blob: 3937479d0e071c0fe2884cbd371745d291067354 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* mm/mmap.c
*
* Written by obz.
*
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/backing-dev.h>
#include <linux/mm.h>
#include <linux/mm_inline.h>
#include <linux/shm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/syscalls.h>
#include <linux/capability.h>
#include <linux/init.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/personality.h>
#include <linux/security.h>
#include <linux/hugetlb.h>
#include <linux/shmem_fs.h>
#include <linux/profile.h>
#include <linux/export.h>
#include <linux/mount.h>
#include <linux/mempolicy.h>
#include <linux/rmap.h>
#include <linux/mmu_notifier.h>
#include <linux/mmdebug.h>
#include <linux/perf_event.h>
#include <linux/audit.h>
#include <linux/khugepaged.h>
#include <linux/uprobes.h>
#include <linux/notifier.h>
#include <linux/memory.h>
#include <linux/printk.h>
#include <linux/userfaultfd_k.h>
#include <linux/moduleparam.h>
#include <linux/pkeys.h>
#include <linux/oom.h>
#include <linux/sched/mm.h>
#include <linux/ksm.h>
#include <linux/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/tlb.h>
#include <asm/mmu_context.h>
#define CREATE_TRACE_POINTS
#include <trace/events/mmap.h>
#include "internal.h"
#ifndef arch_mmap_check
#define arch_mmap_check(addr, len, flags) (0)
#endif
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
#endif
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
#endif
static bool ignore_rlimit_data;
core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
struct vm_area_struct *vma, struct vm_area_struct *prev,
struct vm_area_struct *next, unsigned long start,
unsigned long end, bool mm_wr_locked);
static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
{
return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
}
/* Update vma->vm_page_prot to reflect vma->vm_flags. */
void vma_set_page_prot(struct vm_area_struct *vma)
{
unsigned long vm_flags = vma->vm_flags;
pgprot_t vm_page_prot;
vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
if (vma_wants_writenotify(vma, vm_page_prot)) {
vm_flags &= ~VM_SHARED;
vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
}
/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
}
/*
* Requires inode->i_mapping->i_mmap_rwsem
*/
static void __remove_shared_vm_struct(struct vm_area_struct *vma,
struct file *file, struct address_space *mapping)
{
if (vma->vm_flags & VM_SHARED)
mapping_unmap_writable(mapping);
flush_dcache_mmap_lock(mapping);
vma_interval_tree_remove(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
}
/*
* Unlink a file-based vm structure from its interval tree, to hide
* vma from rmap and vmtruncate before freeing its page tables.
*/
void unlink_file_vma(struct vm_area_struct *vma)
{
struct file *file = vma->vm_file;
if (file) {
struct address_space *mapping = file->f_mapping;
i_mmap_lock_write(mapping);
__remove_shared_vm_struct(vma, file, mapping);
i_mmap_unlock_write(mapping);
}
}
/*
* Close a vm structure and free it.
*/
static void remove_vma(struct vm_area_struct *vma, bool unreachable)
{
might_sleep();
if (vma->vm_ops && vma->vm_ops->close)
vma->vm_ops->close(vma);
if (vma->vm_file)
fput(vma->vm_file);
mpol_put(vma_policy(vma));
if (unreachable)
__vm_area_free(vma);
else
vm_area_free(vma);
}
static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
unsigned long min)
{
return mas_prev(&vmi->mas, min);
}
static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
unsigned long start, unsigned long end, gfp_t gfp)
{
vmi->mas.index = start;
vmi->mas.last = end - 1;
mas_store_gfp(&vmi->mas, NULL, gfp);
if (unlikely(mas_is_err(&vmi->mas)))
return -ENOMEM;
return 0;
}
/*
* check_brk_limits() - Use platform specific check of range & verify mlock
* limits.
* @addr: The address to check
* @len: The size of increase.
*
* Return: 0 on success.
*/
static int check_brk_limits(unsigned long addr, unsigned long len)
{
unsigned long mapped_addr;
mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
if (IS_ERR_VALUE(mapped_addr))
return mapped_addr;
return mlock_future_ok(current->mm, current->mm->def_flags, len)
? 0 : -EAGAIN;
}
static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
unsigned long addr, unsigned long request, unsigned long flags);
SYSCALL_DEFINE1(brk, unsigned long, brk)
{
unsigned long newbrk, oldbrk, origbrk;
struct mm_struct *mm = current->mm;
struct vm_area_struct *brkvma, *next = NULL;
unsigned long min_brk;
bool populate = false;
LIST_HEAD(uf);
struct vma_iterator vmi;
if (mmap_write_lock_killable(mm))
return -EINTR;
origbrk = mm->brk;
#ifdef CONFIG_COMPAT_BRK
/*
* CONFIG_COMPAT_BRK can still be overridden by setting
* randomize_va_space to 2, which will still cause mm->start_brk
* to be arbitrarily shifted
*/
if (current->brk_randomized)
min_brk = mm->start_brk;
else
min_brk = mm->end_data;
#else
min_brk = mm->start_brk;
#endif
if (brk < min_brk)
goto out;
/*
* Check against rlimit here. If this check is done later after the test
* of oldbrk with newbrk then it can escape the test and let the data
* segment grow beyond its set limit the in case where the limit is
* not page aligned -Ram Gupta
*/
if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
mm->end_data, mm->start_data))
goto out;
newbrk = PAGE_ALIGN(brk);
oldbrk = PAGE_ALIGN(mm->brk);
if (oldbrk == newbrk) {
mm->brk = brk;
goto success;
}
/* Always allow shrinking brk. */
if (brk <= mm->brk) {
/* Search one past newbrk */
vma_iter_init(&vmi, mm, newbrk);
brkvma = vma_find(&vmi, oldbrk);
if (!brkvma || brkvma->vm_start >= oldbrk)
goto out; /* mapping intersects with an existing non-brk vma. */
/*
* mm->brk must be protected by write mmap_lock.
* do_vma_munmap() will drop the lock on success, so update it
* before calling do_vma_munmap().
*/
mm->brk = brk;
if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
goto out;
goto success_unlocked;
}
if (check_brk_limits(oldbrk, newbrk - oldbrk))
goto out;
/*
* Only check if the next VMA is within the stack_guard_gap of the
* expansion area
*/
vma_iter_init(&vmi, mm, oldbrk);
next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
goto out;
brkvma = vma_prev_limit(&vmi, mm->start_brk);
/* Ok, looks good - let it rip. */
if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
goto out;
mm->brk = brk;
if (mm->def_flags & VM_LOCKED)
populate = true;
success:
mmap_write_unlock(mm);
success_unlocked:
userfaultfd_unmap_complete(mm, &uf);
if (populate)
mm_populate(oldbrk, newbrk - oldbrk);
return brk;
out:
mm->brk = origbrk;
mmap_write_unlock(mm);
return origbrk;
}
#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
static void validate_mm(struct mm_struct *mm)
{
int bug = 0;
int i = 0;
struct vm_area_struct *vma;
VMA_ITERATOR(vmi, mm, 0);
mt_validate(&mm->mm_mt);
for_each_vma(vmi, vma) {
#ifdef CONFIG_DEBUG_VM_RB
struct anon_vma *anon_vma = vma->anon_vma;
struct anon_vma_chain *avc;
#endif
unsigned long vmi_start, vmi_end;
bool warn = 0;
vmi_start = vma_iter_addr(&vmi);
vmi_end = vma_iter_end(&vmi);
if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
warn = 1;
if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
warn = 1;
if (warn) {
pr_emerg("issue in %s\n", current->comm);
dump_stack();
dump_vma(vma);
pr_emerg("tree range: %px start %lx end %lx\n", vma,
vmi_start, vmi_end - 1);
vma_iter_dump_tree(&vmi);
}
#ifdef CONFIG_DEBUG_VM_RB
if (anon_vma) {
anon_vma_lock_read(anon_vma);
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
anon_vma_interval_tree_verify(avc);
anon_vma_unlock_read(anon_vma);
}
#endif
i++;
}
if (i != mm->map_count) {
pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
bug = 1;
}
VM_BUG_ON_MM(bug, mm);
}
#else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
#define validate_mm(mm) do { } while (0)
#endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
/*
* vma has some anon_vma assigned, and is already inserted on that
* anon_vma's interval trees.
*
* Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
* vma must be removed from the anon_vma's interval trees using
* anon_vma_interval_tree_pre_update_vma().
*
* After the update, the vma will be reinserted using
* anon_vma_interval_tree_post_update_vma().
*
* The entire update must be protected by exclusive mmap_lock and by
* the root anon_vma's mutex.
*/
static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
{
struct anon_vma_chain *avc;
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
}
static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
{
struct anon_vma_chain *avc;
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
}
static unsigned long count_vma_pages_range(struct mm_struct *mm,
unsigned long addr, unsigned long end)
{
VMA_ITERATOR(vmi, mm, addr);
struct vm_area_struct *vma;
unsigned long nr_pages = 0;
for_each_vma_range(vmi, vma, end) {
unsigned long vm_start = max(addr, vma->vm_start);
unsigned long vm_end = min(end, vma->vm_end);
nr_pages += PHYS_PFN(vm_end - vm_start);
}
return nr_pages;
}
static void __vma_link_file(struct vm_area_struct *vma,
struct address_space *mapping)
{
if (vma->vm_flags & VM_SHARED)
mapping_allow_writable(mapping);
flush_dcache_mmap_lock(mapping);
vma_interval_tree_insert(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
}
static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
{
VMA_ITERATOR(vmi, mm, 0);
struct address_space *mapping = NULL;
if (vma_iter_prealloc(&vmi))
return -ENOMEM;
if (vma->vm_file) {
mapping = vma->vm_file->f_mapping;
i_mmap_lock_write(mapping);
}
vma_iter_store(&vmi, vma);
if (mapping) {
__vma_link_file(vma, mapping);
i_mmap_unlock_write(mapping);
}
mm->map_count++;
validate_mm(mm);
return 0;
}
/*
* init_multi_vma_prep() - Initializer for struct vma_prepare
* @vp: The vma_prepare struct
* @vma: The vma that will be altered once locked
* @next: The next vma if it is to be adjusted
* @remove: The first vma to be removed
* @remove2: The second vma to be removed
*/
static inline void init_multi_vma_prep(struct vma_prepare *vp,
struct vm_area_struct *vma, struct vm_area_struct *next,
struct vm_area_struct *remove, struct vm_area_struct *remove2)
{
memset(vp, 0, sizeof(struct vma_prepare));
vp->vma = vma;
vp->anon_vma = vma->anon_vma;
vp->remove = remove;
vp->remove2 = remove2;
vp->adj_next = next;
if (!vp->anon_vma && next)
vp->anon_vma = next->anon_vma;
vp->file = vma->vm_file;
if (vp->file)
vp->mapping = vma->vm_file->f_mapping;
}
/*
* init_vma_prep() - Initializer wrapper for vma_prepare struct
* @vp: The vma_prepare struct
* @vma: The vma that will be altered once locked
*/
static inline void init_vma_prep(struct vma_prepare *vp,
struct vm_area_struct *vma)
{
init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
}
/*
* vma_prepare() - Helper function for handling locking VMAs prior to altering
* @vp: The initialized vma_prepare struct
*/
static inline void vma_prepare(struct vma_prepare *vp)
{
vma_start_write(vp->vma);
if (vp->adj_next)
vma_start_write(vp->adj_next);
/* vp->insert is always a newly created VMA, no need for locking */
if (vp->remove)
vma_start_write(vp->remove);
if (vp->remove2)
vma_start_write(vp->remove2);
if (vp->file) {
uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
if (vp->adj_next)
uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
vp->adj_next->vm_end);
i_mmap_lock_write(vp->mapping);
if (vp->insert && vp->insert->vm_file) {
/*
* Put into interval tree now, so instantiated pages
* are visible to arm/parisc __flush_dcache_page
* throughout; but we cannot insert into address
* space until vma start or end is updated.
*/
__vma_link_file(vp->insert,
vp->insert->vm_file->f_mapping);
}
}
if (vp->anon_vma) {
anon_vma_lock_write(vp->anon_vma);
anon_vma_interval_tree_pre_update_vma(vp->vma);
if (vp->adj_next)
anon_vma_interval_tree_pre_update_vma(vp->adj_next);
}
if (vp->file) {
flush_dcache_mmap_lock(vp->mapping);
vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
if (vp->adj_next)
vma_interval_tree_remove(vp->adj_next,
&vp->mapping->i_mmap);
}
}
/*
* vma_complete- Helper function for handling the unlocking after altering VMAs,
* or for inserting a VMA.
