| // SPDX-License-Identifier: GPL-2.0-only |
| /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com |
| * Copyright (c) 2016 Facebook |
| * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io |
| */ |
| #include <uapi/linux/btf.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/bpf.h> |
| #include <linux/btf.h> |
| #include <linux/bpf_verifier.h> |
| #include <linux/filter.h> |
| #include <net/netlink.h> |
| #include <linux/file.h> |
| #include <linux/vmalloc.h> |
| #include <linux/stringify.h> |
| #include <linux/bsearch.h> |
| #include <linux/sort.h> |
| #include <linux/perf_event.h> |
| #include <linux/ctype.h> |
| #include <linux/error-injection.h> |
| #include <linux/bpf_lsm.h> |
| #include <linux/btf_ids.h> |
| |
| #include "disasm.h" |
| |
| static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { |
| #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ |
| [_id] = & _name ## _verifier_ops, |
| #define BPF_MAP_TYPE(_id, _ops) |
| #define BPF_LINK_TYPE(_id, _name) |
| #include <linux/bpf_types.h> |
| #undef BPF_PROG_TYPE |
| #undef BPF_MAP_TYPE |
| #undef BPF_LINK_TYPE |
| }; |
| |
| /* bpf_check() is a static code analyzer that walks eBPF program |
| * instruction by instruction and updates register/stack state. |
| * All paths of conditional branches are analyzed until 'bpf_exit' insn. |
| * |
| * The first pass is depth-first-search to check that the program is a DAG. |
| * It rejects the following programs: |
| * - larger than BPF_MAXINSNS insns |
| * - if loop is present (detected via back-edge) |
| * - unreachable insns exist (shouldn't be a forest. program = one function) |
| * - out of bounds or malformed jumps |
| * The second pass is all possible path descent from the 1st insn. |
| * Since it's analyzing all paths through the program, the length of the |
| * analysis is limited to 64k insn, which may be hit even if total number of |
| * insn is less then 4K, but there are too many branches that change stack/regs. |
| * Number of 'branches to be analyzed' is limited to 1k |
| * |
| * On entry to each instruction, each register has a type, and the instruction |
| * changes the types of the registers depending on instruction semantics. |
| * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is |
| * copied to R1. |
| * |
| * All registers are 64-bit. |
| * R0 - return register |
| * R1-R5 argument passing registers |
| * R6-R9 callee saved registers |
| * R10 - frame pointer read-only |
| * |
| * At the start of BPF program the register R1 contains a pointer to bpf_context |
| * and has type PTR_TO_CTX. |
| * |
| * Verifier tracks arithmetic operations on pointers in case: |
| * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), |
| * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), |
| * 1st insn copies R10 (which has FRAME_PTR) type into R1 |
| * and 2nd arithmetic instruction is pattern matched to recognize |
| * that it wants to construct a pointer to some element within stack. |
| * So after 2nd insn, the register R1 has type PTR_TO_STACK |
| * (and -20 constant is saved for further stack bounds checking). |
| * Meaning that this reg is a pointer to stack plus known immediate constant. |
| * |
| * Most of the time the registers have SCALAR_VALUE type, which |
| * means the register has some value, but it's not a valid pointer. |
| * (like pointer plus pointer becomes SCALAR_VALUE type) |
| * |
| * When verifier sees load or store instructions the type of base register |
| * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are |
| * four pointer types recognized by check_mem_access() function. |
| * |
| * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' |
| * and the range of [ptr, ptr + map's value_size) is accessible. |
| * |
| * registers used to pass values to function calls are checked against |
| * function argument constraints. |
| * |
| * ARG_PTR_TO_MAP_KEY is one of such argument constraints. |
| * It means that the register type passed to this function must be |
| * PTR_TO_STACK and it will be used inside the function as |
| * 'pointer to map element key' |
| * |
| * For example the argument constraints for bpf_map_lookup_elem(): |
| * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, |
| * .arg1_type = ARG_CONST_MAP_PTR, |
| * .arg2_type = ARG_PTR_TO_MAP_KEY, |
| * |
| * ret_type says that this function returns 'pointer to map elem value or null' |
| * function expects 1st argument to be a const pointer to 'struct bpf_map' and |
| * 2nd argument should be a pointer to stack, which will be used inside |
| * the helper function as a pointer to map element key. |
| * |
| * On the kernel side the helper function looks like: |
| * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) |
| * { |
| * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; |
| * void *key = (void *) (unsigned long) r2; |
| * void *value; |
| * |
| * here kernel can access 'key' and 'map' pointers safely, knowing that |
| * [key, key + map->key_size) bytes are valid and were initialized on |
| * the stack of eBPF program. |
| * } |
| * |
| * Corresponding eBPF program may look like: |
| * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR |
| * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK |
| * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP |
| * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), |
| * here verifier looks at prototype of map_lookup_elem() and sees: |
| * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, |
| * Now verifier knows that this map has key of R1->map_ptr->key_size bytes |
| * |
| * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, |
| * Now verifier checks that [R2, R2 + map's key_size) are within stack limits |
| * and were initialized prior to this call. |
| * If it's ok, then verifier allows this BPF_CALL insn and looks at |
| * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets |
| * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function |
| * returns either pointer to map value or NULL. |
| * |
| * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' |
| * insn, the register holding that pointer in the true branch changes state to |
| * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false |
| * branch. See check_cond_jmp_op(). |
| * |
| * After the call R0 is set to return type of the function and registers R1-R5 |
| * are set to NOT_INIT to indicate that they are no longer readable. |
| * |
| * The following reference types represent a potential reference to a kernel |
| * resource which, after first being allocated, must be checked and freed by |
| * the BPF program: |
| * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET |
| * |
| * When the verifier sees a helper call return a reference type, it allocates a |
| * pointer id for the reference and stores it in the current function state. |
| * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into |
| * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type |
| * passes through a NULL-check conditional. For the branch wherein the state is |
| * changed to CONST_IMM, the verifier releases the reference. |
| * |
| * For each helper function that allocates a reference, such as |
| * bpf_sk_lookup_tcp(), there is a corresponding release function, such as |
| * bpf_sk_release(). When a reference type passes into the release function, |
| * the verifier also releases the reference. If any unchecked or unreleased |
| * reference remains at the end of the program, the verifier rejects it. |
| */ |
| |
| /* verifier_state + insn_idx are pushed to stack when branch is encountered */ |
| struct bpf_verifier_stack_elem { |
| /* verifer state is 'st' |
| * before processing instruction 'insn_idx' |
| * and after processing instruction 'prev_insn_idx' |
| */ |
| struct bpf_verifier_state st; |
| int insn_idx; |
| int prev_insn_idx; |
| struct bpf_verifier_stack_elem *next; |
| /* length of verifier log at the time this state was pushed on stack */ |
| u32 log_pos; |
| }; |
| |
| #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 |
| #define BPF_COMPLEXITY_LIMIT_STATES 64 |
| |
| #define BPF_MAP_KEY_POISON (1ULL << 63) |
| #define BPF_MAP_KEY_SEEN (1ULL << 62) |
| |
| #define BPF_MAP_PTR_UNPRIV 1UL |
| #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ |
| POISON_POINTER_DELTA)) |
| #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) |
| |
| static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) |
| { |
| return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; |
| } |
| |
| static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) |
| { |
| return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; |
| } |
| |
| static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, |
| const struct bpf_map *map, bool unpriv) |
| { |
| BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); |
| unpriv |= bpf_map_ptr_unpriv(aux); |
| aux->map_ptr_state = (unsigned long)map | |
| (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); |
| } |
| |
| static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) |
| { |
| return aux->map_key_state & BPF_MAP_KEY_POISON; |
| } |
| |
| static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) |
| { |
| return !(aux->map_key_state & BPF_MAP_KEY_SEEN); |
| } |
| |
| static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) |
| { |
| return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); |
| } |
| |
| static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) |
| { |
| bool poisoned = bpf_map_key_poisoned(aux); |
| |
| aux->map_key_state = state | BPF_MAP_KEY_SEEN | |
| (poisoned ? BPF_MAP_KEY_POISON : 0ULL); |
| } |
| |
| static bool bpf_pseudo_call(const struct bpf_insn *insn) |
| { |
| return insn->code == (BPF_JMP | BPF_CALL) && |
| insn->src_reg == BPF_PSEUDO_CALL; |
| } |
| |
| static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) |
| { |
| return insn->code == (BPF_JMP | BPF_CALL) && |
| insn->src_reg == BPF_PSEUDO_KFUNC_CALL; |
| } |
| |
| struct bpf_call_arg_meta { |
| struct bpf_map *map_ptr; |
| bool raw_mode; |
| bool pkt_access; |
| int regno; |
| int access_size; |
| int mem_size; |
| u64 msize_max_value; |
| int ref_obj_id; |
| int map_uid; |
| int func_id; |
| struct btf *btf; |
| u32 btf_id; |
| struct btf *ret_btf; |
| u32 ret_btf_id; |
| u32 subprogno; |
| }; |
| |
| struct btf *btf_vmlinux; |
| |
| static DEFINE_MUTEX(bpf_verifier_lock); |
| |
| static const struct bpf_line_info * |
| find_linfo(const struct bpf_verifier_env *env, u32 insn_off) |
| { |
| const struct bpf_line_info *linfo; |
| const struct bpf_prog *prog; |
| u32 i, nr_linfo; |
| |
| prog = env->prog; |
| nr_linfo = prog->aux->nr_linfo; |
| |
| if (!nr_linfo || insn_off >= prog->len) |
| return NULL; |
| |
| linfo = prog->aux->linfo; |
| for (i = 1; i < nr_linfo; i++) |
| if (insn_off < linfo[i].insn_off) |
| break; |
| |
| return &linfo[i - 1]; |
| } |
| |
| void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, |
| va_list args) |
| { |
| unsigned int n; |
| |
| n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); |
| |
| WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, |
| "verifier log line truncated - local buffer too short\n"); |
| |
| n = min(log->len_total - log->len_used - 1, n); |
| log->kbuf[n] = '\0'; |
| |
| if (log->level == BPF_LOG_KERNEL) { |
| pr_err("BPF:%s\n", log->kbuf); |
| return; |
| } |
| if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) |
| log->len_used += n; |
| else |
| log->ubuf = NULL; |
| } |
| |
| static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) |
| { |
| char zero = 0; |
