rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1); |
| rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1); |
| rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void rt2500usb_stop_queue(struct data_queue *queue) |
| { |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| u16 reg; |
| |
| switch (queue->qid) { |
| case QID_RX: |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2); |
| rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); |
| break; |
| case QID_BEACON: |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); |
| rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0); |
| rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0); |
| rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * Initialization functions. |
| */ |
| static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev) |
| { |
| u16 reg; |
| |
| rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001, |
| USB_MODE_TEST, REGISTER_TIMEOUT); |
| rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308, |
| 0x00f0, REGISTER_TIMEOUT); |
| |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2); |
| rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); |
| |
| rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11); |
| |
| reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1); |
| rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 1); |
| rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 1); |
| rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); |
| |
| reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1); |
| rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0); |
| rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0); |
| rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); |
| |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5); |
| rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0, 13); |
| rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0_VALID, 1); |
| rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1, 12); |
| rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1_VALID, 1); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg); |
| |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6); |
| rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0, 10); |
| rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0_VALID, 1); |
| rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1, 11); |
| rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1_VALID, 1); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg); |
| |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7); |
| rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0, 7); |
| rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0_VALID, 1); |
| rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1, 6); |
| rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1_VALID, 1); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg); |
| |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8); |
| rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0, 5); |
| rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0_VALID, 1); |
| rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1, 0); |
| rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1_VALID, 0); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg); |
| |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); |
| rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0); |
| rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, 0); |
| rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0); |
| rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); |
| |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d); |
| |
| if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) |
| return -EBUSY; |
| |
| reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1); |
| rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0); |
| rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0); |
| rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 1); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); |
| |
| if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) { |
| reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2); |
| rt2x00_set_field16(®, PHY_CSR2_LNA, 0); |
| } else { |
| reg = 0; |
| rt2x00_set_field16(®, PHY_CSR2_LNA, 1); |
| rt2x00_set_field16(®, PHY_CSR2_LNA_MODE, 3); |
| } |
| rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg); |
| |
| rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000); |
| |
| reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8); |
| rt2x00_set_field16(®, MAC_CSR8_MAX_FRAME_UNIT, |
| rt2x00dev->rx->data_size); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg); |
| |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0); |
| rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, CIPHER_NONE); |
| rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER); |
| rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, 0); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg); |
| |
| reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18); |
| rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, 90); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); |
| |
| reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4); |
| rt2x00_set_field16(®, PHY_CSR4_LOW_RF_LE, 1); |
| rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg); |
| |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1); |
| rt2x00_set_field16(®, TXRX_CSR1_AUTO_SEQUENCE, 1); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg); |
| |
| return 0; |
| } |
| |
| static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u8 value; |
| |
| for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { |
| value = rt2500usb_bbp_read(rt2x00dev, 0); |
| if ((value != 0xff) && (value != 0x00)) |
| return 0; |
| udelay(REGISTER_BUSY_DELAY); |
| } |
| |
| rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); |
| return -EACCES; |
| } |
| |
| static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u16 eeprom; |
| u8 value; |
| u8 reg_id; |
| |
| if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev))) |
| return -EACCES; |
| |
| rt2500usb_bbp_write(rt2x00dev, 3, 0x02); |
| rt2500usb_bbp_write(rt2x00dev, 4, 0x19); |
| rt2500usb_bbp_write(rt2x00dev, 14, 0x1c); |
| rt2500usb_bbp_write(rt2x00dev, 15, 0x30); |
| rt2500usb_bbp_write(rt2x00dev, 16, 0xac); |
| rt2500usb_bbp_write(rt2x00dev, 18, 0x18); |
| rt2500usb_bbp_write(rt2x00dev, 19, 0xff); |
| rt2500usb_bbp_write(rt2x00dev, 20, 0x1e); |
| rt2500usb_bbp_write(rt2x00dev, 21, 0x08); |
| rt2500usb_bbp_write(rt2x00dev, 22, 0x08); |
| rt2500usb_bbp_write(rt2x00dev, 23, 0x08); |
| rt2500usb_bbp_write(rt2x00dev, 24, 0x80); |
| rt2500usb_bbp_write(rt2x00dev, 25, 0x50); |
| rt2500usb_bbp_write(rt2x00dev, 26, 0x08); |
| rt2500usb_bbp_write(rt2x00dev, 27, 0x23); |
| rt2500usb_bbp_write(rt2x00dev, 30, 0x10); |
| rt2500usb_bbp_write(rt2x00dev, 31, 0x2b); |
| rt2500usb_bbp_write(rt2x00dev, 32, 0xb9); |
| rt2500usb_bbp_write(rt2x00dev, 34, 0x12); |
| rt2500usb_bbp_write(rt2x00dev, 35, 0x50); |
| rt2500usb_bbp_write(rt2x00dev, 39, 0xc4); |
| rt2500usb_bbp_write(rt2x00dev, 40, 0x02); |
| rt2500usb_bbp_write(rt2x00dev, 41, 0x60); |
| rt2500usb_bbp_write(rt2x00dev, 53, 0x10); |
| rt2500usb_bbp_write(rt2x00dev, 54, 0x18); |
| rt2500usb_bbp_write(rt2x00dev, 56, 0x08); |
| rt2500usb_bbp_write(rt2x00dev, 57, 0x10); |
| rt2500usb_bbp_write(rt2x00dev, 58, 0x08); |
| rt2500usb_bbp_write(rt2x00dev, 61, 0x60); |
| rt2500usb_bbp_write(rt2x00dev, 62, 0x10); |
| rt2500usb_bbp_write(rt2x00dev, 75, 0xff); |
| |
| for (i = 0; i < EEPROM_BBP_SIZE; i++) { |
| eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i); |
| |
| if (eeprom != 0xffff && eeprom != 0x0000) { |
| reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); |
| value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); |
| rt2500usb_bbp_write(rt2x00dev, reg_id, value); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Device state switch handlers. |
| */ |
| static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| /* |
| * Initialize all registers. |
| */ |
| if (unlikely(rt2500usb_init_registers(rt2x00dev) || |
| rt2500usb_init_bbp(rt2x00dev))) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121); |
| |
| /* |
| * Disable synchronisation. |
| */ |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0); |
| |
| rt2x00usb_disable_radio(rt2x00dev); |
| } |
| |
| static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| u16 reg; |
| u16 reg2; |
| unsigned int i; |
| char put_to_sleep; |
| char bbp_state; |
| char rf_state; |
| |
| put_to_sleep = (state != STATE_AWAKE); |
| |
| reg = 0; |
| rt2x00_set_field16(®, MAC_CSR17_BBP_DESIRE_STATE, state); |
| rt2x00_set_field16(®, MAC_CSR17_RF_DESIRE_STATE, state); |
| rt2x00_set_field16(®, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); |
| rt2x00_set_field16(®, MAC_CSR17_SET_STATE, 1); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); |
| |
| /* |
| * Device is not guaranteed to be in the requested state yet. |
| * We must wait until the register indicates that the |
| * device has entered the correct state. |
| */ |
| for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { |
| reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17); |
| bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE); |
| rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE); |
| if (bbp_state == state && rf_state == state) |
| return 0; |
| rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); |
| msleep(30); |
| } |
| |
| return -EBUSY; |
| } |
| |
| static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| int retval = 0; |
| |
| switch (state) { |
| case STATE_RADIO_ON: |
| retval = rt2500usb_enable_radio(rt2x00dev); |
| break; |
| case STATE_RADIO_OFF: |
| rt2500usb_disable_radio(rt2x00dev); |
| break; |
| case STATE_RADIO_IRQ_ON: |
| case STATE_RADIO_IRQ_OFF: |
| /* No support, but no error either */ |
| break; |
| case STATE_DEEP_SLEEP: |
| case STATE_SLEEP: |
| case STATE_STANDBY: |
| case STATE_AWAKE: |
| retval = rt2500usb_set_state(rt2x00dev, state); |
| break; |
| default: |
| retval = -ENOTSUPP; |
| break; |
| } |
| |
| if (unlikely(retval)) |
| rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", |
