| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2023 Intel Corporation |
| */ |
| |
| #include "xe_gt_tlb_invalidation.h" |
| |
| #include "abi/guc_actions_abi.h" |
| #include "xe_device.h" |
| #include "xe_gt.h" |
| #include "xe_gt_printk.h" |
| #include "xe_guc.h" |
| #include "xe_guc_ct.h" |
| #include "xe_trace.h" |
| |
| #define TLB_TIMEOUT (HZ / 4) |
| |
| static void xe_gt_tlb_fence_timeout(struct work_struct *work) |
| { |
| struct xe_gt *gt = container_of(work, struct xe_gt, |
| tlb_invalidation.fence_tdr.work); |
| struct xe_gt_tlb_invalidation_fence *fence, *next; |
| |
| spin_lock_irq(>->tlb_invalidation.pending_lock); |
| list_for_each_entry_safe(fence, next, |
| >->tlb_invalidation.pending_fences, link) { |
| s64 since_inval_ms = ktime_ms_delta(ktime_get(), |
| fence->invalidation_time); |
| |
| if (msecs_to_jiffies(since_inval_ms) < TLB_TIMEOUT) |
| break; |
| |
| trace_xe_gt_tlb_invalidation_fence_timeout(fence); |
| xe_gt_err(gt, "TLB invalidation fence timeout, seqno=%d recv=%d", |
| fence->seqno, gt->tlb_invalidation.seqno_recv); |
| |
| list_del(&fence->link); |
| fence->base.error = -ETIME; |
| dma_fence_signal(&fence->base); |
| dma_fence_put(&fence->base); |
| } |
| if (!list_empty(>->tlb_invalidation.pending_fences)) |
| queue_delayed_work(system_wq, |
| >->tlb_invalidation.fence_tdr, |
| TLB_TIMEOUT); |
| spin_unlock_irq(>->tlb_invalidation.pending_lock); |
| } |
| |
| /** |
| * xe_gt_tlb_invalidation_init - Initialize GT TLB invalidation state |
| * @gt: graphics tile |
| * |
| * Initialize GT TLB invalidation state, purely software initialization, should |
| * be called once during driver load. |
| * |
| * Return: 0 on success, negative error code on error. |
| */ |
| int xe_gt_tlb_invalidation_init(struct xe_gt *gt) |
| { |
| gt->tlb_invalidation.seqno = 1; |
| INIT_LIST_HEAD(>->tlb_invalidation.pending_fences); |
| spin_lock_init(>->tlb_invalidation.pending_lock); |
| spin_lock_init(>->tlb_invalidation.lock); |
| gt->tlb_invalidation.fence_context = dma_fence_context_alloc(1); |
| INIT_DELAYED_WORK(>->tlb_invalidation.fence_tdr, |
| xe_gt_tlb_fence_timeout); |
| |
| return 0; |
| } |
| |
| static void |
| __invalidation_fence_signal(struct xe_gt_tlb_invalidation_fence *fence) |
| { |
| trace_xe_gt_tlb_invalidation_fence_signal(fence); |
| dma_fence_signal(&fence->base); |
| dma_fence_put(&fence->base); |
| } |
| |
| static void |
| invalidation_fence_signal(struct xe_gt_tlb_invalidation_fence *fence) |
| { |
| list_del(&fence->link); |
| __invalidation_fence_signal(fence); |
| } |
| |
| /** |
| * xe_gt_tlb_invalidation_reset - Initialize GT TLB invalidation reset |
| * @gt: graphics tile |
| * |
| * Signal any pending invalidation fences, should be called during a GT reset |
| */ |
| void xe_gt_tlb_invalidation_reset(struct xe_gt *gt) |
| { |
| struct xe_gt_tlb_invalidation_fence *fence, *next; |
| struct xe_guc *guc = >->uc.guc; |
| int pending_seqno; |
| |
| /* |
| * CT channel is already disabled at this point. No new TLB requests can |
| * appear. |
| */ |
| |
| mutex_lock(>->uc.guc.ct.lock); |
| spin_lock_irq(>->tlb_invalidation.pending_lock); |
| cancel_delayed_work(>->tlb_invalidation.fence_tdr); |
| /* |
| * We might have various kworkers waiting for TLB flushes to complete |
| * which are not tracked with an explicit TLB fence, however at this |
| * stage that will never happen since the CT is already disabled, so |