*
* @vp: The vma_prepare struct
* @vmi: The vma iterator
* @mm: The mm_struct
*/
static inline void vma_complete(struct vma_prepare *vp,
struct vma_iterator *vmi, struct mm_struct *mm)
{
if (vp->file) {
if (vp->adj_next)
vma_interval_tree_insert(vp->adj_next,
&vp->mapping->i_mmap);
vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
flush_dcache_mmap_unlock(vp->mapping);
}
if (vp->remove && vp->file) {
__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
if (vp->remove2)
__remove_shared_vm_struct(vp->remove2, vp->file,
vp->mapping);
} else if (vp->insert) {
/*
* split_vma has split insert from vma, and needs
* us to insert it before dropping the locks
* (it may either follow vma or precede it).
*/
vma_iter_store(vmi, vp->insert);
mm->map_count++;
}
if (vp->anon_vma) {
anon_vma_interval_tree_post_update_vma(vp->vma);
if (vp->adj_next)
anon_vma_interval_tree_post_update_vma(vp->adj_next);
anon_vma_unlock_write(vp->anon_vma);
}
if (vp->file) {
i_mmap_unlock_write(vp->mapping);
uprobe_mmap(vp->vma);
if (vp->adj_next)
uprobe_mmap(vp->adj_next);
}
if (vp->remove) {
again:
vma_mark_detached(vp->remove, true);
if (vp->file) {
uprobe_munmap(vp->remove, vp->remove->vm_start,
vp->remove->vm_end);
fput(vp->file);
}
if (vp->remove->anon_vma)
anon_vma_merge(vp->vma, vp->remove);
mm->map_count--;
mpol_put(vma_policy(vp->remove));
if (!vp->remove2)
WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
vm_area_free(vp->remove);
/*
* In mprotect's case 6 (see comments on vma_merge),
* we are removing both mid and next vmas
*/
if (vp->remove2) {
vp->remove = vp->remove2;
vp->remove2 = NULL;
goto again;
}
}
if (vp->insert && vp->file)
uprobe_mmap(vp->insert);
}
/*
* dup_anon_vma() - Helper function to duplicate anon_vma
* @dst: The destination VMA
* @src: The source VMA
*
* Returns: 0 on success.
*/
static inline int dup_anon_vma(struct vm_area_struct *dst,
struct vm_area_struct *src)
{
/*
* Easily overlooked: when mprotect shifts the boundary, make sure the
* expanding vma has anon_vma set if the shrinking vma had, to cover any
* anon pages imported.
*/
if (src->anon_vma && !dst->anon_vma) {
vma_start_write(dst);
dst->anon_vma = src->anon_vma;
return anon_vma_clone(dst, src);
}
return 0;
}
/*
* vma_expand - Expand an existing VMA
*
* @vmi: The vma iterator
* @vma: The vma to expand
* @start: The start of the vma
* @end: The exclusive end of the vma
* @pgoff: The page offset of vma
* @next: The current of next vma.
*
* Expand @vma to @start and @end. Can expand off the start and end. Will
* expand over @next if it's different from @vma and @end == @next->vm_end.
* Checking if the @vma can expand and merge with @next needs to be handled by
* the caller.
*
* Returns: 0 on success
*/
int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long start, unsigned long end, pgoff_t pgoff,
struct vm_area_struct *next)
{
bool remove_next = false;
struct vma_prepare vp;
if (next && (vma != next) && (end == next->vm_end)) {
int ret;
remove_next = true;
ret = dup_anon_vma(vma, next);
if (ret)
return ret;
}
init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
/* Not merging but overwriting any part of next is not handled. */
VM_WARN_ON(next && !vp.remove &&
next != vma && end > next->vm_start);
/* Only handles expanding */
VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
if (vma_iter_prealloc(vmi))
goto nomem;
vma_prepare(&vp);
vma_adjust_trans_huge(vma, start, end, 0);
/* VMA iterator points to previous, so set to start if necessary */
if (vma_iter_addr(vmi) != start)
vma_iter_set(vmi, start);
vma->vm_start = start;
vma->vm_end = end;
vma->vm_pgoff = pgoff;
/* Note: mas must be pointing to the expanding VMA */
vma_iter_store(vmi, vma);
vma_complete(&vp, vmi, vma->vm_mm);
validate_mm(vma->vm_mm);
return 0;
nomem:
return -ENOMEM;
}
/*
* vma_shrink() - Reduce an existing VMAs memory area
* @vmi: The vma iterator
* @vma: The VMA to modify
* @start: The new start
* @end: The new end
*
* Returns: 0 on success, -ENOMEM otherwise
*/
int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long start, unsigned long end, pgoff_t pgoff)
{
struct vma_prepare vp;
WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
if (vma_iter_prealloc(vmi))
return -ENOMEM;
init_vma_prep(&vp, vma);
vma_prepare(&vp);
vma_adjust_trans_huge(vma, start, end, 0);
if (vma->vm_start < start)
vma_iter_clear(vmi, vma->vm_start, start);
if (vma->vm_end > end)
vma_iter_clear(vmi, end, vma->vm_end);
vma->vm_start = start;
vma->vm_end = end;
vma->vm_pgoff = pgoff;
vma_complete(&vp, vmi, vma->vm_mm);
validate_mm(vma->vm_mm);
return 0;
}
/*
* If the vma has a ->close operation then the driver probably needs to release
* per-vma resources, so we don't attempt to merge those if the caller indicates
* the current vma may be removed as part of the merge.
*/
static inline bool is_mergeable_vma(struct vm_area_struct *vma,
struct file *file, unsigned long vm_flags,
struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
struct anon_vma_name *anon_name, bool may_remove_vma)
{
/*
* VM_SOFTDIRTY should not prevent from VMA merging, if we
* match the flags but dirty bit -- the caller should mark
* merged VMA as dirty. If dirty bit won't be excluded from
* comparison, we increase pressure on the memory system forcing
* the kernel to generate new VMAs when old one could be
* extended instead.
*/
if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
return false;
if (vma->vm_file != file)
return false;
if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
return false;
if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
return false;
if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
return false;
return true;
}
static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
struct anon_vma *anon_vma2, struct vm_area_struct *vma)
{
/*
* The list_is_singular() test is to avoid merging VMA cloned from
* parents. This can improve scalability caused by anon_vma lock.
*/
if ((!anon_vma1 || !anon_vma2) && (!vma ||
list_is_singular(&vma->anon_vma_chain)))
return true;
return anon_vma1 == anon_vma2;
}
/*
* Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
* in front of (at a lower virtual address and file offset than) the vma.
*
* We cannot merge two vmas if they have differently assigned (non-NULL)
* anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
*
* We don't check here for the merged mmap wrapping around the end of pagecache
* indices (16TB on ia32) because do_mmap() does not permit mmap's which
* wrap, nor mmaps which cover the final page at index -1UL.
*
* We assume the vma may be removed as part of the merge.
*/
static bool
can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
struct anon_vma *anon_vma, struct file *file,
pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
struct anon_vma_name *anon_name)
{
if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
if (vma->vm_pgoff == vm_pgoff)
return true;
}
return false;
}
/*
* Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
* beyond (at a higher virtual address and file offset than) the vma.
*
* We cannot merge two vmas if they have differently assigned (non-NULL)
* anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
*
* We assume that vma is not removed as part of the merge.
*/
static bool
can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
struct anon_vma *anon_vma, struct file *file,
pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
struct anon_vma_name *anon_name)
{
if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
pgoff_t vm_pglen;
vm_pglen = vma_pages(vma);
if (vma->vm_pgoff + vm_pglen == vm_pgoff)
return true;
}
return false;
}
/*
* Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
* figure out whether that can be merged with its predecessor or its
* successor. Or both (it neatly fills a hole).
*
* In most cases - when called for mmap, brk or mremap - [addr,end) is
* certain not to be mapped by the time vma_merge is called; but when
* called for mprotect, it is certain to be already mapped (either at
* an offset within prev, or at the start of next), and the flags of
* this area are about to be changed to vm_flags - and the no-change
* case has already been eliminated.
*
* The following mprotect cases have to be considered, where **** is
* the area passed down from mprotect_fixup, never extending beyond one
* vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
* at the same address as **** and is of the same or larger span, and
* NNNN the next vma after ****:
*
* **** **** ****
* PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC
* cannot merge might become might become
* PPNNNNNNNNNN PPPPPPPPPPCC
* mmap, brk or case 4 below case 5 below
* mremap move:
* **** ****
* PPPP NNNN PPPPCCCCNNNN
* might become might become
* PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
* PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or
* PPPPNNNNNNNN 3 PPPPNNNNNNNN 8
*
* It is important for case 8 that the vma CCCC overlapping the
* region **** is never going to extended over NNNN. Instead NNNN must
* be extended in region **** and CCCC must be removed. This way in
* all cases where vma_merge succeeds, the moment vma_merge drops the
* rmap_locks, the properties of the merged vma will be already
* correct for the whole merged range. Some of those properties like
* vm_page_prot/vm_flags may be accessed by rmap_walks and they must
* be correct for the whole merged range immediately after the
* rmap_locks are released. Otherwise if NNNN would be removed and
* CCCC would be extended over the NNNN range, remove_migration_ptes
* or other rmap walkers (if working on addresses beyond the "end"
* parameter) may establish ptes with the wrong permissions of CCCC
* instead of the right permissions of NNNN.
*
* In the code below:
* PPPP is represented by *prev
* CCCC is represented by *curr or not represented at all (NULL)
* NNNN is represented by *next or not represented at all (NULL)
* **** is not represented - it will be merged and the vma containing the
* area is returned, or the function will return NULL
*/
struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
struct vm_area_struct *prev, unsigned long addr,
unsigned long end, unsigned long vm_flags,
struct anon_vma *anon_vma, struct file *file,
pgoff_t pgoff, struct mempolicy *policy,
struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
struct anon_vma_name *anon_name)
{
struct vm_area_struct *curr, *next, *res;
struct vm_area_struct *vma, *adjust, *remove, *remove2;
struct vma_prepare vp;
pgoff_t vma_pgoff;
int err = 0;
bool merge_prev = false;
bool merge_next = false;
bool vma_expanded = false;
unsigned long vma_start = addr;
unsigned long vma_end = end;
pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
long adj_start = 0;
validate_mm(mm);
/*
* We later require that vma->vm_flags == vm_flags,
* so this tests vma->vm_flags & VM_SPECIAL, too.
*/
if (vm_flags & VM_SPECIAL)
return NULL;
/* Does the input range span an existing VMA? (cases 5 - 8) */
curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
if (!curr || /* cases 1 - 4 */
end == curr->vm_end) /* cases 6 - 8, adjacent VMA */
next = vma_lookup(mm, end);
else
next = NULL; /* case 5 */
if (prev) {
vma_start = prev->vm_start;
vma_pgoff = prev->vm_pgoff;
/* Can we merge the predecessor? */
if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
&& can_vma_merge_after(prev, vm_flags, anon_vma, file,
pgoff, vm_userfaultfd_ctx, anon_name)) {
merge_prev = true;
vma_prev(vmi);
}
}
/* Can we merge the successor? */
if (next && mpol_equal(policy, vma_policy(next)) &&
can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
vm_userfaultfd_ctx, anon_name)) {
merge_next = true;
}
/* Verify some invariant that must be enforced by the caller. */
VM_WARN_ON(prev && addr <= prev->vm_start);
VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
VM_WARN_ON(addr >= end);
if (!merge_prev && !merge_next)
return NULL; /* Not mergeable. */
res = vma = prev;
remove = remove2 = adjust = NULL;
/* Can we merge both the predecessor and the successor? */
if (merge_prev && merge_next &&
is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
remove = next; /* case 1 */
vma_end = next->vm_end;
err = dup_anon_vma(prev, next);
if (curr) { /* case 6 */
remove = curr;
remove2 = next;
if (!next->anon_vma)
err = dup_anon_vma(prev, curr);
}
} else if (merge_prev) { /* case 2 */
if (curr) {
err = dup_anon_vma(prev, curr);
if (end == curr->vm_end) { /* case 7 */
remove = curr;
} else { /* case 5 */
adjust = curr;
adj_start = (end - curr->vm_start);
}
}
} else { /* merge_next */
res = next;
if (prev && addr < prev->vm_end) { /* case 4 */
vma_end = addr;
adjust = next;
adj_start = -(prev->vm_end - addr);
err = dup_anon_vma(next, prev);
} else {
/*
* Note that cases 3 and 8 are the ONLY ones where prev
* is permitted to be (but is not necessarily) NULL.