| state, retval); |
| |
| return retval; |
| } |
| |
| /* |
| * TX descriptor initialization |
| */ |
| static void rt2500usb_write_tx_desc(struct queue_entry *entry, |
| struct txentry_desc *txdesc) |
| { |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| __le32 *txd = (__le32 *) entry->skb->data; |
| u32 word; |
| |
| /* |
| * Start writing the descriptor words. |
| */ |
| word = rt2x00_desc_read(txd, 0); |
| rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit); |
| rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, |
| test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_ACK, |
| test_bit(ENTRY_TXD_ACK, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, |
| test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_OFDM, |
| (txdesc->rate_mode == RATE_MODE_OFDM)); |
| rt2x00_set_field32(&word, TXD_W0_NEW_SEQ, |
| test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); |
| rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); |
| rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher); |
| rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx); |
| rt2x00_desc_write(txd, 0, word); |
| |
| word = rt2x00_desc_read(txd, 1); |
| rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); |
| rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs); |
| rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); |
| rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); |
| rt2x00_desc_write(txd, 1, word); |
| |
| word = rt2x00_desc_read(txd, 2); |
| rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); |
| rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); |
| rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, |
| txdesc->u.plcp.length_low); |
| rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, |
| txdesc->u.plcp.length_high); |
| rt2x00_desc_write(txd, 2, word); |
| |
| if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { |
| _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); |
| _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); |
| } |
| |
| /* |
| * Register descriptor details in skb frame descriptor. |
| */ |
| skbdesc->flags |= SKBDESC_DESC_IN_SKB; |
| skbdesc->desc = txd; |
| skbdesc->desc_len = TXD_DESC_SIZE; |
| } |
| |
| /* |
| * TX data initialization |
| */ |
| static void rt2500usb_beacondone(struct urb *urb); |
| |
| static void rt2500usb_write_beacon(struct queue_entry *entry, |
| struct txentry_desc *txdesc) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev); |
| struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; |
| int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint); |
| int length; |
| u16 reg, reg0; |
| |
| /* |
| * Disable beaconing while we are reloading the beacon data, |
| * otherwise we might be sending out invalid data. |
| */ |
| reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); |
| rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); |
| |
| /* |
| * Add space for the descriptor in front of the skb. |
| */ |
| skb_push(entry->skb, TXD_DESC_SIZE); |
| memset(entry->skb->data, 0, TXD_DESC_SIZE); |
| |
| /* |
| * Write the TX descriptor for the beacon. |
| */ |
| rt2500usb_write_tx_desc(entry, txdesc); |
| |
| /* |
| * Dump beacon to userspace through debugfs. |
| */ |
| rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry); |
| |
| /* |
| * USB devices cannot blindly pass the skb->len as the |
| * length of the data to usb_fill_bulk_urb. Pass the skb |
| * to the driver to determine what the length should be. |
| */ |
| length = rt2x00dev->ops->lib->get_tx_data_len(entry); |
| |
| usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe, |
| entry->skb->data, length, rt2500usb_beacondone, |
| entry); |
| |
| /* |
| * Second we need to create the guardian byte. |
| * We only need a single byte, so lets recycle |
| * the 'flags' field we are not using for beacons. |
| */ |
| bcn_priv->guardian_data = 0; |
| usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe, |
| &bcn_priv->guardian_data, 1, rt2500usb_beacondone, |
| entry); |
| |
| /* |
| * Send out the guardian byte. |
| */ |
| usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC); |
| |
| /* |
| * Enable beaconing again. |
| */ |
| rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1); |
| rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1); |
| reg0 = reg; |
| rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1); |
| /* |
| * Beacon generation will fail initially. |
| * To prevent this we need to change the TXRX_CSR19 |
| * register several times (reg0 is the same as reg |
| * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0 |
| * and 1 in reg). |
| */ |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0); |
| rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); |
| } |
| |
| static int rt2500usb_get_tx_data_len(struct queue_entry *entry) |
| { |
| int length; |
| |
| /* |
| * The length _must_ be a multiple of 2, |
| * but it must _not_ be a multiple of the USB packet size. |
| */ |
| length = roundup(entry->skb->len, 2); |
| length += (2 * !(length % entry->queue->usb_maxpacket)); |
| |
| return length; |
