blob: 832ea81faeee509811cd0e312045715ba048136f [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon.h>
#include <linux/types.h>
#include <drm/drm_managed.h>
#include "regs/xe_gt_regs.h"
#include "regs/xe_mchbar_regs.h"
#include "regs/xe_pcode_regs.h"
#include "xe_device.h"
#include "xe_gt.h"
#include "xe_hwmon.h"
#include "xe_mmio.h"
#include "xe_pcode.h"
#include "xe_pcode_api.h"
#include "xe_sriov.h"
#include "xe_pm.h"
enum xe_hwmon_reg {
REG_PKG_RAPL_LIMIT,
REG_PKG_POWER_SKU,
REG_PKG_POWER_SKU_UNIT,
REG_GT_PERF_STATUS,
REG_PKG_ENERGY_STATUS,
};
enum xe_hwmon_reg_operation {
REG_READ32,
REG_RMW32,
REG_READ64,
};
enum xe_hwmon_channel {
CHANNEL_CARD,
CHANNEL_PKG,
CHANNEL_MAX,
};
/*
* SF_* - scale factors for particular quantities according to hwmon spec.
*/
#define SF_POWER 1000000 /* microwatts */
#define SF_CURR 1000 /* milliamperes */
#define SF_VOLTAGE 1000 /* millivolts */
#define SF_ENERGY 1000000 /* microjoules */
#define SF_TIME 1000 /* milliseconds */
/**
* struct xe_hwmon_energy_info - to accumulate energy
*/
struct xe_hwmon_energy_info {
/** @reg_val_prev: previous energy reg val */
u32 reg_val_prev;
/** @accum_energy: accumulated energy */
long accum_energy;
};
/**
* struct xe_hwmon - xe hwmon data structure
*/
struct xe_hwmon {
/** @hwmon_dev: hwmon device for xe */
struct device *hwmon_dev;
/** @gt: primary gt */
struct xe_gt *gt;
/** @hwmon_lock: lock for rw attributes*/
struct mutex hwmon_lock;
/** @scl_shift_power: pkg power unit */
int scl_shift_power;
/** @scl_shift_energy: pkg energy unit */
int scl_shift_energy;
/** @scl_shift_time: pkg time unit */
int scl_shift_time;
/** @ei: Energy info for energyN_input */
struct xe_hwmon_energy_info ei[CHANNEL_MAX];
};
static struct xe_reg xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg,
int channel)
{
struct xe_device *xe = gt_to_xe(hwmon->gt);
switch (hwmon_reg) {
case REG_PKG_RAPL_LIMIT:
if (xe->info.platform == XE_BATTLEMAGE) {
if (channel == CHANNEL_PKG)
return BMG_PACKAGE_RAPL_LIMIT;
else
return BMG_PLATFORM_POWER_LIMIT;
} else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
return PVC_GT0_PACKAGE_RAPL_LIMIT;
} else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
return PCU_CR_PACKAGE_RAPL_LIMIT;
}
break;
case REG_PKG_POWER_SKU:
if (xe->info.platform == XE_BATTLEMAGE)
return BMG_PACKAGE_POWER_SKU;
else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
return PVC_GT0_PACKAGE_POWER_SKU;
else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
return PCU_CR_PACKAGE_POWER_SKU;
break;
case REG_PKG_POWER_SKU_UNIT:
if (xe->info.platform == XE_BATTLEMAGE)
return BMG_PACKAGE_POWER_SKU_UNIT;
else if (xe->info.platform == XE_PVC)
return PVC_GT0_PACKAGE_POWER_SKU_UNIT;
else if (xe->info.platform == XE_DG2)
return PCU_CR_PACKAGE_POWER_SKU_UNIT;
break;
case REG_GT_PERF_STATUS:
if (xe->info.platform == XE_DG2 && channel == CHANNEL_PKG)
return GT_PERF_STATUS;
break;
case REG_PKG_ENERGY_STATUS:
if (xe->info.platform == XE_BATTLEMAGE) {
if (channel == CHANNEL_PKG)
return BMG_PACKAGE_ENERGY_STATUS;
else
return BMG_PLATFORM_ENERGY_STATUS;
} else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
return PVC_GT0_PLATFORM_ENERGY_STATUS;
} else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
return PCU_CR_PACKAGE_ENERGY_STATUS;
}
break;
default:
drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg);
break;
}
return XE_REG(0);
}
#define PL1_DISABLE 0
/*
* HW allows arbitrary PL1 limits to be set but silently clamps these values to
* "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the
* same pattern for sysfs, allow arbitrary PL1 limits to be set but display
* clamped values when read.
