blob: bfe80ac0ad8c8751dbad4c3cf7818c17030c43a2 [file] [log] [blame]
/*
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/pci.h>
#include <linux/reboot.h>
#include "hwmgr.h"
#include "pp_debug.h"
#include "ppatomctrl.h"
#include "ppsmc.h"
#include "atom.h"
#include "ivsrcid/thm/irqsrcs_thm_9_0.h"
#include "ivsrcid/smuio/irqsrcs_smuio_9_0.h"
#include "ivsrcid/ivsrcid_vislands30.h"
uint8_t convert_to_vid(uint16_t vddc)
{
return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
}
uint16_t convert_to_vddc(uint8_t vid)
{
return (uint16_t) ((6200 - (vid * 25)) / VOLTAGE_SCALE);
}
int phm_copy_clock_limits_array(
struct pp_hwmgr *hwmgr,
uint32_t **pptable_info_array,
const uint32_t *pptable_array,
uint32_t power_saving_clock_count)
{
uint32_t array_size, i;
uint32_t *table;
array_size = sizeof(uint32_t) * power_saving_clock_count;
table = kzalloc(array_size, GFP_KERNEL);
if (NULL == table)
return -ENOMEM;
for (i = 0; i < power_saving_clock_count; i++)
table[i] = le32_to_cpu(pptable_array[i]);
*pptable_info_array = table;
return 0;
}
int phm_copy_overdrive_settings_limits_array(
struct pp_hwmgr *hwmgr,
uint32_t **pptable_info_array,
const uint32_t *pptable_array,
uint32_t od_setting_count)
{
uint32_t array_size, i;
uint32_t *table;
array_size = sizeof(uint32_t) * od_setting_count;
table = kzalloc(array_size, GFP_KERNEL);
if (NULL == table)
return -ENOMEM;
for (i = 0; i < od_setting_count; i++)
table[i] = le32_to_cpu(pptable_array[i]);
*pptable_info_array = table;
return 0;
}
uint32_t phm_set_field_to_u32(u32 offset, u32 original_data, u32 field, u32 size)
{
u32 mask = 0;
u32 shift = 0;
shift = (offset % 4) << 3;
if (size == sizeof(uint8_t))
mask = 0xFF << shift;
else if (size == sizeof(uint16_t))
mask = 0xFFFF << shift;
original_data &= ~mask;
original_data |= (field << shift);
return original_data;
}
/*
* Returns once the part of the register indicated by the mask has
* reached the given value.
*/
int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index,
uint32_t value, uint32_t mask)
{
uint32_t i;
uint32_t cur_value;
if (hwmgr == NULL || hwmgr->device == NULL) {
pr_err("Invalid Hardware Manager!");
return -EINVAL;
}
for (i = 0; i < hwmgr->usec_timeout; i++) {
cur_value = cgs_read_register(hwmgr->device, index);
if ((cur_value & mask) == (value & mask))
break;
udelay(1);
}
/* timeout means wrong logic*/
if (i == hwmgr->usec_timeout)
return -1;
return 0;
}
/*
* Returns once the part of the register indicated by the mask has
* reached the given value.The indirect space is described by giving
* the memory-mapped index of the indirect index register.
