| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * super.c |
| * |
| * PURPOSE |
| * Super block routines for the OSTA-UDF(tm) filesystem. |
| * |
| * DESCRIPTION |
| * OSTA-UDF(tm) = Optical Storage Technology Association |
| * Universal Disk Format. |
| * |
| * This code is based on version 2.00 of the UDF specification, |
| * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. |
| * http://www.osta.org/ |
| * https://www.ecma.ch/ |
| * https://www.iso.org/ |
| * |
| * COPYRIGHT |
| * (C) 1998 Dave Boynton |
| * (C) 1998-2004 Ben Fennema |
| * (C) 2000 Stelias Computing Inc |
| * |
| * HISTORY |
| * |
| * 09/24/98 dgb changed to allow compiling outside of kernel, and |
| * added some debugging. |
| * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 |
| * 10/16/98 attempting some multi-session support |
| * 10/17/98 added freespace count for "df" |
| * 11/11/98 gr added novrs option |
| * 11/26/98 dgb added fileset,anchor mount options |
| * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced |
| * vol descs. rewrote option handling based on isofs |
| * 12/20/98 find the free space bitmap (if it exists) |
| */ |
| |
| #include "udfdecl.h" |
| |
| #include <linux/blkdev.h> |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/stat.h> |
| #include <linux/cdrom.h> |
| #include <linux/nls.h> |
| #include <linux/vfs.h> |
| #include <linux/vmalloc.h> |
| #include <linux/errno.h> |
| #include <linux/seq_file.h> |
| #include <linux/bitmap.h> |
| #include <linux/crc-itu-t.h> |
| #include <linux/log2.h> |
| #include <asm/byteorder.h> |
| #include <linux/iversion.h> |
| #include <linux/fs_context.h> |
| #include <linux/fs_parser.h> |
| |
| #include "udf_sb.h" |
| #include "udf_i.h" |
| |
| #include <linux/init.h> |
| #include <linux/uaccess.h> |
| |
| enum { |
| VDS_POS_PRIMARY_VOL_DESC, |
| VDS_POS_UNALLOC_SPACE_DESC, |
| VDS_POS_LOGICAL_VOL_DESC, |
| VDS_POS_IMP_USE_VOL_DESC, |
| VDS_POS_LENGTH |
| }; |
| |
| #define VSD_FIRST_SECTOR_OFFSET 32768 |
| #define VSD_MAX_SECTOR_OFFSET 0x800000 |
| |
| /* |
| * Maximum number of Terminating Descriptor / Logical Volume Integrity |
| * Descriptor redirections. The chosen numbers are arbitrary - just that we |
| * hopefully don't limit any real use of rewritten inode on write-once media |
| * but avoid looping for too long on corrupted media. |
| */ |
| #define UDF_MAX_TD_NESTING 64 |
| #define UDF_MAX_LVID_NESTING 1000 |
| |
| enum { UDF_MAX_LINKS = 0xffff }; |
| /* |
| * We limit filesize to 4TB. This is arbitrary as the on-disk format supports |
| * more but because the file space is described by a linked list of extents, |
| * each of which can have at most 1GB, the creation and handling of extents |
| * gets unusably slow beyond certain point... |
| */ |
| #define UDF_MAX_FILESIZE (1ULL << 42) |
| |
| /* These are the "meat" - everything else is stuffing */ |
| static int udf_fill_super(struct super_block *sb, struct fs_context *fc); |
| static void udf_put_super(struct super_block *); |
| static int udf_sync_fs(struct super_block *, int); |
| static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); |
| static void udf_open_lvid(struct super_block *); |
| static void udf_close_lvid(struct super_block *); |
| static unsigned int udf_count_free(struct super_block *); |
| static int udf_statfs(struct dentry *, struct kstatfs *); |
| static int udf_show_options(struct seq_file *, struct dentry *); |
| static int udf_init_fs_context(struct fs_context *fc); |
| static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param); |
| static int udf_reconfigure(struct fs_context *fc); |
| static void udf_free_fc(struct fs_context *fc); |
| static const struct fs_parameter_spec udf_param_spec[]; |
| |
| struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) |
| { |
| struct logicalVolIntegrityDesc *lvid; |
| unsigned int partnum; |
| unsigned int offset; |
| |
| if (!UDF_SB(sb)->s_lvid_bh) |
| return NULL; |
| lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; |
| partnum = le32_to_cpu(lvid->numOfPartitions); |
| /* The offset is to skip freeSpaceTable and sizeTable arrays */ |
| offset = partnum * 2 * sizeof(uint32_t); |
| return (struct logicalVolIntegrityDescImpUse *) |
| (((uint8_t *)(lvid + 1)) + offset); |
| } |
| |
| /* UDF filesystem type */ |
| static int udf_get_tree(struct fs_context *fc) |
| { |
| return get_tree_bdev(fc, udf_fill_super); |
| } |
| |
| static const struct fs_context_operations udf_context_ops = { |
| .parse_param = udf_parse_param, |
| .get_tree = udf_get_tree, |
| .reconfigure = udf_reconfigure, |
| .free = udf_free_fc, |
| }; |
| |
| static struct file_system_type udf_fstype = { |
| .owner = THIS_MODULE, |
| .name = "udf", |
| .kill_sb = kill_block_super, |
| .fs_flags = FS_REQUIRES_DEV, |
| .init_fs_context = udf_init_fs_context, |
| .parameters = udf_param_spec, |
| }; |
| MODULE_ALIAS_FS("udf"); |
| |
| static struct kmem_cache *udf_inode_cachep; |
| |
| static struct inode *udf_alloc_inode(struct super_block *sb) |
| { |
| struct udf_inode_info *ei; |
| ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL); |
| if (!ei) |
| return NULL; |
| |
| ei->i_unique = 0; |
| ei->i_lenExtents = 0; |
| ei->i_lenStreams = 0; |
| ei->i_next_alloc_block = 0; |
| ei->i_next_alloc_goal = 0; |
| ei->i_strat4096 = 0; |
| ei->i_streamdir = 0; |
| ei->i_hidden = 0; |
| init_rwsem(&ei->i_data_sem); |
| ei->cached_extent.lstart = -1; |
| spin_lock_init(&ei->i_extent_cache_lock); |
| inode_set_iversion(&ei->vfs_inode, 1); |
| |
| return &ei->vfs_inode; |
| } |
| |
| static void udf_free_in_core_inode(struct inode *inode) |
| { |
| kmem_cache_free(udf_inode_cachep, UDF_I(inode)); |
| } |
| |
| static void init_once(void *foo) |
| { |
| struct udf_inode_info *ei = foo; |
| |
| ei->i_data = NULL; |
| inode_init_once(&ei->vfs_inode); |
| } |
| |
| static int __init init_inodecache(void) |
| { |
| udf_inode_cachep = kmem_cache_create("udf_inode_cache", |
| sizeof(struct udf_inode_info), |
| 0, (SLAB_RECLAIM_ACCOUNT | |
| SLAB_ACCOUNT), |
| init_once); |
| if (!udf_inode_cachep) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void destroy_inodecache(void) |
| { |
| /* |
| * Make sure all delayed rcu free inodes are flushed before we |
| * destroy cache. |
| */ |
| rcu_barrier(); |
| kmem_cache_destroy(udf_inode_cachep); |
| } |
| |
| /* Superblock operations */ |
| static const struct super_operations udf_sb_ops = { |
| .alloc_inode = udf_alloc_inode, |
| .free_inode = udf_free_in_core_inode, |
| .write_inode = udf_write_inode, |
| .evict_inode = udf_evict_inode, |
| .put_super = udf_put_super, |
| .sync_fs = udf_sync_fs, |
| .statfs = udf_statfs, |
| .show_options = udf_show_options, |
| }; |
| |
| struct udf_options { |
| unsigned int blocksize; |
| unsigned int session; |
| unsigned int lastblock; |
| unsigned int anchor; |
| unsigned int flags; |
| umode_t umask; |
| kgid_t gid; |
| kuid_t uid; |
| umode_t fmode; |
| umode_t dmode; |
| struct nls_table *nls_map; |
| }; |
| |
| /* |
| * UDF has historically preserved prior mount options across |
| * a remount, so copy those here if remounting, otherwise set |
| * initial mount defaults. |
| */ |
| static void udf_init_options(struct fs_context *fc, struct udf_options *uopt) |
| { |
| if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { |
| struct super_block *sb = fc->root->d_sb; |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| |
| uopt->flags = sbi->s_flags; |
| uopt->uid = sbi->s_uid; |
| uopt->gid = sbi->s_gid; |
| uopt->umask = sbi->s_umask; |
| uopt->fmode = sbi->s_fmode; |
| uopt->dmode = sbi->s_dmode; |
| uopt->nls_map = NULL; |
| } else { |
| uopt->flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | |
| (1 << UDF_FLAG_STRICT); |
| /* |
| * By default we'll use overflow[ug]id when UDF |
| * inode [ug]id == -1 |
| */ |
| uopt->uid = make_kuid(current_user_ns(), overflowuid); |
| uopt->gid = make_kgid(current_user_ns(), overflowgid); |
| uopt->umask = 0; |
| uopt->fmode = UDF_INVALID_MODE; |
| uopt->dmode = UDF_INVALID_MODE; |
| uopt->nls_map = NULL; |
| uopt->session = 0xFFFFFFFF; |
| } |
| } |
| |
| static int udf_init_fs_context(struct fs_context *fc) |
| { |
| struct udf_options *uopt; |
| |
| uopt = kzalloc(sizeof(*uopt), GFP_KERNEL); |
| if (!uopt) |
| return -ENOMEM; |
| |
| udf_init_options(fc, uopt); |
| |
| fc->fs_private = uopt; |
| fc->ops = &udf_context_ops; |
| |
| return 0; |
| } |
| |
| static void udf_free_fc(struct fs_context *fc) |
| { |
| struct udf_options *uopt = fc->fs_private; |
| |
| unload_nls(uopt->nls_map); |
| kfree(fc->fs_private); |
| } |
| |
| static int __init init_udf_fs(void) |
| { |
| int err; |
| |
| err = init_inodecache(); |
| if (err) |
| goto out1; |
| err = register_filesystem(&udf_fstype); |
| if (err) |
| goto out; |
| |
| return 0; |
| |
| out: |
| destroy_inodecache(); |
| |
| out1: |
| return err; |
| } |
| |
| static void __exit exit_udf_fs(void) |
| { |
| unregister_filesystem(&udf_fstype); |
| destroy_inodecache(); |
| } |
| |
| static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| |
| sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); |
| if (!sbi->s_partmaps) { |
| sbi->s_partitions = 0; |
| return -ENOMEM; |
| } |
| |
| sbi->s_partitions = count; |
| return 0; |
| } |
| |
| static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) |
| { |
