| /* |
| * Copyright (C) 2004 PathScale, Inc |
| * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) |
| * Licensed under the GPL |
| */ |
| |
| #include <stdlib.h> |
| #include <stdarg.h> |
| #include <errno.h> |
| #include <signal.h> |
| #include <strings.h> |
| #include "os.h" |
| #include "sysdep/barrier.h" |
| #include "sysdep/sigcontext.h" |
| #include "user.h" |
| |
| /* |
| * These are the asynchronous signals. SIGVTALRM and SIGARLM are handled |
| * together under SIGVTALRM_BIT. SIGPROF is excluded because we want to |
| * be able to profile all of UML, not just the non-critical sections. If |
| * profiling is not thread-safe, then that is not my problem. We can disable |
| * profiling when SMP is enabled in that case. |
| */ |
| #define SIGIO_BIT 0 |
| #define SIGIO_MASK (1 << SIGIO_BIT) |
| |
| #define SIGVTALRM_BIT 1 |
| #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT) |
| |
| #define SIGALRM_BIT 2 |
| #define SIGALRM_MASK (1 << SIGALRM_BIT) |
| |
| /* |
| * These are used by both the signal handlers and |
| * block/unblock_signals. I don't want modifications cached in a |
| * register - they must go straight to memory. |
| */ |
| static volatile int signals_enabled = 1; |
| static volatile int pending = 0; |
| |
| void sig_handler(int sig, struct sigcontext *sc) |
| { |
| int enabled; |
| |
| enabled = signals_enabled; |
| if (!enabled && (sig == SIGIO)) { |
| pending |= SIGIO_MASK; |
| return; |
| } |
| |
| block_signals(); |
| |
| sig_handler_common_skas(sig, sc); |
| |
| set_signals(enabled); |
| } |
| |
| static void real_alarm_handler(int sig, struct sigcontext *sc) |
| { |
| struct uml_pt_regs regs; |
| |
| if (sc != NULL) |
| copy_sc(®s, sc); |
| regs.is_user = 0; |
| unblock_signals(); |
| timer_handler(sig, ®s); |
| } |
| |
| void alarm_handler(int sig, struct sigcontext *sc) |
| { |
| int enabled; |
| |
| enabled = signals_enabled; |
| if (!signals_enabled) { |
| if (sig == SIGVTALRM) |
| pending |= SIGVTALRM_MASK; |
| else pending |= SIGALRM_MASK; |
| |
| return; |
| } |
| |
| block_signals(); |
| |
| real_alarm_handler(sig, sc); |
| set_signals(enabled); |
| } |
| |
| void set_sigstack(void *sig_stack, int size) |
| { |
| stack_t stack = ((stack_t) { .ss_flags = 0, |
| .ss_sp = (__ptr_t) sig_stack, |
| .ss_size = size - sizeof(void *) }); |
| |
| if (sigaltstack(&stack, NULL) != 0) |
| panic("enabling signal stack failed, errno = %d\n", errno); |
| } |
| |
| void remove_sigstack(void) |
| { |
| stack_t stack = ((stack_t) { .ss_flags = SS_DISABLE, |
| .ss_sp = NULL, |
| .ss_size = 0 }); |
| |
| if (sigaltstack(&stack, NULL) != 0) |
| panic("disabling signal stack failed, errno = %d\n", errno); |
| } |
| |
| void (*handlers[_NSIG])(int sig, struct sigcontext *sc); |
| |
| void handle_signal(int sig, struct sigcontext *sc) |
| { |
| unsigned long pending = 1UL << sig; |
| int timer = switch_timers(0); |
| |
| do { |
| int nested, bail; |
| |
| /* |
| * pending comes back with one bit set for each |
| * interrupt that arrived while setting up the stack, |
| * plus a bit for this interrupt, plus the zero bit is |
| * set if this is a nested interrupt. |
| * If bail is true, then we interrupted another |
| * handler setting up the stack. In this case, we |
| * have to return, and the upper handler will deal |
| * with this interrupt. |
| */ |
| bail = to_irq_stack(&pending); |
| if (bail) |
| return; |
| |
| nested = pending & 1; |
| pending &= ~1; |
| |
| while ((sig = ffs(pending)) != 0){ |
| sig--; |
| pending &= ~(1 << sig); |
| (*handlers[sig])(sig, sc); |
| } |
| |
| /* |