| * make sure we signal them here under the assumption that we have |
| * completed a full GT reset. |
| */ |
| if (gt->tlb_invalidation.seqno == 1) |
| pending_seqno = TLB_INVALIDATION_SEQNO_MAX - 1; |
| else |
| pending_seqno = gt->tlb_invalidation.seqno - 1; |
| WRITE_ONCE(gt->tlb_invalidation.seqno_recv, pending_seqno); |
| wake_up_all(&guc->ct.wq); |
| |
| list_for_each_entry_safe(fence, next, |
| >->tlb_invalidation.pending_fences, link) |
| invalidation_fence_signal(fence); |
| spin_unlock_irq(>->tlb_invalidation.pending_lock); |
| mutex_unlock(>->uc.guc.ct.lock); |
| } |
| |
| static bool tlb_invalidation_seqno_past(struct xe_gt *gt, int seqno) |
| { |
| int seqno_recv = READ_ONCE(gt->tlb_invalidation.seqno_recv); |
| |
| if (seqno - seqno_recv < -(TLB_INVALIDATION_SEQNO_MAX / 2)) |
| return false; |
| |
| if (seqno - seqno_recv > (TLB_INVALIDATION_SEQNO_MAX / 2)) |
| return true; |
| |
| return seqno_recv >= seqno; |
| } |
| |
| static int send_tlb_invalidation(struct xe_guc *guc, |
| struct xe_gt_tlb_invalidation_fence *fence, |
| u32 *action, int len) |
| { |
| struct xe_gt *gt = guc_to_gt(guc); |
| int seqno; |
| int ret; |
| |
| /* |
| * XXX: The seqno algorithm relies on TLB invalidation being processed |
| * in order which they currently are, if that changes the algorithm will |
| * need to be updated. |
| */ |
| |
| mutex_lock(&guc->ct.lock); |
| seqno = gt->tlb_invalidation.seqno; |
| if (fence) { |
| fence->seqno = seqno; |
| trace_xe_gt_tlb_invalidation_fence_send(fence); |
| } |
| action[1] = seqno; |
| ret = xe_guc_ct_send_locked(&guc->ct, action, len, |
| G2H_LEN_DW_TLB_INVALIDATE, 1); |
| if (!ret && fence) { |
| spin_lock_irq(>->tlb_invalidation.pending_lock); |
| /* |
| * We haven't actually published the TLB fence as per |
| * pending_fences, but in theory our seqno could have already |
| * been written as we acquired the pending_lock. In such a case |
| * we can just go ahead and signal the fence here. |
| */ |
| if (tlb_invalidation_seqno_past(gt, seqno)) { |
| __invalidation_fence_signal(fence); |
| } else { |
| fence->invalidation_time = ktime_get(); |
| list_add_tail(&fence->link, |
| >->tlb_invalidation.pending_fences); |
| |
| if (list_is_singular(>->tlb_invalidation.pending_fences)) |
| queue_delayed_work(system_wq, |
| >->tlb_invalidation.fence_tdr, |
| TLB_TIMEOUT); |
| } |
| spin_unlock_irq(>->tlb_invalidation.pending_lock); |
| } else if (ret < 0 && fence) { |
| __invalidation_fence_signal(fence); |
| } |
| if (!ret) { |
| gt->tlb_invalidation.seqno = (gt->tlb_invalidation.seqno + 1) % |
| TLB_INVALIDATION_SEQNO_MAX; |
| if (!gt->tlb_invalidation.seqno) |
| gt->tlb_invalidation.seqno = 1; |
| ret = seqno; |
| } |
| mutex_unlock(&guc->ct.lock); |
| |
| return ret; |
| } |
| |
| #define MAKE_INVAL_OP(type) ((type << XE_GUC_TLB_INVAL_TYPE_SHIFT) | \ |
| XE_GUC_TLB_INVAL_MODE_HEAVY << XE_GUC_TLB_INVAL_MODE_SHIFT | \ |
| XE_GUC_TLB_INVAL_FLUSH_CACHE) |
| |
| /** |
| * xe_gt_tlb_invalidation_guc - Issue a TLB invalidation on this GT for the GuC |
| * @gt: graphics tile |
| * |
| * Issue a TLB invalidation for the GuC. Completion of TLB is asynchronous and |
| * caller can use seqno + xe_gt_tlb_invalidation_wait to wait for completion. |
| * |
| * Return: Seqno which can be passed to xe_gt_tlb_invalidation_wait on success, |
| * negative error code on error. |
| */ |