| int i; |
| int nr_groups = bitmap->s_nr_groups; |
| |
| for (i = 0; i < nr_groups; i++) |
| if (!IS_ERR_OR_NULL(bitmap->s_block_bitmap[i])) |
| brelse(bitmap->s_block_bitmap[i]); |
| |
| kvfree(bitmap); |
| } |
| |
| static void udf_free_partition(struct udf_part_map *map) |
| { |
| int i; |
| struct udf_meta_data *mdata; |
| |
| if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) |
| iput(map->s_uspace.s_table); |
| if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) |
| udf_sb_free_bitmap(map->s_uspace.s_bitmap); |
| if (map->s_partition_type == UDF_SPARABLE_MAP15) |
| for (i = 0; i < 4; i++) |
| brelse(map->s_type_specific.s_sparing.s_spar_map[i]); |
| else if (map->s_partition_type == UDF_METADATA_MAP25) { |
| mdata = &map->s_type_specific.s_metadata; |
| iput(mdata->s_metadata_fe); |
| mdata->s_metadata_fe = NULL; |
| |
| iput(mdata->s_mirror_fe); |
| mdata->s_mirror_fe = NULL; |
| |
| iput(mdata->s_bitmap_fe); |
| mdata->s_bitmap_fe = NULL; |
| } |
| } |
| |
| static void udf_sb_free_partitions(struct super_block *sb) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| int i; |
| |
| if (!sbi->s_partmaps) |
| return; |
| for (i = 0; i < sbi->s_partitions; i++) |
| udf_free_partition(&sbi->s_partmaps[i]); |
| kfree(sbi->s_partmaps); |
| sbi->s_partmaps = NULL; |
| } |
| |
| static int udf_show_options(struct seq_file *seq, struct dentry *root) |
| { |
| struct super_block *sb = root->d_sb; |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| |
| if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) |
| seq_puts(seq, ",nostrict"); |
| if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) |
| seq_printf(seq, ",bs=%lu", sb->s_blocksize); |
| if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) |
| seq_puts(seq, ",unhide"); |
| if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) |
| seq_puts(seq, ",undelete"); |
| if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) |
| seq_puts(seq, ",noadinicb"); |
| if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) |
| seq_puts(seq, ",shortad"); |
| if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) |
| seq_puts(seq, ",uid=forget"); |
| if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) |
| seq_puts(seq, ",gid=forget"); |
| if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) |
| seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); |
| if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) |
| seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); |
| if (sbi->s_umask != 0) |
| seq_printf(seq, ",umask=%ho", sbi->s_umask); |
| if (sbi->s_fmode != UDF_INVALID_MODE) |
| seq_printf(seq, ",mode=%ho", sbi->s_fmode); |
| if (sbi->s_dmode != UDF_INVALID_MODE) |
| seq_printf(seq, ",dmode=%ho", sbi->s_dmode); |
| if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) |
| seq_printf(seq, ",session=%d", sbi->s_session); |
| if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) |
| seq_printf(seq, ",lastblock=%u", sbi->s_last_block); |
| if (sbi->s_anchor != 0) |
| seq_printf(seq, ",anchor=%u", sbi->s_anchor); |
| if (sbi->s_nls_map) |
| seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); |
| else |
| seq_puts(seq, ",iocharset=utf8"); |
| |
| return 0; |
| } |
| |
| /* |
| * udf_parse_param |
| * |
| * PURPOSE |
| * Parse mount options. |
| * |
| * DESCRIPTION |
| * The following mount options are supported: |
| * |
| * gid= Set the default group. |
| * umask= Set the default umask. |
| * mode= Set the default file permissions. |
| * dmode= Set the default directory permissions. |
| * uid= Set the default user. |
| * bs= Set the block size. |
| * unhide Show otherwise hidden files. |
| * undelete Show deleted files in lists. |
| * adinicb Embed data in the inode (default) |
| * noadinicb Don't embed data in the inode |
| * shortad Use short ad's |
| * longad Use long ad's (default) |
| * nostrict Unset strict conformance |
| * iocharset= Set the NLS character set |
| * |
| * The remaining are for debugging and disaster recovery: |
| * |
| * novrs Skip volume sequence recognition |
| * |
| * The following expect a offset from 0. |
| * |
| * session= Set the CDROM session (default= last session) |
| * anchor= Override standard anchor location. (default= 256) |
| * volume= Override the VolumeDesc location. (unused) |
| * partition= Override the PartitionDesc location. (unused) |
| * lastblock= Set the last block of the filesystem/ |
| * |
| * The following expect a offset from the partition root. |
| * |
| * fileset= Override the fileset block location. (unused) |
| * rootdir= Override the root directory location. (unused) |
| * WARNING: overriding the rootdir to a non-directory may |
| * yield highly unpredictable results. |
| * |
| * PRE-CONDITIONS |
| * fc fs_context with pointer to mount options variable. |
| * param Pointer to fs_parameter being parsed. |
| * |
| * POST-CONDITIONS |
| * <return> 0 Mount options parsed okay. |
| * <return> errno Error parsing mount options. |
| * |
| * HISTORY |
| * July 1, 1997 - Andrew E. Mileski |
| * Written, tested, and released. |
| */ |
| |
| enum { |
| Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, |
| Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, |
| Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, |
| Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, |
| Opt_rootdir, Opt_utf8, Opt_iocharset, Opt_err, Opt_fmode, Opt_dmode |
| }; |
| |
| static const struct fs_parameter_spec udf_param_spec[] = { |
| fsparam_flag ("novrs", Opt_novrs), |
| fsparam_flag ("nostrict", Opt_nostrict), |
| fsparam_u32 ("bs", Opt_bs), |
| fsparam_flag ("unhide", Opt_unhide), |
| fsparam_flag ("undelete", Opt_undelete), |
| fsparam_flag_no ("adinicb", Opt_adinicb), |
| fsparam_flag ("shortad", Opt_shortad), |
| fsparam_flag ("longad", Opt_longad), |
| fsparam_string ("gid", Opt_gid), |
| fsparam_string ("uid", Opt_uid), |
| fsparam_u32 ("umask", Opt_umask), |
| fsparam_u32 ("session", Opt_session), |
| fsparam_u32 ("lastblock", Opt_lastblock), |
| fsparam_u32 ("anchor", Opt_anchor), |
| fsparam_u32 ("volume", Opt_volume), |
| fsparam_u32 ("partition", Opt_partition), |
| fsparam_u32 ("fileset", Opt_fileset), |
| fsparam_u32 ("rootdir", Opt_rootdir), |
| fsparam_flag ("utf8", Opt_utf8), |
| fsparam_string ("iocharset", Opt_iocharset), |
| fsparam_u32 ("mode", Opt_fmode), |
| fsparam_u32 ("dmode", Opt_dmode), |
| {} |
| }; |
| |
| static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param) |
| { |
| unsigned int uv; |
| unsigned int n; |
| struct udf_options *uopt = fc->fs_private; |
| struct fs_parse_result result; |
| int token; |
| bool remount = (fc->purpose & FS_CONTEXT_FOR_RECONFIGURE); |
| |
| token = fs_parse(fc, udf_param_spec, param, &result); |
| if (token < 0) |
| return token; |
| |
| switch (token) { |
| case Opt_novrs: |
| uopt->flags |= (1 << UDF_FLAG_NOVRS); |
| break; |
| case Opt_bs: |
| n = result.uint_32; |
| if (n != 512 && n != 1024 && n != 2048 && n != 4096) |
| return -EINVAL; |
| uopt->blocksize = n; |
| uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); |
| break; |
| case Opt_unhide: |
| uopt->flags |= (1 << UDF_FLAG_UNHIDE); |
| break; |
| case Opt_undelete: |
| uopt->flags |= (1 << UDF_FLAG_UNDELETE); |
| break; |
| case Opt_adinicb: |
| if (result.negated) |
| uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); |
| else |
| uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); |
| break; |
| case Opt_shortad: |
| uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); |
| break; |
| case Opt_longad: |
| uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); |
| break; |
| case Opt_gid: |
| if (kstrtoint(param->string, 10, &uv) == 0) { |
| kgid_t gid = make_kgid(current_user_ns(), uv); |
| if (!gid_valid(gid)) |
| return -EINVAL; |
| uopt->gid = gid; |
| uopt->flags |= (1 << UDF_FLAG_GID_SET); |
| } else if (!strcmp(param->string, "forget")) { |
| uopt->flags |= (1 << UDF_FLAG_GID_FORGET); |
| } else if (!strcmp(param->string, "ignore")) { |
| /* this option is superseded by gid=<number> */ |
| ; |
| } else { |
| return -EINVAL; |
| } |
| break; |
| case Opt_uid: |
| if (kstrtoint(param->string, 10, &uv) == 0) { |
| kuid_t uid = make_kuid(current_user_ns(), uv); |
| if (!uid_valid(uid)) |
| return -EINVAL; |
| uopt->uid = uid; |
| uopt->flags |= (1 << UDF_FLAG_UID_SET); |
| } else if (!strcmp(param->string, "forget")) { |
| uopt->flags |= (1 << UDF_FLAG_UID_FORGET); |
| } else if (!strcmp(param->string, "ignore")) { |
| /* this option is superseded by uid=<number> */ |
| ; |
| } else { |
| return -EINVAL; |
| } |
| break; |
| case Opt_umask: |
| uopt->umask = result.uint_32; |
| break; |
| case Opt_nostrict: |
| uopt->flags &= ~(1 << UDF_FLAG_STRICT); |
| break; |
| case Opt_session: |
| uopt->session = result.uint_32; |
| if (!remount) |
| uopt->flags |= (1 << UDF_FLAG_SESSION_SET); |
| break; |
| case Opt_lastblock: |
| uopt->lastblock = result.uint_32; |
| if (!remount) |
| uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); |
| break; |
| case Opt_anchor: |
| uopt->anchor = result.uint_32; |
| break; |
| case Opt_volume: |
| case Opt_partition: |
| case Opt_fileset: |
| case Opt_rootdir: |
| /* Ignored (never implemented properly) */ |
| break; |
| case Opt_utf8: |
| if (!remount) { |
| unload_nls(uopt->nls_map); |
| uopt->nls_map = NULL; |
| } |
