blob: 4f4a0e3b31140d97822493c4533ccfbf5500534f [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020-2021 Intel Corporation
*/
#include "i915_drv.h"
#include "i915_reg.h"
#include "i915_trace.h"
#include "intel_bios.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_dp_aux.h"
#include "intel_dp_aux_regs.h"
#include "intel_pps.h"
#include "intel_tc.h"
#define AUX_CH_NAME_BUFSIZE 6
static const char *aux_ch_name(struct drm_i915_private *i915,
char *buf, int size, enum aux_ch aux_ch)
{
if (DISPLAY_VER(i915) >= 13 && aux_ch >= AUX_CH_D_XELPD)
snprintf(buf, size, "%c", 'A' + aux_ch - AUX_CH_D_XELPD + AUX_CH_D);
else if (DISPLAY_VER(i915) >= 12 && aux_ch >= AUX_CH_USBC1)
snprintf(buf, size, "USBC%c", '1' + aux_ch - AUX_CH_USBC1);
else
snprintf(buf, size, "%c", 'A' + aux_ch);
return buf;
}
u32 intel_dp_aux_pack(const u8 *src, int src_bytes)
{
int i;
u32 v = 0;
if (src_bytes > 4)
src_bytes = 4;
for (i = 0; i < src_bytes; i++)
v |= ((u32)src[i]) << ((3 - i) * 8);
return v;
}
static void intel_dp_aux_unpack(u32 src, u8 *dst, int dst_bytes)
{
int i;
if (dst_bytes > 4)
dst_bytes = 4;
for (i = 0; i < dst_bytes; i++)
dst[i] = src >> ((3 - i) * 8);
}
static u32
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
const unsigned int timeout_ms = 10;
u32 status;
int ret;
ret = __intel_de_wait_for_register(i915, ch_ctl,
DP_AUX_CH_CTL_SEND_BUSY, 0,
2, timeout_ms, &status);
if (ret == -ETIMEDOUT)
drm_err(&i915->drm,
"%s: did not complete or timeout within %ums (status 0x%08x)\n",
intel_dp->aux.name, timeout_ms, status);
return status;
}
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
if (index)
return 0;
/*
* The clock divider is based off the hrawclk, and would like to run at
* 2MHz. So, take the hrawclk value and divide by 2000 and use that
*/
return DIV_ROUND_CLOSEST(RUNTIME_INFO(i915)->rawclk_freq, 2000);
}
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
u32 freq;
if (index)
return 0;
/*
* The clock divider is based off the cdclk or PCH rawclk, and would
* like to run at 2MHz. So, take the cdclk or PCH rawclk value and
* divide by 2000 and use that
*/
if (dig_port->aux_ch == AUX_CH_A)
freq = i915->display.cdclk.hw.cdclk;
else
freq = RUNTIME_INFO(i915)->rawclk_freq;
return DIV_ROUND_CLOSEST(freq, 2000);
}
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(i915)) {
/* Workaround for non-ULT HSW */
switch (index) {
case 0: return 63;
case 1: return 72;
default: return 0;
}
}
return ilk_get_aux_clock_divider(intel_dp, index);
}
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
/*
* SKL doesn't need us to program the AUX clock divider (Hardware will
* derive the clock from CDCLK automatically). We still implement the
* get_aux_clock_divider vfunc to plug-in into the existing code.