| |
| if (!bpf_verifier_log_needed(log)) |
| return; |
| |
| log->len_used = new_pos; |
| if (put_user(zero, log->ubuf + new_pos)) |
| log->ubuf = NULL; |
| } |
| |
| /* log_level controls verbosity level of eBPF verifier. |
| * bpf_verifier_log_write() is used to dump the verification trace to the log, |
| * so the user can figure out what's wrong with the program |
| */ |
| __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, |
| const char *fmt, ...) |
| { |
| va_list args; |
| |
| if (!bpf_verifier_log_needed(&env->log)) |
| return; |
| |
| va_start(args, fmt); |
| bpf_verifier_vlog(&env->log, fmt, args); |
| va_end(args); |
| } |
| EXPORT_SYMBOL_GPL(bpf_verifier_log_write); |
| |
| __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) |
| { |
| struct bpf_verifier_env *env = private_data; |
| va_list args; |
| |
| if (!bpf_verifier_log_needed(&env->log)) |
| return; |
| |
| va_start(args, fmt); |
| bpf_verifier_vlog(&env->log, fmt, args); |
| va_end(args); |
| } |
| |
| __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, |
| const char *fmt, ...) |
| { |
| va_list args; |
| |
| if (!bpf_verifier_log_needed(log)) |
| return; |
| |
| va_start(args, fmt); |
| bpf_verifier_vlog(log, fmt, args); |
| va_end(args); |
| } |
| |
| static const char *ltrim(const char *s) |
| { |
| while (isspace(*s)) |
| s++; |
| |
| return s; |
| } |
| |
| __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, |
| u32 insn_off, |
| const char *prefix_fmt, ...) |
| { |
| const struct bpf_line_info *linfo; |
| |
| if (!bpf_verifier_log_needed(&env->log)) |
| return; |
| |
| linfo = find_linfo(env, insn_off); |
| if (!linfo || linfo == env->prev_linfo) |
| return; |
| |
| if (prefix_fmt) { |
| va_list args; |
| |
| va_start(args, prefix_fmt); |
| bpf_verifier_vlog(&env->log, prefix_fmt, args); |
| va_end(args); |
| } |
| |
| verbose(env, "%s\n", |
| ltrim(btf_name_by_offset(env->prog->aux->btf, |
| linfo->line_off))); |
| |
| env->prev_linfo = linfo; |
| } |
| |
| static void verbose_invalid_scalar(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg, |
| struct tnum *range, const char *ctx, |
| const char *reg_name) |
| { |
| char tn_buf[48]; |
| |
| verbose(env, "At %s the register %s ", ctx, reg_name); |
| if (!tnum_is_unknown(reg->var_off)) { |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose(env, "has value %s", tn_buf); |
| } else { |
| verbose(env, "has unknown scalar value"); |
| } |
| tnum_strn(tn_buf, sizeof(tn_buf), *range); |
| verbose(env, " should have been in %s\n", tn_buf); |
| } |
| |
| static bool type_is_pkt_pointer(enum bpf_reg_type type) |
| { |
| return type == PTR_TO_PACKET || |
| type == PTR_TO_PACKET_META; |
| } |
| |
| static bool type_is_sk_pointer(enum bpf_reg_type type) |
| { |
| return type == PTR_TO_SOCKET || |
| type == PTR_TO_SOCK_COMMON || |
| type == PTR_TO_TCP_SOCK || |
| type == PTR_TO_XDP_SOCK; |
| } |
| |
| static bool reg_type_not_null(enum bpf_reg_type type) |
| { |
| return type == PTR_TO_SOCKET || |
| type == PTR_TO_TCP_SOCK || |
| type == PTR_TO_MAP_VALUE || |
| type == PTR_TO_MAP_KEY || |
| type == PTR_TO_SOCK_COMMON; |
| } |
| |
| static bool reg_type_may_be_null(enum bpf_reg_type type) |
| { |
| return type == PTR_TO_MAP_VALUE_OR_NULL || |
| type == PTR_TO_SOCKET_OR_NULL || |
| type == PTR_TO_SOCK_COMMON_OR_NULL || |
| type == PTR_TO_TCP_SOCK_OR_NULL || |
| type == PTR_TO_BTF_ID_OR_NULL || |
| type == PTR_TO_MEM_OR_NULL || |
| type == PTR_TO_RDONLY_BUF_OR_NULL || |
| type == PTR_TO_RDWR_BUF_OR_NULL; |
| } |
| |
| static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) |
| { |
| return reg->type == PTR_TO_MAP_VALUE && |
| map_value_has_spin_lock(reg->map_ptr); |
| } |
| |
| static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) |
| { |
| return type == PTR_TO_SOCKET || |
| type == PTR_TO_SOCKET_OR_NULL || |
| type == PTR_TO_TCP_SOCK || |
| type == PTR_TO_TCP_SOCK_OR_NULL || |
| type == PTR_TO_MEM || |
| type == PTR_TO_MEM_OR_NULL; |
| } |
| |
| static bool arg_type_may_be_refcounted(enum bpf_arg_type type) |
| { |
| return type == ARG_PTR_TO_SOCK_COMMON; |
| } |
| |
| static bool arg_type_may_be_null(enum bpf_arg_type type) |
| { |
| return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || |
| type == ARG_PTR_TO_MEM_OR_NULL || |
| type == ARG_PTR_TO_CTX_OR_NULL || |
| type == ARG_PTR_TO_SOCKET_OR_NULL || |
| type == ARG_PTR_TO_ALLOC_MEM_OR_NULL || |
| type == ARG_PTR_TO_STACK_OR_NULL; |
| } |
| |
| /* Determine whether the function releases some resources allocated by another |
| * function call. The first reference type argument will be assumed to be |
| * released by release_reference(). |
| */ |
| static bool is_release_function(enum bpf_func_id func_id) |
| { |
| return func_id == BPF_FUNC_sk_release || |
| func_id == BPF_FUNC_ringbuf_submit || |
| func_id == BPF_FUNC_ringbuf_discard; |
| } |
| |
| static bool may_be_acquire_function(enum bpf_func_id func_id) |
| { |
| return func_id == BPF_FUNC_sk_lookup_tcp || |
| func_id == BPF_FUNC_sk_lookup_udp || |
| func_id == BPF_FUNC_skc_lookup_tcp || |
| func_id == BPF_FUNC_map_lookup_elem || |
| func_id == BPF_FUNC_ringbuf_reserve; |
| } |
| |
| static bool is_acquire_function(enum bpf_func_id func_id, |
| const struct bpf_map *map) |
| { |
| enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; |
| |
| if (func_id == BPF_FUNC_sk_lookup_tcp || |
| func_id == BPF_FUNC_sk_lookup_udp || |
| func_id == BPF_FUNC_skc_lookup_tcp || |
| func_id == BPF_FUNC_ringbuf_reserve) |
| return true; |
| |
| if (func_id == BPF_FUNC_map_lookup_elem && |
| (map_type == BPF_MAP_TYPE_SOCKMAP || |
| map_type == BPF_MAP_TYPE_SOCKHASH)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool is_ptr_cast_function(enum bpf_func_id func_id) |
| { |
| return func_id == BPF_FUNC_tcp_sock || |
| func_id == BPF_FUNC_sk_fullsock || |
| func_id == BPF_FUNC_skc_to_tcp_sock || |
| func_id == BPF_FUNC_skc_to_tcp6_sock || |
| func_id == BPF_FUNC_skc_to_udp6_sock || |
| func_id == BPF_FUNC_skc_to_tcp_timewait_sock || |
| func_id == BPF_FUNC_skc_to_tcp_request_sock; |
| } |
| |
| static bool is_cmpxchg_insn(const struct bpf_insn *insn) |
| { |
| return BPF_CLASS(insn->code) == BPF_STX && |
| BPF_MODE(insn->code) == BPF_ATOMIC && |
| insn->imm == BPF_CMPXCHG; |
| } |
| |
| /* string representation of 'enum bpf_reg_type' */ |
| static const char * const reg_type_str[] = { |
| [NOT_INIT] = "?", |
| [SCALAR_VALUE] = "inv", |
| [PTR_TO_CTX] = "ctx", |
| [CONST_PTR_TO_MAP] = "map_ptr", |
| [PTR_TO_MAP_VALUE] = "map_value", |
| [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", |
| [PTR_TO_STACK] = "fp", |
| [PTR_TO_PACKET] = "pkt", |
| [PTR_TO_PACKET_META] = "pkt_meta", |
| [PTR_TO_PACKET_END] = "pkt_end", |
| [PTR_TO_FLOW_KEYS] = "flow_keys", |
| [PTR_TO_SOCKET] = "sock", |
| [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", |
| [PTR_TO_SOCK_COMMON] = "sock_common", |
| [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", |
| [PTR_TO_TCP_SOCK] = "tcp_sock", |
| [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", |
| [PTR_TO_TP_BUFFER] = "tp_buffer", |
| [PTR_TO_XDP_SOCK] = "xdp_sock", |
| [PTR_TO_BTF_ID] = "ptr_", |
| [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", |
| [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", |
| [PTR_TO_MEM] = "mem", |
| [PTR_TO_MEM_OR_NULL] = "mem_or_null", |
| [PTR_TO_RDONLY_BUF] = "rdonly_buf", |
| [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", |
| [PTR_TO_RDWR_BUF] = "rdwr_buf", |
| [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", |
| [PTR_TO_FUNC] = "func", |
| [PTR_TO_MAP_KEY] = "map_key", |
| }; |
| |
| static char slot_type_char[] = { |
| [STACK_INVALID] = '?', |
| [STACK_SPILL] = 'r', |
| [STACK_MISC] = 'm', |
| [STACK_ZERO] = '0', |
| }; |
| |
| static void print_liveness(struct bpf_verifier_env *env, |
| enum bpf_reg_liveness live) |
| { |
| if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) |
| verbose(env, "_"); |
| if (live & REG_LIVE_READ) |
| verbose(env, "r"); |
| if (live & REG_LIVE_WRITTEN) |
| verbose(env, "w"); |
| if (live & REG_LIVE_DONE) |
| verbose(env, "D"); |
| } |
| |
| static struct bpf_func_state *func(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg) |
| { |
| struct bpf_verifier_state *cur = env->cur_state; |
| |
| return cur->frame[reg->frameno]; |
| } |
| |
| static const char *kernel_type_name(const struct btf* btf, u32 id) |
| { |
| return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); |
| } |
| |
| /* The reg state of a pointer or a bounded scalar was saved when |
| * it was spilled to the stack. |
| */ |
| static bool is_spilled_reg(const struct bpf_stack_state *stack) |
| { |
| return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; |
| } |
| |
| static void scrub_spilled_slot(u8 *stype) |
| { |
| if (*stype != STACK_INVALID) |
| *stype = STACK_MISC; |
| } |
| |
| static void print_verifier_state(struct bpf_verifier_env *env, |
| const struct bpf_func_state *state) |
| { |
| const struct bpf_reg_state *reg; |
| enum bpf_reg_type t; |
| int i; |
| |
| if (state->frameno) |
| verbose(env, " frame%d:", state->frameno); |
| for (i = 0; i < MAX_BPF_REG; i++) { |
| reg = &state->regs[i]; |
| t = reg->type; |
| if (t == NOT_INIT) |
| continue; |
| verbose(env, " R%d", i); |
| print_liveness(env, reg->live); |
| verbose(env, "=%s", reg_type_str[t]); |
| if (t == SCALAR_VALUE && reg->precise) |
| verbose(env, "P"); |
| if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && |
| tnum_is_const(reg->var_off)) { |
| /* reg->off should be 0 for SCALAR_VALUE */ |
| verbose(env, "%lld", reg->var_off.value + reg->off); |
| } else { |
| if (t == PTR_TO_BTF_ID || |
| t == PTR_TO_BTF_ID_OR_NULL || |
| t == PTR_TO_PERCPU_BTF_ID) |
| verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); |
| verbose(env, "(id=%d", reg->id); |
| if (reg_type_may_be_refcounted_or_null(t)) |
| verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); |
| if (t != SCALAR_VALUE) |
| verbose(env, ",off=%d", reg->off); |
| if (type_is_pkt_pointer(t)) |
| verbose(env, ",r=%d", reg->range); |
| else if (t == CONST_PTR_TO_MAP || |
| t == PTR_TO_MAP_KEY || |
| t == PTR_TO_MAP_VALUE || |
| t == PTR_TO_MAP_VALUE_OR_NULL) |
| verbose(env, ",ks=%d,vs=%d", |
| reg->map_ptr->key_size, |
| reg->map_ptr->value_size); |
| if (tnum_is_const(reg->var_off)) { |
| /* Typically an immediate SCALAR_VALUE, but |
| * could be a pointer whose offset is too big |
| * for reg->off |
| */ |
| verbose(env, ",imm=%llx", reg->var_off.value); |
| } else { |
| if (reg->smin_value != reg->umin_value && |
| reg->smin_value != S64_MIN) |
| verbose(env, ",smin_value=%lld", |
| (long long)reg->smin_value); |
| if (reg->smax_value != reg->umax_value && |
| reg->smax_value != S64_MAX) |
| verbose(env, ",smax_value=%lld", |
| (long long)reg->smax_value); |
| if (reg->umin_value != 0) |
| verbose(env, ",umin_value=%llu", |
| (unsigned long long)reg->umin_value); |
| if (reg->umax_value != U64_MAX) |
| verbose(env, ",umax_value=%llu", |
| (unsigned long long)reg->umax_value); |
| if (!tnum_is_unknown(reg->var_off)) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose(env, ",var_off=%s", tn_buf); |
| } |
| if (reg->s32_min_value != reg->smin_value && |
| reg->s32_min_value != S32_MIN) |
| verbose(env, ",s32_min_value=%d", |
| (int)(reg->s32_min_value)); |
| if (reg->s32_max_value != reg->smax_value && |
| reg->s32_max_value != S32_MAX) |
| verbose(env, ",s32_max_value=%d", |
| (int)(reg->s32_max_value)); |
| if (reg->u32_min_value != reg->umin_value && |
| reg->u32_min_value != U32_MIN) |
| verbose(env, ",u32_min_value=%d", |