*/
vma = next; /* case 3 */
vma_start = addr;
vma_end = next->vm_end;
vma_pgoff = next->vm_pgoff - pglen;
if (curr) { /* case 8 */
vma_pgoff = curr->vm_pgoff;
remove = curr;
err = dup_anon_vma(next, curr);
}
}
}
/* Error in anon_vma clone. */
if (err)
return NULL;
if (vma_iter_prealloc(vmi))
return NULL;
init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
vp.anon_vma != adjust->anon_vma);
vma_prepare(&vp);
vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
if (vma_start < vma->vm_start || vma_end > vma->vm_end)
vma_expanded = true;
vma->vm_start = vma_start;
vma->vm_end = vma_end;
vma->vm_pgoff = vma_pgoff;
if (vma_expanded)
vma_iter_store(vmi, vma);
if (adj_start) {
adjust->vm_start += adj_start;
adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
if (adj_start < 0) {
WARN_ON(vma_expanded);
vma_iter_store(vmi, next);
}
}
vma_complete(&vp, vmi, mm);
vma_iter_free(vmi);
validate_mm(mm);
khugepaged_enter_vma(res, vm_flags);
return res;
}
/*
* Rough compatibility check to quickly see if it's even worth looking
* at sharing an anon_vma.
*
* They need to have the same vm_file, and the flags can only differ
* in things that mprotect may change.
*
* NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
* we can merge the two vma's. For example, we refuse to merge a vma if
* there is a vm_ops->close() function, because that indicates that the
* driver is doing some kind of reference counting. But that doesn't
* really matter for the anon_vma sharing case.
*/
static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
{
return a->vm_end == b->vm_start &&
mpol_equal(vma_policy(a), vma_policy(b)) &&
a->vm_file == b->vm_file &&
!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
}
/*
* Do some basic sanity checking to see if we can re-use the anon_vma
* from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
* the same as 'old', the other will be the new one that is trying
* to share the anon_vma.
*
* NOTE! This runs with mmap_lock held for reading, so it is possible that
* the anon_vma of 'old' is concurrently in the process of being set up
* by another page fault trying to merge _that_. But that's ok: if it
* is being set up, that automatically means that it will be a singleton
* acceptable for merging, so we can do all of this optimistically. But
* we do that READ_ONCE() to make sure that we never re-load the pointer.
*
* IOW: that the "list_is_singular()" test on the anon_vma_chain only
* matters for the 'stable anon_vma' case (ie the thing we want to avoid
* is to return an anon_vma that is "complex" due to having gone through
* a fork).
*
* We also make sure that the two vma's are compatible (adjacent,
* and with the same memory policies). That's all stable, even with just
* a read lock on the mmap_lock.
*/
static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
{
if (anon_vma_compatible(a, b)) {
struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
if (anon_vma && list_is_singular(&old->anon_vma_chain))
return anon_vma;
}
return NULL;
}
/*
* find_mergeable_anon_vma is used by anon_vma_prepare, to check
* neighbouring vmas for a suitable anon_vma, before it goes off
* to allocate a new anon_vma. It checks because a repetitive
* sequence of mprotects and faults may otherwise lead to distinct
* anon_vmas being allocated, preventing vma merge in subsequent
* mprotect.
*/
struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
{
MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
struct anon_vma *anon_vma = NULL;
struct vm_area_struct *prev, *next;
/* Try next first. */
next = mas_walk(&mas);
if (next) {
anon_vma = reusable_anon_vma(next, vma, next);
if (anon_vma)
return anon_vma;
}
prev = mas_prev(&mas, 0);
VM_BUG_ON_VMA(prev != vma, vma);
prev = mas_prev(&mas, 0);
/* Try prev next. */
if (prev)
anon_vma = reusable_anon_vma(prev, prev, vma);
/*
* We might reach here with anon_vma == NULL if we can't find
* any reusable anon_vma.
* There's no absolute need to look only at touching neighbours:
* we could search further afield for "compatible" anon_vmas.
* But it would probably just be a waste of time searching,
* or lead to too many vmas hanging off the same anon_vma.
* We're trying to allow mprotect remerging later on,
* not trying to minimize memory used for anon_vmas.
*/
return anon_vma;
}
/*
* If a hint addr is less than mmap_min_addr change hint to be as
* low as possible but still greater than mmap_min_addr
*/
static inline unsigned long round_hint_to_min(unsigned long hint)
{
hint &= PAGE_MASK;
if (((void *)hint != NULL) &&
(hint < mmap_min_addr))
return PAGE_ALIGN(mmap_min_addr);
return hint;
}
bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
unsigned long bytes)
{
unsigned long locked_pages, limit_pages;
if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
return true;
locked_pages = bytes >> PAGE_SHIFT;
locked_pages += mm->locked_vm;
limit_pages = rlimit(RLIMIT_MEMLOCK);
limit_pages >>= PAGE_SHIFT;
return locked_pages <= limit_pages;
}
static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
{
if (S_ISREG(inode->i_mode))
return MAX_LFS_FILESIZE;
if (S_ISBLK(inode->i_mode))
return MAX_LFS_FILESIZE;
if (S_ISSOCK(inode->i_mode))
return MAX_LFS_FILESIZE;
/* Special "we do even unsigned file positions" case */
if (file->f_mode & FMODE_UNSIGNED_OFFSET)
return 0;
/* Yes, random drivers might want more. But I'm tired of buggy drivers */
return ULONG_MAX;
}
static inline bool file_mmap_ok(struct file *file, struct inode *inode,
unsigned long pgoff, unsigned long len)
{
u64 maxsize = file_mmap_size_max(file, inode);
if (maxsize && len > maxsize)
return false;
maxsize -= len;
if (pgoff > maxsize >> PAGE_SHIFT)
return false;
return true;
}
/*
* The caller must write-lock current->mm->mmap_lock.
*/
unsigned long do_mmap(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flags, unsigned long pgoff,
unsigned long *populate, struct list_head *uf)
{
struct mm_struct *mm = current->mm;
vm_flags_t vm_flags;
int pkey = 0;
validate_mm(mm);
*populate = 0;
if (!len)
return -EINVAL;
/*
* Does the application expect PROT_READ to imply PROT_EXEC?
*
* (the exception is when the underlying filesystem is noexec
* mounted, in which case we dont add PROT_EXEC.)
*/
if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
if (!(file && path_noexec(&file->f_path)))
prot |= PROT_EXEC;
/* force arch specific MAP_FIXED handling in get_unmapped_area */
if (flags & MAP_FIXED_NOREPLACE)
flags |= MAP_FIXED;
if (!(flags & MAP_FIXED))
addr = round_hint_to_min(addr);
/* Careful about overflows.. */
len = PAGE_ALIGN(len);
if (!len)
return -ENOMEM;
/* offset overflow? */
if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
return -EOVERFLOW;
/* Too many mappings? */
if (mm->map_count > sysctl_max_map_count)
return -ENOMEM;
/* Obtain the address to map to. we verify (or select) it and ensure
* that it represents a valid section of the address space.
*/
addr = get_unmapped_area(file, addr, len, pgoff, flags);
if (IS_ERR_VALUE(addr))
return addr;
if (flags & MAP_FIXED_NOREPLACE) {
if (find_vma_intersection(mm, addr, addr + len))
return -EEXIST;
}
if (prot == PROT_EXEC) {
pkey = execute_only_pkey(mm);
if (pkey < 0)
pkey = 0;
}
/* Do simple checking here so the lower-level routines won't have
* to. we assume access permissions have been handled by the open
* of the memory object, so we don't do any here.
*/
vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
if (flags & MAP_LOCKED)
if (!can_do_mlock())
return -EPERM;
if (!mlock_future_ok(mm, vm_flags, len))
return -EAGAIN;
if (file) {
struct inode *inode = file_inode(file);
unsigned long flags_mask;
if (!file_mmap_ok(file, inode, pgoff, len))
return -EOVERFLOW;
flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
switch (flags & MAP_TYPE) {
case MAP_SHARED:
/*
* Force use of MAP_SHARED_VALIDATE with non-legacy
* flags. E.g. MAP_SYNC is dangerous to use with
* MAP_SHARED as you don't know which consistency model
* you will get. We silently ignore unsupported flags
* with MAP_SHARED to preserve backward compatibility.
*/
flags &= LEGACY_MAP_MASK;
fallthrough;
case MAP_SHARED_VALIDATE:
if (flags & ~flags_mask)
return -EOPNOTSUPP;
if (prot & PROT_WRITE) {
if (!(file->f_mode & FMODE_WRITE))
return -EACCES;
if (IS_SWAPFILE(file->f_mapping->host))
return -ETXTBSY;
}
/*
* Make sure we don't allow writing to an append-only
* file..
*/
if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
return -EACCES;
vm_flags |= VM_SHARED | VM_MAYSHARE;
if (!(file->f_mode & FMODE_WRITE))
vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
fallthrough;
case MAP_PRIVATE:
if (!(file->f_mode & FMODE_READ))
return -EACCES;
if (path_noexec(&file->f_path)) {
if (vm_flags & VM_EXEC)
return -EPERM;
vm_flags &= ~VM_MAYEXEC;
}
if (!file->f_op->mmap)
return -ENODEV;
if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
return -EINVAL;
break;
default:
return -EINVAL;
}
} else {
switch (flags & MAP_TYPE) {
case MAP_SHARED:
if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
return -EINVAL;
/*
* Ignore pgoff.
*/
pgoff = 0;
vm_flags |= VM_SHARED | VM_MAYSHARE;
break;
case MAP_PRIVATE:
/*
* Set pgoff according to addr for anon_vma.
*/
pgoff = addr >> PAGE_SHIFT;
break;
default:
return -EINVAL;
}
}
/*
* Set 'VM_NORESERVE' if we should not account for the
* memory use of this mapping.
*/
if (flags & MAP_NORESERVE) {
/* We honor MAP_NORESERVE if allowed to overcommit */
if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
vm_flags |= VM_NORESERVE;
/* hugetlb applies strict overcommit unless MAP_NORESERVE */
if (file && is_file_hugepages(file))
vm_flags |= VM_NORESERVE;
}
addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
if (!IS_ERR_VALUE(addr) &&
((vm_flags & VM_LOCKED) ||
(flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
*populate = len;
return addr;
}
unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
unsigned long prot, unsigned long flags,
unsigned long fd, unsigned long pgoff)
{
struct file *file = NULL;
unsigned long retval;
if (!(flags & MAP_ANONYMOUS)) {
audit_mmap_fd(fd, flags);
file = fget(fd);
if (!file)
return -EBADF;
if (is_file_hugepages(file)) {
len = ALIGN(len, huge_page_size(hstate_file(file)));
} else if (unlikely(flags & MAP_HUGETLB)) {
retval = -EINVAL;
goto out_fput;
}
} else if (flags & MAP_HUGETLB) {
struct hstate *hs;
hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
if (!hs)
return -EINVAL;
len = ALIGN(len, huge_page_size(hs));
/*
* VM_NORESERVE is used because the reservations will be
* taken when vm_ops->mmap() is called
*/
file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
VM_NORESERVE,
HUGETLB_ANONHUGE_INODE,
(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
if (IS_ERR(file))
return PTR_ERR(file);
}
retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
out_fput:
if (file)
fput(file);
return retval;
}
SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
unsigned long, prot, unsigned long, flags,
unsigned long, fd, unsigned long, pgoff)
{
return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
}
#ifdef __ARCH_WANT_SYS_OLD_MMAP
struct mmap_arg_struct {
unsigned long addr;
unsigned long len;
unsigned long prot;
unsigned long flags;
unsigned long fd;
unsigned long offset;
};
SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
{
struct mmap_arg_struct a;
if (copy_from_user(&a, arg, sizeof(a)))
return -EFAULT;
if (offset_in_page(a.offset))
return -EINVAL;
return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
a.offset >> PAGE_SHIFT);
}
#endif /* __ARCH_WANT_SYS_OLD_MMAP */
static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
{
return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
}
static bool vma_is_shared_writable(struct vm_area_struct *vma)
{
return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
(VM_WRITE | VM_SHARED);
}
static bool vma_fs_can_writeback(struct vm_area_struct *vma)
{
/* No managed pages to writeback. */
if (vma->vm_flags & VM_PFNMAP)
return false;
return vma->vm_file && vma->vm_file->f_mapping &&
mapping_can_writeback(vma->vm_file->f_mapping);
}
/*
* Does this VMA require the underlying folios to have their dirty state
* tracked?