*/
int phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr,
uint32_t indirect_port,
uint32_t index,
uint32_t value,
uint32_t mask)
{
if (hwmgr == NULL || hwmgr->device == NULL) {
pr_err("Invalid Hardware Manager!");
return -EINVAL;
}
cgs_write_register(hwmgr->device, indirect_port, index);
return phm_wait_on_register(hwmgr, indirect_port + 1, mask, value);
}
int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr,
uint32_t index,
uint32_t value, uint32_t mask)
{
uint32_t i;
uint32_t cur_value;
if (hwmgr == NULL || hwmgr->device == NULL)
return -EINVAL;
for (i = 0; i < hwmgr->usec_timeout; i++) {
cur_value = cgs_read_register(hwmgr->device,
index);
if ((cur_value & mask) != (value & mask))
break;
udelay(1);
}
/* timeout means wrong logic */
if (i == hwmgr->usec_timeout)
return -ETIME;
return 0;
}
int phm_wait_for_indirect_register_unequal(struct pp_hwmgr *hwmgr,
uint32_t indirect_port,
uint32_t index,
uint32_t value,
uint32_t mask)
{
if (hwmgr == NULL || hwmgr->device == NULL)
return -EINVAL;
cgs_write_register(hwmgr->device, indirect_port, index);
return phm_wait_for_register_unequal(hwmgr, indirect_port + 1,
value, mask);
}
bool phm_cf_want_uvd_power_gating(struct pp_hwmgr *hwmgr)
{
return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating);
}
bool phm_cf_want_vce_power_gating(struct pp_hwmgr *hwmgr)
{
return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating);
}
int phm_trim_voltage_table(struct pp_atomctrl_voltage_table *vol_table)
{
uint32_t i, j;
uint16_t vvalue;
bool found = false;
struct pp_atomctrl_voltage_table *table;
PP_ASSERT_WITH_CODE((NULL != vol_table),
"Voltage Table empty.", return -EINVAL);
table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
GFP_KERNEL);
if (NULL == table)
return -EINVAL;
table->mask_low = vol_table->mask_low;
table->phase_delay = vol_table->phase_delay;
for (i = 0; i < vol_table->count; i++) {
vvalue = vol_table->entries[i].value;
found = false;
for (j = 0; j < table->count; j++) {
if (vvalue == table->entries[j].value) {
found = true;
break;
}
}
if (!found) {
table->entries[table->count].value = vvalue;
table->entries[table->count].smio_low =
vol_table->entries[i].smio_low;
table->count++;
}
}
memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
kfree(table);
table = NULL;
return 0;
}
int phm_get_svi2_mvdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
uint32_t i;
int result;
PP_ASSERT_WITH_CODE((0 != dep_table->count),
"Voltage Dependency Table empty.", return -EINVAL);
PP_ASSERT_WITH_CODE((NULL != vol_table),
"vol_table empty.", return -EINVAL);
vol_table->mask_low = 0;
vol_table->phase_delay = 0;
vol_table->count = dep_table->count;
for (i = 0; i < dep_table->count; i++) {
vol_table->entries[i].value = dep_table->entries[i].mvdd;
vol_table->entries[i].smio_low = 0;
}
result = phm_trim_voltage_table(vol_table);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to trim MVDD table.", return result);
return 0;
}
int phm_get_svi2_vddci_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
uint32_t i;
int result;
PP_ASSERT_WITH_CODE((0 != dep_table->count),
"Voltage Dependency Table empty.", return -EINVAL);
PP_ASSERT_WITH_CODE((NULL != vol_table),
"vol_table empty.", return -EINVAL);
vol_table->mask_low = 0;
vol_table->phase_delay = 0;
vol_table->count = dep_table->count;
for (i = 0; i < dep_table->count; i++) {
vol_table->entries[i].value = dep_table->entries[i].vddci;
vol_table->entries[i].smio_low = 0;
}
result = phm_trim_voltage_table(vol_table);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to trim VDDCI table.", return result);
return 0;
}
int phm_get_svi2_vdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
phm_ppt_v1_voltage_lookup_table *lookup_table)
{
int i = 0;
PP_ASSERT_WITH_CODE((0 != lookup_table->count),
"Voltage Lookup Table empty.", return -EINVAL);
PP_ASSERT_WITH_CODE((NULL != vol_table),
"vol_table empty.", return -EINVAL);