| (int)(reg->u32_min_value)); |
| if (reg->u32_max_value != reg->umax_value && |
| reg->u32_max_value != U32_MAX) |
| verbose(env, ",u32_max_value=%d", |
| (int)(reg->u32_max_value)); |
| } |
| verbose(env, ")"); |
| } |
| } |
| for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { |
| char types_buf[BPF_REG_SIZE + 1]; |
| bool valid = false; |
| int j; |
| |
| for (j = 0; j < BPF_REG_SIZE; j++) { |
| if (state->stack[i].slot_type[j] != STACK_INVALID) |
| valid = true; |
| types_buf[j] = slot_type_char[ |
| state->stack[i].slot_type[j]]; |
| } |
| types_buf[BPF_REG_SIZE] = 0; |
| if (!valid) |
| continue; |
| verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); |
| print_liveness(env, state->stack[i].spilled_ptr.live); |
| if (is_spilled_reg(&state->stack[i])) { |
| reg = &state->stack[i].spilled_ptr; |
| t = reg->type; |
| verbose(env, "=%s", reg_type_str[t]); |
| if (t == SCALAR_VALUE && reg->precise) |
| verbose(env, "P"); |
| if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) |
| verbose(env, "%lld", reg->var_off.value + reg->off); |
| } else { |
| verbose(env, "=%s", types_buf); |
| } |
| } |
| if (state->acquired_refs && state->refs[0].id) { |
| verbose(env, " refs=%d", state->refs[0].id); |
| for (i = 1; i < state->acquired_refs; i++) |
| if (state->refs[i].id) |
| verbose(env, ",%d", state->refs[i].id); |
| } |
| if (state->in_callback_fn) |
| verbose(env, " cb"); |
| if (state->in_async_callback_fn) |
| verbose(env, " async_cb"); |
| verbose(env, "\n"); |
| } |
| |
| /* copy array src of length n * size bytes to dst. dst is reallocated if it's too |
| * small to hold src. This is different from krealloc since we don't want to preserve |
| * the contents of dst. |
| * |
| * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could |
| * not be allocated. |
| */ |
| static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) |
| { |
| size_t bytes; |
| |
| if (ZERO_OR_NULL_PTR(src)) |
| goto out; |
| |
| if (unlikely(check_mul_overflow(n, size, &bytes))) |
| return NULL; |
| |
| if (ksize(dst) < bytes) { |
| kfree(dst); |
| dst = kmalloc_track_caller(bytes, flags); |
| if (!dst) |
| return NULL; |
| } |
| |
| memcpy(dst, src, bytes); |
| out: |
| return dst ? dst : ZERO_SIZE_PTR; |
| } |
| |
| /* resize an array from old_n items to new_n items. the array is reallocated if it's too |
| * small to hold new_n items. new items are zeroed out if the array grows. |
| * |
| * Contrary to krealloc_array, does not free arr if new_n is zero. |
| */ |
| static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) |
| { |
| if (!new_n || old_n == new_n) |
| goto out; |
| |
| arr = krealloc_array(arr, new_n, size, GFP_KERNEL); |
| if (!arr) |
| return NULL; |
| |
| if (new_n > old_n) |
| memset(arr + old_n * size, 0, (new_n - old_n) * size); |
| |
| out: |
| return arr ? arr : ZERO_SIZE_PTR; |
| } |
| |
| static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) |
| { |
| dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, |
| sizeof(struct bpf_reference_state), GFP_KERNEL); |
| if (!dst->refs) |
| return -ENOMEM; |
| |
| dst->acquired_refs = src->acquired_refs; |
| return 0; |
| } |
| |
| static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) |
| { |
| size_t n = src->allocated_stack / BPF_REG_SIZE; |
| |
| dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), |
| GFP_KERNEL); |
| if (!dst->stack) |
| return -ENOMEM; |
| |
| dst->allocated_stack = src->allocated_stack; |
| return 0; |
| } |
| |
| static int resize_reference_state(struct bpf_func_state *state, size_t n) |
| { |
| state->refs = realloc_array(state->refs, state->acquired_refs, n, |
| sizeof(struct bpf_reference_state)); |
| if (!state->refs) |
| return -ENOMEM; |
| |
| state->acquired_refs = n; |
| return 0; |
| } |
| |
| static int grow_stack_state(struct bpf_func_state *state, int size) |
| { |
| size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; |
| |
| if (old_n >= n) |
| return 0; |
| |
| state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); |
| if (!state->stack) |
| return -ENOMEM; |
| |
| state->allocated_stack = size; |
| return 0; |
| } |
| |
| /* Acquire a pointer id from the env and update the state->refs to include |
| * this new pointer reference. |
| * On success, returns a valid pointer id to associate with the register |
| * On failure, returns a negative errno. |
| */ |
| static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) |
| { |
| struct bpf_func_state *state = cur_func(env); |
| int new_ofs = state->acquired_refs; |
| int id, err; |
| |
| err = resize_reference_state(state, state->acquired_refs + 1); |
| if (err) |
| return err; |
| id = ++env->id_gen; |
| state->refs[new_ofs].id = id; |
| state->refs[new_ofs].insn_idx = insn_idx; |
| |
| return id; |
| } |
| |
| /* release function corresponding to acquire_reference_state(). Idempotent. */ |
| static int release_reference_state(struct bpf_func_state *state, int ptr_id) |
| { |
| int i, last_idx; |
| |
| last_idx = state->acquired_refs - 1; |
| for (i = 0; i < state->acquired_refs; i++) { |
| if (state->refs[i].id == ptr_id) { |
| if (last_idx && i != last_idx) |
| memcpy(&state->refs[i], &state->refs[last_idx], |
| sizeof(*state->refs)); |
| memset(&state->refs[last_idx], 0, sizeof(*state->refs)); |
| state->acquired_refs--; |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| static void free_func_state(struct bpf_func_state *state) |
| { |
| if (!state) |
| return; |
| kfree(state->refs); |
| kfree(state->stack); |
| kfree(state); |
| } |
| |
| static void clear_jmp_history(struct bpf_verifier_state *state) |
| { |
| kfree(state->jmp_history); |
| state->jmp_history = NULL; |
| state->jmp_history_cnt = 0; |
| } |
| |
| static void free_verifier_state(struct bpf_verifier_state *state, |
| bool free_self) |
| { |
| int i; |
| |
| for (i = 0; i <= state->curframe; i++) { |
| free_func_state(state->frame[i]); |
| state->frame[i] = NULL; |
| } |
| clear_jmp_history(state); |
| if (free_self) |
| kfree(state); |
| } |
| |
| /* copy verifier state from src to dst growing dst stack space |
| * when necessary to accommodate larger src stack |
| */ |
| static int copy_func_state(struct bpf_func_state *dst, |
| const struct bpf_func_state *src) |
| { |
| int err; |
| |
| memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); |
| err = copy_reference_state(dst, src); |
| if (err) |
| return err; |
| return copy_stack_state(dst, src); |
| } |
| |
| static int copy_verifier_state(struct bpf_verifier_state *dst_state, |
| const struct bpf_verifier_state *src) |
| { |
| struct bpf_func_state *dst; |
| int i, err; |
| |
| dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, |
| src->jmp_history_cnt, sizeof(struct bpf_idx_pair), |
| GFP_USER); |
| if (!dst_state->jmp_history) |
| return -ENOMEM; |
| dst_state->jmp_history_cnt = src->jmp_history_cnt; |
| |
| /* if dst has more stack frames then src frame, free them */ |
| for (i = src->curframe + 1; i <= dst_state->curframe; i++) { |
| free_func_state(dst_state->frame[i]); |
| dst_state->frame[i] = NULL; |
| } |
| dst_state->speculative = src->speculative; |
| dst_state->curframe = src->curframe; |
| dst_state->active_spin_lock = src->active_spin_lock; |
| dst_state->branches = src->branches; |
| dst_state->parent = src->parent; |
| dst_state->first_insn_idx = src->first_insn_idx; |
| dst_state->last_insn_idx = src->last_insn_idx; |
| for (i = 0; i <= src->curframe; i++) { |
| dst = dst_state->frame[i]; |
| if (!dst) { |
| dst = kzalloc(sizeof(*dst), GFP_KERNEL); |
| if (!dst) |
| return -ENOMEM; |
| dst_state->frame[i] = dst; |
| } |
| err = copy_func_state(dst, src->frame[i]); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| |
| static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) |
| { |
| while (st) { |
| u32 br = --st->branches; |
| |
| /* WARN_ON(br > 1) technically makes sense here, |
| * but see comment in push_stack(), hence: |
| */ |
| WARN_ONCE((int)br < 0, |
| "BUG update_branch_counts:branches_to_explore=%d\n", |
| br); |
| if (br) |
| break; |
| st = st->parent; |
| } |
| } |
| |
| static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, |
| int *insn_idx, bool pop_log) |
| { |
| struct bpf_verifier_state *cur = env->cur_state; |
| struct bpf_verifier_stack_elem *elem, *head = env->head; |
| int err; |
| |
| if (env->head == NULL) |
| return -ENOENT; |
| |
| if (cur) { |
| err = copy_verifier_state(cur, &head->st); |
| if (err) |
| return err; |
| } |
| if (pop_log) |
| bpf_vlog_reset(&env->log, head->log_pos); |
| if (insn_idx) |
| *insn_idx = head->insn_idx; |
| if (prev_insn_idx) |
| *prev_insn_idx = head->prev_insn_idx; |
| elem = head->next; |
| free_verifier_state(&head->st, false); |
| kfree(head); |
| env->head = elem; |
| env->stack_size--; |
| return 0; |
| } |
| |
| static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, |
| int insn_idx, int prev_insn_idx, |
| bool speculative) |
| { |
| struct bpf_verifier_state *cur = env->cur_state; |
| struct bpf_verifier_stack_elem *elem; |
| int err; |
| |
| elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); |
| if (!elem) |
| goto err; |
| |
| elem->insn_idx = insn_idx; |
| elem->prev_insn_idx = prev_insn_idx; |
| elem->next = env->head; |
| elem->log_pos = env->log.len_used; |
| env->head = elem; |
| env->stack_size++; |
| err = copy_verifier_state(&elem->st, cur); |
| if (err) |
| goto err; |
| elem->st.speculative |= speculative; |
| if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { |
| verbose(env, "The sequence of %d jumps is too complex.\n", |
| env->stack_size); |
| goto err; |
| } |
| if (elem->st.parent) { |
| ++elem->st.parent->branches; |
| /* WARN_ON(branches > 2) technically makes sense here, |
| * but |
| * 1. speculative states will bump 'branches' for non-branch |
| * instructions |
| * 2. is_state_visited() heuristics may decide not to create |
| * a new state for a sequence of branches and all such current |
| * and cloned states will be pointing to a single parent state |
| * which might have large 'branches' count. |
| */ |
| } |
| return &elem->st; |
| err: |
| free_verifier_state(env->cur_state, true); |
| env->cur_state = NULL; |
| /* pop all elements and return */ |
| while (!pop_stack(env, NULL, NULL, false)); |
| return NULL; |
| } |
| |
| #define CALLER_SAVED_REGS 6 |
| static const int caller_saved[CALLER_SAVED_REGS] = { |
| BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 |
| }; |
| |
| static void __mark_reg_not_init(const struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg); |
| |
| /* This helper doesn't clear reg->id */ |
| static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) |
| { |
| reg->var_off = tnum_const(imm); |
| reg->smin_value = (s64)imm; |
| reg->smax_value = (s64)imm; |
| reg->umin_value = imm; |
| reg->umax_value = imm; |
| |
| reg->s32_min_value = (s32)imm; |
| reg->s32_max_value = (s32)imm; |
| reg->u32_min_value = (u32)imm; |
| reg->u32_max_value = (u32)imm; |
| } |
| |
| /* Mark the unknown part of a register (variable offset or scalar value) as |
| * known to have the value @imm. |
| */ |
| static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) |
| { |
| /* Clear id, off, and union(map_ptr, range) */ |
| memset(((u8 *)reg) + sizeof(reg->type), 0, |
| offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); |
| ___mark_reg_known(reg, imm); |
| } |
| |
| static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) |
| { |
| reg->var_off = tnum_const_subreg(reg->var_off, imm); |
| reg->s32_min_value = (s32)imm; |
| reg->s32_max_value = (s32)imm; |