*/
bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
{
/* Only shared, writable VMAs require dirty tracking. */
if (!vma_is_shared_writable(vma))
return false;
/* Does the filesystem need to be notified? */
if (vm_ops_needs_writenotify(vma->vm_ops))
return true;
/*
* Even if the filesystem doesn't indicate a need for writenotify, if it
* can writeback, dirty tracking is still required.
*/
return vma_fs_can_writeback(vma);
}
/*
* Some shared mappings will want the pages marked read-only
* to track write events. If so, we'll downgrade vm_page_prot
* to the private version (using protection_map[] without the
* VM_SHARED bit).
*/
int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
{
/* If it was private or non-writable, the write bit is already clear */
if (!vma_is_shared_writable(vma))
return 0;
/* The backer wishes to know when pages are first written to? */
if (vm_ops_needs_writenotify(vma->vm_ops))
return 1;
/* The open routine did something to the protections that pgprot_modify
* won't preserve? */
if (pgprot_val(vm_page_prot) !=
pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
return 0;
/*
* Do we need to track softdirty? hugetlb does not support softdirty
* tracking yet.
*/
if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
return 1;
/* Do we need write faults for uffd-wp tracking? */
if (userfaultfd_wp(vma))
return 1;
/* Can the mapping track the dirty pages? */
return vma_fs_can_writeback(vma);
}
/*
* We account for memory if it's a private writeable mapping,
* not hugepages and VM_NORESERVE wasn't set.
*/
static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
{
/*
* hugetlb has its own accounting separate from the core VM
* VM_HUGETLB may not be set yet so we cannot check for that flag.
*/
if (file && is_file_hugepages(file))
return 0;
return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
}
/**
* unmapped_area() - Find an area between the low_limit and the high_limit with
* the correct alignment and offset, all from @info. Note: current->mm is used
* for the search.
*
* @info: The unmapped area information including the range [low_limit -
* high_limit), the alignment offset and mask.
*
* Return: A memory address or -ENOMEM.
*/
static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
{
unsigned long length, gap;
unsigned long low_limit, high_limit;
struct vm_area_struct *tmp;
MA_STATE(mas, &current->mm->mm_mt, 0, 0);
/* Adjust search length to account for worst case alignment overhead */
length = info->length + info->align_mask;
if (length < info->length)
return -ENOMEM;
low_limit = info->low_limit;
if (low_limit < mmap_min_addr)
low_limit = mmap_min_addr;
high_limit = info->high_limit;
retry:
if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
return -ENOMEM;
gap = mas.index;
gap += (info->align_offset - gap) & info->align_mask;
tmp = mas_next(&mas, ULONG_MAX);
if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
if (vm_start_gap(tmp) < gap + length - 1) {
low_limit = tmp->vm_end;
mas_reset(&mas);
goto retry;
}
} else {
tmp = mas_prev(&mas, 0);
if (tmp && vm_end_gap(tmp) > gap) {
low_limit = vm_end_gap(tmp);
mas_reset(&mas);
goto retry;
}
}
return gap;
}
/**
* unmapped_area_topdown() - Find an area between the low_limit and the
* high_limit with the correct alignment and offset at the highest available
* address, all from @info. Note: current->mm is used for the search.
*
* @info: The unmapped area information including the range [low_limit -
* high_limit), the alignment offset and mask.
*
* Return: A memory address or -ENOMEM.
*/
static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
{
unsigned long length, gap, gap_end;
unsigned long low_limit, high_limit;
struct vm_area_struct *tmp;
MA_STATE(mas, &current->mm->mm_mt, 0, 0);
/* Adjust search length to account for worst case alignment overhead */
length = info->length + info->align_mask;
if (length < info->length)
return -ENOMEM;
low_limit = info->low_limit;
if (low_limit < mmap_min_addr)
low_limit = mmap_min_addr;
high_limit = info->high_limit;
retry:
if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
return -ENOMEM;
gap = mas.last + 1 - info->length;
gap -= (gap - info->align_offset) & info->align_mask;
gap_end = mas.last;
tmp = mas_next(&mas, ULONG_MAX);
if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
if (vm_start_gap(tmp) <= gap_end) {
high_limit = vm_start_gap(tmp);
mas_reset(&mas);
goto retry;
}
} else {
tmp = mas_prev(&mas, 0);
if (tmp && vm_end_gap(tmp) > gap) {
high_limit = tmp->vm_start;
mas_reset(&mas);
goto retry;
}
}
return gap;
}
/*
* Search for an unmapped address range.
*
* We are looking for a range that:
* - does not intersect with any VMA;
* - is contained within the [low_limit, high_limit) interval;
* - is at least the desired size.
* - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
*/
unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
{
unsigned long addr;
if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
addr = unmapped_area_topdown(info);
else
addr = unmapped_area(info);
trace_vm_unmapped_area(addr, info);
return addr;
}
/* Get an address range which is currently unmapped.
* For shmat() with addr=0.
*
* Ugly calling convention alert:
* Return value with the low bits set means error value,
* ie
* if (ret & ~PAGE_MASK)
* error = ret;
*
* This function "knows" that -ENOMEM has the bits set.
*/
unsigned long
generic_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma, *prev;
struct vm_unmapped_area_info info;
const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
if (len > mmap_end - mmap_min_addr)
return -ENOMEM;
if (flags & MAP_FIXED)
return addr;
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma_prev(mm, addr, &prev);
if (mmap_end - len >= addr && addr >= mmap_min_addr &&
(!vma || addr + len <= vm_start_gap(vma)) &&
(!prev || addr >= vm_end_gap(prev)))
return addr;
}
info.flags = 0;
info.length = len;
info.low_limit = mm->mmap_base;
info.high_limit = mmap_end;
info.align_mask = 0;
info.align_offset = 0;
return vm_unmapped_area(&info);
}
#ifndef HAVE_ARCH_UNMAPPED_AREA
unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
}
#endif
/*
* This mmap-allocator allocates new areas top-down from below the
* stack's low limit (the base):
*/
unsigned long
generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
struct vm_area_struct *vma, *prev;
struct mm_struct *mm = current->mm;
struct vm_unmapped_area_info info;
const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
/* requested length too big for entire address space */
if (len > mmap_end - mmap_min_addr)
return -ENOMEM;
if (flags & MAP_FIXED)
return addr;
/* requesting a specific address */
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma_prev(mm, addr, &prev);
if (mmap_end - len >= addr && addr >= mmap_min_addr &&
(!vma || addr + len <= vm_start_gap(vma)) &&
(!prev || addr >= vm_end_gap(prev)))
return addr;
}
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
info.length = len;
info.low_limit = PAGE_SIZE;
info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
info.align_mask = 0;
info.align_offset = 0;
addr = vm_unmapped_area(&info);
/*
* A failed mmap() very likely causes application failure,
* so fall back to the bottom-up function here. This scenario
* can happen with large stack limits and large mmap()
* allocations.
*/
if (offset_in_page(addr)) {
VM_BUG_ON(addr != -ENOMEM);
info.flags = 0;
info.low_limit = TASK_UNMAPPED_BASE;
info.high_limit = mmap_end;
addr = vm_unmapped_area(&info);
}
return addr;
}
#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
unsigned long
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
}
#endif
unsigned long
get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
unsigned long (*get_area)(struct file *, unsigned long,
unsigned long, unsigned long, unsigned long);
unsigned long error = arch_mmap_check(addr, len, flags);
if (error)
return error;
/* Careful about overflows.. */
if (len > TASK_SIZE)
return -ENOMEM;
get_area = current->mm->get_unmapped_area;
if (file) {
if (file->f_op->get_unmapped_area)
get_area = file->f_op->get_unmapped_area;
} else if (flags & MAP_SHARED) {
/*
* mmap_region() will call shmem_zero_setup() to create a file,
* so use shmem's get_unmapped_area in case it can be huge.
* do_mmap() will clear pgoff, so match alignment.
*/
pgoff = 0;
get_area = shmem_get_unmapped_area;
}
addr = get_area(file, addr, len, pgoff, flags);
if (IS_ERR_VALUE(addr))
return addr;
if (addr > TASK_SIZE - len)
return -ENOMEM;
if (offset_in_page(addr))
return -EINVAL;
error = security_mmap_addr(addr);
return error ? error : addr;
}
EXPORT_SYMBOL(get_unmapped_area);
/**
* find_vma_intersection() - Look up the first VMA which intersects the interval
* @mm: The process address space.
* @start_addr: The inclusive start user address.
* @end_addr: The exclusive end user address.
*
* Returns: The first VMA within the provided range, %NULL otherwise. Assumes
* start_addr < end_addr.
*/
struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
unsigned long start_addr,
unsigned long end_addr)
{
unsigned long index = start_addr;
mmap_assert_locked(mm);
return mt_find(&mm->mm_mt, &index, end_addr - 1);
}
EXPORT_SYMBOL(find_vma_intersection);
/**
* find_vma() - Find the VMA for a given address, or the next VMA.
* @mm: The mm_struct to check
* @addr: The address
*
* Returns: The VMA associated with addr, or the next VMA.
* May return %NULL in the case of no VMA at addr or above.
*/
struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
{
unsigned long index = addr;
mmap_assert_locked(mm);
return mt_find(&mm->mm_mt, &index, ULONG_MAX);
}
EXPORT_SYMBOL(find_vma);
/**
* find_vma_prev() - Find the VMA for a given address, or the next vma and
* set %pprev to the previous VMA, if any.
* @mm: The mm_struct to check
* @addr: The address
* @pprev: The pointer to set to the previous VMA
*
* Note that RCU lock is missing here since the external mmap_lock() is used
* instead.
*
* Returns: The VMA associated with @addr, or the next vma.
* May return %NULL in the case of no vma at addr or above.
*/
struct vm_area_struct *
find_vma_prev(struct mm_struct *mm, unsigned long addr,
struct vm_area_struct **pprev)
{
struct vm_area_struct *vma;
MA_STATE(mas, &mm->mm_mt, addr, addr);
vma = mas_walk(&mas);
*pprev = mas_prev(&mas, 0);
if (!vma)
vma = mas_next(&mas, ULONG_MAX);
return vma;
}
/*
* Verify that the stack growth is acceptable and
* update accounting. This is shared with both the
* grow-up and grow-down cases.
*/
static int acct_stack_growth(struct vm_area_struct *vma,
unsigned long size, unsigned long grow)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long new_start;
/* address space limit tests */
if (!may_expand_vm(mm, vma->vm_flags, grow))
return -ENOMEM;
/* Stack limit test */
if (size > rlimit(RLIMIT_STACK))
return -ENOMEM;
/* mlock limit tests */
if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
return -ENOMEM;
/* Check to ensure the stack will not grow into a hugetlb-only region */
new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
vma->vm_end - size;
if (is_hugepage_only_range(vma->vm_mm, new_start, size))
return -EFAULT;
/*
* Overcommit.. This must be the final test, as it will
* update security statistics.
*/
if (security_vm_enough_memory_mm(mm, grow))
return -ENOMEM;
return 0;
}
#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
/*
* PA-RISC uses this for its stack; IA64 for its Register Backing Store.
* vma is the last one with address > vma->vm_end. Have to extend vma.