| break; |
| case Opt_iocharset: |
| if (!remount) { |
| unload_nls(uopt->nls_map); |
| uopt->nls_map = NULL; |
| } |
| /* When nls_map is not loaded then UTF-8 is used */ |
| if (!remount && strcmp(param->string, "utf8") != 0) { |
| uopt->nls_map = load_nls(param->string); |
| if (!uopt->nls_map) { |
| errorf(fc, "iocharset %s not found", |
| param->string); |
| return -EINVAL; |
| } |
| } |
| break; |
| case Opt_fmode: |
| uopt->fmode = result.uint_32 & 0777; |
| break; |
| case Opt_dmode: |
| uopt->dmode = result.uint_32 & 0777; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int udf_reconfigure(struct fs_context *fc) |
| { |
| struct udf_options *uopt = fc->fs_private; |
| struct super_block *sb = fc->root->d_sb; |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| int readonly = fc->sb_flags & SB_RDONLY; |
| int error = 0; |
| |
| if (!readonly && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) |
| return -EACCES; |
| |
| sync_filesystem(sb); |
| |
| write_lock(&sbi->s_cred_lock); |
| sbi->s_flags = uopt->flags; |
| sbi->s_uid = uopt->uid; |
| sbi->s_gid = uopt->gid; |
| sbi->s_umask = uopt->umask; |
| sbi->s_fmode = uopt->fmode; |
| sbi->s_dmode = uopt->dmode; |
| write_unlock(&sbi->s_cred_lock); |
| |
| if (readonly == sb_rdonly(sb)) |
| goto out_unlock; |
| |
| if (readonly) |
| udf_close_lvid(sb); |
| else |
| udf_open_lvid(sb); |
| |
| out_unlock: |
| return error; |
| } |
| |
| /* |
| * Check VSD descriptor. Returns -1 in case we are at the end of volume |
| * recognition area, 0 if the descriptor is valid but non-interesting, 1 if |
| * we found one of NSR descriptors we are looking for. |
| */ |
| static int identify_vsd(const struct volStructDesc *vsd) |
| { |
| int ret = 0; |
| |
| if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) { |
| switch (vsd->structType) { |
| case 0: |
| udf_debug("ISO9660 Boot Record found\n"); |
| break; |
| case 1: |
| udf_debug("ISO9660 Primary Volume Descriptor found\n"); |
| break; |
| case 2: |
| udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); |
| break; |
| case 3: |
| udf_debug("ISO9660 Volume Partition Descriptor found\n"); |
| break; |
| case 255: |
| udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); |
| break; |
| default: |
| udf_debug("ISO9660 VRS (%u) found\n", vsd->structType); |
| break; |
| } |
| } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN)) |
| ; /* ret = 0 */ |
| else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN)) |
| ret = 1; |
| else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN)) |
| ret = 1; |
| else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN)) |
| ; /* ret = 0 */ |
| else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN)) |
| ; /* ret = 0 */ |
| else { |
| /* TEA01 or invalid id : end of volume recognition area */ |
| ret = -1; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Check Volume Structure Descriptors (ECMA 167 2/9.1) |
| * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) |
| * @return 1 if NSR02 or NSR03 found, |
| * -1 if first sector read error, 0 otherwise |
| */ |
| static int udf_check_vsd(struct super_block *sb) |
| { |
| struct volStructDesc *vsd = NULL; |
| loff_t sector = VSD_FIRST_SECTOR_OFFSET; |
| int sectorsize; |
| struct buffer_head *bh = NULL; |
| int nsr = 0; |
| struct udf_sb_info *sbi; |
| loff_t session_offset; |
| |
| sbi = UDF_SB(sb); |
| if (sb->s_blocksize < sizeof(struct volStructDesc)) |
| sectorsize = sizeof(struct volStructDesc); |
| else |
| sectorsize = sb->s_blocksize; |
| |
| session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits; |
| sector += session_offset; |
| |
| udf_debug("Starting at sector %u (%lu byte sectors)\n", |
| (unsigned int)(sector >> sb->s_blocksize_bits), |
| sb->s_blocksize); |
| /* Process the sequence (if applicable). The hard limit on the sector |
| * offset is arbitrary, hopefully large enough so that all valid UDF |
| * filesystems will be recognised. There is no mention of an upper |
| * bound to the size of the volume recognition area in the standard. |
| * The limit will prevent the code to read all the sectors of a |
| * specially crafted image (like a bluray disc full of CD001 sectors), |
| * potentially causing minutes or even hours of uninterruptible I/O |
| * activity. This actually happened with uninitialised SSD partitions |
| * (all 0xFF) before the check for the limit and all valid IDs were |
| * added */ |
| for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) { |
| /* Read a block */ |
| bh = sb_bread(sb, sector >> sb->s_blocksize_bits); |
| if (!bh) |
| break; |
| |
| vsd = (struct volStructDesc *)(bh->b_data + |
| (sector & (sb->s_blocksize - 1))); |
| nsr = identify_vsd(vsd); |
| /* Found NSR or end? */ |
| if (nsr) { |
| brelse(bh); |
| break; |
| } |
| /* |
| * Special handling for improperly formatted VRS (e.g., Win10) |
| * where components are separated by 2048 bytes even though |
| * sectors are 4K |
| */ |
| if (sb->s_blocksize == 4096) { |
| nsr = identify_vsd(vsd + 1); |
| /* Ignore unknown IDs... */ |
| if (nsr < 0) |
| nsr = 0; |
| } |
| brelse(bh); |
| } |
| |
| if (nsr > 0) |
| return 1; |
| else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET) |
| return -1; |
| else |
| return 0; |
| } |
| |
| static int udf_verify_domain_identifier(struct super_block *sb, |
| struct regid *ident, char *dname) |
| { |
| struct domainIdentSuffix *suffix; |
| |
| if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) { |
| udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname); |
| goto force_ro; |
| } |
| if (ident->flags & ENTITYID_FLAGS_DIRTY) { |
| udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n", |
| dname); |
| goto force_ro; |
| } |
| suffix = (struct domainIdentSuffix *)ident->identSuffix; |
| if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) || |
| (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) { |
| if (!sb_rdonly(sb)) { |
| udf_warn(sb, "Descriptor for %s marked write protected." |
| " Forcing read only mount.\n", dname); |
| } |
| goto force_ro; |
| } |
| return 0; |
| |
| force_ro: |
| if (!sb_rdonly(sb)) |
| return -EACCES; |
| UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); |
| return 0; |
| } |
| |
| static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset, |
| struct kernel_lb_addr *root) |
| { |
| int ret; |
| |
| ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set"); |
| if (ret < 0) |
| return ret; |
| |
| *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); |
| UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); |
| |
| udf_debug("Rootdir at block=%u, partition=%u\n", |
| root->logicalBlockNum, root->partitionReferenceNum); |
| return 0; |
| } |
| |
| static int udf_find_fileset(struct super_block *sb, |
| struct kernel_lb_addr *fileset, |
| struct kernel_lb_addr *root) |
| { |
| struct buffer_head *bh; |
| uint16_t ident; |
| int ret; |
| |
| if (fileset->logicalBlockNum == 0xFFFFFFFF && |
| fileset->partitionReferenceNum == 0xFFFF) |
| return -EINVAL; |
| |
| bh = udf_read_ptagged(sb, fileset, 0, &ident); |
| if (!bh) |
| return -EIO; |
| if (ident != TAG_IDENT_FSD) { |
| brelse(bh); |
| return -EINVAL; |
| } |
| |
| udf_debug("Fileset at block=%u, partition=%u\n", |
| fileset->logicalBlockNum, fileset->partitionReferenceNum); |
| |
| UDF_SB(sb)->s_partition = fileset->partitionReferenceNum; |
| ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root); |
| brelse(bh); |
| return ret; |
| } |
| |
| /* |
| * Load primary Volume Descriptor Sequence |
| * |
| * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence |
| * should be tried. |
| */ |
| static int udf_load_pvoldesc(struct super_block *sb, sector_t block) |
| { |
| struct primaryVolDesc *pvoldesc; |
| uint8_t *outstr; |
| struct buffer_head *bh; |
| uint16_t ident; |
| int ret; |
| struct timestamp *ts; |
| |
| outstr = kzalloc(128, GFP_KERNEL); |
| if (!outstr) |
| return -ENOMEM; |
| |
| bh = udf_read_tagged(sb, block, block, &ident); |
| if (!bh) { |
| ret = -EAGAIN; |
| goto out2; |
| } |
| |
| if (ident != TAG_IDENT_PVD) { |
| ret = -EIO; |
| goto out_bh; |
| } |
| |
| pvoldesc = (struct primaryVolDesc *)bh->b_data; |
| |
| udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, |
| pvoldesc->recordingDateAndTime); |
| ts = &pvoldesc->recordingDateAndTime; |
| udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", |
| le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, |
| ts->minute, le16_to_cpu(ts->typeAndTimezone)); |
| |
| ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); |
| if (ret < 0) { |
| strscpy_pad(UDF_SB(sb)->s_volume_ident, "InvalidName"); |
| pr_warn("incorrect volume identification, setting to " |
| "'InvalidName'\n"); |
| } else { |
| strscpy_pad(UDF_SB(sb)->s_volume_ident, outstr); |
| } |
| udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); |
| |
| ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); |
| if (ret < 0) { |
| ret = 0; |
| goto out_bh; |
| } |
| outstr[ret] = 0; |
| udf_debug("volSetIdent[] = '%s'\n", outstr); |
| |
| ret = 0; |
| out_bh: |
| brelse(bh); |
| out2: |
| kfree(outstr); |
| return ret; |
| } |
| |
| struct inode *udf_find_metadata_inode_efe(struct super_block *sb, |
| u32 meta_file_loc, u32 partition_ref) |
| { |
| struct kernel_lb_addr addr; |
| struct inode *metadata_fe; |
| |