vol_table->mask_low = 0;
vol_table->phase_delay = 0;
vol_table->count = lookup_table->count;
for (i = 0; i < vol_table->count; i++) {
vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
vol_table->entries[i].smio_low = 0;
}
return 0;
}
void phm_trim_voltage_table_to_fit_state_table(uint32_t max_vol_steps,
struct pp_atomctrl_voltage_table *vol_table)
{
unsigned int i, diff;
if (vol_table->count <= max_vol_steps)
return;
diff = vol_table->count - max_vol_steps;
for (i = 0; i < max_vol_steps; i++)
vol_table->entries[i] = vol_table->entries[i + diff];
vol_table->count = max_vol_steps;
return;
}
int phm_reset_single_dpm_table(void *table,
uint32_t count, int max)
{
int i;
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
dpm_table->count = count > max ? max : count;
for (i = 0; i < dpm_table->count; i++)
dpm_table->dpm_level[i].enabled = false;
return 0;
}
void phm_setup_pcie_table_entry(
void *table,
uint32_t index, uint32_t pcie_gen,
uint32_t pcie_lanes)
{
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
dpm_table->dpm_level[index].value = pcie_gen;
dpm_table->dpm_level[index].param1 = pcie_lanes;
dpm_table->dpm_level[index].enabled = 1;
}
int32_t phm_get_dpm_level_enable_mask_value(void *table)
{
int32_t i;
int32_t mask = 0;
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
for (i = dpm_table->count; i > 0; i--) {
mask = mask << 1;
if (dpm_table->dpm_level[i - 1].enabled)
mask |= 0x1;
else
mask &= 0xFFFFFFFE;
}
return mask;
}
uint8_t phm_get_voltage_index(
struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
{
uint8_t count = (uint8_t) (lookup_table->count);
uint8_t i;
PP_ASSERT_WITH_CODE((NULL != lookup_table),
"Lookup Table empty.", return 0);
PP_ASSERT_WITH_CODE((0 != count),
"Lookup Table empty.", return 0);
for (i = 0; i < lookup_table->count; i++) {
/* find first voltage equal or bigger than requested */
if (lookup_table->entries[i].us_vdd >= voltage)
return i;
}
/* voltage is bigger than max voltage in the table */
return i - 1;
}
uint8_t phm_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
uint32_t voltage)
{
uint8_t count = (uint8_t) (voltage_table->count);
uint8_t i = 0;
PP_ASSERT_WITH_CODE((NULL != voltage_table),
"Voltage Table empty.", return 0;);
PP_ASSERT_WITH_CODE((0 != count),
"Voltage Table empty.", return 0;);
for (i = 0; i < count; i++) {
/* find first voltage bigger than requested */
if (voltage_table->entries[i].value >= voltage)
return i;
}
/* voltage is bigger than max voltage in the table */
return i - 1;
}
uint16_t phm_find_closest_vddci(struct pp_atomctrl_voltage_table *vddci_table, uint16_t vddci)
{
uint32_t i;
for (i = 0; i < vddci_table->count; i++) {
if (vddci_table->entries[i].value >= vddci)
return vddci_table->entries[i].value;
}
pr_debug("vddci is larger than max value in vddci_table\n");
return vddci_table->entries[i-1].value;
}
int phm_find_boot_level(void *table,
uint32_t value, uint32_t *boot_level)
{
int result = -EINVAL;
uint32_t i;
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
for (i = 0; i < dpm_table->count; i++) {
if (value == dpm_table->dpm_level[i].value) {
*boot_level = i;
result = 0;
}
}
return result;
}
int phm_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table *lookup_table,
uint16_t virtual_voltage_id, int32_t *sclk)
{
uint8_t entry_id;
uint8_t voltage_id;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
voltage_id = table_info->vdd_dep_on_sclk->entries[entry_id].vddInd;
if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
break;
}
if (entry_id >= table_info->vdd_dep_on_sclk->count) {
pr_debug("Can't find requested voltage id in vdd_dep_on_sclk table\n");
return -EINVAL;
}
*sclk = table_info->vdd_dep_on_sclk->entries[entry_id].clk;
return 0;
}
/**
* phm_initializa_dynamic_state_adjustment_rule_settings - Initialize Dynamic State Adjustment Rule Settings
*
* @hwmgr: the address of the powerplay hardware manager.