*/
return index ? 0 : 1;
}
static int intel_dp_aux_sync_len(void)
{
int precharge = 16; /* 10-16 */
int preamble = 16;
return precharge + preamble;
}
static int intel_dp_aux_fw_sync_len(void)
{
int precharge = 10; /* 10-16 */
int preamble = 8;
return precharge + preamble;
}
static int g4x_dp_aux_precharge_len(void)
{
int precharge_min = 10;
int preamble = 16;
/* HW wants the length of the extra precharge in 2us units */
return (intel_dp_aux_sync_len() -
precharge_min - preamble) / 2;
}
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
int send_bytes,
u32 aux_clock_divider)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
u32 timeout;
/* Max timeout value on G4x-BDW: 1.6ms */
if (IS_BROADWELL(i915))
timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
else
timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
return DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_INTERRUPT |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
timeout |
DP_AUX_CH_CTL_RECEIVE_ERROR |
DP_AUX_CH_CTL_MESSAGE_SIZE(send_bytes) |
DP_AUX_CH_CTL_PRECHARGE_2US(g4x_dp_aux_precharge_len()) |
DP_AUX_CH_CTL_BIT_CLOCK_2X(aux_clock_divider);
}
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
int send_bytes,
u32 unused)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
u32 ret;
/*
* Max timeout values:
* SKL-GLK: 1.6ms
* ICL+: 4ms
*/
ret = DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_INTERRUPT |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_TIME_OUT_MAX |
DP_AUX_CH_CTL_RECEIVE_ERROR |
DP_AUX_CH_CTL_MESSAGE_SIZE(send_bytes) |
DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(intel_dp_aux_fw_sync_len()) |
DP_AUX_CH_CTL_SYNC_PULSE_SKL(intel_dp_aux_sync_len());
if (intel_tc_port_in_tbt_alt_mode(dig_port))
ret |= DP_AUX_CH_CTL_TBT_IO;
/*
* Power request bit is already set during aux power well enable.
* Preserve the bit across aux transactions.
*/
if (DISPLAY_VER(i915) >= 14)
ret |= XELPDP_DP_AUX_CH_CTL_POWER_REQUEST;
return ret;
}
static int
intel_dp_aux_xfer(struct intel_dp *intel_dp,
const u8 *send, int send_bytes,
u8 *recv, int recv_size,
u32 aux_send_ctl_flags)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &dig_port->base;
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
i915_reg_t ch_ctl, ch_data[5];
u32 aux_clock_divider;
enum intel_display_power_domain aux_domain;
intel_wakeref_t aux_wakeref;
intel_wakeref_t pps_wakeref;
int i, ret, recv_bytes;
int try, clock = 0;
u32 status;
bool vdd;
ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
for (i = 0; i < ARRAY_SIZE(ch_data); i++)
ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
intel_digital_port_lock(encoder);
/*
* Abort transfers on a disconnected port as required by
* DP 1.4a link CTS 4.2.1.5, also avoiding the long AUX
* timeouts that would otherwise happen.
*/
if (!intel_dp_is_edp(intel_dp) &&
!intel_digital_port_connected_locked(&dig_port->base)) {
ret = -ENXIO;
goto out_unlock;
}
aux_domain = intel_aux_power_domain(dig_port);
aux_wakeref = intel_display_power_get(i915, aux_domain);
pps_wakeref = intel_pps_lock(intel_dp);
/*
* We will be called with VDD already enabled for dpcd/edid/oui reads.
* In such cases we want to leave VDD enabled and it's up to upper layers
* to turn it off. But for eg. i2c-dev access we need to turn it on/off
* ourselves.
*/
vdd = intel_pps_vdd_on_unlocked(intel_dp);
/*
* dp aux is extremely sensitive to irq latency, hence request the
* lowest possible wakeup latency and so prevent the cpu from going into
* deep sleep states.