| addr.logicalBlockNum = meta_file_loc; |
| addr.partitionReferenceNum = partition_ref; |
| |
| metadata_fe = udf_iget_special(sb, &addr); |
| |
| if (IS_ERR(metadata_fe)) { |
| udf_warn(sb, "metadata inode efe not found\n"); |
| return metadata_fe; |
| } |
| if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { |
| udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); |
| iput(metadata_fe); |
| return ERR_PTR(-EIO); |
| } |
| |
| return metadata_fe; |
| } |
| |
| static int udf_load_metadata_files(struct super_block *sb, int partition, |
| int type1_index) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| struct udf_part_map *map; |
| struct udf_meta_data *mdata; |
| struct kernel_lb_addr addr; |
| struct inode *fe; |
| |
| map = &sbi->s_partmaps[partition]; |
| mdata = &map->s_type_specific.s_metadata; |
| mdata->s_phys_partition_ref = type1_index; |
| |
| /* metadata address */ |
| udf_debug("Metadata file location: block = %u part = %u\n", |
| mdata->s_meta_file_loc, mdata->s_phys_partition_ref); |
| |
| fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, |
| mdata->s_phys_partition_ref); |
| if (IS_ERR(fe)) { |
| /* mirror file entry */ |
| udf_debug("Mirror metadata file location: block = %u part = %u\n", |
| mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); |
| |
| fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, |
| mdata->s_phys_partition_ref); |
| |
| if (IS_ERR(fe)) { |
| udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); |
| return PTR_ERR(fe); |
| } |
| mdata->s_mirror_fe = fe; |
| } else |
| mdata->s_metadata_fe = fe; |
| |
| |
| /* |
| * bitmap file entry |
| * Note: |
| * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) |
| */ |
| if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { |
| addr.logicalBlockNum = mdata->s_bitmap_file_loc; |
| addr.partitionReferenceNum = mdata->s_phys_partition_ref; |
| |
| udf_debug("Bitmap file location: block = %u part = %u\n", |
| addr.logicalBlockNum, addr.partitionReferenceNum); |
| |
| fe = udf_iget_special(sb, &addr); |
| if (IS_ERR(fe)) { |
| if (sb_rdonly(sb)) |
| udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); |
| else { |
| udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); |
| return PTR_ERR(fe); |
| } |
| } else |
| mdata->s_bitmap_fe = fe; |
| } |
| |
| udf_debug("udf_load_metadata_files Ok\n"); |
| return 0; |
| } |
| |
| int udf_compute_nr_groups(struct super_block *sb, u32 partition) |
| { |
| struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; |
| return DIV_ROUND_UP(map->s_partition_len + |
| (sizeof(struct spaceBitmapDesc) << 3), |
| sb->s_blocksize * 8); |
| } |
| |
| static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) |
| { |
| struct udf_bitmap *bitmap; |
| int nr_groups = udf_compute_nr_groups(sb, index); |
| |
| bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups), |
| GFP_KERNEL); |
| if (!bitmap) |
| return NULL; |
| |
| bitmap->s_nr_groups = nr_groups; |
| return bitmap; |
| } |
| |
| static int check_partition_desc(struct super_block *sb, |
| struct partitionDesc *p, |
| struct udf_part_map *map) |
| { |
| bool umap, utable, fmap, ftable; |
| struct partitionHeaderDesc *phd; |
| |
| switch (le32_to_cpu(p->accessType)) { |
| case PD_ACCESS_TYPE_READ_ONLY: |
| case PD_ACCESS_TYPE_WRITE_ONCE: |
| case PD_ACCESS_TYPE_NONE: |
| goto force_ro; |
| } |
| |
| /* No Partition Header Descriptor? */ |
| if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && |
| strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) |
| goto force_ro; |
| |
| phd = (struct partitionHeaderDesc *)p->partitionContentsUse; |
| utable = phd->unallocSpaceTable.extLength; |
| umap = phd->unallocSpaceBitmap.extLength; |
| ftable = phd->freedSpaceTable.extLength; |
| fmap = phd->freedSpaceBitmap.extLength; |
| |
| /* No allocation info? */ |
| if (!utable && !umap && !ftable && !fmap) |
| goto force_ro; |
| |
| /* We don't support blocks that require erasing before overwrite */ |
| if (ftable || fmap) |
| goto force_ro; |
| /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */ |
| if (utable && umap) |
| goto force_ro; |
| |
| if (map->s_partition_type == UDF_VIRTUAL_MAP15 || |
| map->s_partition_type == UDF_VIRTUAL_MAP20 || |
| map->s_partition_type == UDF_METADATA_MAP25) |
| goto force_ro; |
| |
| return 0; |
| force_ro: |
| if (!sb_rdonly(sb)) |
| return -EACCES; |
| UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); |
| return 0; |
| } |
| |
| static int udf_fill_partdesc_info(struct super_block *sb, |
| struct partitionDesc *p, int p_index) |
| { |
| struct udf_part_map *map; |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| struct partitionHeaderDesc *phd; |
| u32 sum; |
| int err; |
| |
| map = &sbi->s_partmaps[p_index]; |
| |
| map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ |
| map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); |
| if (check_add_overflow(map->s_partition_root, map->s_partition_len, |
| &sum)) { |
| udf_err(sb, "Partition %d has invalid location %u + %u\n", |
| p_index, map->s_partition_root, map->s_partition_len); |
| return -EFSCORRUPTED; |
| } |
| |
| if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) |
| map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; |
| if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) |
| map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; |
| if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) |
| map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; |
| if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) |
| map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; |
| |
| udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", |
| p_index, map->s_partition_type, |
| map->s_partition_root, map->s_partition_len); |
| |
| err = check_partition_desc(sb, p, map); |
| if (err) |
| return err; |
| |
| /* |
| * Skip loading allocation info it we cannot ever write to the fs. |
| * This is a correctness thing as we may have decided to force ro mount |
| * to avoid allocation info we don't support. |
| */ |
| if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) |
| return 0; |
| |
| phd = (struct partitionHeaderDesc *)p->partitionContentsUse; |
| if (phd->unallocSpaceTable.extLength) { |
| struct kernel_lb_addr loc = { |
| .logicalBlockNum = le32_to_cpu( |
| phd->unallocSpaceTable.extPosition), |
| .partitionReferenceNum = p_index, |
| }; |
| struct inode *inode; |
| |
| inode = udf_iget_special(sb, &loc); |
| if (IS_ERR(inode)) { |
| udf_debug("cannot load unallocSpaceTable (part %d)\n", |
| p_index); |
| return PTR_ERR(inode); |
| } |
| map->s_uspace.s_table = inode; |
| map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; |
| udf_debug("unallocSpaceTable (part %d) @ %lu\n", |
| p_index, map->s_uspace.s_table->i_ino); |
| } |
| |
| if (phd->unallocSpaceBitmap.extLength) { |
| struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); |
| if (!bitmap) |
| return -ENOMEM; |
| map->s_uspace.s_bitmap = bitmap; |
| bitmap->s_extPosition = le32_to_cpu( |
| phd->unallocSpaceBitmap.extPosition); |
| map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; |
| /* Check whether math over bitmap won't overflow. */ |
| if (check_add_overflow(map->s_partition_len, |
| sizeof(struct spaceBitmapDesc) << 3, |
| &sum)) { |
| udf_err(sb, "Partition %d is too long (%u)\n", p_index, |
| map->s_partition_len); |
| return -EFSCORRUPTED; |
| } |
| udf_debug("unallocSpaceBitmap (part %d) @ %u\n", |
| p_index, bitmap->s_extPosition); |
| } |
| |
| return 0; |
| } |
| |
| static void udf_find_vat_block(struct super_block *sb, int p_index, |
| int type1_index, sector_t start_block) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| struct udf_part_map *map = &sbi->s_partmaps[p_index]; |
| sector_t vat_block; |
| struct kernel_lb_addr ino; |
| struct inode *inode; |
| |
| /* |
| * VAT file entry is in the last recorded block. Some broken disks have |
| * it a few blocks before so try a bit harder... |
| */ |
| ino.partitionReferenceNum = type1_index; |
| for (vat_block = start_block; |
| vat_block >= map->s_partition_root && |
| vat_block >= start_block - 3; vat_block--) { |
| ino.logicalBlockNum = vat_block - map->s_partition_root; |
| inode = udf_iget_special(sb, &ino); |
| if (!IS_ERR(inode)) { |
| sbi->s_vat_inode = inode; |
| break; |
| } |
| } |
| } |
| |
| static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| struct udf_part_map *map = &sbi->s_partmaps[p_index]; |
| struct buffer_head *bh = NULL; |
| struct udf_inode_info *vati; |
| struct virtualAllocationTable20 *vat20; |
| sector_t blocks = sb_bdev_nr_blocks(sb); |
| |
| udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); |
| if (!sbi->s_vat_inode && |
| sbi->s_last_block != blocks - 1) { |
| pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", |
| (unsigned long)sbi->s_last_block, |
| (unsigned long)blocks - 1); |
| udf_find_vat_block(sb, p_index, type1_index, blocks - 1); |
| } |
| if (!sbi->s_vat_inode) |
| return -EIO; |
| |
| if (map->s_partition_type == UDF_VIRTUAL_MAP15) { |
| map->s_type_specific.s_virtual.s_start_offset = 0; |
| map->s_type_specific.s_virtual.s_num_entries = |
| (sbi->s_vat_inode->i_size - 36) >> 2; |
| } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { |
| vati = UDF_I(sbi->s_vat_inode); |