*/
int phm_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
{
struct phm_clock_voltage_dependency_table *table_clk_vlt;
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
/* initialize vddc_dep_on_dal_pwrl table */
table_clk_vlt = kzalloc(struct_size(table_clk_vlt, entries, 4),
GFP_KERNEL);
if (NULL == table_clk_vlt) {
pr_err("Can not allocate space for vddc_dep_on_dal_pwrl! \n");
return -ENOMEM;
} else {
table_clk_vlt->count = 4;
table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
if (hwmgr->chip_id >= CHIP_POLARIS10 &&
hwmgr->chip_id <= CHIP_VEGAM)
table_clk_vlt->entries[0].v = 700;
else
table_clk_vlt->entries[0].v = 0;
table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
if (hwmgr->chip_id >= CHIP_POLARIS10 &&
hwmgr->chip_id <= CHIP_VEGAM)
table_clk_vlt->entries[1].v = 740;
else
table_clk_vlt->entries[1].v = 720;
table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
if (hwmgr->chip_id >= CHIP_POLARIS10 &&
hwmgr->chip_id <= CHIP_VEGAM)
table_clk_vlt->entries[2].v = 800;
else
table_clk_vlt->entries[2].v = 810;
table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
table_clk_vlt->entries[3].v = 900;
if (pptable_info != NULL)
pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
}
return 0;
}
uint32_t phm_get_lowest_enabled_level(struct pp_hwmgr *hwmgr, uint32_t mask)
{
uint32_t level = 0;
while (0 == (mask & (1 << level)))
level++;
return level;
}
void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
{
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
struct phm_clock_voltage_dependency_table *table =
table_info->vddc_dep_on_dal_pwrl;
struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
uint32_t req_vddc = 0, req_volt, i;
if (!table || table->count <= 0
|| dal_power_level < PP_DAL_POWERLEVEL_ULTRALOW
|| dal_power_level > PP_DAL_POWERLEVEL_PERFORMANCE)
return;
for (i = 0; i < table->count; i++) {
if (dal_power_level == table->entries[i].clk) {
req_vddc = table->entries[i].v;
break;
}
}
vddc_table = table_info->vdd_dep_on_sclk;
for (i = 0; i < vddc_table->count; i++) {
if (req_vddc <= vddc_table->entries[i].vddc) {
req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_VddC_Request,
req_volt,
NULL);
return;
}
}
pr_err("DAL requested level can not"
" found a available voltage in VDDC DPM Table \n");
}
int phm_get_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
uint32_t sclk, uint16_t id, uint16_t *voltage)
{
uint32_t vol;
int ret = 0;
if (hwmgr->chip_id < CHIP_TONGA) {
ret = atomctrl_get_voltage_evv(hwmgr, id, voltage);
} else if (hwmgr->chip_id < CHIP_POLARIS10) {
ret = atomctrl_get_voltage_evv_on_sclk(hwmgr, voltage_type, sclk, id, voltage);
if (*voltage >= 2000 || *voltage == 0)
*voltage = 1150;
} else {
ret = atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, voltage_type, sclk, id, &vol);
*voltage = (uint16_t)(vol/100);
}
return ret;
}
int phm_irq_process(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
uint32_t client_id = entry->client_id;
uint32_t src_id = entry->src_id;
if (client_id == AMDGPU_IRQ_CLIENTID_LEGACY) {
if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH) {
dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n");
/*
* SW CTF just occurred.
* Try to do a graceful shutdown to prevent further damage.
*/
dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n");
orderly_poweroff(true);
} else if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW)
dev_emerg(adev->dev, "ERROR: GPU under temperature range detected!\n");
else if (src_id == VISLANDS30_IV_SRCID_GPIO_19) {
dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n");
/*
* HW CTF just occurred. Shutdown to prevent further damage.
*/
dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n");
orderly_poweroff(true);
}
} else if (client_id == SOC15_IH_CLIENTID_THM) {
if (src_id == 0) {
dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n");
/*
* SW CTF just occurred.
* Try to do a graceful shutdown to prevent further damage.
*/
dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n");
orderly_poweroff(true);
} else
dev_emerg(adev->dev, "ERROR: GPU under temperature range detected!\n");
} else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO) {
dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n");
/*
* HW CTF just occurred. Shutdown to prevent further damage.