*/
static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, int channel, long *value)
{
u64 reg_val, min, max;
struct xe_device *xe = gt_to_xe(hwmon->gt);
struct xe_reg rapl_limit, pkg_power_sku;
rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
pkg_power_sku = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
/*
* Valid check of REG_PKG_RAPL_LIMIT is already done in xe_hwmon_power_is_visible.
* So not checking it again here.
*/
if (!xe_reg_is_valid(pkg_power_sku)) {
drm_warn(&xe->drm, "pkg_power_sku invalid\n");
*value = 0;
return;
}
mutex_lock(&hwmon->hwmon_lock);
reg_val = xe_mmio_read32(hwmon->gt, rapl_limit);
/* Check if PL1 limit is disabled */
if (!(reg_val & PKG_PWR_LIM_1_EN)) {
*value = PL1_DISABLE;
goto unlock;
}
reg_val = REG_FIELD_GET(PKG_PWR_LIM_1, reg_val);
*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
reg_val = xe_mmio_read64_2x32(hwmon->gt, pkg_power_sku);
min = REG_FIELD_GET(PKG_MIN_PWR, reg_val);
min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
max = REG_FIELD_GET(PKG_MAX_PWR, reg_val);
max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
if (min && max)
*value = clamp_t(u64, *value, min, max);
unlock:
mutex_unlock(&hwmon->hwmon_lock);
}
static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, int channel, long value)
{
int ret = 0;
u64 reg_val;
struct xe_reg rapl_limit;
rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
mutex_lock(&hwmon->hwmon_lock);
/* Disable PL1 limit and verify, as limit cannot be disabled on all platforms */
if (value == PL1_DISABLE) {
reg_val = xe_mmio_rmw32(hwmon->gt, rapl_limit, PKG_PWR_LIM_1_EN, 0);
reg_val = xe_mmio_read32(hwmon->gt, rapl_limit);
if (reg_val & PKG_PWR_LIM_1_EN) {
drm_warn(&gt_to_xe(hwmon->gt)->drm, "PL1 disable is not supported!\n");
ret = -EOPNOTSUPP;
}
goto unlock;
}
/* Computation in 64-bits to avoid overflow. Round to nearest. */
reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER);
reg_val = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, reg_val);
reg_val = xe_mmio_rmw32(hwmon->gt, rapl_limit, PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, reg_val);
unlock:
mutex_unlock(&hwmon->hwmon_lock);
return ret;
}
static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, int channel, long *value)
{
struct xe_reg reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
u64 reg_val;
/*
* This sysfs file won't be visible if REG_PKG_POWER_SKU is invalid, so valid check
* for this register can be skipped.
* See xe_hwmon_power_is_visible.
*/
reg_val = xe_mmio_read32(hwmon->gt, reg);
reg_val = REG_FIELD_GET(PKG_TDP, reg_val);
*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
}
/*
* xe_hwmon_energy_get - Obtain energy value
*
* The underlying energy hardware register is 32-bits and is subject to
* overflow. How long before overflow? For example, with an example
* scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
* a power draw of 1000 watts, the 32-bit counter will overflow in
* approximately 4.36 minutes.
*
* Examples:
* 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days
* 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes
*
* The function significantly increases overflow duration (from 4.36
* minutes) by accumulating the energy register into a 'long' as allowed by
* the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
* a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
* hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
* energyN_input overflows. This at 1000 W is an overflow duration of 278 years.