| if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { |
| int err = 0; |
| |
| bh = udf_bread(sbi->s_vat_inode, 0, 0, &err); |
| if (!bh) { |
| if (!err) |
| err = -EFSCORRUPTED; |
| return err; |
| } |
| vat20 = (struct virtualAllocationTable20 *)bh->b_data; |
| } else { |
| vat20 = (struct virtualAllocationTable20 *) |
| vati->i_data; |
| } |
| |
| map->s_type_specific.s_virtual.s_start_offset = |
| le16_to_cpu(vat20->lengthHeader); |
| map->s_type_specific.s_virtual.s_num_entries = |
| (sbi->s_vat_inode->i_size - |
| map->s_type_specific.s_virtual. |
| s_start_offset) >> 2; |
| brelse(bh); |
| } |
| return 0; |
| } |
| |
| /* |
| * Load partition descriptor block |
| * |
| * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor |
| * sequence. |
| */ |
| static int udf_load_partdesc(struct super_block *sb, sector_t block) |
| { |
| struct buffer_head *bh; |
| struct partitionDesc *p; |
| struct udf_part_map *map; |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| int i, type1_idx; |
| uint16_t partitionNumber; |
| uint16_t ident; |
| int ret; |
| |
| bh = udf_read_tagged(sb, block, block, &ident); |
| if (!bh) |
| return -EAGAIN; |
| if (ident != TAG_IDENT_PD) { |
| ret = 0; |
| goto out_bh; |
| } |
| |
| p = (struct partitionDesc *)bh->b_data; |
| partitionNumber = le16_to_cpu(p->partitionNumber); |
| |
| /* First scan for TYPE1 and SPARABLE partitions */ |
| for (i = 0; i < sbi->s_partitions; i++) { |
| map = &sbi->s_partmaps[i]; |
| udf_debug("Searching map: (%u == %u)\n", |
| map->s_partition_num, partitionNumber); |
| if (map->s_partition_num == partitionNumber && |
| (map->s_partition_type == UDF_TYPE1_MAP15 || |
| map->s_partition_type == UDF_SPARABLE_MAP15)) |
| break; |
| } |
| |
| if (i >= sbi->s_partitions) { |
| udf_debug("Partition (%u) not found in partition map\n", |
| partitionNumber); |
| ret = 0; |
| goto out_bh; |
| } |
| |
| ret = udf_fill_partdesc_info(sb, p, i); |
| if (ret < 0) |
| goto out_bh; |
| |
| /* |
| * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and |
| * PHYSICAL partitions are already set up |
| */ |
| type1_idx = i; |
| map = NULL; /* supress 'maybe used uninitialized' warning */ |
| for (i = 0; i < sbi->s_partitions; i++) { |
| map = &sbi->s_partmaps[i]; |
| |
| if (map->s_partition_num == partitionNumber && |
| (map->s_partition_type == UDF_VIRTUAL_MAP15 || |
| map->s_partition_type == UDF_VIRTUAL_MAP20 || |
| map->s_partition_type == UDF_METADATA_MAP25)) |
| break; |
| } |
| |
| if (i >= sbi->s_partitions) { |
| ret = 0; |
| goto out_bh; |
| } |
| |
| ret = udf_fill_partdesc_info(sb, p, i); |
| if (ret < 0) |
| goto out_bh; |
| |
| if (map->s_partition_type == UDF_METADATA_MAP25) { |
| ret = udf_load_metadata_files(sb, i, type1_idx); |
| if (ret < 0) { |
| udf_err(sb, "error loading MetaData partition map %d\n", |
| i); |
| goto out_bh; |
| } |
| } else { |
| /* |
| * If we have a partition with virtual map, we don't handle |
| * writing to it (we overwrite blocks instead of relocating |
| * them). |
| */ |
| if (!sb_rdonly(sb)) { |
| ret = -EACCES; |
| goto out_bh; |
| } |
| UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); |
| ret = udf_load_vat(sb, i, type1_idx); |
| if (ret < 0) |
| goto out_bh; |
| } |
| ret = 0; |
| out_bh: |
| /* In case loading failed, we handle cleanup in udf_fill_super */ |
| brelse(bh); |
| return ret; |
| } |
| |
| static int udf_load_sparable_map(struct super_block *sb, |
| struct udf_part_map *map, |
| struct sparablePartitionMap *spm) |
| { |
| uint32_t loc; |
| uint16_t ident; |
| struct sparingTable *st; |
| struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; |
| int i; |
| struct buffer_head *bh; |
| |
| map->s_partition_type = UDF_SPARABLE_MAP15; |
| sdata->s_packet_len = le16_to_cpu(spm->packetLength); |
| if (!is_power_of_2(sdata->s_packet_len)) { |
| udf_err(sb, "error loading logical volume descriptor: " |
| "Invalid packet length %u\n", |
| (unsigned)sdata->s_packet_len); |
| return -EIO; |
| } |
| if (spm->numSparingTables > 4) { |
| udf_err(sb, "error loading logical volume descriptor: " |
| "Too many sparing tables (%d)\n", |
| (int)spm->numSparingTables); |
| return -EIO; |
| } |
| if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) { |
| udf_err(sb, "error loading logical volume descriptor: " |
| "Too big sparing table size (%u)\n", |
| le32_to_cpu(spm->sizeSparingTable)); |
| return -EIO; |
| } |
| |
| for (i = 0; i < spm->numSparingTables; i++) { |
| loc = le32_to_cpu(spm->locSparingTable[i]); |
| bh = udf_read_tagged(sb, loc, loc, &ident); |
| if (!bh) |
| continue; |
| |
| st = (struct sparingTable *)bh->b_data; |
| if (ident != 0 || |
| strncmp(st->sparingIdent.ident, UDF_ID_SPARING, |
| strlen(UDF_ID_SPARING)) || |
| sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > |
| sb->s_blocksize) { |
| brelse(bh); |
| continue; |
| } |
| |
| sdata->s_spar_map[i] = bh; |
| } |
| map->s_partition_func = udf_get_pblock_spar15; |
| return 0; |
| } |
| |
| static int udf_load_logicalvol(struct super_block *sb, sector_t block, |
| struct kernel_lb_addr *fileset) |
| { |
| struct logicalVolDesc *lvd; |
| int i, offset; |
| uint8_t type; |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| struct genericPartitionMap *gpm; |
| uint16_t ident; |
| struct buffer_head *bh; |
| unsigned int table_len; |
| int ret; |
| |
| bh = udf_read_tagged(sb, block, block, &ident); |
| if (!bh) |
| return -EAGAIN; |
| BUG_ON(ident != TAG_IDENT_LVD); |
| lvd = (struct logicalVolDesc *)bh->b_data; |
| table_len = le32_to_cpu(lvd->mapTableLength); |
| if (table_len > sb->s_blocksize - sizeof(*lvd)) { |
| udf_err(sb, "error loading logical volume descriptor: " |
| "Partition table too long (%u > %lu)\n", table_len, |
| sb->s_blocksize - sizeof(*lvd)); |
| ret = -EIO; |
| goto out_bh; |
| } |
| |
| ret = udf_verify_domain_identifier(sb, &lvd->domainIdent, |
| "logical volume"); |
| if (ret) |
| goto out_bh; |
| ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); |
| if (ret) |
| goto out_bh; |
| |
| for (i = 0, offset = 0; |
| i < sbi->s_partitions && offset < table_len; |
| i++, offset += gpm->partitionMapLength) { |
| struct udf_part_map *map = &sbi->s_partmaps[i]; |
| gpm = (struct genericPartitionMap *) |
| &(lvd->partitionMaps[offset]); |
| type = gpm->partitionMapType; |
| if (type == 1) { |
| struct genericPartitionMap1 *gpm1 = |
| (struct genericPartitionMap1 *)gpm; |
| map->s_partition_type = UDF_TYPE1_MAP15; |
| map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); |
| map->s_partition_num = le16_to_cpu(gpm1->partitionNum); |
| map->s_partition_func = NULL; |
| } else if (type == 2) { |
| struct udfPartitionMap2 *upm2 = |
| (struct udfPartitionMap2 *)gpm; |
| if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, |
| strlen(UDF_ID_VIRTUAL))) { |
| u16 suf = |
| le16_to_cpu(((__le16 *)upm2->partIdent. |
| identSuffix)[0]); |
| if (suf < 0x0200) { |
| map->s_partition_type = |
| UDF_VIRTUAL_MAP15; |
| map->s_partition_func = |
| udf_get_pblock_virt15; |
| } else { |
| map->s_partition_type = |
| UDF_VIRTUAL_MAP20; |
| map->s_partition_func = |
| udf_get_pblock_virt20; |
| } |
| } else if (!strncmp(upm2->partIdent.ident, |
| UDF_ID_SPARABLE, |
| strlen(UDF_ID_SPARABLE))) { |
| ret = udf_load_sparable_map(sb, map, |
| (struct sparablePartitionMap *)gpm); |
| if (ret < 0) |
| goto out_bh; |
| } else if (!strncmp(upm2->partIdent.ident, |
| UDF_ID_METADATA, |
| strlen(UDF_ID_METADATA))) { |
| struct udf_meta_data *mdata = |
| &map->s_type_specific.s_metadata; |
| struct metadataPartitionMap *mdm = |
| (struct metadataPartitionMap *) |
| &(lvd->partitionMaps[offset]); |
| udf_debug("Parsing Logical vol part %d type %u id=%s\n", |
| i, type, UDF_ID_METADATA); |
| |
| map->s_partition_type = UDF_METADATA_MAP25; |
| map->s_partition_func = udf_get_pblock_meta25; |
| |
| mdata->s_meta_file_loc = |
| le32_to_cpu(mdm->metadataFileLoc); |
| mdata->s_mirror_file_loc = |
| le32_to_cpu(mdm->metadataMirrorFileLoc); |
| mdata->s_bitmap_file_loc = |
| le32_to_cpu(mdm->metadataBitmapFileLoc); |
| mdata->s_alloc_unit_size = |
| le32_to_cpu(mdm->allocUnitSize); |
| mdata->s_align_unit_size = |
| le16_to_cpu(mdm->alignUnitSize); |
| if (mdm->flags & 0x01) |
| mdata->s_flags |= MF_DUPLICATE_MD; |
| |
| udf_debug("Metadata Ident suffix=0x%x\n", |
| le16_to_cpu(*(__le16 *) |
| mdm->partIdent.identSuffix)); |
| udf_debug("Metadata part num=%u\n", |
| le16_to_cpu(mdm->partitionNum)); |
| udf_debug("Metadata part alloc unit size=%u\n", |
| le32_to_cpu(mdm->allocUnitSize)); |
| udf_debug("Metadata file loc=%u\n", |
| le32_to_cpu(mdm->metadataFileLoc)); |
| udf_debug("Mirror file loc=%u\n", |
| le32_to_cpu(mdm->metadataMirrorFileLoc)); |
| udf_debug("Bitmap file loc=%u\n", |
| le32_to_cpu(mdm->metadataBitmapFileLoc)); |
| udf_debug("Flags: %d %u\n", |
| mdata->s_flags, mdm->flags); |
| } else { |
| udf_debug("Unknown ident: %s\n", |
| upm2->partIdent.ident); |
| continue; |
| } |
| map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); |
| map->s_partition_num = le16_to_cpu(upm2->partitionNum); |
| } |
| udf_debug("Partition (%d:%u) type %u on volume %u\n", |
| i, map->s_partition_num, type, map->s_volumeseqnum); |
| } |
| |
| if (fileset) { |
| struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); |
| |
| *fileset = lelb_to_cpu(la->extLocation); |
| udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", |