| * Again, pending comes back with a mask of signals |
| * that arrived while tearing down the stack. If this |
| * is non-zero, we just go back, set up the stack |
| * again, and handle the new interrupts. |
| */ |
| if (!nested) |
| pending = from_irq_stack(nested); |
| } while (pending); |
| |
| switch_timers(timer); |
| } |
| |
| extern void hard_handler(int sig); |
| |
| void set_handler(int sig, void (*handler)(int), int flags, ...) |
| { |
| struct sigaction action; |
| va_list ap; |
| sigset_t sig_mask; |
| int mask; |
| |
| handlers[sig] = (void (*)(int, struct sigcontext *)) handler; |
| action.sa_handler = hard_handler; |
| |
| sigemptyset(&action.sa_mask); |
| |
| va_start(ap, flags); |
| while ((mask = va_arg(ap, int)) != -1) |
| sigaddset(&action.sa_mask, mask); |
| va_end(ap); |
| |
| action.sa_flags = flags; |
| action.sa_restorer = NULL; |
| if (sigaction(sig, &action, NULL) < 0) |
| panic("sigaction failed - errno = %d\n", errno); |
| |
| sigemptyset(&sig_mask); |
| sigaddset(&sig_mask, sig); |
| if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0) |
| panic("sigprocmask failed - errno = %d\n", errno); |
| } |
| |
| int change_sig(int signal, int on) |
| { |
| sigset_t sigset, old; |
| |
| sigemptyset(&sigset); |
| sigaddset(&sigset, signal); |
| sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, &old); |
| return !sigismember(&old, signal); |
| } |
| |
| void block_signals(void) |
| { |
| signals_enabled = 0; |
| /* |
| * This must return with signals disabled, so this barrier |
| * ensures that writes are flushed out before the return. |
| * This might matter if gcc figures out how to inline this and |
| * decides to shuffle this code into the caller. |
| */ |
| mb(); |
| } |
| |
| void unblock_signals(void) |
| { |
| int save_pending; |
| |
| if (signals_enabled == 1) |
| return; |
| |
| /* |
| * We loop because the IRQ handler returns with interrupts off. So, |
| * interrupts may have arrived and we need to re-enable them and |
| * recheck pending. |
| */ |
| while(1) { |
| /* |
| * Save and reset save_pending after enabling signals. This |
| * way, pending won't be changed while we're reading it. |
| */ |
| signals_enabled = 1; |
| |
| /* |
| * Setting signals_enabled and reading pending must |
| * happen in this order. |
| */ |
| mb(); |
| |
| save_pending = pending; |
| if (save_pending == 0) { |
| /* |
| * This must return with signals enabled, so |
| * this barrier ensures that writes are |
| * flushed out before the return. This might |
| * matter if gcc figures out how to inline |
| * this (unlikely, given its size) and decides |
| * to shuffle this code into the caller. |
| */ |
| mb(); |
| return; |
| } |
| |
| pending = 0; |
| |
| /* |
| * We have pending interrupts, so disable signals, as the |
| * handlers expect them off when they are called. They will |
| * be enabled again above. |
| */ |
| |
| signals_enabled = 0; |
| |
| /* |
| * Deal with SIGIO first because the alarm handler might |
| * schedule, leaving the pending SIGIO stranded until we come |
| * back here. |
| */ |
| if (save_pending & SIGIO_MASK) |
| sig_handler_common_skas(SIGIO, NULL); |
| |
| if (save_pending & SIGALRM_MASK) |
| real_alarm_handler(SIGALRM, NULL); |
| |
| if (save_pending & SIGVTALRM_MASK) |
| real_alarm_handler(SIGVTALRM, NULL); |
| } |
| } |
| |
| int get_signals(void) |
| { |
| return signals_enabled; |
| } |
| |
| int set_signals(int enable) |
| { |
| int ret; |
| if (signals_enabled == enable) |
| return enable; |
| |
| ret = signals_enabled; |
| if (enable) |
| unblock_signals(); |
| else block_signals(); |
| |
| return ret; |
| } |