*/
static void
xe_hwmon_energy_get(struct xe_hwmon *hwmon, int channel, long *energy)
{
struct xe_hwmon_energy_info *ei = &hwmon->ei[channel];
u64 reg_val;
reg_val = xe_mmio_read32(hwmon->gt, xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
channel));
if (reg_val >= ei->reg_val_prev)
ei->accum_energy += reg_val - ei->reg_val_prev;
else
ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val;
ei->reg_val_prev = reg_val;
*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
hwmon->scl_shift_energy);
}
static ssize_t
xe_hwmon_power_max_interval_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
u32 x, y, x_w = 2; /* 2 bits */
u64 r, tau4, out;
int sensor_index = to_sensor_dev_attr(attr)->index;
xe_pm_runtime_get(gt_to_xe(hwmon->gt));
mutex_lock(&hwmon->hwmon_lock);
r = xe_mmio_read32(hwmon->gt, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, sensor_index));
mutex_unlock(&hwmon->hwmon_lock);
xe_pm_runtime_put(gt_to_xe(hwmon->gt));
x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r);
y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r);
/*
* tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17)
* = (4 | x) << (y - 2)
*
* Here (y - 2) ensures a 1.x fixed point representation of 1.x
* As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75
*
* As y can be < 2, we compute tau4 = (4 | x) << y
* and then add 2 when doing the final right shift to account for units
*/
tau4 = (u64)((1 << x_w) | x) << y;
/* val in hwmon interface units (millisec) */
out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
return sysfs_emit(buf, "%llu\n", out);
}
static ssize_t
xe_hwmon_power_max_interval_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
u32 x, y, rxy, x_w = 2; /* 2 bits */
u64 tau4, r, max_win;
unsigned long val;
int ret;
int sensor_index = to_sensor_dev_attr(attr)->index;
ret = kstrtoul(buf, 0, &val);
if (ret)
return ret;
/*
* Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12.
* The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds.
*
* The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register.
* However, it is observed that existing discrete GPUs does not provide correct
* PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs
* this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU.
*/
#define PKG_MAX_WIN_DEFAULT 0x12ull
/*
* val must be < max in hwmon interface units. The steps below are
* explained in xe_hwmon_power_max_interval_show()
*/
r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
tau4 = (u64)((1 << x_w) | x) << y;
max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
if (val > max_win)
return -EINVAL;
/* val in hw units */
val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME);
/*
* Convert val to 1.x * power(2,y)
* y = ilog2(val)
* x = (val - (1 << y)) >> (y - 2)
*/
if (!val) {
y = 0;
x = 0;
} else {
y = ilog2(val);
x = (val - (1ul << y)) << x_w >> y;
}
rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y);
xe_pm_runtime_get(gt_to_xe(hwmon->gt));
mutex_lock(&hwmon->hwmon_lock);
r = xe_mmio_rmw32(hwmon->gt, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, sensor_index),
PKG_PWR_LIM_1_TIME, rxy);
mutex_unlock(&hwmon->hwmon_lock);
xe_pm_runtime_put(gt_to_xe(hwmon->gt));
return count;
}
static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
xe_hwmon_power_max_interval_show,
xe_hwmon_power_max_interval_store, CHANNEL_CARD);
static SENSOR_DEVICE_ATTR(power2_max_interval, 0664,
xe_hwmon_power_max_interval_show,
xe_hwmon_power_max_interval_store, CHANNEL_PKG);
static struct attribute *hwmon_attributes[] = {
&sensor_dev_attr_power1_max_interval.dev_attr.attr,
&sensor_dev_attr_power2_max_interval.dev_attr.attr,
NULL
};
static umode_t xe_hwmon_attributes_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
int ret = 0;
xe_pm_runtime_get(gt_to_xe(hwmon->gt));
ret = xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, index)) ? attr->mode : 0;
xe_pm_runtime_put(gt_to_xe(hwmon->gt));
return ret;
}
static const struct attribute_group hwmon_attrgroup = {
.attrs = hwmon_attributes,
.is_visible = xe_hwmon_attributes_visible,
};
static const struct attribute_group *hwmon_groups[] = {
&hwmon_attrgroup,
NULL
};
static const struct hwmon_channel_info * const hwmon_info[] = {
HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL,
HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT | HWMON_P_LABEL),