| reg->u32_min_value = (u32)imm; |
| reg->u32_max_value = (u32)imm; |
| } |
| |
| /* Mark the 'variable offset' part of a register as zero. This should be |
| * used only on registers holding a pointer type. |
| */ |
| static void __mark_reg_known_zero(struct bpf_reg_state *reg) |
| { |
| __mark_reg_known(reg, 0); |
| } |
| |
| static void __mark_reg_const_zero(struct bpf_reg_state *reg) |
| { |
| __mark_reg_known(reg, 0); |
| reg->type = SCALAR_VALUE; |
| } |
| |
| static void mark_reg_known_zero(struct bpf_verifier_env *env, |
| struct bpf_reg_state *regs, u32 regno) |
| { |
| if (WARN_ON(regno >= MAX_BPF_REG)) { |
| verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); |
| /* Something bad happened, let's kill all regs */ |
| for (regno = 0; regno < MAX_BPF_REG; regno++) |
| __mark_reg_not_init(env, regs + regno); |
| return; |
| } |
| __mark_reg_known_zero(regs + regno); |
| } |
| |
| static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) |
| { |
| switch (reg->type) { |
| case PTR_TO_MAP_VALUE_OR_NULL: { |
| const struct bpf_map *map = reg->map_ptr; |
| |
| if (map->inner_map_meta) { |
| reg->type = CONST_PTR_TO_MAP; |
| reg->map_ptr = map->inner_map_meta; |
| /* transfer reg's id which is unique for every map_lookup_elem |
| * as UID of the inner map. |
| */ |
| reg->map_uid = reg->id; |
| } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { |
| reg->type = PTR_TO_XDP_SOCK; |
| } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || |
| map->map_type == BPF_MAP_TYPE_SOCKHASH) { |
| reg->type = PTR_TO_SOCKET; |
| } else { |
| reg->type = PTR_TO_MAP_VALUE; |
| } |
| break; |
| } |
| case PTR_TO_SOCKET_OR_NULL: |
| reg->type = PTR_TO_SOCKET; |
| break; |
| case PTR_TO_SOCK_COMMON_OR_NULL: |
| reg->type = PTR_TO_SOCK_COMMON; |
| break; |
| case PTR_TO_TCP_SOCK_OR_NULL: |
| reg->type = PTR_TO_TCP_SOCK; |
| break; |
| case PTR_TO_BTF_ID_OR_NULL: |
| reg->type = PTR_TO_BTF_ID; |
| break; |
| case PTR_TO_MEM_OR_NULL: |
| reg->type = PTR_TO_MEM; |
| break; |
| case PTR_TO_RDONLY_BUF_OR_NULL: |
| reg->type = PTR_TO_RDONLY_BUF; |
| break; |
| case PTR_TO_RDWR_BUF_OR_NULL: |
| reg->type = PTR_TO_RDWR_BUF; |
| break; |
| default: |
| WARN_ONCE(1, "unknown nullable register type"); |
| } |
| } |
| |
| static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) |
| { |
| return type_is_pkt_pointer(reg->type); |
| } |
| |
| static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) |
| { |
| return reg_is_pkt_pointer(reg) || |
| reg->type == PTR_TO_PACKET_END; |
| } |
| |
| /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ |
| static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, |
| enum bpf_reg_type which) |
| { |
| /* The register can already have a range from prior markings. |
| * This is fine as long as it hasn't been advanced from its |
| * origin. |
| */ |
| return reg->type == which && |
| reg->id == 0 && |
| reg->off == 0 && |
| tnum_equals_const(reg->var_off, 0); |
| } |
| |
| /* Reset the min/max bounds of a register */ |
| static void __mark_reg_unbounded(struct bpf_reg_state *reg) |
| { |
| reg->smin_value = S64_MIN; |
| reg->smax_value = S64_MAX; |
| reg->umin_value = 0; |
| reg->umax_value = U64_MAX; |
| |
| reg->s32_min_value = S32_MIN; |
| reg->s32_max_value = S32_MAX; |
| reg->u32_min_value = 0; |
| reg->u32_max_value = U32_MAX; |
| } |
| |
| static void __mark_reg64_unbounded(struct bpf_reg_state *reg) |
| { |
| reg->smin_value = S64_MIN; |
| reg->smax_value = S64_MAX; |
| reg->umin_value = 0; |
| reg->umax_value = U64_MAX; |
| } |
| |
| static void __mark_reg32_unbounded(struct bpf_reg_state *reg) |
| { |
| reg->s32_min_value = S32_MIN; |
| reg->s32_max_value = S32_MAX; |
| reg->u32_min_value = 0; |
| reg->u32_max_value = U32_MAX; |
| } |
| |
| static void __update_reg32_bounds(struct bpf_reg_state *reg) |
| { |
| struct tnum var32_off = tnum_subreg(reg->var_off); |
| |
| /* min signed is max(sign bit) | min(other bits) */ |
| reg->s32_min_value = max_t(s32, reg->s32_min_value, |
| var32_off.value | (var32_off.mask & S32_MIN)); |
| /* max signed is min(sign bit) | max(other bits) */ |
| reg->s32_max_value = min_t(s32, reg->s32_max_value, |
| var32_off.value | (var32_off.mask & S32_MAX)); |
| reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); |
| reg->u32_max_value = min(reg->u32_max_value, |
| (u32)(var32_off.value | var32_off.mask)); |
| } |
| |
| static void __update_reg64_bounds(struct bpf_reg_state *reg) |
| { |
| /* min signed is max(sign bit) | min(other bits) */ |
| reg->smin_value = max_t(s64, reg->smin_value, |
| reg->var_off.value | (reg->var_off.mask & S64_MIN)); |
| /* max signed is min(sign bit) | max(other bits) */ |
| reg->smax_value = min_t(s64, reg->smax_value, |
| reg->var_off.value | (reg->var_off.mask & S64_MAX)); |
| reg->umin_value = max(reg->umin_value, reg->var_off.value); |
| reg->umax_value = min(reg->umax_value, |
| reg->var_off.value | reg->var_off.mask); |
| } |
| |
| static void __update_reg_bounds(struct bpf_reg_state *reg) |
| { |
| __update_reg32_bounds(reg); |
| __update_reg64_bounds(reg); |
| } |
| |
| /* Uses signed min/max values to inform unsigned, and vice-versa */ |
| static void __reg32_deduce_bounds(struct bpf_reg_state *reg) |
| { |
| /* Learn sign from signed bounds. |
| * If we cannot cross the sign boundary, then signed and unsigned bounds |
| * are the same, so combine. This works even in the negative case, e.g. |
| * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. |
| */ |
| if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { |
| reg->s32_min_value = reg->u32_min_value = |
| max_t(u32, reg->s32_min_value, reg->u32_min_value); |
| reg->s32_max_value = reg->u32_max_value = |
| min_t(u32, reg->s32_max_value, reg->u32_max_value); |
| return; |
| } |
| /* Learn sign from unsigned bounds. Signed bounds cross the sign |
| * boundary, so we must be careful. |
| */ |
| if ((s32)reg->u32_max_value >= 0) { |
| /* Positive. We can't learn anything from the smin, but smax |
| * is positive, hence safe. |
| */ |
| reg->s32_min_value = reg->u32_min_value; |
| reg->s32_max_value = reg->u32_max_value = |
| min_t(u32, reg->s32_max_value, reg->u32_max_value); |
| } else if ((s32)reg->u32_min_value < 0) { |
| /* Negative. We can't learn anything from the smax, but smin |
| * is negative, hence safe. |
| */ |
| reg->s32_min_value = reg->u32_min_value = |
| max_t(u32, reg->s32_min_value, reg->u32_min_value); |
| reg->s32_max_value = reg->u32_max_value; |
| } |
| } |
| |
| static void __reg64_deduce_bounds(struct bpf_reg_state *reg) |
| { |
| /* Learn sign from signed bounds. |
| * If we cannot cross the sign boundary, then signed and unsigned bounds |
| * are the same, so combine. This works even in the negative case, e.g. |
| * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. |
| */ |
| if (reg->smin_value >= 0 || reg->smax_value < 0) { |
| reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, |
| reg->umin_value); |
| reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, |
| reg->umax_value); |
| return; |
| } |
| /* Learn sign from unsigned bounds. Signed bounds cross the sign |
| * boundary, so we must be careful. |
| */ |
| if ((s64)reg->umax_value >= 0) { |
| /* Positive. We can't learn anything from the smin, but smax |
| * is positive, hence safe. |
| */ |
| reg->smin_value = reg->umin_value; |
| reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, |
| reg->umax_value); |
| } else if ((s64)reg->umin_value < 0) { |
| /* Negative. We can't learn anything from the smax, but smin |
| * is negative, hence safe. |
| */ |
| reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, |
| reg->umin_value); |
| reg->smax_value = reg->umax_value; |
| } |
| } |
| |
| static void __reg_deduce_bounds(struct bpf_reg_state *reg) |
| { |
| __reg32_deduce_bounds(reg); |
| __reg64_deduce_bounds(reg); |
| } |
| |
| /* Attempts to improve var_off based on unsigned min/max information */ |
| static void __reg_bound_offset(struct bpf_reg_state *reg) |
| { |
| struct tnum var64_off = tnum_intersect(reg->var_off, |
| tnum_range(reg->umin_value, |
| reg->umax_value)); |
| struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), |
| tnum_range(reg->u32_min_value, |
| reg->u32_max_value)); |
| |
| reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); |
| } |
| |
| static void __reg_assign_32_into_64(struct bpf_reg_state *reg) |
| { |
| reg->umin_value = reg->u32_min_value; |
| reg->umax_value = reg->u32_max_value; |
| /* Attempt to pull 32-bit signed bounds into 64-bit bounds |
| * but must be positive otherwise set to worse case bounds |
| * and refine later from tnum. |
| */ |
| if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) |
| reg->smax_value = reg->s32_max_value; |
| else |
| reg->smax_value = U32_MAX; |
| if (reg->s32_min_value >= 0) |
| reg->smin_value = reg->s32_min_value; |
| else |
| reg->smin_value = 0; |
| } |
| |
| static void __reg_combine_32_into_64(struct bpf_reg_state *reg) |
| { |
| /* special case when 64-bit register has upper 32-bit register |
| * zeroed. Typically happens after zext or <<32, >>32 sequence |
| * allowing us to use 32-bit bounds directly, |
| */ |
| if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { |
| __reg_assign_32_into_64(reg); |
| } else { |
| /* Otherwise the best we can do is push lower 32bit known and |
| * unknown bits into register (var_off set from jmp logic) |
| * then learn as much as possible from the 64-bit tnum |
| * known and unknown bits. The previous smin/smax bounds are |
| * invalid here because of jmp32 compare so mark them unknown |
| * so they do not impact tnum bounds calculation. |
| */ |
| __mark_reg64_unbounded(reg); |
| __update_reg_bounds(reg); |
| } |
| |
| /* Intersecting with the old var_off might have improved our bounds |
| * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), |
| * then new var_off is (0; 0x7f...fc) which improves our umax. |
| */ |
| __reg_deduce_bounds(reg); |
| __reg_bound_offset(reg); |
| __update_reg_bounds(reg); |
| } |
| |
| static bool __reg64_bound_s32(s64 a) |
| { |
| return a >= S32_MIN && a <= S32_MAX; |
| } |
| |
| static bool __reg64_bound_u32(u64 a) |
| { |
| return a >= U32_MIN && a <= U32_MAX; |
| } |
| |
| static void __reg_combine_64_into_32(struct bpf_reg_state *reg) |
| { |
| __mark_reg32_unbounded(reg); |
| |
| if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { |
| reg->s32_min_value = (s32)reg->smin_value; |
| reg->s32_max_value = (s32)reg->smax_value; |
| } |
| if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { |
| reg->u32_min_value = (u32)reg->umin_value; |
| reg->u32_max_value = (u32)reg->umax_value; |
| } |
| |
| /* Intersecting with the old var_off might have improved our bounds |
| * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), |
| * then new var_off is (0; 0x7f...fc) which improves our umax. |
| */ |
| __reg_deduce_bounds(reg); |
| __reg_bound_offset(reg); |
| __update_reg_bounds(reg); |
| } |
| |
| /* Mark a register as having a completely unknown (scalar) value. */ |
| static void __mark_reg_unknown(const struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg) |
| { |
| /* |
| * Clear type, id, off, and union(map_ptr, range) and |
| * padding between 'type' and union |
| */ |
| memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); |
| reg->type = SCALAR_VALUE; |
| reg->var_off = tnum_unknown; |
| reg->frameno = 0; |
| reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; |
| __mark_reg_unbounded(reg); |
| } |
| |
| static void mark_reg_unknown(struct bpf_verifier_env *env, |
| struct bpf_reg_state *regs, u32 regno) |
| { |