*/
static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
{
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *next;
unsigned long gap_addr;
int error = 0;
MA_STATE(mas, &mm->mm_mt, 0, 0);
if (!(vma->vm_flags & VM_GROWSUP))
return -EFAULT;
/* Guard against exceeding limits of the address space. */
address &= PAGE_MASK;
if (address >= (TASK_SIZE & PAGE_MASK))
return -ENOMEM;
address += PAGE_SIZE;
/* Enforce stack_guard_gap */
gap_addr = address + stack_guard_gap;
/* Guard against overflow */
if (gap_addr < address || gap_addr > TASK_SIZE)
gap_addr = TASK_SIZE;
next = find_vma_intersection(mm, vma->vm_end, gap_addr);
if (next && vma_is_accessible(next)) {
if (!(next->vm_flags & VM_GROWSUP))
return -ENOMEM;
/* Check that both stack segments have the same anon_vma? */
}
if (mas_preallocate(&mas, GFP_KERNEL))
return -ENOMEM;
/* We must make sure the anon_vma is allocated. */
if (unlikely(anon_vma_prepare(vma))) {
mas_destroy(&mas);
return -ENOMEM;
}
/* Lock the VMA before expanding to prevent concurrent page faults */
vma_start_write(vma);
/*
* vma->vm_start/vm_end cannot change under us because the caller
* is required to hold the mmap_lock in read mode. We need the
* anon_vma lock to serialize against concurrent expand_stacks.
*/
anon_vma_lock_write(vma->anon_vma);
/* Somebody else might have raced and expanded it already */
if (address > vma->vm_end) {
unsigned long size, grow;
size = address - vma->vm_start;
grow = (address - vma->vm_end) >> PAGE_SHIFT;
error = -ENOMEM;
if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
error = acct_stack_growth(vma, size, grow);
if (!error) {
/*
* We only hold a shared mmap_lock lock here, so
* we need to protect against concurrent vma
* expansions. anon_vma_lock_write() doesn't
* help here, as we don't guarantee that all
* growable vmas in a mm share the same root
* anon vma. So, we reuse mm->page_table_lock
* to guard against concurrent vma expansions.
*/
spin_lock(&mm->page_table_lock);
if (vma->vm_flags & VM_LOCKED)
mm->locked_vm += grow;
vm_stat_account(mm, vma->vm_flags, grow);
anon_vma_interval_tree_pre_update_vma(vma);
vma->vm_end = address;
/* Overwrite old entry in mtree. */
mas_set_range(&mas, vma->vm_start, address - 1);
mas_store_prealloc(&mas, vma);
anon_vma_interval_tree_post_update_vma(vma);
spin_unlock(&mm->page_table_lock);
perf_event_mmap(vma);
}
}
}
anon_vma_unlock_write(vma->anon_vma);
khugepaged_enter_vma(vma, vma->vm_flags);
mas_destroy(&mas);
return error;
}
#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
/*
* vma is the first one with address < vma->vm_start. Have to extend vma.
* mmap_lock held for writing.
*/
int expand_downwards(struct vm_area_struct *vma, unsigned long address)
{
struct mm_struct *mm = vma->vm_mm;
MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
struct vm_area_struct *prev;
int error = 0;
if (!(vma->vm_flags & VM_GROWSDOWN))
return -EFAULT;
address &= PAGE_MASK;
if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
return -EPERM;
/* Enforce stack_guard_gap */
prev = mas_prev(&mas, 0);
/* Check that both stack segments have the same anon_vma? */
if (prev) {
if (!(prev->vm_flags & VM_GROWSDOWN) &&
vma_is_accessible(prev) &&
(address - prev->vm_end < stack_guard_gap))
return -ENOMEM;
}
if (mas_preallocate(&mas, GFP_KERNEL))
return -ENOMEM;
/* We must make sure the anon_vma is allocated. */
if (unlikely(anon_vma_prepare(vma))) {
mas_destroy(&mas);
return -ENOMEM;
}
/* Lock the VMA before expanding to prevent concurrent page faults */
vma_start_write(vma);
/*
* vma->vm_start/vm_end cannot change under us because the caller
* is required to hold the mmap_lock in read mode. We need the
* anon_vma lock to serialize against concurrent expand_stacks.
*/
anon_vma_lock_write(vma->anon_vma);
/* Somebody else might have raced and expanded it already */
if (address < vma->vm_start) {
unsigned long size, grow;
size = vma->vm_end - address;
grow = (vma->vm_start - address) >> PAGE_SHIFT;
error = -ENOMEM;
if (grow <= vma->vm_pgoff) {
error = acct_stack_growth(vma, size, grow);
if (!error) {
/*
* We only hold a shared mmap_lock lock here, so
* we need to protect against concurrent vma
* expansions. anon_vma_lock_write() doesn't
* help here, as we don't guarantee that all
* growable vmas in a mm share the same root
* anon vma. So, we reuse mm->page_table_lock
* to guard against concurrent vma expansions.
*/
spin_lock(&mm->page_table_lock);
if (vma->vm_flags & VM_LOCKED)
mm->locked_vm += grow;
vm_stat_account(mm, vma->vm_flags, grow);
anon_vma_interval_tree_pre_update_vma(vma);
vma->vm_start = address;
vma->vm_pgoff -= grow;
/* Overwrite old entry in mtree. */
mas_set_range(&mas, address, vma->vm_end - 1);
mas_store_prealloc(&mas, vma);
anon_vma_interval_tree_post_update_vma(vma);
spin_unlock(&mm->page_table_lock);
perf_event_mmap(vma);
}
}
}
anon_vma_unlock_write(vma->anon_vma);
khugepaged_enter_vma(vma, vma->vm_flags);
mas_destroy(&mas);
return error;
}
/* enforced gap between the expanding stack and other mappings. */
unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
static int __init cmdline_parse_stack_guard_gap(char *p)
{
unsigned long val;
char *endptr;
val = simple_strtoul(p, &endptr, 10);
if (!*endptr)
stack_guard_gap = val << PAGE_SHIFT;
return 1;
}
__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
#ifdef CONFIG_STACK_GROWSUP
int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
{
return expand_upwards(vma, address);
}
struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
{
struct vm_area_struct *vma, *prev;
addr &= PAGE_MASK;
vma = find_vma_prev(mm, addr, &prev);
if (vma && (vma->vm_start <= addr))
return vma;
if (!prev)
return NULL;
if (expand_stack_locked(prev, addr))
return NULL;
if (prev->vm_flags & VM_LOCKED)
populate_vma_page_range(prev, addr, prev->vm_end, NULL);
return prev;
}
#else
int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
{
if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
return -EINVAL;
return expand_downwards(vma, address);
}
struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
{
struct vm_area_struct *vma;
unsigned long start;
addr &= PAGE_MASK;
vma = find_vma(mm, addr);
if (!vma)
return NULL;
if (vma->vm_start <= addr)
return vma;
start = vma->vm_start;
if (expand_stack_locked(vma, addr))
return NULL;
if (vma->vm_flags & VM_LOCKED)
populate_vma_page_range(vma, addr, start, NULL);
return vma;
}
#endif
/*
* IA64 has some horrid mapping rules: it can expand both up and down,
* but with various special rules.
*
* We'll get rid of this architecture eventually, so the ugliness is
* temporary.
*/
#ifdef CONFIG_IA64
static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
{
return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
REGION_OFFSET(addr) < RGN_MAP_LIMIT;
}
/*
* IA64 stacks grow down, but there's a special register backing store
* that can grow up. Only sequentially, though, so the new address must
* match vm_end.
*/
static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
{
if (!vma_expand_ok(vma, addr))
return -EFAULT;
if (vma->vm_end != (addr & PAGE_MASK))
return -EFAULT;
return expand_upwards(vma, addr);
}
static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
{
if (!vma_expand_ok(vma, addr))
return -EFAULT;
return expand_downwards(vma, addr);
}
#elif defined(CONFIG_STACK_GROWSUP)
#define vma_expand_up(vma,addr) expand_upwards(vma, addr)
#define vma_expand_down(vma, addr) (-EFAULT)
#else
#define vma_expand_up(vma,addr) (-EFAULT)
#define vma_expand_down(vma, addr) expand_downwards(vma, addr)
#endif
/*
* expand_stack(): legacy interface for page faulting. Don't use unless
* you have to.
*
* This is called with the mm locked for reading, drops the lock, takes
* the lock for writing, tries to look up a vma again, expands it if
* necessary, and downgrades the lock to reading again.
*
* If no vma is found or it can't be expanded, it returns NULL and has
* dropped the lock.
*/
struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
{
struct vm_area_struct *vma, *prev;
mmap_read_unlock(mm);
if (mmap_write_lock_killable(mm))
return NULL;
vma = find_vma_prev(mm, addr, &prev);
if (vma && vma->vm_start <= addr)
goto success;
if (prev && !vma_expand_up(prev, addr)) {
vma = prev;
goto success;
}
if (vma && !vma_expand_down(vma, addr))
goto success;
mmap_write_unlock(mm);
return NULL;
success:
mmap_write_downgrade(mm);
return vma;
}
/*
* Ok - we have the memory areas we should free on a maple tree so release them,
* and do the vma updates.
*
* Called with the mm semaphore held.
*/
static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
{
unsigned long nr_accounted = 0;
struct vm_area_struct *vma;
/* Update high watermark before we lower total_vm */
update_hiwater_vm(mm);
mas_for_each(mas, vma, ULONG_MAX) {
long nrpages = vma_pages(vma);
if (vma->vm_flags & VM_ACCOUNT)
nr_accounted += nrpages;
vm_stat_account(mm, vma->vm_flags, -nrpages);
remove_vma(vma, false);
}
vm_unacct_memory(nr_accounted);
validate_mm(mm);
}
/*
* Get rid of page table information in the indicated region.
*
* Called with the mm semaphore held.
*/
static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
struct vm_area_struct *vma, struct vm_area_struct *prev,
struct vm_area_struct *next,
unsigned long start, unsigned long end, bool mm_wr_locked)
{
struct mmu_gather tlb;
lru_add_drain();
tlb_gather_mmu(&tlb, mm);
update_hiwater_rss(mm);
unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
next ? next->vm_start : USER_PGTABLES_CEILING,
mm_wr_locked);
tlb_finish_mmu(&tlb);
}
/*
* __split_vma() bypasses sysctl_max_map_count checking. We use this where it
* has already been checked or doesn't make sense to fail.
* VMA Iterator will point to the end VMA.
*/
int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long addr, int new_below)
{
struct vma_prepare vp;
struct vm_area_struct *new;
int err;
validate_mm(vma->vm_mm);
WARN_ON(vma->vm_start >= addr);
WARN_ON(vma->vm_end <= addr);
if (vma->vm_ops && vma->vm_ops->may_split) {
err = vma->vm_ops->may_split(vma, addr);
if (err)
return err;
}
new = vm_area_dup(vma);
if (!new)
return -ENOMEM;
err = -ENOMEM;
if (vma_iter_prealloc(vmi))
goto out_free_vma;
if (new_below) {
new->vm_end = addr;
} else {
new->vm_start = addr;
new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
}
err = vma_dup_policy(vma, new);
if (err)
goto out_free_vmi;
err = anon_vma_clone(new, vma);
if (err)
goto out_free_mpol;
if (new->vm_file)
get_file(new->vm_file);
if (new->vm_ops && new->vm_ops->open)
new->vm_ops->open(new);
init_vma_prep(&vp, vma);
vp.insert = new;
vma_prepare(&vp);
vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
if (new_below) {
vma->vm_start = addr;
vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
} else {
vma->vm_end = addr;
}
/* vma_complete stores the new vma */
vma_complete(&vp, vmi, vma->vm_mm);
/* Success. */
if (new_below)
vma_next(vmi);
validate_mm(vma->vm_mm);
return 0;
out_free_mpol:
mpol_put(vma_policy(new));
out_free_vmi:
vma_iter_free(vmi);
out_free_vma:
vm_area_free(new);
validate_mm(vma->vm_mm);
return err;
}
/*
* Split a vma into two pieces at address 'addr', a new vma is allocated
* either for the first part or the tail.
*/
int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long addr, int new_below)
{
if (vma->vm_mm->map_count >= sysctl_max_map_count)
return -ENOMEM;
return __split_vma(vmi, vma, addr, new_below);
}
/*
* do_vmi_align_munmap() - munmap the aligned region from @start to @end.
* @vmi: The vma iterator
* @vma: The starting vm_area_struct
* @mm: The mm_struct
* @start: The aligned start address to munmap.
* @end: The aligned end address to munmap.