HWMON_CHANNEL_INFO(curr, HWMON_C_LABEL, HWMON_C_CRIT | HWMON_C_LABEL),
HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LABEL),
HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT | HWMON_E_LABEL, HWMON_E_INPUT | HWMON_E_LABEL),
NULL
};
/* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
static int xe_hwmon_pcode_read_i1(struct xe_gt *gt, u32 *uval)
{
/* Avoid Illegal Subcommand error */
if (gt_to_xe(gt)->info.platform == XE_DG2)
return -ENXIO;
return xe_pcode_read(gt, PCODE_MBOX(PCODE_POWER_SETUP,
POWER_SETUP_SUBCOMMAND_READ_I1, 0),
uval, NULL);
}
static int xe_hwmon_pcode_write_i1(struct xe_gt *gt, u32 uval)
{
return xe_pcode_write(gt, PCODE_MBOX(PCODE_POWER_SETUP,
POWER_SETUP_SUBCOMMAND_WRITE_I1, 0),
uval);
}
static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, int channel,
long *value, u32 scale_factor)
{
int ret;
u32 uval;
mutex_lock(&hwmon->hwmon_lock);
ret = xe_hwmon_pcode_read_i1(hwmon->gt, &uval);
if (ret)
goto unlock;
*value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
scale_factor, POWER_SETUP_I1_SHIFT);
unlock:
mutex_unlock(&hwmon->hwmon_lock);
return ret;
}
static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, int channel,
long value, u32 scale_factor)
{
int ret;
u32 uval;
mutex_lock(&hwmon->hwmon_lock);
uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor);
ret = xe_hwmon_pcode_write_i1(hwmon->gt, uval);
mutex_unlock(&hwmon->hwmon_lock);
return ret;
}
static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, int channel, long *value)
{
u64 reg_val;
reg_val = xe_mmio_read32(hwmon->gt, xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS, channel));
/* HW register value in units of 2.5 millivolt */
*value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE);
}
static umode_t
xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
{
u32 uval;
switch (attr) {
case hwmon_power_max:
return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT,
channel)) ? 0664 : 0;
case hwmon_power_rated_max:
return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU,
channel)) ? 0444 : 0;
case hwmon_power_crit:
if (channel == CHANNEL_PKG)
return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) ||
!(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
break;
case hwmon_power_label:
return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT,
channel)) ? 0444 : 0;
default:
return 0;
}
return 0;
}
static int
xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
switch (attr) {
case hwmon_power_max:
xe_hwmon_power_max_read(hwmon, channel, val);
return 0;
case hwmon_power_rated_max:
xe_hwmon_power_rated_max_read(hwmon, channel, val);
return 0;
case hwmon_power_crit:
return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_POWER);
default:
return -EOPNOTSUPP;
}
}
static int
xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
{
switch (attr) {
case hwmon_power_max:
return xe_hwmon_power_max_write(hwmon, channel, val);
case hwmon_power_crit:
return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_POWER);
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr, int channel)
{
u32 uval;
/* hwmon sysfs attribute of current available only for package */
if (channel != CHANNEL_PKG)
return 0;
switch (attr) {
case hwmon_curr_crit:
return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) ||
(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
case hwmon_curr_label:
return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) ||
(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0444;
break;
default:
return 0;
}
return 0;
}
static int
xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
switch (attr) {
case hwmon_curr_crit:
return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_CURR);
default:
return -EOPNOTSUPP;
}
}
static int
xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
{
switch (attr) {
case hwmon_curr_crit:
return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_CURR);
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
{
switch (attr) {
case hwmon_in_input:
case hwmon_in_label:
return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS,
channel)) ? 0444 : 0;
default:
return 0;
}
}
static int
xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
switch (attr) {
case hwmon_in_input:
xe_hwmon_get_voltage(hwmon, channel, val);
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
{