| if (WARN_ON(regno >= MAX_BPF_REG)) { |
| verbose(env, "mark_reg_unknown(regs, %u)\n", regno); |
| /* Something bad happened, let's kill all regs except FP */ |
| for (regno = 0; regno < BPF_REG_FP; regno++) |
| __mark_reg_not_init(env, regs + regno); |
| return; |
| } |
| __mark_reg_unknown(env, regs + regno); |
| } |
| |
| static void __mark_reg_not_init(const struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg) |
| { |
| __mark_reg_unknown(env, reg); |
| reg->type = NOT_INIT; |
| } |
| |
| static void mark_reg_not_init(struct bpf_verifier_env *env, |
| struct bpf_reg_state *regs, u32 regno) |
| { |
| if (WARN_ON(regno >= MAX_BPF_REG)) { |
| verbose(env, "mark_reg_not_init(regs, %u)\n", regno); |
| /* Something bad happened, let's kill all regs except FP */ |
| for (regno = 0; regno < BPF_REG_FP; regno++) |
| __mark_reg_not_init(env, regs + regno); |
| return; |
| } |
| __mark_reg_not_init(env, regs + regno); |
| } |
| |
| static void mark_btf_ld_reg(struct bpf_verifier_env *env, |
| struct bpf_reg_state *regs, u32 regno, |
| enum bpf_reg_type reg_type, |
| struct btf *btf, u32 btf_id) |
| { |
| if (reg_type == SCALAR_VALUE) { |
| mark_reg_unknown(env, regs, regno); |
| return; |
| } |
| mark_reg_known_zero(env, regs, regno); |
| regs[regno].type = PTR_TO_BTF_ID; |
| regs[regno].btf = btf; |
| regs[regno].btf_id = btf_id; |
| } |
| |
| #define DEF_NOT_SUBREG (0) |
| static void init_reg_state(struct bpf_verifier_env *env, |
| struct bpf_func_state *state) |
| { |
| struct bpf_reg_state *regs = state->regs; |
| int i; |
| |
| for (i = 0; i < MAX_BPF_REG; i++) { |
| mark_reg_not_init(env, regs, i); |
| regs[i].live = REG_LIVE_NONE; |
| regs[i].parent = NULL; |
| regs[i].subreg_def = DEF_NOT_SUBREG; |
| } |
| |
| /* frame pointer */ |
| regs[BPF_REG_FP].type = PTR_TO_STACK; |
| mark_reg_known_zero(env, regs, BPF_REG_FP); |
| regs[BPF_REG_FP].frameno = state->frameno; |
| } |
| |
| #define BPF_MAIN_FUNC (-1) |
| static void init_func_state(struct bpf_verifier_env *env, |
| struct bpf_func_state *state, |
| int callsite, int frameno, int subprogno) |
| { |
| state->callsite = callsite; |
| state->frameno = frameno; |
| state->subprogno = subprogno; |
| init_reg_state(env, state); |
| } |
| |
| /* Similar to push_stack(), but for async callbacks */ |
| static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, |
| int insn_idx, int prev_insn_idx, |
| int subprog) |
| { |
| struct bpf_verifier_stack_elem *elem; |
| struct bpf_func_state *frame; |
| |
| elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); |
| if (!elem) |
| goto err; |
| |
| elem->insn_idx = insn_idx; |
| elem->prev_insn_idx = prev_insn_idx; |
| elem->next = env->head; |
| elem->log_pos = env->log.len_used; |
| env->head = elem; |
| env->stack_size++; |
| if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { |
| verbose(env, |
| "The sequence of %d jumps is too complex for async cb.\n", |
| env->stack_size); |
| goto err; |
| } |
| /* Unlike push_stack() do not copy_verifier_state(). |
| * The caller state doesn't matter. |
| * This is async callback. It starts in a fresh stack. |
| * Initialize it similar to do_check_common(). |
| */ |
| elem->st.branches = 1; |
| frame = kzalloc(sizeof(*frame), GFP_KERNEL); |
| if (!frame) |
| goto err; |
| init_func_state(env, frame, |
| BPF_MAIN_FUNC /* callsite */, |
| 0 /* frameno within this callchain */, |
| subprog /* subprog number within this prog */); |
| elem->st.frame[0] = frame; |
| return &elem->st; |
| err: |
| free_verifier_state(env->cur_state, true); |
| env->cur_state = NULL; |
| /* pop all elements and return */ |
| while (!pop_stack(env, NULL, NULL, false)); |
| return NULL; |
| } |
| |
| |
| enum reg_arg_type { |
| SRC_OP, /* register is used as source operand */ |
| DST_OP, /* register is used as destination operand */ |
| DST_OP_NO_MARK /* same as above, check only, don't mark */ |
| }; |
| |
| static int cmp_subprogs(const void *a, const void *b) |
| { |
| return ((struct bpf_subprog_info *)a)->start - |
| ((struct bpf_subprog_info *)b)->start; |
| } |
| |
| static int find_subprog(struct bpf_verifier_env *env, int off) |
| { |
| struct bpf_subprog_info *p; |
| |
| p = bsearch(&off, env->subprog_info, env->subprog_cnt, |
| sizeof(env->subprog_info[0]), cmp_subprogs); |
| if (!p) |
| return -ENOENT; |
| return p - env->subprog_info; |
| |
| } |
| |
| static int add_subprog(struct bpf_verifier_env *env, int off) |
| { |
| int insn_cnt = env->prog->len; |
| int ret; |
| |
| if (off >= insn_cnt || off < 0) { |
| verbose(env, "call to invalid destination\n"); |
| return -EINVAL; |
| } |
| ret = find_subprog(env, off); |
| if (ret >= 0) |
| return ret; |
| if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { |
| verbose(env, "too many subprograms\n"); |
| return -E2BIG; |
| } |
| /* determine subprog starts. The end is one before the next starts */ |
| env->subprog_info[env->subprog_cnt++].start = off; |
| sort(env->subprog_info, env->subprog_cnt, |
| sizeof(env->subprog_info[0]), cmp_subprogs, NULL); |
| return env->subprog_cnt - 1; |
| } |
| |
| #define MAX_KFUNC_DESCS 256 |
| #define MAX_KFUNC_BTFS 256 |
| |
| struct bpf_kfunc_desc { |
| struct btf_func_model func_model; |
| u32 func_id; |
| s32 imm; |
| u16 offset; |
| }; |
| |
| struct bpf_kfunc_btf { |
| struct btf *btf; |
| struct module *module; |
| u16 offset; |
| }; |
| |
| struct bpf_kfunc_desc_tab { |
| struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; |
| u32 nr_descs; |
| }; |
| |
| struct bpf_kfunc_btf_tab { |
| struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; |
| u32 nr_descs; |
| }; |
| |
| static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) |
| { |
| const struct bpf_kfunc_desc *d0 = a; |
| const struct bpf_kfunc_desc *d1 = b; |
| |
| /* func_id is not greater than BTF_MAX_TYPE */ |
| return d0->func_id - d1->func_id ?: d0->offset - d1->offset; |
| } |
| |
| static int kfunc_btf_cmp_by_off(const void *a, const void *b) |
| { |
| const struct bpf_kfunc_btf *d0 = a; |
| const struct bpf_kfunc_btf *d1 = b; |
| |
| return d0->offset - d1->offset; |
| } |
| |
| static const struct bpf_kfunc_desc * |
| find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) |
| { |
| struct bpf_kfunc_desc desc = { |
| .func_id = func_id, |
| .offset = offset, |
| }; |
| struct bpf_kfunc_desc_tab *tab; |
| |
| tab = prog->aux->kfunc_tab; |
| return bsearch(&desc, tab->descs, tab->nr_descs, |
| sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); |
| } |
| |
| static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, |
| s16 offset, struct module **btf_modp) |
| { |
| struct bpf_kfunc_btf kf_btf = { .offset = offset }; |
| struct bpf_kfunc_btf_tab *tab; |
| struct bpf_kfunc_btf *b; |
| struct module *mod; |
| struct btf *btf; |
| int btf_fd; |
| |
| tab = env->prog->aux->kfunc_btf_tab; |
| b = bsearch(&kf_btf, tab->descs, tab->nr_descs, |
| sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); |
| if (!b) { |
| if (tab->nr_descs == MAX_KFUNC_BTFS) { |
| verbose(env, "too many different module BTFs\n"); |
| return ERR_PTR(-E2BIG); |
| } |
| |
| if (bpfptr_is_null(env->fd_array)) { |
| verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); |
| return ERR_PTR(-EPROTO); |
| } |
| |
| if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, |
| offset * sizeof(btf_fd), |
| sizeof(btf_fd))) |
| return ERR_PTR(-EFAULT); |
| |
| btf = btf_get_by_fd(btf_fd); |
| if (IS_ERR(btf)) { |
| verbose(env, "invalid module BTF fd specified\n"); |
| return btf; |
| } |
| |
| if (!btf_is_module(btf)) { |
| verbose(env, "BTF fd for kfunc is not a module BTF\n"); |
| btf_put(btf); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| mod = btf_try_get_module(btf); |
| if (!mod) { |
| btf_put(btf); |
| return ERR_PTR(-ENXIO); |
| } |
| |
| b = &tab->descs[tab->nr_descs++]; |
| b->btf = btf; |
| b->module = mod; |
| b->offset = offset; |
| |
| sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), |
| kfunc_btf_cmp_by_off, NULL); |
| } |
| if (btf_modp) |
| *btf_modp = b->module; |
| return b->btf; |
| } |
| |
| void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) |
| { |
| if (!tab) |
| return; |
| |
| while (tab->nr_descs--) { |
| module_put(tab->descs[tab->nr_descs].module); |
| btf_put(tab->descs[tab->nr_descs].btf); |
| } |
| kfree(tab); |
| } |
| |
| static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, |
| u32 func_id, s16 offset, |
| struct module **btf_modp) |
| { |
| if (offset) { |
| if (offset < 0) { |
| /* In the future, this can be allowed to increase limit |
| * of fd index into fd_array, interpreted as u16. |
| */ |
| verbose(env, "negative offset disallowed for kernel module function call\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| return __find_kfunc_desc_btf(env, offset, btf_modp); |
| } |
| return btf_vmlinux ?: ERR_PTR(-ENOENT); |
| } |
| |
| static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) |
| { |
| const struct btf_type *func, *func_proto; |
| struct bpf_kfunc_btf_tab *btf_tab; |
| struct bpf_kfunc_desc_tab *tab; |
| struct bpf_prog_aux *prog_aux; |
| struct bpf_kfunc_desc *desc; |
| const char *func_name; |
| struct btf *desc_btf; |
| unsigned long addr; |
| int err; |
| |
| prog_aux = env->prog->aux; |
| tab = prog_aux->kfunc_tab; |
| btf_tab = prog_aux->kfunc_btf_tab; |
| if (!tab) { |
| if (!btf_vmlinux) { |
| verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); |
| return -ENOTSUPP; |
| } |
| |
| if (!env->prog->jit_requested) { |
| verbose(env, "JIT is required for calling kernel function\n"); |
| return -ENOTSUPP; |
| } |
| |
| if (!bpf_jit_supports_kfunc_call()) { |
| verbose(env, "JIT does not support calling kernel function\n"); |
| return -ENOTSUPP; |
| } |
| |
| if (!env->prog->gpl_compatible) { |
| verbose(env, "cannot call kernel function from non-GPL compatible program\n"); |
| return -EINVAL; |
| } |
| |
| tab = kzalloc(sizeof(*tab), GFP_KERNEL); |
| if (!tab) |
| return -ENOMEM; |
| prog_aux->kfunc_tab = tab; |
| } |
| |
| /* func_id == 0 is always invalid, but instead of returning an error, be |
| * conservative and wait until the code elimination pass before returning |
| * error, so that invalid calls that get pruned out can be in BPF programs |
| * loaded from userspace. It is also required that offset be untouched |
| * for such calls. |
| */ |
| if (!func_id && !offset) |
| return 0; |
| |
| if (!btf_tab && offset) { |
| btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); |
| if (!btf_tab) |
| return -ENOMEM; |
| prog_aux->kfunc_btf_tab = btf_tab; |
| } |
| |
| desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL); |
| if (IS_ERR(desc_btf)) { |
| verbose(env, "failed to find BTF for kernel function\n"); |
| return PTR_ERR(desc_btf); |
| } |
| |
| if (find_kfunc_desc(env->prog, func_id, offset)) |
| return 0; |
| |
| if (tab->nr_descs == MAX_KFUNC_DESCS) { |
| verbose(env, "too many different kernel function calls\n"); |
| return -E2BIG; |
| } |
| |
| func = btf_type_by_id(desc_btf, func_id); |
| if (!func || !btf_type_is_func(func)) { |
| verbose(env, "kernel btf_id %u is not a function\n", |
| func_id); |
| return -EINVAL; |
| } |
| func_proto = btf_type_by_id(desc_btf, func->type); |
| if (!func_proto || !btf_type_is_func_proto(func_proto)) { |
| verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", |
| func_id); |
| return -EINVAL; |
| } |
| |
| func_name = btf_name_by_offset(desc_btf, func->name_off); |
| addr = kallsyms_lookup_name(func_name); |
| if (!addr) { |
| verbose(env, "cannot find address for kernel function %s\n", |
| func_name); |
| return -EINVAL; |