| fileset->logicalBlockNum, |
| fileset->partitionReferenceNum); |
| } |
| if (lvd->integritySeqExt.extLength) |
| udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); |
| ret = 0; |
| |
| if (!sbi->s_lvid_bh) { |
| /* We can't generate unique IDs without a valid LVID */ |
| if (sb_rdonly(sb)) { |
| UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); |
| } else { |
| udf_warn(sb, "Damaged or missing LVID, forcing " |
| "readonly mount\n"); |
| ret = -EACCES; |
| } |
| } |
| out_bh: |
| brelse(bh); |
| return ret; |
| } |
| |
| static bool udf_lvid_valid(struct super_block *sb, |
| struct logicalVolIntegrityDesc *lvid) |
| { |
| u32 parts, impuselen; |
| |
| parts = le32_to_cpu(lvid->numOfPartitions); |
| impuselen = le32_to_cpu(lvid->lengthOfImpUse); |
| if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize || |
| sizeof(struct logicalVolIntegrityDesc) + impuselen + |
| 2 * parts * sizeof(u32) > sb->s_blocksize) |
| return false; |
| return true; |
| } |
| |
| /* |
| * Find the prevailing Logical Volume Integrity Descriptor. |
| */ |
| static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) |
| { |
| struct buffer_head *bh, *final_bh; |
| uint16_t ident; |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| struct logicalVolIntegrityDesc *lvid; |
| int indirections = 0; |
| |
| while (++indirections <= UDF_MAX_LVID_NESTING) { |
| final_bh = NULL; |
| while (loc.extLength > 0 && |
| (bh = udf_read_tagged(sb, loc.extLocation, |
| loc.extLocation, &ident))) { |
| if (ident != TAG_IDENT_LVID) { |
| brelse(bh); |
| break; |
| } |
| |
| brelse(final_bh); |
| final_bh = bh; |
| |
| loc.extLength -= sb->s_blocksize; |
| loc.extLocation++; |
| } |
| |
| if (!final_bh) |
| return; |
| |
| lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; |
| if (udf_lvid_valid(sb, lvid)) { |
| brelse(sbi->s_lvid_bh); |
| sbi->s_lvid_bh = final_bh; |
| } else { |
| udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), " |
| "ignoring.\n", |
| le32_to_cpu(lvid->numOfPartitions), |
| le32_to_cpu(lvid->lengthOfImpUse)); |
| } |
| |
| if (lvid->nextIntegrityExt.extLength == 0) |
| return; |
| |
| loc = leea_to_cpu(lvid->nextIntegrityExt); |
| } |
| |
| udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", |
| UDF_MAX_LVID_NESTING); |
| brelse(sbi->s_lvid_bh); |
| sbi->s_lvid_bh = NULL; |
| } |
| |
| /* |
| * Step for reallocation of table of partition descriptor sequence numbers. |
| * Must be power of 2. |
| */ |
| #define PART_DESC_ALLOC_STEP 32 |
| |
| struct part_desc_seq_scan_data { |
| struct udf_vds_record rec; |
| u32 partnum; |
| }; |
| |
| struct desc_seq_scan_data { |
| struct udf_vds_record vds[VDS_POS_LENGTH]; |
| unsigned int size_part_descs; |
| unsigned int num_part_descs; |
| struct part_desc_seq_scan_data *part_descs_loc; |
| }; |
| |
| static struct udf_vds_record *handle_partition_descriptor( |
| struct buffer_head *bh, |
| struct desc_seq_scan_data *data) |
| { |
| struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; |
| int partnum; |
| int i; |
| |
| partnum = le16_to_cpu(desc->partitionNumber); |
| for (i = 0; i < data->num_part_descs; i++) |
| if (partnum == data->part_descs_loc[i].partnum) |
| return &(data->part_descs_loc[i].rec); |
| if (data->num_part_descs >= data->size_part_descs) { |
| struct part_desc_seq_scan_data *new_loc; |
| unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); |
| |
| new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); |
| if (!new_loc) |
| return ERR_PTR(-ENOMEM); |
| memcpy(new_loc, data->part_descs_loc, |
| data->size_part_descs * sizeof(*new_loc)); |
| kfree(data->part_descs_loc); |
| data->part_descs_loc = new_loc; |
| data->size_part_descs = new_size; |
| } |
| return &(data->part_descs_loc[data->num_part_descs++].rec); |
| } |
| |
| |
| static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, |
| struct buffer_head *bh, struct desc_seq_scan_data *data) |
| { |
| switch (ident) { |
| case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ |
| return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); |
| case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ |
| return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); |
| case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ |
| return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); |
| case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ |
| return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); |
| case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ |
| return handle_partition_descriptor(bh, data); |
| } |
| return NULL; |
| } |
| |
| /* |
| * Process a main/reserve volume descriptor sequence. |
| * @block First block of first extent of the sequence. |
| * @lastblock Lastblock of first extent of the sequence. |
| * @fileset There we store extent containing root fileset |
| * |
| * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor |
| * sequence |
| */ |
| static noinline int udf_process_sequence( |
| struct super_block *sb, |
| sector_t block, sector_t lastblock, |
| struct kernel_lb_addr *fileset) |
| { |
| struct buffer_head *bh = NULL; |
| struct udf_vds_record *curr; |
| struct generic_desc *gd; |
| struct volDescPtr *vdp; |
| bool done = false; |
| uint32_t vdsn; |
| uint16_t ident; |
| int ret; |
| unsigned int indirections = 0; |
| struct desc_seq_scan_data data; |
| unsigned int i; |
| |
| memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); |
| data.size_part_descs = PART_DESC_ALLOC_STEP; |
| data.num_part_descs = 0; |
| data.part_descs_loc = kcalloc(data.size_part_descs, |
| sizeof(*data.part_descs_loc), |
| GFP_KERNEL); |
| if (!data.part_descs_loc) |
| return -ENOMEM; |
| |
| /* |
| * Read the main descriptor sequence and find which descriptors |
| * are in it. |
| */ |
| for (; (!done && block <= lastblock); block++) { |
| bh = udf_read_tagged(sb, block, block, &ident); |
| if (!bh) |
| break; |
| |
| /* Process each descriptor (ISO 13346 3/8.3-8.4) */ |
| gd = (struct generic_desc *)bh->b_data; |
| vdsn = le32_to_cpu(gd->volDescSeqNum); |
| switch (ident) { |
| case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ |
| if (++indirections > UDF_MAX_TD_NESTING) { |
| udf_err(sb, "too many Volume Descriptor " |
| "Pointers (max %u supported)\n", |
| UDF_MAX_TD_NESTING); |
| brelse(bh); |
| ret = -EIO; |
| goto out; |
| } |
| |
| vdp = (struct volDescPtr *)bh->b_data; |
| block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); |
| lastblock = le32_to_cpu( |
| vdp->nextVolDescSeqExt.extLength) >> |
| sb->s_blocksize_bits; |
| lastblock += block - 1; |
| /* For loop is going to increment 'block' again */ |
| block--; |
| break; |
| case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ |
| case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ |
| case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ |
| case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ |
| case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ |
| curr = get_volume_descriptor_record(ident, bh, &data); |
| if (IS_ERR(curr)) { |
| brelse(bh); |
| ret = PTR_ERR(curr); |
| goto out; |
| } |
| /* Descriptor we don't care about? */ |
| if (!curr) |
| break; |
| if (vdsn >= curr->volDescSeqNum) { |
| curr->volDescSeqNum = vdsn; |
| curr->block = block; |
| } |
| break; |
| case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ |
| done = true; |
| break; |
| } |
| brelse(bh); |
| } |
| /* |
| * Now read interesting descriptors again and process them |
| * in a suitable order |
| */ |
| if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { |
| udf_err(sb, "Primary Volume Descriptor not found!\n"); |
| ret = -EAGAIN; |
| goto out; |
| } |
| ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); |
| if (ret < 0) |
| goto out; |
| |
| if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { |
| ret = udf_load_logicalvol(sb, |
| data.vds[VDS_POS_LOGICAL_VOL_DESC].block, |
| fileset); |
| if (ret < 0) |
| goto out; |
| } |
| |
| /* Now handle prevailing Partition Descriptors */ |
| for (i = 0; i < data.num_part_descs; i++) { |
| ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block); |
| if (ret < 0) |
| goto out; |
| } |
| ret = 0; |
| out: |
| kfree(data.part_descs_loc); |
| return ret; |
| } |
| |
| /* |
| * Load Volume Descriptor Sequence described by anchor in bh |
| * |
| * Returns <0 on error, 0 on success |
| */ |
| static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, |
| struct kernel_lb_addr *fileset) |
| { |
| struct anchorVolDescPtr *anchor; |
| sector_t main_s, main_e, reserve_s, reserve_e; |
| int ret; |
| |
| anchor = (struct anchorVolDescPtr *)bh->b_data; |
| |
| /* Locate the main sequence */ |
| main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); |
| main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); |
| main_e = main_e >> sb->s_blocksize_bits; |
| main_e += main_s - 1; |
| |
| /* Locate the reserve sequence */ |
| reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); |
| reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); |
| reserve_e = reserve_e >> sb->s_blocksize_bits; |
| reserve_e += reserve_s - 1; |
| |
| /* Process the main & reserve sequences */ |
| /* responsible for finding the PartitionDesc(s) */ |
| ret = udf_process_sequence(sb, main_s, main_e, fileset); |