| } |
| |
| /* |
| * RX control handlers |
| */ |
| static void rt2500usb_fill_rxdone(struct queue_entry *entry, |
| struct rxdone_entry_desc *rxdesc) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct queue_entry_priv_usb *entry_priv = entry->priv_data; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| __le32 *rxd = |
| (__le32 *)(entry->skb->data + |
| (entry_priv->urb->actual_length - |
| entry->queue->desc_size)); |
| u32 word0; |
| u32 word1; |
| |
| /* |
| * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of |
| * frame data in rt2x00usb. |
| */ |
| memcpy(skbdesc->desc, rxd, skbdesc->desc_len); |
| rxd = (__le32 *)skbdesc->desc; |
| |
| /* |
| * It is now safe to read the descriptor on all architectures. |
| */ |
| word0 = rt2x00_desc_read(rxd, 0); |
| word1 = rt2x00_desc_read(rxd, 1); |
| |
| if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) |
| rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; |
| if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) |
| rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; |
| |
| rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER); |
| if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR)) |
| rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY; |
| |
| if (rxdesc->cipher != CIPHER_NONE) { |
| rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2); |
| rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3); |
| rxdesc->dev_flags |= RXDONE_CRYPTO_IV; |
| |
| /* ICV is located at the end of frame */ |
| |
| rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; |
| if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) |
| rxdesc->flags |= RX_FLAG_DECRYPTED; |
| else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) |
| rxdesc->flags |= RX_FLAG_MMIC_ERROR; |
| } |
| |
| /* |
| * Obtain the status about this packet. |
| * When frame was received with an OFDM bitrate, |
| * the signal is the PLCP value. If it was received with |
| * a CCK bitrate the signal is the rate in 100kbit/s. |
| */ |
| rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); |
| rxdesc->rssi = |
| rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset; |
| rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); |
| |
| if (rt2x00_get_field32(word0, RXD_W0_OFDM)) |
| rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; |
| else |
| rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; |
| if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) |
| rxdesc->dev_flags |= RXDONE_MY_BSS; |
| |
| /* |
| * Adjust the skb memory window to the frame boundaries. |
| */ |
| skb_trim(entry->skb, rxdesc->size); |
| } |
| |
| /* |
| * Interrupt functions. |
| */ |
| static void rt2500usb_beacondone(struct urb *urb) |
| { |
| struct queue_entry *entry = (struct queue_entry *)urb->context; |
| struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; |
| |
| if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags)) |
| return; |
| |
| /* |
| * Check if this was the guardian beacon, |
| * if that was the case we need to send the real beacon now. |
| * Otherwise we should free the sk_buffer, the device |
| * should be doing the rest of the work now. |
| */ |
| if (bcn_priv->guardian_urb == urb) { |
| usb_submit_urb(bcn_priv->urb, GFP_ATOMIC); |
| } else if (bcn_priv->urb == urb) { |
| dev_kfree_skb(entry->skb); |
| entry->skb = NULL; |
| } |
| } |
| |
| /* |
| * Device probe functions. |
| */ |
| static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| u16 word; |
| u8 *mac; |
| u8 bbp; |
| |
| rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); |
| |
| /* |
| * Start validation of the data that has been read. |
| */ |
| mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); |
| rt2x00lib_set_mac_address(rt2x00dev, mac); |
| |
| word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, |
| ANTENNA_SW_DIVERSITY); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, |
| ANTENNA_SW_DIVERSITY); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, |
| LED_MODE_DEFAULT); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); |
| rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); |
| } |
| |
| word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); |
| rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); |
| } |
| |
| word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, |
| DEFAULT_RSSI_OFFSET); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); |
| rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n", |
| word); |
| } |
| |
| word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word); |
| rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word); |
| } |
| |
| /* |
| * Switch lower vgc bound to current BBP R17 value, |
| * lower the value a bit for better quality. |
| */ |
| bbp = rt2500usb_bbp_read(rt2x00dev, 17); |
| bbp -= 6; |
| |
| word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40); |
| rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word); |
| rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word); |
| } else { |
| rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word); |
| } |
| |