*/
cpu_latency_qos_update_request(&intel_dp->pm_qos, 0);
intel_pps_check_power_unlocked(intel_dp);
/*
* FIXME PSR should be disabled here to prevent
* it using the same AUX CH simultaneously
*/
/* Try to wait for any previous AUX channel activity */
for (try = 0; try < 3; try++) {
status = intel_de_read_notrace(i915, ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
msleep(1);
}
/* just trace the final value */
trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
if (try == 3) {
const u32 status = intel_de_read(i915, ch_ctl);
if (status != intel_dp->aux_busy_last_status) {
drm_WARN(&i915->drm, 1,
"%s: not started (status 0x%08x)\n",
intel_dp->aux.name, status);
intel_dp->aux_busy_last_status = status;
}
ret = -EBUSY;
goto out;
}
/* Only 5 data registers! */
if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
ret = -E2BIG;
goto out;
}
while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
send_bytes,
aux_clock_divider);
send_ctl |= aux_send_ctl_flags;
/* Must try at least 3 times according to DP spec */
for (try = 0; try < 5; try++) {
/* Load the send data into the aux channel data registers */
for (i = 0; i < send_bytes; i += 4)
intel_de_write(i915, ch_data[i >> 2],
intel_dp_aux_pack(send + i,
send_bytes - i));
/* Send the command and wait for it to complete */
intel_de_write(i915, ch_ctl, send_ctl);
status = intel_dp_aux_wait_done(intel_dp);
/* Clear done status and any errors */
intel_de_write(i915, ch_ctl,
status | DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
/*
* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
* 400us delay required for errors and timeouts
* Timeout errors from the HW already meet this
* requirement so skip to next iteration
*/
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
continue;
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
usleep_range(400, 500);
continue;
}
if (status & DP_AUX_CH_CTL_DONE)
goto done;
}
}
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
intel_dp->aux.name, status);
ret = -EBUSY;
goto out;
}
done:
/*
* Check for timeout or receive error. Timeouts occur when the sink is
* not connected.
*/
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
intel_dp->aux.name, status);
ret = -EIO;
goto out;
}
/*
* Timeouts occur when the device isn't connected, so they're "normal"
* -- don't fill the kernel log with these
*/
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
intel_dp->aux.name, status);
ret = -ETIMEDOUT;
goto out;
}
/* Unload any bytes sent back from the other side */
recv_bytes = REG_FIELD_GET(DP_AUX_CH_CTL_MESSAGE_SIZE_MASK, status);
/*
* By BSpec: "Message sizes of 0 or >20 are not allowed."
* We have no idea of what happened so we return -EBUSY so
* drm layer takes care for the necessary retries.
*/
if (recv_bytes == 0 || recv_bytes > 20) {
drm_dbg_kms(&i915->drm,
"%s: Forbidden recv_bytes = %d on aux transaction\n",
intel_dp->aux.name, recv_bytes);
ret = -EBUSY;
goto out;
}
if (recv_bytes > recv_size)
recv_bytes = recv_size;
for (i = 0; i < recv_bytes; i += 4)
intel_dp_aux_unpack(intel_de_read(i915, ch_data[i >> 2]),
recv + i, recv_bytes - i);
ret = recv_bytes;
out:
cpu_latency_qos_update_request(&intel_dp->pm_qos, PM_QOS_DEFAULT_VALUE);
if (vdd)
intel_pps_vdd_off_unlocked(intel_dp, false);
intel_pps_unlock(intel_dp, pps_wakeref);
intel_display_power_put_async(i915, aux_domain, aux_wakeref);
out_unlock:
intel_digital_port_unlock(encoder);
return ret;
}
#define BARE_ADDRESS_SIZE 3
#define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
const struct drm_dp_aux_msg *msg)
{
txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
txbuf[1] = (msg->address >> 8) & 0xff;
txbuf[2] = msg->address & 0xff;
txbuf[3] = msg->size - 1;
}
static u32 intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg *msg)
{
/*
* If we're trying to send the HDCP Aksv, we need to set a the Aksv
* select bit to inform the hardware to send the Aksv after our header
* since we can't access that data from software.
*/
if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_WRITE &&
msg->address == DP_AUX_HDCP_AKSV)
return DP_AUX_CH_CTL_AUX_AKSV_SELECT;
return 0;
}
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
{
struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
u8 txbuf[20], rxbuf[20];
size_t txsize, rxsize;
u32 flags = intel_dp_aux_xfer_flags(msg);
int ret;
intel_dp_aux_header(txbuf, msg);
switch (msg->request & ~DP_AUX_I2C_MOT) {
case DP_AUX_NATIVE_WRITE:
case DP_AUX_I2C_WRITE:
case DP_AUX_I2C_WRITE_STATUS_UPDATE:
txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
rxsize = 2; /* 0 or 1 data bytes */
if (drm_WARN_ON(&i915->drm, txsize > 20))
return -E2BIG;
drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size);
if (msg->buffer)
memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
rxbuf, rxsize, flags);
if (ret > 0) {
msg->reply = rxbuf[0] >> 4;
if (ret > 1) {
/* Number of bytes written in a short write. */
ret = clamp_t(int, rxbuf[1], 0, msg->size);
} else {
/* Return payload size. */
ret = msg->size;
}
}
break;
case DP_AUX_NATIVE_READ:
case DP_AUX_I2C_READ:
txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
rxsize = msg->size + 1;
if (drm_WARN_ON(&i915->drm, rxsize > 20))
return -E2BIG;
ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
rxbuf, rxsize, flags);
if (ret > 0) {
msg->reply = rxbuf[0] >> 4;
/*
* Assume happy day, and copy the data. The caller is
* expected to check msg->reply before touching it.