| int xe_gt_tlb_invalidation_guc(struct xe_gt *gt) |
| { |
| u32 action[] = { |
| XE_GUC_ACTION_TLB_INVALIDATION, |
| 0, /* seqno, replaced in send_tlb_invalidation */ |
| MAKE_INVAL_OP(XE_GUC_TLB_INVAL_GUC), |
| }; |
| |
| return send_tlb_invalidation(>->uc.guc, NULL, action, |
| ARRAY_SIZE(action)); |
| } |
| |
| /** |
| * xe_gt_tlb_invalidation_vma - Issue a TLB invalidation on this GT for a VMA |
| * @gt: graphics tile |
| * @fence: invalidation fence which will be signal on TLB invalidation |
| * completion, can be NULL |
| * @vma: VMA to invalidate |
| * |
| * Issue a range based TLB invalidation if supported, if not fallback to a full |
| * TLB invalidation. Completion of TLB is asynchronous and caller can either use |
| * the invalidation fence or seqno + xe_gt_tlb_invalidation_wait to wait for |
| * completion. |
| * |
| * Return: Seqno which can be passed to xe_gt_tlb_invalidation_wait on success, |
| * negative error code on error. |
| */ |
| int xe_gt_tlb_invalidation_vma(struct xe_gt *gt, |
| struct xe_gt_tlb_invalidation_fence *fence, |
| struct xe_vma *vma) |
| { |
| struct xe_device *xe = gt_to_xe(gt); |
| #define MAX_TLB_INVALIDATION_LEN 7 |
| u32 action[MAX_TLB_INVALIDATION_LEN]; |
| int len = 0; |
| |
| xe_gt_assert(gt, vma); |
| |
| /* Execlists not supported */ |
| if (gt_to_xe(gt)->info.force_execlist) { |
| if (fence) |
| __invalidation_fence_signal(fence); |
| |
| return 0; |
| } |
| |
| action[len++] = XE_GUC_ACTION_TLB_INVALIDATION; |
| action[len++] = 0; /* seqno, replaced in send_tlb_invalidation */ |
| if (!xe->info.has_range_tlb_invalidation) { |
| action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_FULL); |
| } else { |
| u64 start = xe_vma_start(vma); |
| u64 length = xe_vma_size(vma); |
| u64 align, end; |
| |
| if (length < SZ_4K) |
| length = SZ_4K; |
| |
| /* |
| * We need to invalidate a higher granularity if start address |
| * is not aligned to length. When start is not aligned with |
| * length we need to find the length large enough to create an |
| * address mask covering the required range. |
| */ |
| align = roundup_pow_of_two(length); |
| start = ALIGN_DOWN(xe_vma_start(vma), align); |
| end = ALIGN(xe_vma_end(vma), align); |
| length = align; |
| while (start + length < end) { |
| length <<= 1; |
| start = ALIGN_DOWN(xe_vma_start(vma), length); |
| } |
| |
| /* |
| * Minimum invalidation size for a 2MB page that the hardware |
| * expects is 16MB |
| */ |
| if (length >= SZ_2M) { |
| length = max_t(u64, SZ_16M, length); |
| start = ALIGN_DOWN(xe_vma_start(vma), length); |
| } |
| |
| xe_gt_assert(gt, length >= SZ_4K); |
| xe_gt_assert(gt, is_power_of_2(length)); |
| xe_gt_assert(gt, !(length & GENMASK(ilog2(SZ_16M) - 1, ilog2(SZ_2M) + 1))); |
| xe_gt_assert(gt, IS_ALIGNED(start, length)); |
| |
| action[len++] = MAKE_INVAL_OP(XE_GUC_TLB_INVAL_PAGE_SELECTIVE); |
| action[len++] = xe_vma_vm(vma)->usm.asid; |
| action[len++] = lower_32_bits(start); |
| action[len++] = upper_32_bits(start); |
| action[len++] = ilog2(length) - ilog2(SZ_4K); |
| } |
| |
| xe_gt_assert(gt, len <= MAX_TLB_INVALIDATION_LEN); |
| |
| return send_tlb_invalidation(>->uc.guc, fence, action, len); |
| } |
| |
| /** |
| * xe_gt_tlb_invalidation_wait - Wait for TLB to complete |
| * @gt: graphics tile |
| * @seqno: seqno to wait which was returned from xe_gt_tlb_invalidation |
| * |