switch (attr) {
case hwmon_energy_input:
case hwmon_energy_label:
return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
channel)) ? 0444 : 0;
default:
return 0;
}
}
static int
xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
switch (attr) {
case hwmon_energy_input:
xe_hwmon_energy_get(hwmon, channel, val);
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type,
u32 attr, int channel)
{
struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata;
int ret;
xe_pm_runtime_get(gt_to_xe(hwmon->gt));
switch (type) {
case hwmon_power:
ret = xe_hwmon_power_is_visible(hwmon, attr, channel);
break;
case hwmon_curr:
ret = xe_hwmon_curr_is_visible(hwmon, attr, channel);
break;
case hwmon_in:
ret = xe_hwmon_in_is_visible(hwmon, attr, channel);
break;
case hwmon_energy:
ret = xe_hwmon_energy_is_visible(hwmon, attr, channel);
break;
default:
ret = 0;
break;
}
xe_pm_runtime_put(gt_to_xe(hwmon->gt));
return ret;
}
static int
xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, long *val)
{
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
int ret;
xe_pm_runtime_get(gt_to_xe(hwmon->gt));
switch (type) {
case hwmon_power:
ret = xe_hwmon_power_read(hwmon, attr, channel, val);
break;
case hwmon_curr:
ret = xe_hwmon_curr_read(hwmon, attr, channel, val);
break;
case hwmon_in:
ret = xe_hwmon_in_read(hwmon, attr, channel, val);
break;
case hwmon_energy:
ret = xe_hwmon_energy_read(hwmon, attr, channel, val);
break;
default:
ret = -EOPNOTSUPP;
break;
}
xe_pm_runtime_put(gt_to_xe(hwmon->gt));
return ret;
}
static int
xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, long val)
{
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
int ret;
xe_pm_runtime_get(gt_to_xe(hwmon->gt));
switch (type) {
case hwmon_power:
ret = xe_hwmon_power_write(hwmon, attr, channel, val);
break;
case hwmon_curr:
ret = xe_hwmon_curr_write(hwmon, attr, channel, val);
break;
default:
ret = -EOPNOTSUPP;
break;
}
xe_pm_runtime_put(gt_to_xe(hwmon->gt));
return ret;
}
static int xe_hwmon_read_label(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
switch (type) {
case hwmon_power:
case hwmon_energy:
case hwmon_curr:
case hwmon_in:
if (channel == CHANNEL_CARD)
*str = "card";
else if (channel == CHANNEL_PKG)
*str = "pkg";
return 0;
default:
return -EOPNOTSUPP;
}
}
static const struct hwmon_ops hwmon_ops = {
.is_visible = xe_hwmon_is_visible,
.read = xe_hwmon_read,
.write = xe_hwmon_write,
.read_string = xe_hwmon_read_label,
};
static const struct hwmon_chip_info hwmon_chip_info = {
.ops = &hwmon_ops,
.info = hwmon_info,
};
static void
xe_hwmon_get_preregistration_info(struct xe_device *xe)
{
struct xe_hwmon *hwmon = xe->hwmon;
long energy;
u64 val_sku_unit = 0;
int channel;
struct xe_reg pkg_power_sku_unit;
/*
* The contents of register PKG_POWER_SKU_UNIT do not change,
* so read it once and store the shift values.
*/
pkg_power_sku_unit = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT, 0);
if (xe_reg_is_valid(pkg_power_sku_unit)) {
val_sku_unit = xe_mmio_read32(hwmon->gt, pkg_power_sku_unit);
hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
}
/*
* Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the
* first value of the energy register read
*/
for (channel = 0; channel < CHANNEL_MAX; channel++)
if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, channel))
xe_hwmon_energy_get(hwmon, channel, &energy);
}
static void xe_hwmon_mutex_destroy(void *arg)
{
struct xe_hwmon *hwmon = arg;
mutex_destroy(&hwmon->hwmon_lock);
}
void xe_hwmon_register(struct xe_device *xe)
{
struct device *dev = xe->drm.dev;
struct xe_hwmon *hwmon;
/* hwmon is available only for dGfx */
if (!IS_DGFX(xe))
return;
/* hwmon is not available on VFs */
if (IS_SRIOV_VF(xe))
return;
hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
if (!hwmon)
return;
xe->hwmon = hwmon;
mutex_init(&hwmon->hwmon_lock);
if (devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon))
return;
/* primary GT to access device level properties */
hwmon->gt = xe->tiles[0].primary_gt;
xe_hwmon_get_preregistration_info(xe);
drm_dbg(&xe->drm, "Register xe hwmon interface\n");
/* hwmon_dev points to device hwmon<i> */
hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon,
&hwmon_chip_info,
hwmon_groups);
if (IS_ERR(hwmon->hwmon_dev)) {
drm_warn(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev);
xe->hwmon = NULL;
return;
}
}