| word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48); |
| rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word); |
| rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word); |
| } |
| |
| word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40); |
| rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word); |
| rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word); |
| } |
| |
| word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40); |
| rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word); |
| rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word); |
| } |
| |
| word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60); |
| rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word); |
| rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word); |
| } |
| |
| return 0; |
| } |
| |
| static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| u16 reg; |
| u16 value; |
| u16 eeprom; |
| |
| /* |
| * Read EEPROM word for configuration. |
| */ |
| eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); |
| |
| /* |
| * Identify RF chipset. |
| */ |
| value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); |
| reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0); |
| rt2x00_set_chip(rt2x00dev, RT2570, value, reg); |
| |
| if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) { |
| rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n"); |
| return -ENODEV; |
| } |
| |
| if (!rt2x00_rf(rt2x00dev, RF2522) && |
| !rt2x00_rf(rt2x00dev, RF2523) && |
| !rt2x00_rf(rt2x00dev, RF2524) && |
| !rt2x00_rf(rt2x00dev, RF2525) && |
| !rt2x00_rf(rt2x00dev, RF2525E) && |
| !rt2x00_rf(rt2x00dev, RF5222)) { |
| rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * Identify default antenna configuration. |
| */ |
| rt2x00dev->default_ant.tx = |
| rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); |
| rt2x00dev->default_ant.rx = |
| rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); |
| |
| /* |
| * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead. |
| * I am not 100% sure about this, but the legacy drivers do not |
| * indicate antenna swapping in software is required when |
| * diversity is enabled. |
| */ |
| if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY) |
| rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY; |
| if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY) |
| rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY; |
| |
| /* |
| * Store led mode, for correct led behaviour. |
| */ |
| #ifdef CONFIG_RT2X00_LIB_LEDS |
| value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); |
| |
| rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); |
| if (value == LED_MODE_TXRX_ACTIVITY || |
| value == LED_MODE_DEFAULT || |
| value == LED_MODE_ASUS) |
| rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual, |
| LED_TYPE_ACTIVITY); |
| #endif /* CONFIG_RT2X00_LIB_LEDS */ |
| |
| /* |
| * Detect if this device has an hardware controlled radio. |
| */ |
| if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) |
| __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); |
| |
| /* |
| * Read the RSSI <-> dBm offset information. |
| */ |
| eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET); |
| rt2x00dev->rssi_offset = |
| rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); |
| |
| return 0; |
| } |
| |
| /* |
| * RF value list for RF2522 |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2522[] = { |
| { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 }, |
| { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 }, |
| { 3, 0x00002050, 0x000c2002, 0x00000101, 0 }, |
| { 4, 0x00002050, 0x000c2016, 0x00000101, 0 }, |
| { 5, 0x00002050, 0x000c202a, 0x00000101, 0 }, |
| { 6, 0x00002050, 0x000c203e, 0x00000101, 0 }, |
| { 7, 0x00002050, 0x000c2052, 0x00000101, 0 }, |
| { 8, 0x00002050, 0x000c2066, 0x00000101, 0 }, |
| { 9, 0x00002050, 0x000c207a, 0x00000101, 0 }, |
| { 10, 0x00002050, 0x000c208e, 0x00000101, 0 }, |
| { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 }, |
| { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 }, |
| { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 }, |
| { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 }, |
| }; |
| |
| /* |
| * RF value list for RF2523 |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2523[] = { |
| { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b }, |
| { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b }, |
| { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b }, |
| { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b }, |
| { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b }, |
| { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b }, |
| { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b }, |
| { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b }, |
| { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b }, |
| { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b }, |
| { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b }, |
| { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b }, |
| { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b }, |
| { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 }, |
| }; |
| |
| /* |
| * RF value list for RF2524 |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2524[] = { |
| { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b }, |
| { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b }, |
| { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b }, |
| { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b }, |
| { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b }, |
| { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b }, |
| { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b }, |
| { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b }, |
| { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b }, |
| { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b }, |
| { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b }, |
| { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b }, |
| { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b }, |
| { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 }, |
| }; |
| |
| /* |
| * RF value list for RF2525 |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2525[] = { |
| { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b }, |
| { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b }, |
| { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b }, |
| { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b }, |
| { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b }, |
| { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b }, |
| { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b }, |
| { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b }, |
| { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b }, |
| { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b }, |
| { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b }, |
| { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b }, |
| { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b }, |
| { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 }, |
| }; |
| |
| /* |
| * RF value list for RF2525e |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_bg_2525e[] = { |
| { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b }, |
| { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 }, |
| { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b }, |
| { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 }, |
| { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b }, |
| { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 }, |
| { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b }, |
| { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 }, |
| { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b }, |
| { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 }, |
| { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b }, |
| { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 }, |
| { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b }, |
| { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 }, |
| }; |
| |
| /* |
| * RF value list for RF5222 |
| * Supports: 2.4 GHz & 5.2 GHz |
| */ |
| static const struct rf_channel rf_vals_5222[] = { |
| { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b }, |
| { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b }, |
| { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b }, |
| { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b }, |
| { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b }, |
| { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b }, |
| { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b }, |
| { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b }, |
| { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b }, |
| { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b }, |
| { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b }, |
| { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b }, |
| { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b }, |
| { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b }, |
| |
| /* 802.11 UNI / HyperLan 2 */ |
| { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f }, |
| { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f }, |
| { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f }, |
| { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f }, |
| { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f }, |
| { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f }, |
| { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f }, |
| { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f }, |
| |
| /* 802.11 HyperLan 2 */ |
| { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f }, |
| { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f }, |
| { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f }, |
| { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f }, |
| { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f }, |
| { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f }, |
| { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f }, |
| { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f }, |
| { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f }, |
| { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f }, |
| |
| /* 802.11 UNII */ |
| { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f }, |
| { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 }, |
| { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 }, |
| { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 }, |
| { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 }, |
| }; |
| |
| static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) |
| { |
| struct hw_mode_spec *spec = &rt2x00dev->spec; |
| struct channel_info *info; |
| char *tx_power; |
| unsigned int i; |
| |
| /* |
| * Initialize all hw fields. |
| * |
| * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are |
| * capable of sending the buffered frames out after the DTIM |
| * transmission using rt2x00lib_beacondone. This will send out |
| * multicast and broadcast traffic immediately instead of buffering it |
| * infinitly and thus dropping it after some time. |
| */ |
| ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); |
| ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); |
| ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS); |
| ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); |
| |
| /* |
| * Disable powersaving as default. |
| */ |
| rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; |
| |
| SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); |
| SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, |
| rt2x00_eeprom_addr(rt2x00dev, |
| EEPROM_MAC_ADDR_0)); |
| |
| /* |
| * Initialize hw_mode information. |
| */ |
| spec->supported_bands = SUPPORT_BAND_2GHZ; |
| spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; |
| |
| if (rt2x00_rf(rt2x00dev, RF2522)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522); |
| spec->channels = rf_vals_bg_2522; |
| } else if (rt2x00_rf(rt2x00dev, RF2523)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523); |
| spec->channels = rf_vals_bg_2523; |
| } else if (rt2x00_rf(rt2x00dev, RF2524)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524); |
| spec->channels = rf_vals_bg_2524; |
| } else if (rt2x00_rf(rt2x00dev, RF2525)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525); |
| spec->channels = rf_vals_bg_2525; |
| } else if (rt2x00_rf(rt2x00dev, RF2525E)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e); |
| spec->channels = rf_vals_bg_2525e; |
| } else if (rt2x00_rf(rt2x00dev, RF5222)) { |
| spec->supported_bands |= SUPPORT_BAND_5GHZ; |
| spec->num_channels = ARRAY_SIZE(rf_vals_5222); |
| spec->channels = rf_vals_5222; |
| } |
| |
| /* |
| * Create channel information array |
| */ |
| info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| spec->channels_info = info; |
| |
| tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); |
| for (i = 0; i < 14; i++) { |
| info[i].max_power = MAX_TXPOWER; |
| info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); |
| } |
| |
| if (spec->num_channels > 14) { |
| for (i = 14; i < spec->num_channels; i++) { |
| info[i].max_power = MAX_TXPOWER; |
| info[i].default_power1 = DEFAULT_TXPOWER; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev) |
| { |
| int retval; |
| u16 reg; |
| |
| /* |
| * Allocate eeprom data. |
| */ |
| retval = rt2500usb_validate_eeprom(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| retval = rt2500usb_init_eeprom(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * Enable rfkill polling by setting GPIO direction of the |
| * rfkill switch GPIO pin correctly. |
| */ |
| reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19); |
| rt2x00_set_field16(®, MAC_CSR19_DIR0, 0); |
| rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg); |
| |
| /* |
| * Initialize hw specifications. |
| */ |
| retval = rt2500usb_probe_hw_mode(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * This device requires the atim queue |
| */ |
| __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); |
| __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags); |
| if (!modparam_nohwcrypt) { |
| __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); |
| __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags); |
| } |
| __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags); |
| __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags); |
| |
| /* |
| * Set the rssi offset. |
| */ |
| rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; |
| |
| return 0; |
| } |
| |
| static const struct ieee80211_ops rt2500usb_mac80211_ops = { |
| .tx = rt2x00mac_tx, |
| .start = rt2x00mac_start, |
| .stop = rt2x00mac_stop, |
| .add_interface = rt2x00mac_add_interface, |
| .remove_interface = rt2x00mac_remove_interface, |
| .config = rt2x00mac_config, |
| .configure_filter = rt2x00mac_configure_filter, |
| .set_tim = rt2x00mac_set_tim, |
| .set_key = rt2x00mac_set_key, |
| .sw_scan_start = rt2x00mac_sw_scan_start, |
| .sw_scan_complete = rt2x00mac_sw_scan_complete, |
| .get_stats = rt2x00mac_get_stats, |
| .bss_info_changed = rt2x00mac_bss_info_changed, |
| .conf_tx = rt2x00mac_conf_tx, |