| } |
| |
| desc = &tab->descs[tab->nr_descs++]; |
| desc->func_id = func_id; |
| desc->imm = BPF_CALL_IMM(addr); |
| desc->offset = offset; |
| err = btf_distill_func_proto(&env->log, desc_btf, |
| func_proto, func_name, |
| &desc->func_model); |
| if (!err) |
| sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), |
| kfunc_desc_cmp_by_id_off, NULL); |
| return err; |
| } |
| |
| static int kfunc_desc_cmp_by_imm(const void *a, const void *b) |
| { |
| const struct bpf_kfunc_desc *d0 = a; |
| const struct bpf_kfunc_desc *d1 = b; |
| |
| if (d0->imm > d1->imm) |
| return 1; |
| else if (d0->imm < d1->imm) |
| return -1; |
| return 0; |
| } |
| |
| static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) |
| { |
| struct bpf_kfunc_desc_tab *tab; |
| |
| tab = prog->aux->kfunc_tab; |
| if (!tab) |
| return; |
| |
| sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), |
| kfunc_desc_cmp_by_imm, NULL); |
| } |
| |
| bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) |
| { |
| return !!prog->aux->kfunc_tab; |
| } |
| |
| const struct btf_func_model * |
| bpf_jit_find_kfunc_model(const struct bpf_prog *prog, |
| const struct bpf_insn *insn) |
| { |
| const struct bpf_kfunc_desc desc = { |
| .imm = insn->imm, |
| }; |
| const struct bpf_kfunc_desc *res; |
| struct bpf_kfunc_desc_tab *tab; |
| |
| tab = prog->aux->kfunc_tab; |
| res = bsearch(&desc, tab->descs, tab->nr_descs, |
| sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); |
| |
| return res ? &res->func_model : NULL; |
| } |
| |
| static int add_subprog_and_kfunc(struct bpf_verifier_env *env) |
| { |
| struct bpf_subprog_info *subprog = env->subprog_info; |
| struct bpf_insn *insn = env->prog->insnsi; |
| int i, ret, insn_cnt = env->prog->len; |
| |
| /* Add entry function. */ |
| ret = add_subprog(env, 0); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < insn_cnt; i++, insn++) { |
| if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && |
| !bpf_pseudo_kfunc_call(insn)) |
| continue; |
| |
| if (!env->bpf_capable) { |
| verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); |
| return -EPERM; |
| } |
| |
| if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) |
| ret = add_subprog(env, i + insn->imm + 1); |
| else |
| ret = add_kfunc_call(env, insn->imm, insn->off); |
| |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* Add a fake 'exit' subprog which could simplify subprog iteration |
| * logic. 'subprog_cnt' should not be increased. |
| */ |
| subprog[env->subprog_cnt].start = insn_cnt; |
| |
| if (env->log.level & BPF_LOG_LEVEL2) |
| for (i = 0; i < env->subprog_cnt; i++) |
| verbose(env, "func#%d @%d\n", i, subprog[i].start); |
| |
| return 0; |
| } |
| |
| static int check_subprogs(struct bpf_verifier_env *env) |
| { |
| int i, subprog_start, subprog_end, off, cur_subprog = 0; |
| struct bpf_subprog_info *subprog = env->subprog_info; |
| struct bpf_insn *insn = env->prog->insnsi; |
| int insn_cnt = env->prog->len; |
| |
| /* now check that all jumps are within the same subprog */ |
| subprog_start = subprog[cur_subprog].start; |
| subprog_end = subprog[cur_subprog + 1].start; |
| for (i = 0; i < insn_cnt; i++) { |
| u8 code = insn[i].code; |
| |
| if (code == (BPF_JMP | BPF_CALL) && |
| insn[i].imm == BPF_FUNC_tail_call && |
| insn[i].src_reg != BPF_PSEUDO_CALL) |
| subprog[cur_subprog].has_tail_call = true; |
| if (BPF_CLASS(code) == BPF_LD && |
| (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) |
| subprog[cur_subprog].has_ld_abs = true; |
| if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) |
| goto next; |
| if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) |
| goto next; |
| off = i + insn[i].off + 1; |
| if (off < subprog_start || off >= subprog_end) { |
| verbose(env, "jump out of range from insn %d to %d\n", i, off); |
| return -EINVAL; |
| } |
| next: |
| if (i == subprog_end - 1) { |
| /* to avoid fall-through from one subprog into another |
| * the last insn of the subprog should be either exit |
| * or unconditional jump back |
| */ |
| if (code != (BPF_JMP | BPF_EXIT) && |
| code != (BPF_JMP | BPF_JA)) { |
| verbose(env, "last insn is not an exit or jmp\n"); |
| return -EINVAL; |
| } |
| subprog_start = subprog_end; |
| cur_subprog++; |
| if (cur_subprog < env->subprog_cnt) |
| subprog_end = subprog[cur_subprog + 1].start; |
| } |
| } |
| return 0; |
| } |
| |
| /* Parentage chain of this register (or stack slot) should take care of all |
| * issues like callee-saved registers, stack slot allocation time, etc. |
| */ |
| static int mark_reg_read(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *state, |
| struct bpf_reg_state *parent, u8 flag) |
| { |
| bool writes = parent == state->parent; /* Observe write marks */ |
| int cnt = 0; |
| |
| while (parent) { |
| /* if read wasn't screened by an earlier write ... */ |
| if (writes && state->live & REG_LIVE_WRITTEN) |
| break; |
| if (parent->live & REG_LIVE_DONE) { |
| verbose(env, "verifier BUG type %s var_off %lld off %d\n", |
| reg_type_str[parent->type], |
| parent->var_off.value, parent->off); |
| return -EFAULT; |
| } |
| /* The first condition is more likely to be true than the |
| * second, checked it first. |
| */ |
| if ((parent->live & REG_LIVE_READ) == flag || |
| parent->live & REG_LIVE_READ64) |
| /* The parentage chain never changes and |
| * this parent was already marked as LIVE_READ. |
| * There is no need to keep walking the chain again and |
| * keep re-marking all parents as LIVE_READ. |
| * This case happens when the same register is read |
| * multiple times without writes into it in-between. |
| * Also, if parent has the stronger REG_LIVE_READ64 set, |
| * then no need to set the weak REG_LIVE_READ32. |
| */ |
| break; |
| /* ... then we depend on parent's value */ |
| parent->live |= flag; |
| /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ |
| if (flag == REG_LIVE_READ64) |
| parent->live &= ~REG_LIVE_READ32; |
| state = parent; |
| parent = state->parent; |
| writes = true; |
| cnt++; |
| } |
| |
| if (env->longest_mark_read_walk < cnt) |
| env->longest_mark_read_walk = cnt; |
| return 0; |
| } |
| |
| /* This function is supposed to be used by the following 32-bit optimization |
| * code only. It returns TRUE if the source or destination register operates |
| * on 64-bit, otherwise return FALSE. |
| */ |
| static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, |
| u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) |
| { |
| u8 code, class, op; |
| |
| code = insn->code; |
| class = BPF_CLASS(code); |
| op = BPF_OP(code); |
| if (class == BPF_JMP) { |
| /* BPF_EXIT for "main" will reach here. Return TRUE |
| * conservatively. |
| */ |
| if (op == BPF_EXIT) |
| return true; |
| if (op == BPF_CALL) { |
| /* BPF to BPF call will reach here because of marking |
| * caller saved clobber with DST_OP_NO_MARK for which we |
| * don't care the register def because they are anyway |
| * marked as NOT_INIT already. |
| */ |
| if (insn->src_reg == BPF_PSEUDO_CALL) |
| return false; |
| /* Helper call will reach here because of arg type |
| * check, conservatively return TRUE. |
| */ |
| if (t == SRC_OP) |
| return true; |
| |
| return false; |
| } |
| } |
| |
| if (class == BPF_ALU64 || class == BPF_JMP || |
| /* BPF_END always use BPF_ALU class. */ |
| (class == BPF_ALU && op == BPF_END && insn->imm == 64)) |
| return true; |
| |
| if (class == BPF_ALU || class == BPF_JMP32) |
| return false; |
| |
| if (class == BPF_LDX) { |
| if (t != SRC_OP) |
| return BPF_SIZE(code) == BPF_DW; |
| /* LDX source must be ptr. */ |
| return true; |
| } |
| |
| if (class == BPF_STX) { |
| /* BPF_STX (including atomic variants) has multiple source |
| * operands, one of which is a ptr. Check whether the caller is |
| * asking about it. |
| */ |
| if (t == SRC_OP && reg->type != SCALAR_VALUE) |
| return true; |
| return BPF_SIZE(code) == BPF_DW; |
| } |
| |
| if (class == BPF_LD) { |
| u8 mode = BPF_MODE(code); |
| |
| /* LD_IMM64 */ |
| if (mode == BPF_IMM) |
| return true; |
| |
| /* Both LD_IND and LD_ABS return 32-bit data. */ |
| if (t != SRC_OP) |
| return false; |
| |
| /* Implicit ctx ptr. */ |
| if (regno == BPF_REG_6) |
| return true; |
| |
| /* Explicit source could be any width. */ |
| return true; |
| } |
| |
| if (class == BPF_ST) |
| /* The only source register for BPF_ST is a ptr. */ |
| return true; |
| |
| /* Conservatively return true at default. */ |
| return true; |
| } |
| |
| /* Return the regno defined by the insn, or -1. */ |
| static int insn_def_regno(const struct bpf_insn *insn) |
| { |
| switch (BPF_CLASS(insn->code)) { |
| case BPF_JMP: |
| case BPF_JMP32: |
| case BPF_ST: |
| return -1; |
| case BPF_STX: |
| if (BPF_MODE(insn->code) == BPF_ATOMIC && |
| (insn->imm & BPF_FETCH)) { |
| if (insn->imm == BPF_CMPXCHG) |
| return BPF_REG_0; |
| else |
| return insn->src_reg; |
| } else { |
| return -1; |
| } |
| default: |
| return insn->dst_reg; |
| } |
| } |
| |
| /* Return TRUE if INSN has defined any 32-bit value explicitly. */ |
| static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) |
| { |
| int dst_reg = insn_def_regno(insn); |
| |
| if (dst_reg == -1) |
| return false; |
| |
| return !is_reg64(env, insn, dst_reg, NULL, DST_OP); |
| } |
| |
| static void mark_insn_zext(struct bpf_verifier_env *env, |
| struct bpf_reg_state *reg) |
| { |
| s32 def_idx = reg->subreg_def; |
| |
| if (def_idx == DEF_NOT_SUBREG) |
| return; |
| |
| env->insn_aux_data[def_idx - 1].zext_dst = true; |
| /* The dst will be zero extended, so won't be sub-register anymore. */ |
| reg->subreg_def = DEF_NOT_SUBREG; |
| } |
| |
| static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, |
| enum reg_arg_type t) |
| { |
| struct bpf_verifier_state *vstate = env->cur_state; |
| struct bpf_func_state *state = vstate->frame[vstate->curframe]; |
| struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; |
| struct bpf_reg_state *reg, *regs = state->regs; |
| bool rw64; |
| |
| if (regno >= MAX_BPF_REG) { |
| verbose(env, "R%d is invalid\n", regno); |
| return -EINVAL; |
| } |
| |
| reg = ®s[regno]; |
| rw64 = is_reg64(env, insn, regno, reg, t); |
| if (t == SRC_OP) { |
| /* check whether register used as source operand can be read */ |
| if (reg->type == NOT_INIT) { |
| verbose(env, "R%d !read_ok\n", regno); |
| return -EACCES; |
| } |
| /* We don't need to worry about FP liveness because it's read-only */ |
| if (regno == BPF_REG_FP) |
| return 0; |
| |
| if (rw64) |
| mark_insn_zext(env, reg); |
| |
| return mark_reg_read(env, reg, reg->parent, |
| rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); |
| } else { |
| /* check whether register used as dest operand can be written to */ |
| if (regno == BPF_REG_FP) { |
| verbose(env, "frame pointer is read only\n"); |
| return -EACCES; |
| } |
| reg->live |= REG_LIVE_WRITTEN; |
| reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; |
| if (t == DST_OP) |
| mark_reg_unknown(env, regs, regno); |
| } |
| return 0; |
| } |
| |
| /* for any branch, call, exit record the history of jmps in the given state */ |
| static int push_jmp_history(struct bpf_verifier_env *env, |
| struct bpf_verifier_state *cur) |
| { |
| u32 cnt = cur->jmp_history_cnt; |
| struct bpf_idx_pair *p; |
| |
| cnt++; |
| p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); |
| if (!p) |
| return -ENOMEM; |
| p[cnt - 1].idx = env->insn_idx; |
| p[cnt - 1].prev_idx = env->prev_insn_idx; |
| cur->jmp_history = p; |
| cur->jmp_history_cnt = cnt; |
| return 0; |
| } |
| |
| /* Backtrack one insn at a time. If idx is not at the top of recorded |