*/
dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n");
orderly_poweroff(true);
}
return 0;
}
static const struct amdgpu_irq_src_funcs smu9_irq_funcs = {
.process = phm_irq_process,
};
int smu9_register_irq_handlers(struct pp_hwmgr *hwmgr)
{
struct amdgpu_irq_src *source =
kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
if (!source)
return -ENOMEM;
source->funcs = &smu9_irq_funcs;
amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
SOC15_IH_CLIENTID_THM,
THM_9_0__SRCID__THM_DIG_THERM_L2H,
source);
amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
SOC15_IH_CLIENTID_THM,
THM_9_0__SRCID__THM_DIG_THERM_H2L,
source);
/* Register CTF(GPIO_19) interrupt */
amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
SOC15_IH_CLIENTID_ROM_SMUIO,
SMUIO_9_0__SRCID__SMUIO_GPIO19,
source);
return 0;
}
void *smu_atom_get_data_table(void *dev, uint32_t table, uint16_t *size,
uint8_t *frev, uint8_t *crev)
{
struct amdgpu_device *adev = dev;
uint16_t data_start;
if (amdgpu_atom_parse_data_header(
adev->mode_info.atom_context, table, size,
frev, crev, &data_start))
return (uint8_t *)adev->mode_info.atom_context->bios +
data_start;
return NULL;
}
int smu_get_voltage_dependency_table_ppt_v1(
const struct phm_ppt_v1_clock_voltage_dependency_table *allowed_dep_table,
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
uint8_t i = 0;
PP_ASSERT_WITH_CODE((0 != allowed_dep_table->count),
"Voltage Lookup Table empty",
return -EINVAL);
dep_table->count = allowed_dep_table->count;
for (i=0; i<dep_table->count; i++) {
dep_table->entries[i].clk = allowed_dep_table->entries[i].clk;
dep_table->entries[i].vddInd = allowed_dep_table->entries[i].vddInd;
dep_table->entries[i].vdd_offset = allowed_dep_table->entries[i].vdd_offset;
dep_table->entries[i].vddc = allowed_dep_table->entries[i].vddc;
dep_table->entries[i].vddgfx = allowed_dep_table->entries[i].vddgfx;
dep_table->entries[i].vddci = allowed_dep_table->entries[i].vddci;
dep_table->entries[i].mvdd = allowed_dep_table->entries[i].mvdd;
dep_table->entries[i].phases = allowed_dep_table->entries[i].phases;
dep_table->entries[i].cks_enable = allowed_dep_table->entries[i].cks_enable;
dep_table->entries[i].cks_voffset = allowed_dep_table->entries[i].cks_voffset;
}
return 0;
}
int smu_set_watermarks_for_clocks_ranges(void *wt_table,
struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges)
{
uint32_t i;
struct watermarks *table = wt_table;
if (!table || !wm_with_clock_ranges)
return -EINVAL;
if (wm_with_clock_ranges->num_wm_dmif_sets > 4 || wm_with_clock_ranges->num_wm_mcif_sets > 4)
return -EINVAL;
for (i = 0; i < wm_with_clock_ranges->num_wm_dmif_sets; i++) {
table->WatermarkRow[1][i].MinClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz /
1000));
table->WatermarkRow[1][i].MaxClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz /
1000));
table->WatermarkRow[1][i].MinUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz /
1000));
table->WatermarkRow[1][i].MaxUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz /
1000));
table->WatermarkRow[1][i].WmSetting = (uint8_t)
wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
}
for (i = 0; i < wm_with_clock_ranges->num_wm_mcif_sets; i++) {
table->WatermarkRow[0][i].MinClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz /
1000));
table->WatermarkRow[0][i].MaxClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz /
1000));
table->WatermarkRow[0][i].MinUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz /
1000));
table->WatermarkRow[0][i].MaxUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz /
1000));
table->WatermarkRow[0][i].WmSetting = (uint8_t)
wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
}
return 0;
}