| if (ret != -EAGAIN) |
| return ret; |
| udf_sb_free_partitions(sb); |
| ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); |
| if (ret < 0) { |
| udf_sb_free_partitions(sb); |
| /* No sequence was OK, return -EIO */ |
| if (ret == -EAGAIN) |
| ret = -EIO; |
| } |
| return ret; |
| } |
| |
| /* |
| * Check whether there is an anchor block in the given block and |
| * load Volume Descriptor Sequence if so. |
| * |
| * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor |
| * block |
| */ |
| static int udf_check_anchor_block(struct super_block *sb, sector_t block, |
| struct kernel_lb_addr *fileset) |
| { |
| struct buffer_head *bh; |
| uint16_t ident; |
| int ret; |
| |
| bh = udf_read_tagged(sb, block, block, &ident); |
| if (!bh) |
| return -EAGAIN; |
| if (ident != TAG_IDENT_AVDP) { |
| brelse(bh); |
| return -EAGAIN; |
| } |
| ret = udf_load_sequence(sb, bh, fileset); |
| brelse(bh); |
| return ret; |
| } |
| |
| /* |
| * Search for an anchor volume descriptor pointer. |
| * |
| * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set |
| * of anchors. |
| */ |
| static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock, |
| struct kernel_lb_addr *fileset) |
| { |
| udf_pblk_t last[6]; |
| int i; |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| int last_count = 0; |
| int ret; |
| |
| /* First try user provided anchor */ |
| if (sbi->s_anchor) { |
| ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); |
| if (ret != -EAGAIN) |
| return ret; |
| } |
| /* |
| * according to spec, anchor is in either: |
| * block 256 |
| * lastblock-256 |
| * lastblock |
| * however, if the disc isn't closed, it could be 512. |
| */ |
| ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); |
| if (ret != -EAGAIN) |
| return ret; |
| /* |
| * The trouble is which block is the last one. Drives often misreport |
| * this so we try various possibilities. |
| */ |
| last[last_count++] = *lastblock; |
| if (*lastblock >= 1) |
| last[last_count++] = *lastblock - 1; |
| last[last_count++] = *lastblock + 1; |
| if (*lastblock >= 2) |
| last[last_count++] = *lastblock - 2; |
| if (*lastblock >= 150) |
| last[last_count++] = *lastblock - 150; |
| if (*lastblock >= 152) |
| last[last_count++] = *lastblock - 152; |
| |
| for (i = 0; i < last_count; i++) { |
| if (last[i] >= sb_bdev_nr_blocks(sb)) |
| continue; |
| ret = udf_check_anchor_block(sb, last[i], fileset); |
| if (ret != -EAGAIN) { |
| if (!ret) |
| *lastblock = last[i]; |
| return ret; |
| } |
| if (last[i] < 256) |
| continue; |
| ret = udf_check_anchor_block(sb, last[i] - 256, fileset); |
| if (ret != -EAGAIN) { |
| if (!ret) |
| *lastblock = last[i]; |
| return ret; |
| } |
| } |
| |
| /* Finally try block 512 in case media is open */ |
| return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); |
| } |
| |
| /* |
| * Check Volume Structure Descriptor, find Anchor block and load Volume |
| * Descriptor Sequence. |
| * |
| * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor |
| * block was not found. |
| */ |
| static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, |
| int silent, struct kernel_lb_addr *fileset) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| int nsr = 0; |
| int ret; |
| |
| if (!sb_set_blocksize(sb, uopt->blocksize)) { |
| if (!silent) |
| udf_warn(sb, "Bad block size\n"); |
| return -EINVAL; |
| } |
| sbi->s_last_block = uopt->lastblock; |
| if (!UDF_QUERY_FLAG(sb, UDF_FLAG_NOVRS)) { |
| /* Check that it is NSR02 compliant */ |
| nsr = udf_check_vsd(sb); |
| if (!nsr) { |
| if (!silent) |
| udf_warn(sb, "No VRS found\n"); |
| return -EINVAL; |
| } |
| if (nsr == -1) |
| udf_debug("Failed to read sector at offset %d. " |
| "Assuming open disc. Skipping validity " |
| "check\n", VSD_FIRST_SECTOR_OFFSET); |
| if (!sbi->s_last_block) |
| sbi->s_last_block = udf_get_last_block(sb); |
| } else { |
| udf_debug("Validity check skipped because of novrs option\n"); |
| } |
| |
| /* Look for anchor block and load Volume Descriptor Sequence */ |
| sbi->s_anchor = uopt->anchor; |
| ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset); |
| if (ret < 0) { |
| if (!silent && ret == -EAGAIN) |
| udf_warn(sb, "No anchor found\n"); |
| return ret; |
| } |
| return 0; |
| } |
| |
| static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid) |
| { |
| struct timespec64 ts; |
| |
| ktime_get_real_ts64(&ts); |
| udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); |
| lvid->descTag.descCRC = cpu_to_le16( |
| crc_itu_t(0, (char *)lvid + sizeof(struct tag), |
| le16_to_cpu(lvid->descTag.descCRCLength))); |
| lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); |
| } |
| |
| static void udf_open_lvid(struct super_block *sb) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| struct buffer_head *bh = sbi->s_lvid_bh; |
| struct logicalVolIntegrityDesc *lvid; |
| struct logicalVolIntegrityDescImpUse *lvidiu; |
| |
| if (!bh) |
| return; |
| lvid = (struct logicalVolIntegrityDesc *)bh->b_data; |
| lvidiu = udf_sb_lvidiu(sb); |
| if (!lvidiu) |
| return; |
| |
| mutex_lock(&sbi->s_alloc_mutex); |
| lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; |
| lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; |
| if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) |
| lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); |
| else |
| UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); |
| |
| udf_finalize_lvid(lvid); |
| mark_buffer_dirty(bh); |
| sbi->s_lvid_dirty = 0; |
| mutex_unlock(&sbi->s_alloc_mutex); |
| /* Make opening of filesystem visible on the media immediately */ |
| sync_dirty_buffer(bh); |
| } |
| |
| static void udf_close_lvid(struct super_block *sb) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| struct buffer_head *bh = sbi->s_lvid_bh; |
| struct logicalVolIntegrityDesc *lvid; |
| struct logicalVolIntegrityDescImpUse *lvidiu; |
| |
| if (!bh) |
| return; |
| lvid = (struct logicalVolIntegrityDesc *)bh->b_data; |
| lvidiu = udf_sb_lvidiu(sb); |
| if (!lvidiu) |
| return; |
| |
| mutex_lock(&sbi->s_alloc_mutex); |
| lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; |
| lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; |
| if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) |
| lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); |
| if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) |
| lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); |
| if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) |
| lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); |
| if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) |
| lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); |
| |
| /* |
| * We set buffer uptodate unconditionally here to avoid spurious |
| * warnings from mark_buffer_dirty() when previous EIO has marked |
| * the buffer as !uptodate |
| */ |
| set_buffer_uptodate(bh); |
| udf_finalize_lvid(lvid); |
| mark_buffer_dirty(bh); |
| sbi->s_lvid_dirty = 0; |
| mutex_unlock(&sbi->s_alloc_mutex); |
| /* Make closing of filesystem visible on the media immediately */ |
| sync_dirty_buffer(bh); |
| } |
| |
| u64 lvid_get_unique_id(struct super_block *sb) |
| { |
| struct buffer_head *bh; |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| struct logicalVolIntegrityDesc *lvid; |
| struct logicalVolHeaderDesc *lvhd; |
| u64 uniqueID; |
| u64 ret; |
| |
| bh = sbi->s_lvid_bh; |
| if (!bh) |
| return 0; |
| |
| lvid = (struct logicalVolIntegrityDesc *)bh->b_data; |
| lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; |
| |
| mutex_lock(&sbi->s_alloc_mutex); |
| ret = uniqueID = le64_to_cpu(lvhd->uniqueID); |
| if (!(++uniqueID & 0xFFFFFFFF)) |
| uniqueID += 16; |
| lvhd->uniqueID = cpu_to_le64(uniqueID); |
| udf_updated_lvid(sb); |
| mutex_unlock(&sbi->s_alloc_mutex); |
| |
| return ret; |
| } |
| |
| static int udf_fill_super(struct super_block *sb, struct fs_context *fc) |
| { |
| int ret = -EINVAL; |
| struct inode *inode = NULL; |
| struct udf_options *uopt = fc->fs_private; |
| struct kernel_lb_addr rootdir, fileset; |
| struct udf_sb_info *sbi; |
| bool lvid_open = false; |
| int silent = fc->sb_flags & SB_SILENT; |
| |
| sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); |
| if (!sbi) |
| return -ENOMEM; |
| |
| sb->s_fs_info = sbi; |
| |
| mutex_init(&sbi->s_alloc_mutex); |
| |
| fileset.logicalBlockNum = 0xFFFFFFFF; |
| fileset.partitionReferenceNum = 0xFFFF; |
| |
| sbi->s_flags = uopt->flags; |
| sbi->s_uid = uopt->uid; |
| sbi->s_gid = uopt->gid; |
| sbi->s_umask = uopt->umask; |
| sbi->s_fmode = uopt->fmode; |
| sbi->s_dmode = uopt->dmode; |
| sbi->s_nls_map = uopt->nls_map; |
| uopt->nls_map = NULL; |
| rwlock_init(&sbi->s_cred_lock); |
| |
| if (uopt->session == 0xFFFFFFFF) |
| sbi->s_session = udf_get_last_session(sb); |
| else |
| sbi->s_session = uopt->session; |
| |
| udf_debug("Multi-session=%d\n", sbi->s_session); |
| |
| /* Fill in the rest of the superblock */ |
| sb->s_op = &udf_sb_ops; |
| sb->s_export_op = &udf_export_ops; |
| |
| sb->s_magic = UDF_SUPER_MAGIC; |
| sb->s_time_gran = 1000; |
| |
| if (uopt->flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { |
| ret = udf_load_vrs(sb, uopt, silent, &fileset); |
| } else { |
| uopt->blocksize = bdev_logical_block_size(sb->s_bdev); |
| while (uopt->blocksize <= 4096) { |
| ret = udf_load_vrs(sb, uopt, silent, &fileset); |