| .rfkill_poll = rt2x00mac_rfkill_poll, |
| .flush = rt2x00mac_flush, |
| .set_antenna = rt2x00mac_set_antenna, |
| .get_antenna = rt2x00mac_get_antenna, |
| .get_ringparam = rt2x00mac_get_ringparam, |
| .tx_frames_pending = rt2x00mac_tx_frames_pending, |
| }; |
| |
| static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = { |
| .probe_hw = rt2500usb_probe_hw, |
| .initialize = rt2x00usb_initialize, |
| .uninitialize = rt2x00usb_uninitialize, |
| .clear_entry = rt2x00usb_clear_entry, |
| .set_device_state = rt2500usb_set_device_state, |
| .rfkill_poll = rt2500usb_rfkill_poll, |
| .link_stats = rt2500usb_link_stats, |
| .reset_tuner = rt2500usb_reset_tuner, |
| .watchdog = rt2x00usb_watchdog, |
| .start_queue = rt2500usb_start_queue, |
| .kick_queue = rt2x00usb_kick_queue, |
| .stop_queue = rt2500usb_stop_queue, |
| .flush_queue = rt2x00usb_flush_queue, |
| .write_tx_desc = rt2500usb_write_tx_desc, |
| .write_beacon = rt2500usb_write_beacon, |
| .get_tx_data_len = rt2500usb_get_tx_data_len, |
| .fill_rxdone = rt2500usb_fill_rxdone, |
| .config_shared_key = rt2500usb_config_key, |
| .config_pairwise_key = rt2500usb_config_key, |
| .config_filter = rt2500usb_config_filter, |
| .config_intf = rt2500usb_config_intf, |
| .config_erp = rt2500usb_config_erp, |
| .config_ant = rt2500usb_config_ant, |
| .config = rt2500usb_config, |
| }; |
| |
| static void rt2500usb_queue_init(struct data_queue *queue) |
| { |
| switch (queue->qid) { |
| case QID_RX: |
| queue->limit = 32; |
| queue->data_size = DATA_FRAME_SIZE; |
| queue->desc_size = RXD_DESC_SIZE; |
| queue->priv_size = sizeof(struct queue_entry_priv_usb); |
| break; |
| |
| case QID_AC_VO: |
| case QID_AC_VI: |
| case QID_AC_BE: |
| case QID_AC_BK: |
| queue->limit = 32; |
| queue->data_size = DATA_FRAME_SIZE; |
| queue->desc_size = TXD_DESC_SIZE; |
| queue->priv_size = sizeof(struct queue_entry_priv_usb); |
| break; |
| |
| case QID_BEACON: |
| queue->limit = 1; |
| queue->data_size = MGMT_FRAME_SIZE; |
| queue->desc_size = TXD_DESC_SIZE; |
| queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn); |
| break; |
| |
| case QID_ATIM: |
| queue->limit = 8; |
| queue->data_size = DATA_FRAME_SIZE; |
| queue->desc_size = TXD_DESC_SIZE; |
| queue->priv_size = sizeof(struct queue_entry_priv_usb); |
| break; |
| |
| default: |
| BUG(); |
| break; |
| } |
| } |
| |
| static const struct rt2x00_ops rt2500usb_ops = { |
| .name = KBUILD_MODNAME, |
| .max_ap_intf = 1, |
| .eeprom_size = EEPROM_SIZE, |
| .rf_size = RF_SIZE, |
| .tx_queues = NUM_TX_QUEUES, |
| .queue_init = rt2500usb_queue_init, |
| .lib = &rt2500usb_rt2x00_ops, |
| .hw = &rt2500usb_mac80211_ops, |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| .debugfs = &rt2500usb_rt2x00debug, |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| }; |
| |
| /* |
| * rt2500usb module information. |
| */ |
| static const struct usb_device_id rt2500usb_device_table[] = { |
| /* ASUS */ |
| { USB_DEVICE(0x0b05, 0x1706) }, |
| { USB_DEVICE(0x0b05, 0x1707) }, |
| /* Belkin */ |
| { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */ |
| { USB_DEVICE(0x050d, 0x7051) }, |
| /* Cisco Systems */ |
| { USB_DEVICE(0x13b1, 0x000d) }, |
| { USB_DEVICE(0x13b1, 0x0011) }, |
| { USB_DEVICE(0x13b1, 0x001a) }, |
| /* Conceptronic */ |
| { USB_DEVICE(0x14b2, 0x3c02) }, |
| /* D-LINK */ |
| { USB_DEVICE(0x2001, 0x3c00) }, |
| /* Gigabyte */ |
| { USB_DEVICE(0x1044, 0x8001) }, |
| { USB_DEVICE(0x1044, 0x8007) }, |
| /* Hercules */ |
| { USB_DEVICE(0x06f8, 0xe000) }, |
| /* Melco */ |
| { USB_DEVICE(0x0411, 0x005e) }, |
| { USB_DEVICE(0x0411, 0x0066) }, |
| { USB_DEVICE(0x0411, 0x0067) }, |
| { USB_DEVICE(0x0411, 0x008b) }, |
| { USB_DEVICE(0x0411, 0x0097) }, |
| /* MSI */ |
| { USB_DEVICE(0x0db0, 0x6861) }, |
| { USB_DEVICE(0x0db0, 0x6865) }, |
| { USB_DEVICE(0x0db0, 0x6869) }, |
| /* Ralink */ |
| { USB_DEVICE(0x148f, 0x1706) }, |
| { USB_DEVICE(0x148f, 0x2570) }, |
| { USB_DEVICE(0x148f, 0x9020) }, |
| /* Sagem */ |
| { USB_DEVICE(0x079b, 0x004b) }, |
| /* Siemens */ |
| { USB_DEVICE(0x0681, 0x3c06) }, |
| /* SMC */ |
| { USB_DEVICE(0x0707, 0xee13) }, |
| /* Spairon */ |
| { USB_DEVICE(0x114b, 0x0110) }, |
| /* SURECOM */ |
| { USB_DEVICE(0x0769, 0x11f3) }, |
| /* Trust */ |
| { USB_DEVICE(0x0eb0, 0x9020) }, |
| /* VTech */ |
| { USB_DEVICE(0x0f88, 0x3012) }, |
| /* Zinwell */ |
| { USB_DEVICE(0x5a57, 0x0260) }, |
| { 0, } |
| }; |
| |
| MODULE_AUTHOR(DRV_PROJECT); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver."); |
| MODULE_DEVICE_TABLE(usb, rt2500usb_device_table); |
| MODULE_LICENSE("GPL"); |
| |
| static int rt2500usb_probe(struct usb_interface *usb_intf, |
| const struct usb_device_id *id) |
| { |
| return rt2x00usb_probe(usb_intf, &rt2500usb_ops); |
| } |
| |
| static struct usb_driver rt2500usb_driver = { |
| .name = KBUILD_MODNAME, |
| .id_table = rt2500usb_device_table, |
| .probe = rt2500usb_probe, |
| .disconnect = rt2x00usb_disconnect, |
| .suspend = rt2x00usb_suspend, |
| .resume = rt2x00usb_resume, |
| .reset_resume = rt2x00usb_resume, |
| .disable_hub_initiated_lpm = 1, |
| }; |
| |
| module_usb_driver(rt2500usb_driver); |