* @uf: The userfaultfd list_head
* @unlock: Set to true to drop the mmap_lock. unlocking only happens on
* success.
*
* Return: 0 on success and drops the lock if so directed, error and leaves the
* lock held otherwise.
*/
static int
do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
struct mm_struct *mm, unsigned long start,
unsigned long end, struct list_head *uf, bool unlock)
{
struct vm_area_struct *prev, *next = NULL;
struct maple_tree mt_detach;
int count = 0;
int error = -ENOMEM;
unsigned long locked_vm = 0;
MA_STATE(mas_detach, &mt_detach, 0, 0);
mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
mt_set_external_lock(&mt_detach, &mm->mmap_lock);
/*
* If we need to split any vma, do it now to save pain later.
*
* Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
* unmapped vm_area_struct will remain in use: so lower split_vma
* places tmp vma above, and higher split_vma places tmp vma below.
*/
/* Does it split the first one? */
if (start > vma->vm_start) {
/*
* Make sure that map_count on return from munmap() will
* not exceed its limit; but let map_count go just above
* its limit temporarily, to help free resources as expected.
*/
if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
goto map_count_exceeded;
error = __split_vma(vmi, vma, start, 0);
if (error)
goto start_split_failed;
vma = vma_iter_load(vmi);
}
prev = vma_prev(vmi);
if (unlikely((!prev)))
vma_iter_set(vmi, start);
/*
* Detach a range of VMAs from the mm. Using next as a temp variable as
* it is always overwritten.
*/
for_each_vma_range(*vmi, next, end) {
/* Does it split the end? */
if (next->vm_end > end) {
error = __split_vma(vmi, next, end, 0);
if (error)
goto end_split_failed;
}
vma_start_write(next);
mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1);
error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
if (error)
goto munmap_gather_failed;
vma_mark_detached(next, true);
if (next->vm_flags & VM_LOCKED)
locked_vm += vma_pages(next);
count++;
if (unlikely(uf)) {
/*
* If userfaultfd_unmap_prep returns an error the vmas
* will remain split, but userland will get a
* highly unexpected error anyway. This is no
* different than the case where the first of the two
* __split_vma fails, but we don't undo the first
* split, despite we could. This is unlikely enough
* failure that it's not worth optimizing it for.
*/
error = userfaultfd_unmap_prep(next, start, end, uf);
if (error)
goto userfaultfd_error;
}
#ifdef CONFIG_DEBUG_VM_MAPLE_TREE
BUG_ON(next->vm_start < start);
BUG_ON(next->vm_start > end);
#endif
}
if (vma_iter_end(vmi) > end)
next = vma_iter_load(vmi);
if (!next)
next = vma_next(vmi);
#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
/* Make sure no VMAs are about to be lost. */
{
MA_STATE(test, &mt_detach, start, end - 1);
struct vm_area_struct *vma_mas, *vma_test;
int test_count = 0;
vma_iter_set(vmi, start);
rcu_read_lock();
vma_test = mas_find(&test, end - 1);
for_each_vma_range(*vmi, vma_mas, end) {
BUG_ON(vma_mas != vma_test);
test_count++;
vma_test = mas_next(&test, end - 1);
}
rcu_read_unlock();
BUG_ON(count != test_count);
}
#endif
vma_iter_set(vmi, start);
error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
if (error)
goto clear_tree_failed;
/* Point of no return */
mm->locked_vm -= locked_vm;
mm->map_count -= count;
if (unlock)
mmap_write_downgrade(mm);
/*
* We can free page tables without write-locking mmap_lock because VMAs
* were isolated before we downgraded mmap_lock.
*/
unmap_region(mm, &mt_detach, vma, prev, next, start, end, !unlock);
/* Statistics and freeing VMAs */
mas_set(&mas_detach, start);
remove_mt(mm, &mas_detach);
__mt_destroy(&mt_detach);
validate_mm(mm);
if (unlock)
mmap_read_unlock(mm);
return 0;
clear_tree_failed:
userfaultfd_error:
munmap_gather_failed:
end_split_failed:
mas_set(&mas_detach, 0);
mas_for_each(&mas_detach, next, end)
vma_mark_detached(next, false);
__mt_destroy(&mt_detach);
start_split_failed:
map_count_exceeded:
validate_mm(mm);
return error;
}
/*
* do_vmi_munmap() - munmap a given range.
* @vmi: The vma iterator
* @mm: The mm_struct
* @start: The start address to munmap
* @len: The length of the range to munmap
* @uf: The userfaultfd list_head
* @unlock: set to true if the user wants to drop the mmap_lock on success
*
* This function takes a @mas that is either pointing to the previous VMA or set
* to MA_START and sets it up to remove the mapping(s). The @len will be
* aligned and any arch_unmap work will be preformed.
*
* Return: 0 on success and drops the lock if so directed, error and leaves the
* lock held otherwise.
*/
int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
unsigned long start, size_t len, struct list_head *uf,
bool unlock)
{
unsigned long end;
struct vm_area_struct *vma;
if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
return -EINVAL;
end = start + PAGE_ALIGN(len);
if (end == start)
return -EINVAL;
/* arch_unmap() might do unmaps itself. */
arch_unmap(mm, start, end);
/* Find the first overlapping VMA */
vma = vma_find(vmi, end);
if (!vma) {
if (unlock)
mmap_write_unlock(mm);
return 0;
}
return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
}
/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
* @mm: The mm_struct
* @start: The start address to munmap
* @len: The length to be munmapped.
* @uf: The userfaultfd list_head
*
* Return: 0 on success, error otherwise.
*/
int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
struct list_head *uf)
{
VMA_ITERATOR(vmi, mm, start);
return do_vmi_munmap(&vmi, mm, start, len, uf, false);
}
unsigned long mmap_region(struct file *file, unsigned long addr,
unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
struct list_head *uf)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = NULL;
struct vm_area_struct *next, *prev, *merge;
pgoff_t pglen = len >> PAGE_SHIFT;
unsigned long charged = 0;
unsigned long end = addr + len;
unsigned long merge_start = addr, merge_end = end;
pgoff_t vm_pgoff;
int error;
VMA_ITERATOR(vmi, mm, addr);
/* Check against address space limit. */
if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
unsigned long nr_pages;
/*
* MAP_FIXED may remove pages of mappings that intersects with
* requested mapping. Account for the pages it would unmap.
*/
nr_pages = count_vma_pages_range(mm, addr, end);
if (!may_expand_vm(mm, vm_flags,
(len >> PAGE_SHIFT) - nr_pages))
return -ENOMEM;
}
/* Unmap any existing mapping in the area */
if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
return -ENOMEM;
/*
* Private writable mapping: check memory availability
*/
if (accountable_mapping(file, vm_flags)) {
charged = len >> PAGE_SHIFT;
if (security_vm_enough_memory_mm(mm, charged))
return -ENOMEM;
vm_flags |= VM_ACCOUNT;
}
next = vma_next(&vmi);
prev = vma_prev(&vmi);
if (vm_flags & VM_SPECIAL)
goto cannot_expand;
/* Attempt to expand an old mapping */
/* Check next */
if (next && next->vm_start == end && !vma_policy(next) &&
can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
NULL_VM_UFFD_CTX, NULL)) {
merge_end = next->vm_end;
vma = next;
vm_pgoff = next->vm_pgoff - pglen;
}
/* Check prev */
if (prev && prev->vm_end == addr && !vma_policy(prev) &&
(vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
pgoff, vma->vm_userfaultfd_ctx, NULL) :
can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
NULL_VM_UFFD_CTX, NULL))) {
merge_start = prev->vm_start;
vma = prev;
vm_pgoff = prev->vm_pgoff;
}
/* Actually expand, if possible */
if (vma &&
!vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
khugepaged_enter_vma(vma, vm_flags);
goto expanded;
}
cannot_expand:
if (prev)
vma_iter_next_range(&vmi);
/*
* Determine the object being mapped and call the appropriate
* specific mapper. the address has already been validated, but
* not unmapped, but the maps are removed from the list.
*/
vma = vm_area_alloc(mm);
if (!vma) {
error = -ENOMEM;
goto unacct_error;
}
vma_iter_set(&vmi, addr);
vma->vm_start = addr;
vma->vm_end = end;
vm_flags_init(vma, vm_flags);
vma->vm_page_prot = vm_get_page_prot(vm_flags);
vma->vm_pgoff = pgoff;
if (file) {
if (vm_flags & VM_SHARED) {
error = mapping_map_writable(file->f_mapping);
if (error)
goto free_vma;
}
vma->vm_file = get_file(file);
error = call_mmap(file, vma);
if (error)
goto unmap_and_free_vma;
/*
* Expansion is handled above, merging is handled below.
* Drivers should not alter the address of the VMA.
*/
error = -EINVAL;
if (WARN_ON((addr != vma->vm_start)))
goto close_and_free_vma;
vma_iter_set(&vmi, addr);
/*
* If vm_flags changed after call_mmap(), we should try merge
* vma again as we may succeed this time.
*/
if (unlikely(vm_flags != vma->vm_flags && prev)) {
merge = vma_merge(&vmi, mm, prev, vma->vm_start,
vma->vm_end, vma->vm_flags, NULL,
vma->vm_file, vma->vm_pgoff, NULL,
NULL_VM_UFFD_CTX, NULL);
if (merge) {
/*
* ->mmap() can change vma->vm_file and fput
* the original file. So fput the vma->vm_file
* here or we would add an extra fput for file
* and cause general protection fault
* ultimately.
*/
fput(vma->vm_file);
vm_area_free(vma);
vma = merge;
/* Update vm_flags to pick up the change. */
vm_flags = vma->vm_flags;
goto unmap_writable;
}
}
vm_flags = vma->vm_flags;
} else if (vm_flags & VM_SHARED) {
error = shmem_zero_setup(vma);
if (error)
goto free_vma;
} else {
vma_set_anonymous(vma);
}
if (map_deny_write_exec(vma, vma->vm_flags)) {
error = -EACCES;
goto close_and_free_vma;
}
/* Allow architectures to sanity-check the vm_flags */
error = -EINVAL;
if (!arch_validate_flags(vma->vm_flags))
goto close_and_free_vma;
error = -ENOMEM;
if (vma_iter_prealloc(&vmi))
goto close_and_free_vma;
/* Lock the VMA since it is modified after insertion into VMA tree */
vma_start_write(vma);
if (vma->vm_file)
i_mmap_lock_write(vma->vm_file->f_mapping);
vma_iter_store(&vmi, vma);
mm->map_count++;
if (vma->vm_file) {
if (vma->vm_flags & VM_SHARED)
mapping_allow_writable(vma->vm_file->f_mapping);
flush_dcache_mmap_lock(vma->vm_file->f_mapping);
vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
i_mmap_unlock_write(vma->vm_file->f_mapping);
}
/*
* vma_merge() calls khugepaged_enter_vma() either, the below
* call covers the non-merge case.
*/
khugepaged_enter_vma(vma, vma->vm_flags);
/* Once vma denies write, undo our temporary denial count */
unmap_writable:
if (file && vm_flags & VM_SHARED)
mapping_unmap_writable(file->f_mapping);
file = vma->vm_file;
ksm_add_vma(vma);
expanded:
perf_event_mmap(vma);
vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
if (vm_flags & VM_LOCKED) {
if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
is_vm_hugetlb_page(vma) ||
vma == get_gate_vma(current->mm))
vm_flags_clear(vma, VM_LOCKED_MASK);
else
mm->locked_vm += (len >> PAGE_SHIFT);
}
if (file)
uprobe_mmap(vma);
/*
* New (or expanded) vma always get soft dirty status.
* Otherwise user-space soft-dirty page tracker won't
* be able to distinguish situation when vma area unmapped,
* then new mapped in-place (which must be aimed as
* a completely new data area).