| if (ret < 0) { |
| if (!silent && ret != -EACCES) { |
| pr_notice("Scanning with blocksize %u failed\n", |
| uopt->blocksize); |
| } |
| brelse(sbi->s_lvid_bh); |
| sbi->s_lvid_bh = NULL; |
| /* |
| * EACCES is special - we want to propagate to |
| * upper layers that we cannot handle RW mount. |
| */ |
| if (ret == -EACCES) |
| break; |
| } else |
| break; |
| |
| uopt->blocksize <<= 1; |
| } |
| } |
| if (ret < 0) { |
| if (ret == -EAGAIN) { |
| udf_warn(sb, "No partition found (1)\n"); |
| ret = -EINVAL; |
| } |
| goto error_out; |
| } |
| |
| udf_debug("Lastblock=%u\n", sbi->s_last_block); |
| |
| if (sbi->s_lvid_bh) { |
| struct logicalVolIntegrityDescImpUse *lvidiu = |
| udf_sb_lvidiu(sb); |
| uint16_t minUDFReadRev; |
| uint16_t minUDFWriteRev; |
| |
| if (!lvidiu) { |
| ret = -EINVAL; |
| goto error_out; |
| } |
| minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); |
| minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); |
| if (minUDFReadRev > UDF_MAX_READ_VERSION) { |
| udf_err(sb, "minUDFReadRev=%x (max is %x)\n", |
| minUDFReadRev, |
| UDF_MAX_READ_VERSION); |
| ret = -EINVAL; |
| goto error_out; |
| } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) { |
| if (!sb_rdonly(sb)) { |
| ret = -EACCES; |
| goto error_out; |
| } |
| UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); |
| } |
| |
| sbi->s_udfrev = minUDFWriteRev; |
| |
| if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) |
| UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); |
| if (minUDFReadRev >= UDF_VERS_USE_STREAMS) |
| UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); |
| } |
| |
| if (!sbi->s_partitions) { |
| udf_warn(sb, "No partition found (2)\n"); |
| ret = -EINVAL; |
| goto error_out; |
| } |
| |
| if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & |
| UDF_PART_FLAG_READ_ONLY) { |
| if (!sb_rdonly(sb)) { |
| ret = -EACCES; |
| goto error_out; |
| } |
| UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); |
| } |
| |
| ret = udf_find_fileset(sb, &fileset, &rootdir); |
| if (ret < 0) { |
| udf_warn(sb, "No fileset found\n"); |
| goto error_out; |
| } |
| |
| if (!silent) { |
| struct timestamp ts; |
| udf_time_to_disk_stamp(&ts, sbi->s_record_time); |
| udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", |
| sbi->s_volume_ident, |
| le16_to_cpu(ts.year), ts.month, ts.day, |
| ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); |
| } |
| if (!sb_rdonly(sb)) { |
| udf_open_lvid(sb); |
| lvid_open = true; |
| } |
| |
| /* Assign the root inode */ |
| /* assign inodes by physical block number */ |
| /* perhaps it's not extensible enough, but for now ... */ |
| inode = udf_iget(sb, &rootdir); |
| if (IS_ERR(inode)) { |
| udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", |
| rootdir.logicalBlockNum, rootdir.partitionReferenceNum); |
| ret = PTR_ERR(inode); |
| goto error_out; |
| } |
| |
| /* Allocate a dentry for the root inode */ |
| sb->s_root = d_make_root(inode); |
| if (!sb->s_root) { |
| udf_err(sb, "Couldn't allocate root dentry\n"); |
| ret = -ENOMEM; |
| goto error_out; |
| } |
| sb->s_maxbytes = UDF_MAX_FILESIZE; |
| sb->s_max_links = UDF_MAX_LINKS; |
| return 0; |
| |
| error_out: |
| iput(sbi->s_vat_inode); |
| unload_nls(uopt->nls_map); |
| if (lvid_open) |
| udf_close_lvid(sb); |
| brelse(sbi->s_lvid_bh); |
| udf_sb_free_partitions(sb); |
| kfree(sbi); |
| sb->s_fs_info = NULL; |
| |
| return ret; |
| } |
| |
| void _udf_err(struct super_block *sb, const char *function, |
| const char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| va_start(args, fmt); |
| |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); |
| |
| va_end(args); |
| } |
| |
| void _udf_warn(struct super_block *sb, const char *function, |
| const char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| va_start(args, fmt); |
| |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); |
| |
| va_end(args); |
| } |
| |
| static void udf_put_super(struct super_block *sb) |
| { |
| struct udf_sb_info *sbi; |
| |
| sbi = UDF_SB(sb); |
| |
| iput(sbi->s_vat_inode); |
| unload_nls(sbi->s_nls_map); |
| if (!sb_rdonly(sb)) |
| udf_close_lvid(sb); |
| brelse(sbi->s_lvid_bh); |
| udf_sb_free_partitions(sb); |
| mutex_destroy(&sbi->s_alloc_mutex); |
| kfree(sb->s_fs_info); |
| sb->s_fs_info = NULL; |
| } |
| |
| static int udf_sync_fs(struct super_block *sb, int wait) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| |
| mutex_lock(&sbi->s_alloc_mutex); |
| if (sbi->s_lvid_dirty) { |
| struct buffer_head *bh = sbi->s_lvid_bh; |
| struct logicalVolIntegrityDesc *lvid; |
| |
| lvid = (struct logicalVolIntegrityDesc *)bh->b_data; |
| udf_finalize_lvid(lvid); |
| |
| /* |
| * Blockdevice will be synced later so we don't have to submit |
| * the buffer for IO |
| */ |
| mark_buffer_dirty(bh); |
| sbi->s_lvid_dirty = 0; |
| } |
| mutex_unlock(&sbi->s_alloc_mutex); |
| |
| return 0; |
| } |
| |
| static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) |
| { |
| struct super_block *sb = dentry->d_sb; |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| struct logicalVolIntegrityDescImpUse *lvidiu; |
| u64 id = huge_encode_dev(sb->s_bdev->bd_dev); |
| |
| lvidiu = udf_sb_lvidiu(sb); |
| buf->f_type = UDF_SUPER_MAGIC; |
| buf->f_bsize = sb->s_blocksize; |
| buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; |
| buf->f_bfree = udf_count_free(sb); |
| buf->f_bavail = buf->f_bfree; |
| /* |
| * Let's pretend each free block is also a free 'inode' since UDF does |
| * not have separate preallocated table of inodes. |
| */ |
| buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + |
| le32_to_cpu(lvidiu->numDirs)) : 0) |
| + buf->f_bfree; |
| buf->f_ffree = buf->f_bfree; |
| buf->f_namelen = UDF_NAME_LEN; |
| buf->f_fsid = u64_to_fsid(id); |
| |
| return 0; |
| } |
| |
| static unsigned int udf_count_free_bitmap(struct super_block *sb, |
| struct udf_bitmap *bitmap) |
| { |
| struct buffer_head *bh = NULL; |
| unsigned int accum = 0; |
| int index; |
| udf_pblk_t block = 0, newblock; |
| struct kernel_lb_addr loc; |
| uint32_t bytes; |
| uint8_t *ptr; |
| uint16_t ident; |
| struct spaceBitmapDesc *bm; |
| |
| loc.logicalBlockNum = bitmap->s_extPosition; |
| loc.partitionReferenceNum = UDF_SB(sb)->s_partition; |
| bh = udf_read_ptagged(sb, &loc, 0, &ident); |
| |
| if (!bh) { |
| udf_err(sb, "udf_count_free failed\n"); |
| goto out; |
| } else if (ident != TAG_IDENT_SBD) { |
| brelse(bh); |
| udf_err(sb, "udf_count_free failed\n"); |
| goto out; |
| } |
| |
| bm = (struct spaceBitmapDesc *)bh->b_data; |
| bytes = le32_to_cpu(bm->numOfBytes); |
| index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ |
| ptr = (uint8_t *)bh->b_data; |
| |
| while (bytes > 0) { |
| u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); |
| accum += bitmap_weight((const unsigned long *)(ptr + index), |
| cur_bytes * 8); |
| bytes -= cur_bytes; |
| if (bytes) { |
| brelse(bh); |
| newblock = udf_get_lb_pblock(sb, &loc, ++block); |
| bh = sb_bread(sb, newblock); |
| if (!bh) { |
| udf_debug("read failed\n"); |
| goto out; |
| } |
| index = 0; |
| ptr = (uint8_t *)bh->b_data; |
| } |
| } |
| brelse(bh); |
| out: |
| return accum; |
| } |
| |
| static unsigned int udf_count_free_table(struct super_block *sb, |
| struct inode *table) |
| { |
| unsigned int accum = 0; |
| uint32_t elen; |
| struct kernel_lb_addr eloc; |
| struct extent_position epos; |
| |
| mutex_lock(&UDF_SB(sb)->s_alloc_mutex); |
| epos.block = UDF_I(table)->i_location; |
| epos.offset = sizeof(struct unallocSpaceEntry); |
| epos.bh = NULL; |
| |
| while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1) |
| accum += (elen >> table->i_sb->s_blocksize_bits); |
| |
| brelse(epos.bh); |
| mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); |
| |
| return accum; |
| } |
| |
| static unsigned int udf_count_free(struct super_block *sb) |
| { |
| unsigned int accum = 0; |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| struct udf_part_map *map; |
| unsigned int part = sbi->s_partition; |
| int ptype = sbi->s_partmaps[part].s_partition_type; |
| |
| if (ptype == UDF_METADATA_MAP25) { |
| part = sbi->s_partmaps[part].s_type_specific.s_metadata. |
| s_phys_partition_ref; |
| } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) { |
| /* |
| * Filesystems with VAT are append-only and we cannot write to |
| * them. Let's just report 0 here. |
| */ |
| return 0; |
| } |
| |
| if (sbi->s_lvid_bh) { |
| struct logicalVolIntegrityDesc *lvid = |
| (struct logicalVolIntegrityDesc *) |
| sbi->s_lvid_bh->b_data; |
| if (le32_to_cpu(lvid->numOfPartitions) > part) { |
| accum = le32_to_cpu( |
| lvid->freeSpaceTable[part]); |
| if (accum == 0xFFFFFFFF) |
| accum = 0; |
| } |
| } |
| |
| if (accum) |
| return accum; |
| |
| map = &sbi->s_partmaps[part]; |
| if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { |
| accum += udf_count_free_bitmap(sb, |
| map->s_uspace.s_bitmap); |
| } |
| if (accum) |
| return accum; |
| |
| if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { |
| accum += udf_count_free_table(sb, |
| map->s_uspace.s_table); |
| } |
| return accum; |
| } |
| |
| MODULE_AUTHOR("Ben Fennema"); |
| MODULE_DESCRIPTION("Universal Disk Format Filesystem"); |
| MODULE_LICENSE("GPL"); |
| module_init(init_udf_fs) |
| module_exit(exit_udf_fs) |