*
* Return payload size.
*/
ret--;
memcpy(msg->buffer, rxbuf + 1, ret);
}
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static i915_reg_t vlv_aux_ctl_reg(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
return VLV_DP_AUX_CH_CTL(aux_ch);
default:
MISSING_CASE(aux_ch);
return VLV_DP_AUX_CH_CTL(AUX_CH_B);
}
}
static i915_reg_t vlv_aux_data_reg(struct intel_dp *intel_dp, int index)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
return VLV_DP_AUX_CH_DATA(aux_ch, index);
default:
MISSING_CASE(aux_ch);
return VLV_DP_AUX_CH_DATA(AUX_CH_B, index);
}
}
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
return DP_AUX_CH_CTL(aux_ch);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_CTL(AUX_CH_B);
}
}
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
return DP_AUX_CH_DATA(aux_ch, index);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_DATA(AUX_CH_B, index);
}
}
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
return DP_AUX_CH_CTL(aux_ch);
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
return PCH_DP_AUX_CH_CTL(aux_ch);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_CTL(AUX_CH_A);
}
}
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
return DP_AUX_CH_DATA(aux_ch, index);
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
return PCH_DP_AUX_CH_DATA(aux_ch, index);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_DATA(AUX_CH_A, index);
}
}
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
case AUX_CH_E:
case AUX_CH_F:
return DP_AUX_CH_CTL(aux_ch);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_CTL(AUX_CH_A);
}
}
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
case AUX_CH_E:
case AUX_CH_F:
return DP_AUX_CH_DATA(aux_ch, index);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_DATA(AUX_CH_A, index);
}
}
static i915_reg_t tgl_aux_ctl_reg(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_USBC1:
case AUX_CH_USBC2:
case AUX_CH_USBC3:
case AUX_CH_USBC4:
case AUX_CH_USBC5: /* aka AUX_CH_D_XELPD */
case AUX_CH_USBC6: /* aka AUX_CH_E_XELPD */
return DP_AUX_CH_CTL(aux_ch);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_CTL(AUX_CH_A);
}
}
static i915_reg_t tgl_aux_data_reg(struct intel_dp *intel_dp, int index)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_USBC1:
case AUX_CH_USBC2:
case AUX_CH_USBC3:
case AUX_CH_USBC4:
case AUX_CH_USBC5: /* aka AUX_CH_D_XELPD */
case AUX_CH_USBC6: /* aka AUX_CH_E_XELPD */
return DP_AUX_CH_DATA(aux_ch, index);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_DATA(AUX_CH_A, index);
}
}
static i915_reg_t xelpdp_aux_ctl_reg(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
case AUX_CH_B:
case AUX_CH_USBC1:
case AUX_CH_USBC2:
case AUX_CH_USBC3:
case AUX_CH_USBC4:
return XELPDP_DP_AUX_CH_CTL(i915, aux_ch);
default:
MISSING_CASE(aux_ch);
return XELPDP_DP_AUX_CH_CTL(i915, AUX_CH_A);
}
}
static i915_reg_t xelpdp_aux_data_reg(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
case AUX_CH_B:
case AUX_CH_USBC1:
case AUX_CH_USBC2:
case AUX_CH_USBC3:
case AUX_CH_USBC4:
return XELPDP_DP_AUX_CH_DATA(i915, aux_ch, index);
default:
MISSING_CASE(aux_ch);
return XELPDP_DP_AUX_CH_DATA(i915, AUX_CH_A, index);
}
}
void intel_dp_aux_fini(struct intel_dp *intel_dp)
{
if (cpu_latency_qos_request_active(&intel_dp->pm_qos))
cpu_latency_qos_remove_request(&intel_dp->pm_qos);
kfree(intel_dp->aux.name);
}