*/
vm_flags_set(vma, VM_SOFTDIRTY);
vma_set_page_prot(vma);
validate_mm(mm);
return addr;
close_and_free_vma:
if (file && vma->vm_ops && vma->vm_ops->close)
vma->vm_ops->close(vma);
if (file || vma->vm_file) {
unmap_and_free_vma:
fput(vma->vm_file);
vma->vm_file = NULL;
/* Undo any partial mapping done by a device driver. */
unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
vma->vm_end, true);
}
if (file && (vm_flags & VM_SHARED))
mapping_unmap_writable(file->f_mapping);
free_vma:
vm_area_free(vma);
unacct_error:
if (charged)
vm_unacct_memory(charged);
validate_mm(mm);
return error;
}
static int __vm_munmap(unsigned long start, size_t len, bool unlock)
{
int ret;
struct mm_struct *mm = current->mm;
LIST_HEAD(uf);
VMA_ITERATOR(vmi, mm, start);
if (mmap_write_lock_killable(mm))
return -EINTR;
ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
if (ret || !unlock)
mmap_write_unlock(mm);
userfaultfd_unmap_complete(mm, &uf);
return ret;
}
int vm_munmap(unsigned long start, size_t len)
{
return __vm_munmap(start, len, false);
}
EXPORT_SYMBOL(vm_munmap);
SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
{
addr = untagged_addr(addr);
return __vm_munmap(addr, len, true);
}
/*
* Emulation of deprecated remap_file_pages() syscall.
*/
SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long populate = 0;
unsigned long ret = -EINVAL;
struct file *file;
pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
current->comm, current->pid);
if (prot)
return ret;
start = start & PAGE_MASK;
size = size & PAGE_MASK;
if (start + size <= start)
return ret;
/* Does pgoff wrap? */
if (pgoff + (size >> PAGE_SHIFT) < pgoff)
return ret;
if (mmap_write_lock_killable(mm))
return -EINTR;
vma = vma_lookup(mm, start);
if (!vma || !(vma->vm_flags & VM_SHARED))
goto out;
if (start + size > vma->vm_end) {
VMA_ITERATOR(vmi, mm, vma->vm_end);
struct vm_area_struct *next, *prev = vma;
for_each_vma_range(vmi, next, start + size) {
/* hole between vmas ? */
if (next->vm_start != prev->vm_end)
goto out;
if (next->vm_file != vma->vm_file)
goto out;
if (next->vm_flags != vma->vm_flags)
goto out;
if (start + size <= next->vm_end)
break;
prev = next;
}
if (!next)
goto out;
}
prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
flags &= MAP_NONBLOCK;
flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
if (vma->vm_flags & VM_LOCKED)
flags |= MAP_LOCKED;
file = get_file(vma->vm_file);
ret = do_mmap(vma->vm_file, start, size,
prot, flags, pgoff, &populate, NULL);
fput(file);
out:
mmap_write_unlock(mm);
if (populate)
mm_populate(ret, populate);
if (!IS_ERR_VALUE(ret))
ret = 0;
return ret;
}
/*
* do_vma_munmap() - Unmap a full or partial vma.
* @vmi: The vma iterator pointing at the vma
* @vma: The first vma to be munmapped
* @start: the start of the address to unmap
* @end: The end of the address to unmap
* @uf: The userfaultfd list_head
* @unlock: Drop the lock on success
*
* unmaps a VMA mapping when the vma iterator is already in position.
* Does not handle alignment.
*
* Return: 0 on success drops the lock of so directed, error on failure and will
* still hold the lock.
*/
int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long start, unsigned long end, struct list_head *uf,
bool unlock)
{
struct mm_struct *mm = vma->vm_mm;
arch_unmap(mm, start, end);
return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
}
/*
* do_brk_flags() - Increase the brk vma if the flags match.
* @vmi: The vma iterator
* @addr: The start address
* @len: The length of the increase
* @vma: The vma,
* @flags: The VMA Flags
*
* Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
* do not match then create a new anonymous VMA. Eventually we may be able to
* do some brk-specific accounting here.
*/
static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long addr, unsigned long len, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vma_prepare vp;
validate_mm(mm);
/*
* Check against address space limits by the changed size
* Note: This happens *after* clearing old mappings in some code paths.
*/
flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
return -ENOMEM;
if (mm->map_count > sysctl_max_map_count)
return -ENOMEM;
if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
return -ENOMEM;
/*
* Expand the existing vma if possible; Note that singular lists do not
* occur after forking, so the expand will only happen on new VMAs.
*/
if (vma && vma->vm_end == addr && !vma_policy(vma) &&
can_vma_merge_after(vma, flags, NULL, NULL,
addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
if (vma_iter_prealloc(vmi))
goto unacct_fail;
init_vma_prep(&vp, vma);
vma_prepare(&vp);
vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
vma->vm_end = addr + len;
vm_flags_set(vma, VM_SOFTDIRTY);
vma_iter_store(vmi, vma);
vma_complete(&vp, vmi, mm);
khugepaged_enter_vma(vma, flags);
goto out;
}
/* create a vma struct for an anonymous mapping */
vma = vm_area_alloc(mm);
if (!vma)
goto unacct_fail;
vma_set_anonymous(vma);
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_pgoff = addr >> PAGE_SHIFT;
vm_flags_init(vma, flags);
vma->vm_page_prot = vm_get_page_prot(flags);
if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
goto mas_store_fail;
mm->map_count++;
ksm_add_vma(vma);
out:
perf_event_mmap(vma);
mm->total_vm += len >> PAGE_SHIFT;
mm->data_vm += len >> PAGE_SHIFT;
if (flags & VM_LOCKED)
mm->locked_vm += (len >> PAGE_SHIFT);
vm_flags_set(vma, VM_SOFTDIRTY);
validate_mm(mm);
return 0;
mas_store_fail:
vm_area_free(vma);
unacct_fail:
vm_unacct_memory(len >> PAGE_SHIFT);
return -ENOMEM;
}
int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = NULL;
unsigned long len;
int ret;
bool populate;
LIST_HEAD(uf);
VMA_ITERATOR(vmi, mm, addr);
len = PAGE_ALIGN(request);
if (len < request)
return -ENOMEM;
if (!len)
return 0;
if (mmap_write_lock_killable(mm))
return -EINTR;
/* Until we need other flags, refuse anything except VM_EXEC. */
if ((flags & (~VM_EXEC)) != 0)
return -EINVAL;
ret = check_brk_limits(addr, len);
if (ret)
goto limits_failed;
ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
if (ret)
goto munmap_failed;
vma = vma_prev(&vmi);
ret = do_brk_flags(&vmi, vma, addr, len, flags);
populate = ((mm->def_flags & VM_LOCKED) != 0);
mmap_write_unlock(mm);
userfaultfd_unmap_complete(mm, &uf);
if (populate && !ret)
mm_populate(addr, len);
return ret;
munmap_failed:
limits_failed:
mmap_write_unlock(mm);
return ret;
}
EXPORT_SYMBOL(vm_brk_flags);
int vm_brk(unsigned long addr, unsigned long len)
{
return vm_brk_flags(addr, len, 0);
}
EXPORT_SYMBOL(vm_brk);
/* Release all mmaps. */
void exit_mmap(struct mm_struct *mm)
{
struct mmu_gather tlb;
struct vm_area_struct *vma;
unsigned long nr_accounted = 0;
MA_STATE(mas, &mm->mm_mt, 0, 0);
int count = 0;
/* mm's last user has gone, and its about to be pulled down */
mmu_notifier_release(mm);
mmap_read_lock(mm);
arch_exit_mmap(mm);
vma = mas_find(&mas, ULONG_MAX);
if (!vma) {
/* Can happen if dup_mmap() received an OOM */
mmap_read_unlock(mm);
return;
}
lru_add_drain();
flush_cache_mm(mm);
tlb_gather_mmu_fullmm(&tlb, mm);
/* update_hiwater_rss(mm) here? but nobody should be looking */
/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
mmap_read_unlock(mm);
/*
* Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
* because the memory has been already freed.
*/
set_bit(MMF_OOM_SKIP, &mm->flags);
mmap_write_lock(mm);
mt_clear_in_rcu(&mm->mm_mt);
free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
USER_PGTABLES_CEILING, true);
tlb_finish_mmu(&tlb);
/*
* Walk the list again, actually closing and freeing it, with preemption
* enabled, without holding any MM locks besides the unreachable
* mmap_write_lock.
*/
do {
if (vma->vm_flags & VM_ACCOUNT)
nr_accounted += vma_pages(vma);
remove_vma(vma, true);
count++;
cond_resched();
} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
BUG_ON(count != mm->map_count);
trace_exit_mmap(mm);
__mt_destroy(&mm->mm_mt);
mmap_write_unlock(mm);
vm_unacct_memory(nr_accounted);
}
/* Insert vm structure into process list sorted by address
* and into the inode's i_mmap tree. If vm_file is non-NULL
* then i_mmap_rwsem is taken here.
*/
int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
{
unsigned long charged = vma_pages(vma);
if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
return -ENOMEM;
if ((vma->vm_flags & VM_ACCOUNT) &&
security_vm_enough_memory_mm(mm, charged))
return -ENOMEM;
/*
* The vm_pgoff of a purely anonymous vma should be irrelevant
* until its first write fault, when page's anon_vma and index
* are set. But now set the vm_pgoff it will almost certainly
* end up with (unless mremap moves it elsewhere before that
* first wfault), so /proc/pid/maps tells a consistent story.
*
* By setting it to reflect the virtual start address of the
* vma, merges and splits can happen in a seamless way, just
* using the existing file pgoff checks and manipulations.
* Similarly in do_mmap and in do_brk_flags.
*/
if (vma_is_anonymous(vma)) {
BUG_ON(vma->anon_vma);
vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
}
if (vma_link(mm, vma)) {
vm_unacct_memory(charged);
return -ENOMEM;
}
return 0;
}
/*
* Copy the vma structure to a new location in the same mm,
* prior to moving page table entries, to effect an mremap move.
*/
struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
unsigned long addr, unsigned long len, pgoff_t pgoff,
bool *need_rmap_locks)
{
struct vm_area_struct *vma = *vmap;
unsigned long vma_start = vma->vm_start;
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *new_vma, *prev;
bool faulted_in_anon_vma = true;
VMA_ITERATOR(vmi, mm, addr);
validate_mm(mm);
/*
* If anonymous vma has not yet been faulted, update new pgoff
* to match new location, to increase its chance of merging.
*/
if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
pgoff = addr >> PAGE_SHIFT;
faulted_in_anon_vma = false;
}
new_vma = find_vma_prev(mm, addr, &prev);
if (new_vma && new_vma->vm_start < addr + len)
return NULL; /* should never get here */
new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
vma->vm_userfaultfd_ctx, anon_vma_name(vma));
if (new_vma) {
/*
* Source vma may have been merged into new_vma
*/
if (unlikely(vma_start >= new_vma->vm_start &&
vma_start < new_vma->vm_end)) {
/*
* The only way we can get a vma_merge with
* self during an mremap is if the vma hasn't
* been faulted in yet and we were allowed to
* reset the dst vma->vm_pgoff to the
* destination address of the mremap to allow
* the merge to happen. mremap must change the
* vm_pgoff linearity between src and dst vmas
* (in turn preventing a vma_merge) to be
* safe. It is only safe to keep the vm_pgoff
* linear if there are no pages mapped yet.
*/
VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
*vmap = vma = new_vma;
}
*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
} else {
new_vma = vm_area_dup(vma);
if (!new_vma)
goto out;
new_vma->vm_start = addr;
new_vma->vm_end = addr + len;
new_vma->vm_pgoff = pgoff;
if (vma_dup_policy(vma, new_vma))
goto out_free_vma;
if (anon_vma_clone(new_vma, vma))
goto out_free_mempol;
if (new_vma->vm_file)
get_file(new_vma->vm_file);
if (new_vma->vm_ops && new_vma->vm_ops->open)
new_vma->vm_ops->open(new_vma);
vma_start_write(new_vma);
if (vma_link(mm, new_vma))
goto out_vma_link;
*need_rmap_locks = false;
}
validate_mm(mm);
return new_vma;
out_vma_link:
if (new_vma->vm_ops && new_vma->vm_ops->close)
new_vma->vm_ops->close(new_vma);
if (new_vma->vm_file)
fput(new_vma->vm_file);
unlink_anon_vmas(new_vma);
out_free_mempol:
mpol_put(vma_policy(new_vma));
out_free_vma:
vm_area_free(new_vma);
out:
validate_mm(mm);
return NULL;
}
/*
* Return true if the calling process may expand its vm space by the passed
* number of pages
*/
bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
{
if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
return false;
if (is_data_mapping(flags) &&
mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
/* Workaround for Valgrind */
if (rlimit(RLIMIT_DATA) == 0 &&
mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
return true;
pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
current->comm, current->pid,
(mm->data_vm + npages) << PAGE_SHIFT,
rlimit(RLIMIT_DATA),
ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
if (!ignore_rlimit_data)
return false;
}
return true;
}
void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
{
WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
if (is_exec_mapping(flags))
mm->exec_vm += npages;
else if (is_stack_mapping(flags))
mm->stack_vm += npages;
else if (is_data_mapping(flags))
mm->data_vm += npages;
}
static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
/*
* Having a close hook prevents vma merging regardless of flags.