| * Wait for 200ms for a TLB invalidation to complete, in practice we always |
| * should receive the TLB invalidation within 200ms. |
| * |
| * Return: 0 on success, -ETIME on TLB invalidation timeout |
| */ |
| int xe_gt_tlb_invalidation_wait(struct xe_gt *gt, int seqno) |
| { |
| struct xe_guc *guc = >->uc.guc; |
| int ret; |
| |
| /* Execlists not supported */ |
| if (gt_to_xe(gt)->info.force_execlist) |
| return 0; |
| |
| /* |
| * XXX: See above, this algorithm only works if seqno are always in |
| * order |
| */ |
| ret = wait_event_timeout(guc->ct.wq, |
| tlb_invalidation_seqno_past(gt, seqno), |
| TLB_TIMEOUT); |
| if (!ret) { |
| struct drm_printer p = xe_gt_err_printer(gt); |
| |
| xe_gt_err(gt, "TLB invalidation time'd out, seqno=%d, recv=%d\n", |
| seqno, gt->tlb_invalidation.seqno_recv); |
| xe_guc_ct_print(&guc->ct, &p, true); |
| return -ETIME; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * xe_guc_tlb_invalidation_done_handler - TLB invalidation done handler |
| * @guc: guc |
| * @msg: message indicating TLB invalidation done |
| * @len: length of message |
| * |
| * Parse seqno of TLB invalidation, wake any waiters for seqno, and signal any |
| * invalidation fences for seqno. Algorithm for this depends on seqno being |
| * received in-order and asserts this assumption. |
| * |
| * Return: 0 on success, -EPROTO for malformed messages. |
| */ |
| int xe_guc_tlb_invalidation_done_handler(struct xe_guc *guc, u32 *msg, u32 len) |
| { |
| struct xe_gt *gt = guc_to_gt(guc); |
| struct xe_gt_tlb_invalidation_fence *fence, *next; |
| unsigned long flags; |
| |
| if (unlikely(len != 1)) |
| return -EPROTO; |
| |
| /* |
| * This can also be run both directly from the IRQ handler and also in |
| * process_g2h_msg(). Only one may process any individual CT message, |
| * however the order they are processed here could result in skipping a |
| * seqno. To handle that we just process all the seqnos from the last |
| * seqno_recv up to and including the one in msg[0]. The delta should be |
| * very small so there shouldn't be much of pending_fences we actually |
| * need to iterate over here. |
| * |
| * From GuC POV we expect the seqnos to always appear in-order, so if we |
| * see something later in the timeline we can be sure that anything |
| * appearing earlier has already signalled, just that we have yet to |
| * officially process the CT message like if racing against |
| * process_g2h_msg(). |
| */ |
| spin_lock_irqsave(>->tlb_invalidation.pending_lock, flags); |
| if (tlb_invalidation_seqno_past(gt, msg[0])) { |
| spin_unlock_irqrestore(>->tlb_invalidation.pending_lock, flags); |
| return 0; |
| } |
| |
| /* |
| * wake_up_all() and wait_event_timeout() already have the correct |
| * barriers. |
| */ |
| WRITE_ONCE(gt->tlb_invalidation.seqno_recv, msg[0]); |
| wake_up_all(&guc->ct.wq); |
| |
| list_for_each_entry_safe(fence, next, |
| >->tlb_invalidation.pending_fences, link) { |
| trace_xe_gt_tlb_invalidation_fence_recv(fence); |
| |
| if (!tlb_invalidation_seqno_past(gt, fence->seqno)) |
| break; |
| |
| invalidation_fence_signal(fence); |
| } |
| |
| if (!list_empty(>->tlb_invalidation.pending_fences)) |
| mod_delayed_work(system_wq, |
| >->tlb_invalidation.fence_tdr, |
| TLB_TIMEOUT); |
| else |
| cancel_delayed_work(>->tlb_invalidation.fence_tdr); |
| |
| spin_unlock_irqrestore(>->tlb_invalidation.pending_lock, flags); |
| |
| return 0; |
| } |