void intel_dp_aux_init(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &dig_port->base;
enum aux_ch aux_ch = dig_port->aux_ch;
char buf[AUX_CH_NAME_BUFSIZE];
if (DISPLAY_VER(i915) >= 14) {
intel_dp->aux_ch_ctl_reg = xelpdp_aux_ctl_reg;
intel_dp->aux_ch_data_reg = xelpdp_aux_data_reg;
} else if (DISPLAY_VER(i915) >= 12) {
intel_dp->aux_ch_ctl_reg = tgl_aux_ctl_reg;
intel_dp->aux_ch_data_reg = tgl_aux_data_reg;
} else if (DISPLAY_VER(i915) >= 9) {
intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
intel_dp->aux_ch_data_reg = skl_aux_data_reg;
} else if (HAS_PCH_SPLIT(i915)) {
intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
} else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
intel_dp->aux_ch_ctl_reg = vlv_aux_ctl_reg;
intel_dp->aux_ch_data_reg = vlv_aux_data_reg;
} else {
intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
}
if (DISPLAY_VER(i915) >= 9)
intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
else if (IS_BROADWELL(i915) || IS_HASWELL(i915))
intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
else if (HAS_PCH_SPLIT(i915))
intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
else
intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
if (DISPLAY_VER(i915) >= 9)
intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
else
intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
intel_dp->aux.drm_dev = &i915->drm;
drm_dp_aux_init(&intel_dp->aux);
/* Failure to allocate our preferred name is not critical */
intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %s/%s",
aux_ch_name(i915, buf, sizeof(buf), aux_ch),
encoder->base.name);
intel_dp->aux.transfer = intel_dp_aux_transfer;
cpu_latency_qos_add_request(&intel_dp->pm_qos, PM_QOS_DEFAULT_VALUE);
}
static enum aux_ch default_aux_ch(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
/* SKL has DDI E but no AUX E */
if (DISPLAY_VER(i915) == 9 && encoder->port == PORT_E)
return AUX_CH_A;
return (enum aux_ch)encoder->port;
}
static struct intel_encoder *
get_encoder_by_aux_ch(struct intel_encoder *encoder,
enum aux_ch aux_ch)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_encoder *other;
for_each_intel_encoder(&i915->drm, other) {
if (other == encoder)
continue;
if (!intel_encoder_is_dig_port(other))
continue;
if (enc_to_dig_port(other)->aux_ch == aux_ch)
return other;
}
return NULL;
}
enum aux_ch intel_dp_aux_ch(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_encoder *other;
const char *source;
enum aux_ch aux_ch;
char buf[AUX_CH_NAME_BUFSIZE];
aux_ch = intel_bios_dp_aux_ch(encoder->devdata);
source = "VBT";
if (aux_ch == AUX_CH_NONE) {
aux_ch = default_aux_ch(encoder);
source = "platform default";
}
if (aux_ch == AUX_CH_NONE)
return AUX_CH_NONE;
/* FIXME validate aux_ch against platform caps */
other = get_encoder_by_aux_ch(encoder, aux_ch);
if (other) {
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s] AUX CH %s already claimed by [ENCODER:%d:%s]\n",
encoder->base.base.id, encoder->base.name,
aux_ch_name(i915, buf, sizeof(buf), aux_ch),
other->base.base.id, other->base.name);
return AUX_CH_NONE;
}
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s] Using AUX CH %s (%s)\n",
encoder->base.base.id, encoder->base.name,
aux_ch_name(i915, buf, sizeof(buf), aux_ch), source);
return aux_ch;
}
void intel_dp_aux_irq_handler(struct drm_i915_private *i915)
{
wake_up_all(&i915->display.gmbus.wait_queue);
}