*/
static void special_mapping_close(struct vm_area_struct *vma)
{
}
static const char *special_mapping_name(struct vm_area_struct *vma)
{
return ((struct vm_special_mapping *)vma->vm_private_data)->name;
}
static int special_mapping_mremap(struct vm_area_struct *new_vma)
{
struct vm_special_mapping *sm = new_vma->vm_private_data;
if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
return -EFAULT;
if (sm->mremap)
return sm->mremap(sm, new_vma);
return 0;
}
static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
{
/*
* Forbid splitting special mappings - kernel has expectations over
* the number of pages in mapping. Together with VM_DONTEXPAND
* the size of vma should stay the same over the special mapping's
* lifetime.
*/
return -EINVAL;
}
static const struct vm_operations_struct special_mapping_vmops = {
.close = special_mapping_close,
.fault = special_mapping_fault,
.mremap = special_mapping_mremap,
.name = special_mapping_name,
/* vDSO code relies that VVAR can't be accessed remotely */
.access = NULL,
.may_split = special_mapping_split,
};
static const struct vm_operations_struct legacy_special_mapping_vmops = {
.close = special_mapping_close,
.fault = special_mapping_fault,
};
static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
pgoff_t pgoff;
struct page **pages;
if (vma->vm_ops == &legacy_special_mapping_vmops) {
pages = vma->vm_private_data;
} else {
struct vm_special_mapping *sm = vma->vm_private_data;
if (sm->fault)
return sm->fault(sm, vmf->vma, vmf);
pages = sm->pages;
}
for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
pgoff--;
if (*pages) {
struct page *page = *pages;
get_page(page);
vmf->page = page;
return 0;
}
return VM_FAULT_SIGBUS;
}
static struct vm_area_struct *__install_special_mapping(
struct mm_struct *mm,
unsigned long addr, unsigned long len,
unsigned long vm_flags, void *priv,
const struct vm_operations_struct *ops)
{
int ret;
struct vm_area_struct *vma;
validate_mm(mm);
vma = vm_area_alloc(mm);
if (unlikely(vma == NULL))
return ERR_PTR(-ENOMEM);
vma->vm_start = addr;
vma->vm_end = addr + len;
vm_flags_init(vma, (vm_flags | mm->def_flags |
VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
vma->vm_ops = ops;
vma->vm_private_data = priv;
ret = insert_vm_struct(mm, vma);
if (ret)
goto out;
vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
perf_event_mmap(vma);
validate_mm(mm);
return vma;
out:
vm_area_free(vma);
validate_mm(mm);
return ERR_PTR(ret);
}
bool vma_is_special_mapping(const struct vm_area_struct *vma,
const struct vm_special_mapping *sm)
{
return vma->vm_private_data == sm &&
(vma->vm_ops == &special_mapping_vmops ||
vma->vm_ops == &legacy_special_mapping_vmops);
}
/*
* Called with mm->mmap_lock held for writing.
* Insert a new vma covering the given region, with the given flags.
* Its pages are supplied by the given array of struct page *.
* The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
* The region past the last page supplied will always produce SIGBUS.
* The array pointer and the pages it points to are assumed to stay alive
* for as long as this mapping might exist.
*/
struct vm_area_struct *_install_special_mapping(
struct mm_struct *mm,
unsigned long addr, unsigned long len,
unsigned long vm_flags, const struct vm_special_mapping *spec)
{
return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
&special_mapping_vmops);
}
int install_special_mapping(struct mm_struct *mm,
unsigned long addr, unsigned long len,
unsigned long vm_flags, struct page **pages)
{
struct vm_area_struct *vma = __install_special_mapping(
mm, addr, len, vm_flags, (void *)pages,
&legacy_special_mapping_vmops);
return PTR_ERR_OR_ZERO(vma);
}
static DEFINE_MUTEX(mm_all_locks_mutex);
static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
{
if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
/*
* The LSB of head.next can't change from under us
* because we hold the mm_all_locks_mutex.
*/
down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
/*
* We can safely modify head.next after taking the
* anon_vma->root->rwsem. If some other vma in this mm shares
* the same anon_vma we won't take it again.
*
* No need of atomic instructions here, head.next
* can't change from under us thanks to the
* anon_vma->root->rwsem.
*/
if (__test_and_set_bit(0, (unsigned long *)
&anon_vma->root->rb_root.rb_root.rb_node))
BUG();
}
}
static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
{
if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
/*
* AS_MM_ALL_LOCKS can't change from under us because
* we hold the mm_all_locks_mutex.
*
* Operations on ->flags have to be atomic because
* even if AS_MM_ALL_LOCKS is stable thanks to the
* mm_all_locks_mutex, there may be other cpus
* changing other bitflags in parallel to us.
*/
if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
BUG();
down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
}
}
/*
* This operation locks against the VM for all pte/vma/mm related
* operations that could ever happen on a certain mm. This includes
* vmtruncate, try_to_unmap, and all page faults.
*
* The caller must take the mmap_lock in write mode before calling
* mm_take_all_locks(). The caller isn't allowed to release the
* mmap_lock until mm_drop_all_locks() returns.
*
* mmap_lock in write mode is required in order to block all operations
* that could modify pagetables and free pages without need of
* altering the vma layout. It's also needed in write mode to avoid new
* anon_vmas to be associated with existing vmas.
*
* A single task can't take more than one mm_take_all_locks() in a row
* or it would deadlock.
*
* The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
* mapping->flags avoid to take the same lock twice, if more than one
* vma in this mm is backed by the same anon_vma or address_space.
*
* We take locks in following order, accordingly to comment at beginning
* of mm/rmap.c:
* - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
* hugetlb mapping);
* - all vmas marked locked
* - all i_mmap_rwsem locks;
* - all anon_vma->rwseml
*
* We can take all locks within these types randomly because the VM code
* doesn't nest them and we protected from parallel mm_take_all_locks() by
* mm_all_locks_mutex.
*
* mm_take_all_locks() and mm_drop_all_locks are expensive operations
* that may have to take thousand of locks.
*
* mm_take_all_locks() can fail if it's interrupted by signals.
*/
int mm_take_all_locks(struct mm_struct *mm)
{
struct vm_area_struct *vma;
struct anon_vma_chain *avc;
MA_STATE(mas, &mm->mm_mt, 0, 0);
mmap_assert_write_locked(mm);
mutex_lock(&mm_all_locks_mutex);
mas_for_each(&mas, vma, ULONG_MAX) {
if (signal_pending(current))
goto out_unlock;
vma_start_write(vma);
}
mas_set(&mas, 0);
mas_for_each(&mas, vma, ULONG_MAX) {
if (signal_pending(current))
goto out_unlock;
if (vma->vm_file && vma->vm_file->f_mapping &&
is_vm_hugetlb_page(vma))
vm_lock_mapping(mm, vma->vm_file->f_mapping);
}
mas_set(&mas, 0);
mas_for_each(&mas, vma, ULONG_MAX) {
if (signal_pending(current))
goto out_unlock;
if (vma->vm_file && vma->vm_file->f_mapping &&
!is_vm_hugetlb_page(vma))
vm_lock_mapping(mm, vma->vm_file->f_mapping);
}
mas_set(&mas, 0);
mas_for_each(&mas, vma, ULONG_MAX) {
if (signal_pending(current))
goto out_unlock;
if (vma->anon_vma)
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
vm_lock_anon_vma(mm, avc->anon_vma);
}
return 0;
out_unlock:
mm_drop_all_locks(mm);
return -EINTR;
}
static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
{
if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
/*
* The LSB of head.next can't change to 0 from under
* us because we hold the mm_all_locks_mutex.
*
* We must however clear the bitflag before unlocking
* the vma so the users using the anon_vma->rb_root will
* never see our bitflag.
*
* No need of atomic instructions here, head.next
* can't change from under us until we release the
* anon_vma->root->rwsem.
*/
if (!__test_and_clear_bit(0, (unsigned long *)
&anon_vma->root->rb_root.rb_root.rb_node))
BUG();
anon_vma_unlock_write(anon_vma);
}
}
static void vm_unlock_mapping(struct address_space *mapping)
{
if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
/*
* AS_MM_ALL_LOCKS can't change to 0 from under us
* because we hold the mm_all_locks_mutex.
*/
i_mmap_unlock_write(mapping);
if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
&mapping->flags))
BUG();
}
}
/*
* The mmap_lock cannot be released by the caller until
* mm_drop_all_locks() returns.
*/
void mm_drop_all_locks(struct mm_struct *mm)
{
struct vm_area_struct *vma;
struct anon_vma_chain *avc;
MA_STATE(mas, &mm->mm_mt, 0, 0);
mmap_assert_write_locked(mm);
BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
mas_for_each(&mas, vma, ULONG_MAX) {
if (vma->anon_vma)
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
vm_unlock_anon_vma(avc->anon_vma);
if (vma->vm_file && vma->vm_file->f_mapping)
vm_unlock_mapping(vma->vm_file->f_mapping);
}
vma_end_write_all(mm);
mutex_unlock(&mm_all_locks_mutex);
}
/*
* initialise the percpu counter for VM
*/
void __init mmap_init(void)
{
int ret;
ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
VM_BUG_ON(ret);
}
/*
* Initialise sysctl_user_reserve_kbytes.
*
* This is intended to prevent a user from starting a single memory hogging
* process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
* mode.
*
* The default value is min(3% of free memory, 128MB)
* 128MB is enough to recover with sshd/login, bash, and top/kill.
*/
static int init_user_reserve(void)
{
unsigned long free_kbytes;
free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
return 0;
}
subsys_initcall(init_user_reserve);
/*
* Initialise sysctl_admin_reserve_kbytes.
*
* The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
* to log in and kill a memory hogging process.
*
* Systems with more than 256MB will reserve 8MB, enough to recover
* with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
* only reserve 3% of free pages by default.
*/
static int init_admin_reserve(void)
{
unsigned long free_kbytes;
free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
return 0;
}
subsys_initcall(init_admin_reserve);
/*
* Reinititalise user and admin reserves if memory is added or removed.
*
* The default user reserve max is 128MB, and the default max for the
* admin reserve is 8MB. These are usually, but not always, enough to
* enable recovery from a memory hogging process using login/sshd, a shell,
* and tools like top. It may make sense to increase or even disable the
* reserve depending on the existence of swap or variations in the recovery
* tools. So, the admin may have changed them.
*
* If memory is added and the reserves have been eliminated or increased above
* the default max, then we'll trust the admin.
*
* If memory is removed and there isn't enough free memory, then we
* need to reset the reserves.
*
* Otherwise keep the reserve set by the admin.
*/
static int reserve_mem_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
unsigned long tmp, free_kbytes;
switch (action) {
case MEM_ONLINE:
/* Default max is 128MB. Leave alone if modified by operator. */
tmp = sysctl_user_reserve_kbytes;
if (0 < tmp && tmp < (1UL << 17))
init_user_reserve();
/* Default max is 8MB. Leave alone if modified by operator. */
tmp = sysctl_admin_reserve_kbytes;
if (0 < tmp && tmp < (1UL << 13))
init_admin_reserve();
break;
case MEM_OFFLINE:
free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
if (sysctl_user_reserve_kbytes > free_kbytes) {
init_user_reserve();
pr_info("vm.user_reserve_kbytes reset to %lu\n",
sysctl_user_reserve_kbytes);
}
if (sysctl_admin_reserve_kbytes > free_kbytes) {
init_admin_reserve();
pr_info("vm.admin_reserve_kbytes reset to %lu\n",
sysctl_admin_reserve_kbytes);
}
break;
default:
break;
}
return NOTIFY_OK;
}
static int __meminit init_reserve_notifier(void)
{
if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
pr_err("Failed registering memory add/remove notifier for admin reserve\n");
return 0;
}
subsys_initcall(init_reserve_notifier);