| * history then previous instruction came from straight line execution. |
| */ |
| static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, |
| u32 *history) |
| { |
| u32 cnt = *history; |
| |
| if (cnt && st->jmp_history[cnt - 1].idx == i) { |
| i = st->jmp_history[cnt - 1].prev_idx; |
| (*history)--; |
| } else { |
| i--; |
| } |
| return i; |
| } |
| |
| static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) |
| { |
| const struct btf_type *func; |
| struct btf *desc_btf; |
| |
| if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) |
| return NULL; |
| |
| desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL); |
| if (IS_ERR(desc_btf)) |
| return "<error>"; |
| |
| func = btf_type_by_id(desc_btf, insn->imm); |
| return btf_name_by_offset(desc_btf, func->name_off); |
| } |
| |
| /* For given verifier state backtrack_insn() is called from the last insn to |
| * the first insn. Its purpose is to compute a bitmask of registers and |
| * stack slots that needs precision in the parent verifier state. |
| */ |
| static int backtrack_insn(struct bpf_verifier_env *env, int idx, |
| u32 *reg_mask, u64 *stack_mask) |
| { |
| const struct bpf_insn_cbs cbs = { |
| .cb_call = disasm_kfunc_name, |
| .cb_print = verbose, |
| .private_data = env, |
| }; |
| struct bpf_insn *insn = env->prog->insnsi + idx; |
| u8 class = BPF_CLASS(insn->code); |
| u8 opcode = BPF_OP(insn->code); |
| u8 mode = BPF_MODE(insn->code); |
| u32 dreg = 1u << insn->dst_reg; |
| u32 sreg = 1u << insn->src_reg; |
| u32 spi; |
| |
| if (insn->code == 0) |
| return 0; |
| if (env->log.level & BPF_LOG_LEVEL) { |
| verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); |
| verbose(env, "%d: ", idx); |
| print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); |
| } |
| |
| if (class == BPF_ALU || class == BPF_ALU64) { |
| if (!(*reg_mask & dreg)) |
| return 0; |
| if (opcode == BPF_MOV) { |
| if (BPF_SRC(insn->code) == BPF_X) { |
| /* dreg = sreg |
| * dreg needs precision after this insn |
| * sreg needs precision before this insn |
| */ |
| *reg_mask &= ~dreg; |
| *reg_mask |= sreg; |
| } else { |
| /* dreg = K |
| * dreg needs precision after this insn. |
| * Corresponding register is already marked |
| * as precise=true in this verifier state. |
| * No further markings in parent are necessary |
| */ |
| *reg_mask &= ~dreg; |
| } |
| } else { |
| if (BPF_SRC(insn->code) == BPF_X) { |
| /* dreg += sreg |
| * both dreg and sreg need precision |
| * before this insn |
| */ |
| *reg_mask |= sreg; |
| } /* else dreg += K |
| * dreg still needs precision before this insn |
| */ |
| } |
| } else if (class == BPF_LDX) { |
| if (!(*reg_mask & dreg)) |
| return 0; |
| *reg_mask &= ~dreg; |
| |
| /* scalars can only be spilled into stack w/o losing precision. |
| * Load from any other memory can be zero extended. |
| * The desire to keep that precision is already indicated |
| * by 'precise' mark in corresponding register of this state. |
| * No further tracking necessary. |
| */ |
| if (insn->src_reg != BPF_REG_FP) |
| return 0; |
| if (BPF_SIZE(insn->code) != BPF_DW) |
| return 0; |
| |
| /* dreg = *(u64 *)[fp - off] was a fill from the stack. |
| * that [fp - off] slot contains scalar that needs to be |
| * tracked with precision |
| */ |
| spi = (-insn->off - 1) / BPF_REG_SIZE; |
| if (spi >= 64) { |
| verbose(env, "BUG spi %d\n", spi); |
| WARN_ONCE(1, "verifier backtracking bug"); |
| return -EFAULT; |
| } |
| *stack_mask |= 1ull << spi; |
| } else if (class == BPF_STX || class == BPF_ST) { |
| if (*reg_mask & dreg) |
| /* stx & st shouldn't be using _scalar_ dst_reg |
| * to access memory. It means backtracking |
| * encountered a case of pointer subtraction. |
| */ |
| return -ENOTSUPP; |
| /* scalars can only be spilled into stack */ |
| if (insn->dst_reg != BPF_REG_FP) |
| return 0; |
| if (BPF_SIZE(insn->code) != BPF_DW) |
| return 0; |
| spi = (-insn->off - 1) / BPF_REG_SIZE; |
| if (spi >= 64) { |
| verbose(env, "BUG spi %d\n", spi); |
| WARN_ONCE(1, "verifier backtracking bug"); |
| return -EFAULT; |
| } |
| if (!(*stack_mask & (1ull << spi))) |
| return 0; |
| *stack_mask &= ~(1ull << spi); |
| if (class == BPF_STX) |
| *reg_mask |= sreg; |
| } else if (class == BPF_JMP || class == BPF_JMP32) { |
| if (opcode == BPF_CALL) { |
| if (insn->src_reg == BPF_PSEUDO_CALL) |
| return -ENOTSUPP; |
| /* regular helper call sets R0 */ |
| *reg_mask &= ~1; |
| if (*reg_mask & 0x3f) { |
| /* if backtracing was looking for registers R1-R5 |
| * they should have been found already. |
| */ |
| verbose(env, "BUG regs %x\n", *reg_mask); |
| WARN_ONCE(1, "verifier backtracking bug"); |
| return -EFAULT; |
| } |
| } else if (opcode == BPF_EXIT) { |
| return -ENOTSUPP; |
| } |
| } else if (class == BPF_LD) { |
| if (!(*reg_mask & dreg)) |
| return 0; |
| *reg_mask &= ~dreg; |
| /* It's ld_imm64 or ld_abs or ld_ind. |
| * For ld_imm64 no further tracking of precision |
| * into parent is necessary |
| */ |
| if (mode == BPF_IND || mode == BPF_ABS) |
| /* to be analyzed */ |
| return -ENOTSUPP; |
| } |
| return 0; |
| } |
| |
| /* the scalar precision tracking algorithm: |
| * . at the start all registers have precise=false. |
| * . scalar ranges are tracked as normal through alu and jmp insns. |
| * . once precise value of the scalar register is used in: |
| * . ptr + scalar alu |
| * . if (scalar cond K|scalar) |
| * . helper_call(.., scalar, ...) where ARG_CONST is expected |
| * backtrack through the verifier states and mark all registers and |
| * stack slots with spilled constants that these scalar regisers |
| * should be precise. |
| * . during state pruning two registers (or spilled stack slots) |
| * are equivalent if both are not precise. |
| * |
| * Note the verifier cannot simply walk register parentage chain, |
| * since many different registers and stack slots could have been |
| * used to compute single precise scalar. |
| * |
| * The approach of starting with precise=true for all registers and then |
| * backtrack to mark a register as not precise when the verifier detects |
| * that program doesn't care about specific value (e.g., when helper |
| * takes register as ARG_ANYTHING parameter) is not safe. |
| * |
| * It's ok to walk single parentage chain of the verifier states. |
| * It's possible that this backtracking will go all the way till 1st insn. |
| * All other branches will be explored for needing precision later. |
| * |
| * The backtracking needs to deal with cases like: |
| * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) |
| * r9 -= r8 |
| * r5 = r9 |
| * if r5 > 0x79f goto pc+7 |
| * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) |
| * r5 += 1 |
| * ... |
| * call bpf_perf_event_output#25 |
| * where .arg5_type = ARG_CONST_SIZE_OR_ZERO |
| * |
| * and this case: |
| * r6 = 1 |
| * call foo // uses callee's r6 inside to compute r0 |
| * r0 += r6 |
| * if r0 == 0 goto |
| * |
| * to track above reg_mask/stack_mask needs to be independent for each frame. |
| * |
| * Also if parent's curframe > frame where backtracking started, |
| * the verifier need to mark registers in both frames, otherwise callees |
| * may incorrectly prune callers. This is similar to |
| * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") |
| * |
| * For now backtracking falls back into conservative marking. |
| */ |
| static void mark_all_scalars_precise(struct bpf_verifier_env *env, |
| struct bpf_verifier_state *st) |
| { |
| struct bpf_func_state *func; |
| struct bpf_reg_state *reg; |
| int i, j; |
| |
| /* big hammer: mark all scalars precise in this path. |
| * pop_stack may still get !precise scalars. |
| */ |
| for (; st; st = st->parent) |
| for (i = 0; i <= st->curframe; i++) { |
| func = st->frame[i]; |
| for (j = 0; j < BPF_REG_FP; j++) { |
| reg = &func->regs[j]; |
| if (reg->type != SCALAR_VALUE) |
| continue; |
| reg->precise = true; |
| } |
| for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { |
| if (!is_spilled_reg(&func->stack[j])) |
| continue; |
| reg = &func->stack[j].spilled_ptr; |
| if (reg->type != SCALAR_VALUE) |
| continue; |
| reg->precise = true; |
| } |
| } |
| } |
| |
| static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, |
| int spi) |
| { |
| struct bpf_verifier_state *st = env->cur_state; |
| int first_idx = st->first_insn_idx; |
| int last_idx = env->insn_idx; |
| struct bpf_func_state *func; |
| struct bpf_reg_state *reg; |
| u32 reg_mask = regno >= 0 ? 1u << regno : 0; |
| u64 stack_mask = spi >= 0 ? 1ull << spi : 0; |
| bool skip_first = true; |
| bool new_marks = false; |
| int i, err; |
| |
| if (!env->bpf_capable) |
| return 0; |
| |
| func = st->frame[st->curframe]; |
| if (regno >= 0) { |
| reg = &func->regs[regno]; |
| if (reg->type != SCALAR_VALUE) { |
| WARN_ONCE(1, "backtracing misuse"); |
| return -EFAULT; |
| } |
| if (!reg->precise) |
| new_marks = true; |
| else |
| reg_mask = 0; |
| reg->precise = true; |
| } |
| |
| while (spi >= 0) { |
| if (!is_spilled_reg(&func->stack[spi])) { |
| stack_mask = 0; |
| break; |
| } |
| reg = &func->stack[spi].spilled_ptr; |
| if (reg->type != SCALAR_VALUE) { |
| stack_mask = 0; |
| break; |
| } |
| if (!reg->precise) |
| new_marks = true; |
| else |
| stack_mask = 0; |
| reg->precise = true; |
| break; |
| } |
| |
| if (!new_marks) |
| return 0; |
| if (!reg_mask && !stack_mask) |
| return 0; |
| for (;;) { |
| DECLARE_BITMAP(mask, 64); |
| u32 history = st->jmp_history_cnt; |
| |
| if (env->log.level & BPF_LOG_LEVEL) |
| verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); |
| for (i = last_idx;;) { |
| if (skip_first) { |
| err = 0; |
| skip_first = false; |
| } else { |
| err = backtrack_insn(env, i, ®_mask, &stack_mask); |
| } |
| if (err == -ENOTSUPP) { |
| mark_all_scalars_precise(env, st); |
| return 0; |
| } else if (err) { |
| return err; |
| } |
| if (!reg_mask && !stack_mask) |
| /* Found assignment(s) into tracked register in this state. |
| * Since this state is already marked, just return. |
| * Nothing to be tracked further in the parent state. |
| */ |
| return 0; |
| if (i == first_idx) |
| break; |
| i = get_prev_insn_idx(st, i, &history); |
| if (i >= env->prog->len) { |
| /* This can happen if backtracking reached insn 0 |
| * and there are still reg_mask or stack_mask |
| * to backtrack. |
| * It means the backtracking missed the spot where |
| * particular register was initialized with a constant. |
| */ |
| verbose(env, "BUG backtracking idx %d\n", i); |
| WARN_ONCE(1, "verifier backtracking bug"); |
| return -EFAULT; |
| } |
| } |
| st = st->parent; |
| if (!st) |
| break; |
| |
| new_marks = false; |
| func = st->frame[st->curframe]; |
| bitmap_from_u64(mask, reg_mask); |
| for_each_set_bit(i, mask, 32) { |
| reg = &func->regs[i]; |
| if (reg->type != SCALAR_VALUE) { |
| reg_mask &= ~(1u << i); |
| continue; |
| } |
| if (!reg->precise) |
| new_marks = true; |
| reg->precise = true; |
| } |
| |
| bitmap_from_u64(mask, stack_mask); |
| for_each_set_bit(i, mask, 64) { |
| if (i >= func->allocated_stack / BPF_REG_SIZE) { |
| /* the sequence of instructions: |
| * 2: (bf) r3 = r10 |
| * 3: (7b) *(u64 *)(r3 -8) = r0 |
| * 4: (79) r4 = *(u64 *)(r10 -8) |
| * doesn't contain jmps. It's backtracked |
| * as a single block. |
| * During backtracking insn 3 is not recognized as |
| * stack access, so at the end of backtracking |
| * stack slot fp-8 is still marked in stack_mask. |
| * However the parent state may not have accessed |
| * fp-8 and it's "unallocated" stack space. |
| * In such case fallback to conservative. |
| */ |
| mark_all_scalars_precise(env, st); |
| return 0; |
| } |
| |
| if (!is_spilled_reg(&func->stack[i])) { |
| stack_mask &= ~(1ull << i); |
| continue; |
| } |
| reg = &func->stack[i].spilled_ptr; |
| if (reg->type != SCALAR_VALUE) { |
| stack_mask &= ~(1ull << i); |
| continue; |
| } |
| if (!reg->precise) |
| new_marks = true; |
| reg->precise = true; |
| } |
| if (env->log.level & BPF_LOG_LEVEL) { |
| print_verifier_state(env, func); |
| verbose(env, "parent %s regs=%x stack=%llx marks\n", |
| new_marks ? "didn't have" : "already had", |
| reg_mask, stack_mask); |
| } |
| |
| if (!reg_mask && !stack_mask) |
| break; |
| if (!new_marks) |
| break; |
| |
| last_idx = st->last_insn_idx; |
| first_idx = st->first_insn_idx; |
| } |
| return 0; |
| } |
| |
| static int mark_chain_precision(struct bpf_verifier_env *env, int regno) |
| { |
| return __mark_chain_precision(env, regno, -1); |
| } |
| |
| static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) |
| { |
| return __mark_chain_precision(env, -1, spi); |
| } |
| |
| static bool is_spillable_regtype(enum bpf_reg_type type) |
| { |
| switch (type) { |
| case PTR_TO_MAP_VALUE: |
| case PTR_TO_MAP_VALUE_OR_NULL: |
| case PTR_TO_STACK: |
| case PTR_TO_CTX: |
| case PTR_TO_PACKET: |
| case PTR_TO_PACKET_META: |
| case PTR_TO_PACKET_END: |
| case PTR_TO_FLOW_KEYS: |
| case CONST_PTR_TO_MAP: |
| case PTR_TO_SOCKET: |
| case PTR_TO_SOCKET_OR_NULL: |
| case PTR_TO_SOCK_COMMON: |
| case PTR_TO_SOCK_COMMON_OR_NULL: |
| case PTR_TO_TCP_SOCK: |
| case PTR_TO_TCP_SOCK_OR_NULL: |
| case PTR_TO_XDP_SOCK: |
| case PTR_TO_BTF_ID: |
| case PTR_TO_BTF_ID_OR_NULL: |
| case PTR_TO_RDONLY_BUF: |
| case PTR_TO_RDONLY_BUF_OR_NULL: |
| case PTR_TO_RDWR_BUF: |
| case PTR_TO_RDWR_BUF_OR_NULL: |
| case PTR_TO_PERCPU_BTF_ID: |
| case PTR_TO_MEM: |
| case PTR_TO_MEM_OR_NULL: |
| case PTR_TO_FUNC: |
| case PTR_TO_MAP_KEY: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* Does this register contain a constant zero? */ |
| static bool register_is_null(struct bpf_reg_state *reg) |
| { |
| return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); |
| } |
| |
| static bool register_is_const(struct bpf_reg_state *reg) |
| { |
| return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); |
| } |
| |
| static bool __is_scalar_unbounded(struct bpf_reg_state *reg) |
| { |
| return tnum_is_unknown(reg->var_off) && |
| reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && |
| reg->umin_value == 0 && reg->umax_value == U64_MAX && |
| reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && |
| reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; |
| } |
| |
| static bool register_is_bounded(struct bpf_reg_state *reg) |
| { |
| return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); |
| } |
| |
| static bool __is_pointer_value(bool allow_ptr_leaks, |
| const struct bpf_reg_state *reg) |
| { |
| if (allow_ptr_leaks) |
| return false; |
| |
| return reg->type != SCALAR_VALUE; |
| } |
| |
| static void save_register_state(struct bpf_func_state *state, |
| int spi, struct bpf_reg_state *reg, |
| int size) |
| { |
| int i; |
| |
| state->stack[spi].spilled_ptr = *reg; |
| if (size == BPF_REG_SIZE) |
| state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; |
| |
| for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) |
| state->stack[spi].slot_type[i - 1] = STACK_SPILL; |
| |
| /* size < 8 bytes spill */ |
| for (; i; i--) |
| scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); |
| } |
| |
| /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, |
| * stack boundary and alignment are checked in check_mem_access() |
| */ |
| static int check_stack_write_fixed_off(struct bpf_verifier_env *env, |
| /* stack frame we're writing to */ |
| struct bpf_func_state *state, |
| int off, int size, int value_regno, |
| int insn_idx) |
| { |
| struct bpf_func_state *cur; /* state of the current function */ |
| int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; |
| u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; |
| struct bpf_reg_state *reg = NULL; |
| |
| err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); |
| if (err) |
| return err; |
| /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, |
| * so it's aligned access and [off, off + size) are within stack limits |
| */ |
| if (!env->allow_ptr_leaks && |
| state->stack[spi].slot_type[0] == STACK_SPILL && |
| size != BPF_REG_SIZE) { |
| verbose(env, "attempt to corrupt spilled pointer on stack\n"); |
| return -EACCES; |
| } |
| |
| cur = env->cur_state->frame[env->cur_state->curframe]; |
| if (value_regno >= 0) |
| reg = &cur->regs[value_regno]; |
| if (!env->bypass_spec_v4) { |
| bool sanitize = reg && is_spillable_regtype(reg->type); |
| |
| for (i = 0; i < size; i++) { |
| if (state->stack[spi].slot_type[i] == STACK_INVALID) { |
| sanitize = true; |
| break; |
| } |
| } |
| |
| if (sanitize) |
| env->insn_aux_data[insn_idx].sanitize_stack_spill = true; |
| } |
| |
| if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && |
| !register_is_null(reg) && env->bpf_capable) { |
| if (dst_reg != BPF_REG_FP) { |
| /* The backtracking logic can only recognize explicit |
| * stack slot address like [fp - 8]. Other spill of |
| * scalar via different register has to be conservative. |
| * Backtrack from here and mark all registers as precise |
| * that contributed into 'reg' being a constant. |
| */ |
| err = mark_chain_precision(env, value_regno); |
| if (err) |
| return err; |
| } |
| save_register_state(state, spi, reg, size); |
| } else if (reg && is_spillable_regtype(reg->type)) { |
| /* register containing pointer is being spilled into stack */ |
| if (size != BPF_REG_SIZE) { |
| verbose_linfo(env, insn_idx, "; "); |
| verbose(env, "invalid size of register spill\n"); |
| return -EACCES; |
| } |
| if (state != cur && reg->type == PTR_TO_STACK) { |
| verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); |
| return -EINVAL; |
| } |
| save_register_state(state, spi, reg, size); |
| } else { |
| u8 type = STACK_MISC; |
| |
| /* regular write of data into stack destroys any spilled ptr */ |
| state->stack[spi].spilled_ptr.type = NOT_INIT; |
| /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ |
| if (is_spilled_reg(&state->stack[spi])) |
| for (i = 0; i < BPF_REG_SIZE; i++) |
| scrub_spilled_slot(&state->stack[spi].slot_type[i]); |
| |
| /* only mark the slot as written if all 8 bytes were written |
| * otherwise read propagation may incorrectly stop too soon |
| * when stack slots are partially written. |
| * This heuristic means that read propagation will be |
| * conservative, since it will add reg_live_read marks |
| * to stack slots all the way to first state when programs |
| * writes+reads less than 8 bytes |
| */ |
| if (size == BPF_REG_SIZE) |
| state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; |
| |
| /* when we zero initialize stack slots mark them as such */ |
| if (reg && register_is_null(reg)) { |
| /* backtracking doesn't work for STACK_ZERO yet. */ |
| err = mark_chain_precision(env, value_regno); |
| if (err) |
| return err; |
| type = STACK_ZERO; |
| } |
| |
| /* Mark slots affected by this stack write. */ |
| for (i = 0; i < size; i++) |
| state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = |
| type; |
| } |
| return 0; |
| } |
| |
| /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is |
| * known to contain a variable offset. |
| * This function checks whether the write is permitted and conservatively |
| * tracks the effects of the write, considering that each stack slot in the |
| * dynamic range is potentially written to. |
| * |
| * 'off' includes 'regno->off'. |
| * 'value_regno' can be -1, meaning that an unknown value is being written to |
| * the stack. |
| * |
| * Spilled pointers in range are not marked as written because we don't know |
| * what's going to be actually written. This means that read propagation for |
| * future reads cannot be terminated by this write. |
| * |
| * For privileged programs, uninitialized stack slots are considered |
| * initialized by this write (even though we don't know exactly what offsets |
| * are going to be written to). The idea is that we don't want the verifier to |
| * reject future reads that access slots written to through variable offsets. |
| */ |
| static int check_stack_write_var_off(struct bpf_verifier_env *env, |
| /* func where register points to */ |
| struct bpf_func_state *state, |
| int ptr_regno, int off, int size, |
| int value_regno, int insn_idx) |
| { |
| struct bpf_func_state *cur; /* state of the current function */ |
| int min_off, max_off; |
| int i, err; |
| struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; |
| bool writing_zero = false; |
| /* set if the fact that we're writing a zero is used to let any |
| * stack slots remain STACK_ZERO |
| */ |
| bool zero_used = false; |
| |
| cur = env->cur_state->frame[env->cur_state->curframe]; |
| ptr_reg = &cur->regs[ptr_regno]; |
| min_off = ptr_reg->smin_value + off; |
| max_off = ptr_reg->smax_value + off + size; |
| if (value_regno >= 0) |
| value_reg = &cur->regs[value_regno]; |
| if (value_reg && register_is_null(value_reg)) |
| writing_zero = true; |
| |
| err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); |
| if (err) |
| return err; |
| |
| |
| /* Variable offset writes destroy any spilled pointers in range. */ |
| for (i = min_off; i < max_off; i++) { |
| u8 new_type, *stype; |
| int slot, spi; |
| |
| slot = -i - 1; |
| spi = slot / BPF_REG_SIZE; |
| stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; |
| |
| if (!env->allow_ptr_leaks |
| && *stype != NOT_INIT |
| && *stype != SCALAR_VALUE) { |
| /* Reject the write if there's are spilled pointers in |
| * range. If we didn't reject here, the ptr status |
| * would be erased below (even though not all slots are |
| * actually overwritten), possibly opening the door to |
| * leaks. |
| */ |
| verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", |
| insn_idx, i); |
| return -EINVAL; |
| } |
| |
| /* Erase all spilled pointers. */ |
| state->stack[spi].spilled_ptr.type = NOT_INIT; |
| |
| /* Update the slot type. */ |
| new_type = STACK_MISC; |
| if (writing_zero && *stype == STACK_ZERO) { |
| new_type = STACK_ZERO; |
| zero_used = true; |
| } |
| /* If the slot is STACK_INVALID, we check whether it's OK to |
| * pretend that it will be initialized by this write. The slot |
| * might not actually be written to, and so if we mark it as |
| * initialized future reads might leak uninitialized memory. |
| * For privileged programs, we will accept such reads to slots |
| * that may or may not be written because, if we're reject |
| * them, the error would be too confusing. |
| */ |
| if (*stype == STACK_INVALID && !env->allow_uninit_stack) { |
| verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", |
| insn_idx, i); |
| return -EINVAL; |
| } |
| *stype = new_type; |
| } |
| if (zero_used) { |
| /* backtracking doesn't work for STACK_ZERO yet. */ |
| err = mark_chain_precision(env, value_regno); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| |
| /* When register 'dst_regno' is assigned some values from stack[min_off, |
| * max_off), we set the register's type according to the types of the |
| * respective stack slots. If all the stack values are known to be zeros, then |
| * so is the destination reg. Otherwise, the register is considered to be |
| * SCALAR. This function does not deal with register filling; the caller must |
| * ensure that all spilled registers in the stack range have been marked as |
| * read. |
| */ |